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1. Introduction

Most manufacturing processes require careful parametriza-
tion to achieve optimal operations in terms of cost, quality and
time. The number of considered process parameters can range
between less than ten and many hundred parameters. Current
approaches to parameter optimisation for production processes
require many expensive trial experiments. In some cases, physi-
cally precise simulation models, e.g. based on the Finite Element
(FE) method, can substitute actual experiments. However, FE
simulations often require hours or even days of computation. In
this work, we reduce the number of trial experiments (simula-
tions) by the use of surrogate-based optimisation (SBO).

Prior work uses surrogate models (sometimes called meta-
models) to predict an overall performance scalar or low-
dimensional process features only. This limits the usable in-
formation gained from every experiment. Since experiments are
costly, it is beneficial to make detailed sensory observations or
simulation results available to the surrogate model. In this work,
a deep artificial neural network (ANN) is used for the surrogate
model. For the considered use case, the draping of composite

textiles, the ANN takes a 50-dimensional process parameter set
and predicts the shear angles of over 24,000 composite fabric
elements.

The paper is organized as follows. The state of the art and the
considered use case are introduced in Section 2 and Section 3.
Section 4 gives details about model training and parameter op-
timisation for SBO. The approach is applied to the composite
textile draping use case in Section 5 with results discussed in
Section 6. The paper concludes in Section 7 with a summary
and future outlook.

2. Related Work

2.1. Surrogate-Based Optimisation

Optimisation problems in engineering, such as design- and
parameter-optimisation problems, are often high-dimensional,
highly non-linear and even non-convex. Global derivative-free
optimisation methods [1] can find good solutions under such
conditions. But they require many expensive evaluations in the
form of physical or simulated experiments. Physically motivated
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models, such as Finite Element (FE) analysis and Computational
Fluid Dynamics (CFD) simulations predict physical behaviour
with high precision. But these simulations come at the price of
long computation times.

Surrogate approximations (meta-models) are easy-to-evaluate
approximations of high-fidelity models [2–4]. Common surro-
gate model choices are polynomials, splines, stochastic pro-
cesses, kernel smoothing, radial basis functions, artificial neural
networks and decision trees [2]. The surrogate model can be
used to select optimised candidate solutions with reduced com-
putational effort. However, since the surrogate model introduces
a bias, the selected solutions may in effect not contain the op-
timum solution [5]. Surrogate-based optimisation (SBO) [6,7]
tries to eliminate the bias of the surrogate model by iteratively
improving the surrogate model with new experimental (simu-
lated) evidence for the previously selected candidate solutions.

2.2. Model-Based Optimisation of Manufacturing
Process Parameters

The recent work [8] gives an overview on model-driven pro-
cess parameter optimisation. In [9], artificial neural networks are
combined with a genetic optimisation algorithm to find improved
process parameters. The authors of [10] apply this technique to
the optimisation of an injection molding process. [11] introduce
surrogate-based optimisation in the injection molding process
optimisation. In [12], the authors use expected improvement
to select candidate solutions in a surrogate-based optimisation
approach. The authors of [13] introduce Model-Based Self-
Optimisation (MBSO). They propose to equip machines with
reasoning capabilities so that they can adapt parameters automat-
ically to changed external conditions and objectives. However,
they assume a fixed process model for the optimisation. This
goes in contrast to surrogate-based optimisation where the pro-
cess model is iteratively improved with new observations.

2.3. Optimisation of Material Forming Processes

Material forming processes, such as sheet metal forming, are
widely applied in the automotive and aerospace industry to man-
ufacture shell structures, e.g. for lightweight applications. With
the advent of FE-techniques, many authors have made efforts
to accurately simulate the forming process and use surrogate
techniques to determine an optimum process design without
unwanted defects, such as cracking, wrinkling or inadmissible
springback of the formed part [14]. Typical process parameters
for optimisation are blank holder forces, the inital blank shape,
tool load paths (e.g. force/pressure over time) and the die shape
[15–17]. More recently, simulation approaches for forming of
composite materials, also referred to as draping, have drawn
attention [18–20]. To account for the multi-step-nature of com-
posite manufacturing, virtual process chains including the simu-
lation of resin infiltration and curing are proposed [21,22]. Apart
from the inherently anisotropic complex material behaviour, in-
filtration and curing significantly complicates the prediction of
manufacturing defects and makes optimisation a challenging
task [23].

