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Highlights 

1. Wheat straw of three different moisture contents were subjected to fast pyrolysis 

2. In contrast to expectations, drying of feedstock led to lower organic oil yields 

3. These experimental results were used to model product distribution in Aspen Plus® 

4. Pyrolysis gas can theoretically supply the heat demand of the process 

5. Alternatively, a dryer can be integrated using waste heat for feedstock drying  

  



ii 

Abstract 

Fast pyrolysis trials of wheat straw were performed in a pilot plant featuring a screw reactor 

and two stage condensation system. Trials differed in the moisture content of the used biomass (1.2%, 

9.2%, and 23.6%) and the sweeping gas flowrate. Higher moisture feedstock seems to lead to higher 

bio-oil production but the largest organic liquid yield occurred at intermediate feedstock moistures. 

Increasing the sweeping gas flow rate at the system leads to a higher liquid yield richer in organics. 

Based on these results it is concluded that the highest organic liquid yield is not observed for dry 

feedstock because the missing water vapour leads to longer hot vapour residence time, favouring 

secondary gas phase cracking reactions. 

Information and yields obtained at the pilot were scaled up to industrial scale (500 kg·h-1 of 

feedstock) and used to construct an Aspen Plus® model that can be used to estimate heat availability 

in different parts of the system as well as simulate a dryer that would employ available internal process 

heat. This model was used to investigate the impact of using moister feedstock in the process. Enough 

heat is available for drying moist feedstock by using flue gas of the heat carrier loop in a different 

manner as in the current design. 
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1. Introduction 

The use of biomass as a feedstock for sustainable fuel production has been in controversial 

discussion due to the potential conflict between food & feed and energy crop cultivation on the 

available arable land and the increased emissions of greenhouse gases from changes in land use [1]. 

Lignocellulose raw materials, such as wood or wheat straw, have great potential for biorefining while 

not competing with food production. Conversion products from lignocellulosic materials such as e.g. 

fuels, intermediates, or fine chemicals, can theoretically compete in the traditional petrochemical-

dominated market [2].  

Fast pyrolysis (FP) is a thermochemical conversion process that has been extensively applied 

for degradation of bio-based feedstocks. This process features high heating rates, very short hot 

product vapour residence times, and fast condensation systems to recover produced liquid phases. 

The conversion is characterized by a high liquid yield, named fast pyrolysis bio-oil (FPBO), and smaller 

fractions of solids and non-condensable gases. [3] 

In the bioliq® process, fast pyrolysis is considered a pre-treatment step to produce an 

intermediate fuel that is suitable for gasification [4]. This way, a decentralized concept can be applied 

where fast pyrolysis units convert biomass residues regionally, while a pressurized, entrained flow 

gasifier and synthesis unit can be realized in industrial scale [5,6]. For the case of a common agricultural 

residue in Europe such as e.g. wheat straw it was found that around one-third of the energetic content 

of the feedstock is recovered in a synthetic fuel that can be readily used as 2nd generation drop-in 

biofuel in existing engines [7]. 

Regarding the condensation system to produce the desired liquid phase, the bioliq® fast 

pyrolysis process employs two consecutive condensation loops. Both loops recirculate the condensate 

and employ it as entrainer for the incoming vapours. The first stage, the organic-rich condensate (OC), 

operates at around 90 °C and a subsequent electrostatic precipitator warrants the recovery of the 

formed aerosols. The second stage operates at around 30 °C and produces an aqueous condensate 

(AC). 
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The quality requirements of the produced FPBO are substantially lower as compared to direct 

combustion applications. The main concern is the production of a pumpable slurry to feed the gasifier, 

i.e. solid and water content are two critical parameters [4]. In the FPBO, a fraction of water between 

15-35% is expected, depending on the moisture content of the usually air-dry feedstock [8]. The water 

content of the FPBO should be kept as low as possible for direct combustion applications, increasing 

bio-oil stability and energy density while at the same time decreasing transportation costs and acidity 

[8,9]. On the one hand, water lowers the heating value, increases ignition delay, and decreases the 

combustion rate. On the other hand, it is recommended to adjust a water content between 10 and ca. 

25% by weight because it reduces the FPBO viscosity and leads to a more uniform temperature profile 

during combustion [9]. Research has pointed to the control of the water content of the FPBO by tuning 

the moisture content of the feedstock; however, the cost of drying raises questions regarding its 

economic feasibility [8]. 

It follows that water content of the FPBO, amongst other parameters, is an important 

characteristic for both combustion and gasification applications. One important parameter that 

directly affects the water content of the produced FPBO is the moisture content of the feedstock. Any 

water contained in the feedstock will inevitably be evaporated during the process [10]. This results in 

an increased heat demand, a change in the heating up of the particles, and additional water in the 

product. Therefore, the feedstock is often dried to a moisture content below 10% wt. prior to feeding 

to the pyrolysis reactor [11]. 

