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ABSTRACT

Objective: Doxorubicin (DOX) is a chemotherapeutic agent commonly used to treat a variety of cancers despite having well documented adverse side 
effects in organs like heart, liver, and kidney. The damage caused to brain, if any, and to what extent is, however, still not clear and the present study 
was undertaken to estimate the possible role of DOX inducing cognitive impairment in Wistar rats.

Methods: The study carried out in two groups of Wistar rats (n=6) with one group receiving DOX, and the other only normal saline used as control. 
During and after the experimentation period cognitive level of each rat was measured using Barnes maze (BM) till 8  weeks. At the end of the 
observation period (after 8th week), a series of biochemical and histopathological studies were carried out after sacrificing the animals.

Results: Errors to reach target and time taken to reach the target was found in BM experiment, elevated levels of antioxidants and hemoglobin was 
found reduced significantly in the DOX treated group when compared to the controls while histopathology of brain cells of DOX treated group also 
showed reduction in hippocampal cellularity and cell death in hippocampal area suggesting evidence of oxidative damage caused by DOX treatment.

Conclusion: Parameters in this study which not only conclusively show the damage caused to brain by DOX, but also estimates the changes caused to 
each indicator by this drug.
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INTRODUCTION

Chemotherapy-induced cognitive impairment is a serious challenge 
faced by cancer survivors. During and shortly after chemotherapy 
for cancer, many patients report attention deficits, memory loss, and 
confused thought processes [1]. It has been long known that cognitive 
impairment affect the quality of life and provoke feelings of depression 
in patients [2,3]. The fractions of patients suffering from chemotherapy-
induced cognitive deficits vary widely with estimates ranging from 17-
75%, based on study design and other factors [4,5]. These cognitive 
problems, collectively called somnolence or cognitive dysfunction, are 
also reported in cancer patients undergoing doxorubicin (DOX) - based 
chemotherapy, particularly for the treatment of breast cancer [6-8].

DOX is an anthracycline class of drug and is used as a powerful 
agent against a variety of cancers including breast and esophageal 
carcinomas; osteosarcoma, Kaposi’s sarcoma, and soft tissue 
sarcomas [9]. Use of DOX is limited by a number of very well established 
side effects that include cardiotoxicity, hepatotoxicity, nephrotoxicity, 
etc. [10]. However, DOX-induced toxicity on brain tissue is much less 
understood [11]. Tangpong et al. 2006 showed that, DOX does not cross 
the BBB. However, it is hypothesized that DOX-induced circulating 
tumor necrosis factor (TNF) lead to mitochondrial dysfunction in the 
brain which might be responsible for the cognitive disorder.

The present study was carried out to understand the extent of damage, 
if any, caused to the brain by DOX treatment in Wistar rats.

METHODS

Animals
The study was carried out after obtaining approval from Institutional 
Animal Ethical Committee of RMRC (CPCSEA No.  1388/c/10/
CPCSEA). Albino rats (Wistar strain) weighing between 150 and 250 g, 

procured from M/s Venkateshwara Enterprises, Bengaluru, were used 
in the experiment. Prior to initiation of the experiments, rats were 
acclimatized for 1 week in laboratory conditions. Drinking water and 
standard rat feed was provided during this time.

Materials
Commercial DOX injection (DOXUTEC 10; United Biotech (P) Ltd. India) 
was used in the study.

Barnes assay
Barnes maze (BM), a sensitive standard tool for testing hippocampus-
dependent spatial memory in rats [12,13] was used in the study for 
estimation of cognition levels of rats.

Experimentation
After acclimatization, rats were divided into two groups, each 
consisting of six rats. Group  I served as control, where only saline 
solution was administered by intraperitoneal route (5  ml/kg body 
weight) while Group II was DOX treated group where DOX was injected 
intraperitonially after dissolving in saline (4  mg/kg body weight) 
weekly once for 4  weeks. Rats were observed for 3  weeks for their 
behavior and mortality.

Learning and memory test in rats were performed by using BM.

On day 1, rats were familiarized on BM to make them comfortable. 
Day 2-8 was a training period for rats on the BM. Experiment was started 
after acclimatization period of 8  days. Experimental observation was 
recorded daily before dosing period, during dosage period, and after 
dosing period.