3. Use Case: Process Parameter Optimisation for
Composite Textile Draping

Continuous Fibre Reinforced Plastics (CoFRP) are increas-
ingly used for load bearing structures, especially in aerospace
and automotive applications. However, their superior material
properties (e.g. the high strength- and modulus-to-weight ratio)
come at a higher cost, not only caused by the higher material
prices but also by the effort required to build up a stable manu-
facturing process with the required quality.

Figure 1 shows a common process chain from raw material
to finished CoFRP components: Plies of fabric material are cut
and stacked, which initially determines the fibre orientations of
the part. The ply stack is then transferred to a press tool. As
the tool closes, the ply stack is formed to a three-dimensional
preform. Typically, an adhesive binder material is applied be-
tween the plies, which stabilizes the preform for demoulding
and subsequent handling. The preform is then transferred to a
resin injection tool for infiltration and curing. Finally, the part
is demoulded and possible finishing operations are performed.
Process parameters need to be optimised at each stage of the
process chain for maximum throughput and part quality. This
work focuses on optimising the draping process.

Fig. 1. Process chain for Continuous Fibre Reinforced Plastics (CoFRP) manu-
facturing. The draping process considered in this work is highlighted.

Woven fabric has a low shear and bending stiffness compared
to the high tensile stiffness. This makes in-plane shear the pre-
dominant deformation mechanism during forming. The shear
deformation is quantified by the shear angle γ as shown in Fig-
ure 2.1 Similar to metals, woven fabrics cannot be deformed
indefinitely. The shearing limit of the fabric is characterised
by the locking angle γlock. Shearing beyond γlock may result
in draping defects, such as wrinkles or textile foldings. These
have to be avoided. Since the fibre orientations usually reflect
the load path, deviations can severely compromise the part’s
structural performance. An example for wrinkling is shown in
Figure 3. Additionally, a higher shear angle reduces the per-
meability for resin infiltration and may lead to non-infiltrated
regions, so-called dry spots [23].

3.1. Draping of a car door reinforcement beam

The CoFRP component examined in this study is a car door
reinforcement beam, which is designed to withstand side crash

1The forming literature refers to this shear angle as γ12 to distinguish the
in-plane shear deformations from out-of-plane deformations. The subscript 12 is
dropped here for readability.
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Fig. 2. Visualisation of shear deformation and the the shear angle γ.

Fig. 3. Example of excessive shear deformation leading to wrinkling [23].

loads. The beam is about 1220mm long and 220mm wide.
Additionally, it is surrounded by a hem for joining with adjacent
parts during assembly. From a forming point of view, the most
decisive geometric features are two protruding filleted corners
at one end of the beam, as can be seen in Figure 4 a). The
protrusions are approximately rectangular and flatten out towards
the opposite end of the beam. This leads to two areas with
concentrations of high shear angles (cf. Figure 4 b)), which are
prone to the occurrence of draping defects and hence require
special attention.

The beam consists of three stacked layers of carbon fibre
fabric, which are oriented at 0◦/90◦ with respect to the x-axis in
Figure 4 a). The draping tool is closed in a single stroke. To
control the draping process and to reduce the maximum shear
angle, 50 grippers have been distributed along the fabric’s cir-
cumference. They locally restrain the material draw-in into the
mould and thereby control the draping result (i.e. local shear
angles). In the simulation the grippers are modelled as springs
with a stiffness between 0 N/mm and 25 N/mm. In accordance
with the findings from [24], the grippers have been concentrated
near the corners of the beam, where the highest shear angles oc-
cur for a fabric with 0◦/90◦ orientation. The forming simulation
is performed using the commercial FE-tool ABAQUS. Details
on the simulation approach, the applied material models and the
simulation setup can be found in [23].

3.2. Initial Draping Parameter Optimisation

In practice, adjusting and optimising a manufacturing pro-
cess in terms of machine parameters (e.g. tool temperature,
press forces, gripper strategy) is often done by costly “trial-and-
error”-experiments until a defect-free part is manufactured. This
approach relies on the experience of engineers and is unlikely
to reach a global optimum if the number of parameters is large.
The parameters for the trial experiments can be selected with
a gradient-free optimisation method. We call this the direct
optimisation method as it requires no surrogate model. As out-
lined in Section 2, physics-based models have been developed
to simulate the detailed process behaviour. This allows for eas-
ier assessment of parameters prior to any testing with actual
hardware.

In a previous study [23], the FE-based draping simulation was
coupled with an evolutionary algorithm from the open-source

Fig. 4. Visualisation of the car door reinforcement beam: a) geometry of the
component b) qualitative plot of the forming results. Red and blue regions mark
areas of high shear angles. Springs indicate the position of attached grippers.

toolkit DAKOTA [25]. Starting with an initial population of
solutions, evolutionary algorithms use selection, mutation and
recombination of the most promising candidate solutions to it-
eratively improve on a predefined objective function. In [23],
14 individuals per generation were used with a cross-over factor
and a mutation factor of 0.8 and 0.08, respectively. The objec-
tive function for the initial optimisation was the minimum of
the maximum absolute shear angle of all elements in the FE-
model γmax = max j |γ j|, where j is the index of the composite
textile elements. However, the computational performance was
not convincing: Due to the highly non-linear nature of process
simulations, FE simulation can quickly become computationally
expensive. This holds in particular for manufacturing simula-
tions of fibrous materials, which exhibit a strongly non-linear
and anisotropic material behaviour and pose severe challenges to
accurately grasp the contact behaviour between the fabric plies.
In our case, a single simulation run required on average about
3 hours of computation on a workstation with 28 CPU cores.
The direct optimisation approach was terminated after more than
eight weeks of computation and 584 completed draping simu-
lations. The maximum absolute shear angle γmax was reduced
with the direct optimisation approach from about 65◦ for the
initial solution to γdirect

max = 60.0◦. Note that this result stays above
the shear locking angle of γlock = 54.4◦ of the composite textile.

4. Surrogate-based Optimisation of Production
Process Parameters

For the purposes of parameter optimisation, a production
process can be seen as a function π : C → A, which maps
process parameter configurations c ∈ C to product attributes
a ∈ A. The data set Dk = {(cn, an) | n = 1, . . . , k} contains k
observed input-output relations sampled from π. The space
of possible observation data sets is denoted as D. Training a
surrogate model can be seen as selecting a model µ : C → A
from the model classM based on the observations. This is often
cast as the solution to an optimisation problem [26]. The model
selection function τM : D →M is defined as follows:

µk = τM(Dk) = arg min
µ∈M

[
f (µ,Dk) + h(µ, k)

]
(1)

The fitness function f : M×D → R evaluates how well the
model predictions match the observations. But a model with a
good fit could simply reproduce the training data Dk by heart
without capturing the underlying structure. The regularization
h is added to prevent overfitting the model to the data [27]. It
usually penalizes the model complexity vis-à-vis the size of the
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c∈C

ρ(µk(c))

Fig. 5. Surrogate-based optimisation of production process parameters.

training data, for example in terms of the number of (non-zero)
parameters, information entropy, or the model smoothness.

Parametric models have a fixed set of parameters. Choos-
ing the model according to (1) amounts to tuning the param-
eters within the bounds defined by the model class M. Non-
parametric models, for example interpolation methods [28,29],
have no fixed set of parameters. Artificial Neural Networks
(ANN) are commonly seen as non-parametric models as well,
even though they do have a fixed number of parameters. How-
ever, so-called deep ANN may contain many thousands for
neurons [30]. Before training, the parameters governing each
neuron’s behaviour and their relations have no a-priori meaning
with respect to the process π they shall emulate.

The merit function ρ : A → R maps product attributes to a
scalar performance indicator. The overall objective is to find
an optimal parameter configuration c∗ = arg maxc∈C ρ(π(c)).
But, since evaluations of π are time- and resource-intensive, the
optimisation is performed over the surrogate model.

ck+1 = arg max
c∈C

ρ(µk(c)) (2)

The new parameter configuration ck+1 is experimentally vali-
dated on the actual process ak+1 = π(ck+1) (a physically accurate
FE simulation in our case) and the results are added to the data
set Dk+1. Then, an updated surrogate model is computed for
the next iteration. The underlying assumption is that, starting
with a number of initial samples k0, iteratively applying (2) con-
verges π(ck)→ π(c∗). (There may be several optimal solutions
in the configuration space. The goal is to converge to any one
of them.) The main difference of our approach compared to
previous work [4] is that the surrogate model is trained to predict
the observed product attributes and not the performance scalar
given by the merit function. This is made possible by machine
learning techniques that allow the training of large-scale models.
See Figure 5 for an overview of the approach.