Rat blood samples were collected from eye orbit under halothane 
anesthesia on day 1 before treatment and 7th week after treatment with 
DOX.
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After the dosing period and observation period of 3  weeks for 
control and DOX groups respectively, rats were humanely sacrificed 
under halothane anesthesia and their brain dissected out to perform 
antioxidant study and estimate histopathological changes, if any.

Brain tissue was cleaned in ice-cold saline and weighed immediately. 
Brain tissue from each group was taken and 30 homogenate was 
prepared in saline solution buffered with KCl (pH 7.4). Each sample was 
subjected to estimation of glutathione (GSH) [14], lipid peroxidation in 
terms of thiobarbituric acid reactive species, using malondialdehyde 
as standard by the method of Buege and Aust., superoxide dismutase 
(SOD) [15] and catalase (CAT) [16]. Brain samples of at least two 
animals from each group were fixed in 10% formalin solution for 
histopathological study.

Statistics
Statistical data was expressed as mean ± standard deviation or mean 
± standard error mean (n=6). Statistical comparisons were performed 
using Student’s t-test by using GraphPad Software, instat3. p<0.05 was 
considered statistically significant.

RESULTS

Behavior study
After exposing the Group  II (DOX treated) rats to the BM task, they 
showed initial freezing behavior followed by grooming and this 
behavior extended for more than 5 minutes every time during the task.

Errors to reach target and time taken to reach the target
Before drug administration, the rats were trained and the errors were 
noted.

During the dosing period
During dosage period, time taken to reach the hole and number of errors 
in attempts to reach the target hole in BM in the DOX treated group were 
counted and compared with that of control. Number of errors to reach 
the target and time taken to reach the target was increased in DOX group 
in comparison to rats treated with normal saline (Tables 1 and 2).

After dose administration: After dosing period rats were kept under 
observation for 3 weeks.

Antioxidant activity
Brain tissue analysis indicated that there was an increase in free radical 
generation and antioxidant defense was impaired in DOX induced 
group. Antioxidant assay for GSH, lipid peroxidation, SOD, and CAT from 
brain tissue is shown in Table  3. There was a significant decrease in 
brain GSH, CAT, and SOD levels in DOX induced group. However, lipid 
peroxidation level increased in DOX induced group.

Hemoglobin level
A significant reduction in hemoglobin level was noted in rats of the DOX 
treated group when compared with the control group (Graph 1).

Histopathology
In sharp deviation to normal histopathology of brain as seen in 
the control animals, the samples from the DOX treated group 
showed neuronal eosinophilia, neuronal nuclear pyknosis, neuronal 
karyorrhexis, astrocytic changes, macrophage influx, hippocampal 
cellularity, and hippocampal cell death (Table 4).

DISCUSSION

Previous reports of preclinical studies have shown that several 
commonly used chemotherapeutic agents can induce central oxidative 
stress in healthy rodents [17,18]. The results of our study corroborate 
this fact with the specific use of DOX as the drug. BM experiments 
revealed that the number of errors and time taken to reach the target 
hole is significantly more in DOX treated group, indicating detrimental 
effect on spatial reference learning, and memory with depressed 
irritating behavior in DOX treated rats when compared to normal.

Behavioral models became particularly useful for the neurobiological 
mechanisms of behavioral perseverations and stereotypes. According to 
Seeger et al. 2004 [19], impairment in set-shifting in the Barnes circular 
maze task, significantly more attempts and longer time in returning to 
the starting hole, by the test animal, implicates increased perseverative 
behavior, which is also referred to in the literature as behavioral 
inflexibility. Recent findings suggested that this characteristic reduction 
in behavioral flexibility may be associated with abnormal function of 
the prefrontal cortex and basal ganglia [19,20], and possibly in the 
hippocampus [19]. In the present study, we found that there is excessive 
grooming, freezing, vocalization, and perseverative behavior while 
performing BM task within the DOX treated group of rats. It has been 
earlier stated that, freezing behavior is characterized by changes in 
blood pressure and lengths of time in crouching position, but it also is 
known to cause changes such as shortness of breath, increased heart 
rate, sweating, or choking sensation [21].