5. Applying Surrogate-Based Optimisation to the Compos-
ite Textile Draping Use Case

The initial data set contains k0 = 584 FE simulations of the
composite textile draping process from Section 3. The input pa-
rameter configurations of the initial data set (each containing 50
spring stiffness parameters) were selected by the initial genetic

Fig. 6. Architecture of the deep neural network used to predict the shear angles
of composite draping γ from the gripper stiffnesses c. Neurons in a deep ANN
are arranged into layers. We densely connect adjacent layers. BN stands for
Batch Normalization, PReLU stands for (Parametric) Rectified Linear Unit.

optimisation process described in Section 3.2. Initially, ’classi-
cal’ regression approaches such as linear and polynomial regres-
sion as well as a simple ANN were evaluated for their capacity in
predicting the maximum absolute shear angle γmax = max j |γ j|
from the spring stiffness configuration c. However, those meth-
ods were not able to accurately model the process and led to
inaccurate predictions of γmax. This hints at a highly non-linear
process π that can not be learned from just 584 samples or that
requires a more flexible surrogate model class.

Instead of predicting γmax only, a deep ANN was trained to
predict the shear angle of all 24,000 composite fabric elements.
See [30] for a recent overview of deep ANN and their training.
By predicting all 24,000 shear angles, the training can use more
information from each training example. It also enables the
network to learn relations between neighbouring elements of the
composite textile. Figure 6 shows the architecture of the deep
ANN. Note that it includes no convolutional layers commonly
used in image recognition [31]. Convolutional layers are suited
for finding common patterns independent of their position in an
image. Also, each convolution decreases the size of the layers in
the ANN architecture. But in this case, the cell position on the
composite fabric is highly relevant and we gradually increase the
size of the network layers instead of reducing them. The network
requires the training of more than 350 million model parameters.
As the number of model parameters is much bigger than the
size of the training data set, measures were taken to reduce the
effects of overfitting: The use of mini-batches for training (with
batches of 80 randomly selected samples), dropout layers in the
architecture of the neural network and early stopping according
to a separate test set with a random selection of 10% of the initial
experiment results.

The neural network surrogate model is highly non-convex.
We therefore avoid gradient-based methods for the parameter
optimisation as they could converge to local minima. Instead, we
use Differential Evolution (DE), a stochastic genetic algorithm
for global optimisation [32]. DE starts with an initial population
of randomly generated solutions. The population is updated
in each optimisation epoch. Bad solutions are discarded and
good solutions are combined via genetic crossover to form new
solutions. This explores the parameter spaces while gradually
moving towards an optimum solution. DE requires compara-
tively many model evaluations. On the other hand, the neural
network model is comparably fast to evaluate (about 250ms on
our hardware).

The optimisation goal is to reduce the maximum absolute
shear angle. The merit function is therefore ρ(γ) = −maxk |γk |.
Optimizing ρ was however found to be problematic for the DE
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Fig. 7. Predicted and actual maximum and minimum shear angle for the selected
configurations in each iteration of the SBO approach.

Fig. 8. Plot of the shear angle distribution a) before optimisation, b) best result
after direct optimisation, c) after SBO with the deep ANN surrogate model.

algorithm. Suppose a situation with two local clusters of high
shear angles as shown in Figure 4. If the left cluster contains the
highest shear angle, then all improvements to the right cluster
are at first invisible to the optimisation. So the DE algorithm
evaluates all spring stiffnesses with respect to one relevant com-
posite material cell only. But the position of this relevant cell can
jump between clusters of high shear angles. To overcome this
problem, we devised an approximation of the merit function that
takes more into account than just the maximum shear angle. In
general, for an m-dimensional vector x, the p-norm is defined as
‖x‖p =

(∑m
i=1 |xi|p

)1/p
. The p-norm covers the maximum norm

(p = ∞), the sum of absolute values (p = 1) and the Euclidean
norm (p = 2) as special cases. We selected the approximate
merit function ρ̄(γ) = −‖γ‖4. It was empirically found to be a
good tradeoff between penalizing the maximum absolute shear
angle and the suppression of high shear angles in general.