It has been postulated that DOX does not cross the blood brain 
barrier  [22,23], however, it is understood that the circulating levels 
of TNF can pass through blood brain barrier and induce neuronal 
damage  [24,25]. The cytotoxicity of TNF depends on induction of 
mitochondrial permeability transition pore [26]. Thus, it is possible 

Table 2: Time taken to reach the hole

Experimental Days Time taken to reach hole in 
seconds (S)

Control DOX
Before drug administration

Day 1 144.17±35.606 207.33±23.321a**
Day 2 96.667±7.312 184.67±16.884a***
Day 3 68.500±11.675 98.000±7.642
Day 4 50.333±9.374 87.167±6.969

During dosage period
Day 5 35.500±10.114 92.000±4.427a***
Day 6 32.667±7.474 99.000±6.782
Day 7 31.167±8.495 108.50±7.503***
Day 8 26.667±7.367 109.33±7.891***

After dosing
Day 9 25.500±6.285 126.67±8.287
Day 10 21.667±7.711 151.00±14.913a***
Day 11 20.333±6.947 170.00±7.563a***
Day 12 19.500±6.091 190.83±9.847a***

Values are expressed in mean±SD for n=6. Significant difference as compared 
to DOX followed by Student’s t‑test, control compared with DOX. *p<0.05, 
**p<0.01, ***p<0.001 considered significant. DOX: Doxorubicin, SD: Standard 
deviation. a: Control

Table 1: Number of errors to reach the target hole

Experimental Days Control DOX
Before dosing

Day 1 14.500±3.271 16.667±6.022
Day 2 13.000±2.280 13.333±3.933
Day 3 9.500±1.049 7.333±3.077
Day 4 2.333±2.066 1.667±1.366

During dosage period
Day 5 2.667±1.366 1.667±1.033
Day 6 2.167±0.7528 2.333±1.633ns
Day 7 2.333±0.5164 3.000±1.414ans
Day 8 2.500±1.378 4.500±1.378ans

After dosing
Day 9 2.333±1.211 5.333±1.506ans
Day 10 1.000±0.8944 5.667±1.633a***
Day 11 1.000±0.8944 5.667±0.8165a***
Day 12 1.333±0.5164 7.000±1.673a***

Values are expressed in mean±SD for n=6, Significant difference as compared 
to DOX followed by Student’s t‑test, control compared with DOX *p<0.05, 
**p<0.01, ***p<0.001 considered significant. DOX: Doxorubicin, SD: Standard 
deviation, ns: Non‑significant, a: Control
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that the increase in TNF levels may be related to DOX induced oxidative 
stress and morphological injury. Free radicals play an important role in 
the genesis of structural and functional changes of neuronal membrane 
that could be responsible for the beginning or aggravation of the basic 
disease [27-29]. Decrease in levels of GSH can cause oxidative stress 
that lead to an increase in lipid peroxidation [30]. This increased lipid 
peroxidation level in brain results in the process of cell damage [31]. 
GSH acts as protective agent against cellular free radical-mediated 
oxidative damage by functioning as an oxyradical scavenger, thereby 
reducing lipid peroxidation [32-35].

Joshi et al. in 2005 reported a significant increase in levels of protein 
oxidation and lipid peroxidation in brain tissues after 72 hrs of a single 

i.p. injection of DOX [36]. In the present study, it was observed that 
there was a significant increase in lipid peroxidation and decrease 
in GSH, SOD, and CAT enzymes which are most likely responsible for 
further damage of brain tissue.

Relationship with hemoglobin and cognition is not clear. However, in the 
present study, DOX treatment has been found to decrease hemoglobin 
levels in rats. Vearncombe reported that reduced hemoglobin levels, 
together with increased anxiety, predict a decline on measures of 
cognitive function [37].

In the present study, pathophysiological investigations revealed 
that DOX treated rats showed a decrease in hippocampal cellularity 
and increase in hippocampal cell death. According to Seigers et al. 
2008  [38], hippocampal cell death is directly proportional to the 
cognitive impairment in rats. Furthermore, in the present study we also 
observed cerebral edema, meningeal congestion, neuronal eosinophilia, 
neuronal nuclear pyknosis, astrocytic changes, and macrophage influx 
in DOX treated rats that were not observed in the control group, which 
may indicate impact on memory of rats.

CONCLUSION

The present study estimates changes to possible indicators of 
neurotoxicity in animals treated with DOX in comparison to normal 
control. To the best of our knowledge, this is the first study using 
maximum number of parameters which not only conclusively show 
the damage caused to brain by DOX but also estimates the changes 
caused to each indicator by this drug. The finding that DOX generated 
imbalance in oxidative stress and antioxidant enzymes in brain may 
have damaged the normal cellular structure in brain hippocampal area 
that is responsible for cognition impairment should help investigators 
in their quest for suitable antidote/protective agent for brain damage
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