The results of our SBO approach applied to the composite
textile draping use case are shown in Figure 7. Initially, the
discrepancy of the maximum absolute shear angle predicted by
the surrogate model for an optimised parameter configuration
compared to the FE simulation amounts to over 40◦! By in-
crementally enriching the data set with the new observations,
the model predictions improve around the last parameter con-
figuration. After only 19 iterations, the SBO approach finds a
parameter configuration that outperforms the previously best
known result. Specifically, our method reduced the maximum
shear angle from γdirect

max = 60.0◦, the result of the direct opti-
misation method from previous work, to γSBO

max = 54.2◦. This
reduction was achieved by extending the deformed zone over a
wider area, thereby avoiding local overshearing. Figure 8 gives
a visual impression of the shear angle distribution across the
composite textile in the relevant area.

6. Discussion

The results of the proposed SBO approach using deep ANN
achieves a considerable improvement of the shear angle distri-
bution after iteratively adding 19 additional draping simulations

to the training data. Note that our solution is the first to drop
below the shear locking angle of γlock = 54.4◦ for the composite
textile. This is a prerequisite for using the part design as a car
door reinforcement beam. The solution was obtained from nu-
merical simulation only. Some small adjustments for a physical
realisation of the process are expected due to small differences
of the numerical simulation. The overall approach for parameter
optimisation remains the same also for physical experiments.

Also it may be noted, that predicting 24,000 elements led to
better accuracy than predicting just a single scalar value. This
comes however at the cost of increased training effort for the
larger net: In this work, training the final ANN required about 10
hours. On the other hand, the number of required finite element
simulations was drastically reduced as the direct optimisation
method did not achieve similar results even after more than eight
weeks of computation.

In our case, the initial training data set was not sampled ac-
cording to a Design of Experiments (DoE) method [33] and was
instead generated during the evolution of the direct optimisation
approach from [23]. Our analyses show that the training data
contains clusters of similar process parameters and also regions
in the parameter space where data samples are sparse. If the
global optimum lies in a region with no initial samples, then the
SBO approach might never sample from this region and may
converge to a local optimum.

7. Summary and Future Outlook

This work examined the optimisation of a composite textile
draping process. A surrogate-based optimisation method based
on deep artificial neural networks was proposed to guide the ex-
ploration of the 50-dimensional parameter space. The selected
candidate solutions were evaluated via Finite Element simula-
tions and added to the training data to iteratively improve the
model accuracy near the perceived optimum solution. Predict-
ing the shear angles of all 24,000 composite textile elements
performed better than simpler models that predict a scalar per-
formance value only. After only 20 model updates, a parameter
combination was found that surpasses the previous best solution
from direct optimisation.

It may be noted, that the process parameters in the initial
training data were not sampled according to a DoE but were
generated during the course of a previous optimisation effort
without the use of a surrogate model. We expect a further reduc-
tion in the required effort by a principled selection of the initial
samples, e.g. based on latin hyper cubes [34]. Another aspect
for future research is the impact of the size of the initial training
data set on surrogate-based optimisation. Certainly, with more
training data, the accuracy of the prediction increases. But this
in turn requires more effort before switching to the iterative
surrogate-based optimisation. A criterion for a suitable tradeoff
is desirable.

Another open research question is the choice of candidate pa-
rameter configurations for the optimisation for a given surrogate
model. The choice between sampling the predicted optimum
and sampling in a region with less empirical evidence (high un-
certainty) is known as the exploration/exploitation tradeoff in the
literature [35,36]. It can be resolved by the introduction of prior
assumptions and an explicit treatment of the model uncertainty.

Deep artificial neural networks show great potential for fur-



  

ther application in part and process design when enough training
data is available. As shown in [37], convolutional neural net-
works (CNN) are able to learn system dynamics from data and
predict physical effects in real-world engineering problems. We
expect an improvement in the sample complexity of the learning
task by considering interlinked surrogate models at different
scales [38]. For composite textile draping, the fabrics cells from
the finite element simulation are a natural candidate for a sub-
model at a small scale. The regularity of the cells can then
be exploited for the model at the meso or macro scale. With
respect to the use case of composite textile draping, such devel-
opments could lead to generalised models that can be applied
to different part designs. Ultimately, this could enable a tool
for engineers to evaluate the impact of design decision on the
composite manufacturing process already at an early stage.
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