Experiments have shown that an increase in moisture content leads to an increase in char and 

gas production [8,12–14]. Studies at a single particle level show that the effective reaction temperature 

lowers with increasing moisture contents, attributed to the fact that more heat is spent for drying 

during heating up. Lower pyrolysis temperature promotes charring reactions in contrast to 

condensable vapor production [8,15]. Also, it was observed that the FPBO yield is less affected and 

that the amount of reaction water is reduced with higher moisture content [12]. It should be noted 

that this observation is highly dependent on the way FPBO yield is being reported. When the yield of 
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FPBO is reported on a dry basis, additional water may lead to an increase in FPBO oil yield at the 

expense of organics, which are the desired product [12]. It was also observed that steam favors the 

formation of polar organic compounds at the expense of char and gas yields, possibly due to better 

removal of volatiles from the solid matrix and stabilization of radicals [16]. There are also contrasting 

results presented; e.g. it was shown that the moisture content does not seem to impact the char yield 

while decreasing the FPBO yield for experiments conducted with bamboo, pulp and paper, and 

polystyrene [17]. 

A decrease in reaction water may be reasoned with lower hot vapor residence time due to the 

additional steam formed in the reactor. This will lead to a higher volume flow rate and a reduction of 

secondary cracking reactions, such as thermal cracking, re-polymerization, and re-condensation, which 

are known to decrease the yield in organics by producing additional char, gas, and reaction water 

[12,18–22]. Gas yield increases with increasing sweeping gas flow due to the removal of condensable 

volatiles from the reaction zone, whereas the char yield diminishes. Longer residence times lead to an 

increased occurrence of the aforementioned reactions, favouring the formation of carbon deposits 

[16]. Bio-oil yields have also been positively correlated with the sweeping gas flow rate [18–21,23].  

When simulating pyrolysis processes to reflect above discussed changes in product 

distribution, it is desirable to model detailed reaction kinetics to fully exploit the advantage of 

flowsheet simulations. This is not possible for biomass pyrolysis due to the complexity of the feedstock 

and reaction network, even if the system is reduced to lumped species [2][24]. On the one hand, there 

is an increased understanding of the multi-component decomposition reactions by applying 

thermogravimetry to study their kinetics [25]. On the other hand, the suitability of such data to 

simulate real reactors is limited because of the different particle morphology (pulverized samples vs 

shreds or pellets) and heat transfer mechanisms [26]. This strategy has been applied both for a single 

feedstock [27] as well as for varying feedstock composition at different temperatures with a more 

elaborate subroutine to calculate yields [28]. It is also possible to calculate yields based on minimizing 

Gibbs free energy in the reactor [29,30], where the biomass is previously ‘decomposed’ into 
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lignocellulosic pseudocomponents or into the constituent elements. This strategy is feasible and used 

for the modelling of processes that reach thermodynamic equilibrium (such as gasification or slow 

pyrolysis), and/or situations with few different chemical species. Ward et al. [30] mentions the 

infeasibility of any reactor model other than a ‘black-box’ system for processes that involve solid, 

liquid, and gas phases with individual components. Using either empirical correlations or experimental 

results, the ‘black box’ type of model enable the use of a great range of species while avoiding a 

complexity of setting up a rigorous model. 

1.1 Motivation and objectives 

Commercial applications of fast pyrolysis for production of bio-oils from biomass have been 

realized, such as Envergent (USA, CAN), BTG (NL), and Mesto/Fortum (FIN). These employ the 

secondary products (char and pyrolysis gas) as fuels to power the heat demand of the endothermic FP 

process. In the case of the bioliq® concept, the produced char represents a feedstock for the 

downstream gasification process, which means it should not be used to supply the heat demand of the 

FP process. In this sense it is important to make sure that there is enough process heat to run the 

pyrolysis process. At the same it may be desirable to employ feedstock with varying moisture content 

to increase supply flexibility. In such a case the evaluation of integrating a drier in the fast pyrolysis 

process by using available heat sinks becomes important, specifically in combination with the expected 

changes in process heat demand. 

The aim of this study is to analyze the impact of feedstock moisture content on the process 

design of a fast pyrolysis plant. Special attention is paid to drying requirements and process heat 

utilization for the case of wheat straw as feedstock, which is currently used as a model agricultural 

residue. While there is some information regarding the influence of moisture content on fast pyrolysis 

product distribution as discussed in the Introduction, less data exists about effects on FPBO 

composition. Research by Demirbas [31], Greenhalf et al. [32] and Scott et al. [33] was focused on 

wheat straw as a feedstock, but either do not vary the moisture content or only consider the final 
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product distribution. Also, data should be obtained from a unit that can be regarded representative 

for the industrial process under investigation. 

In this work, data provided by two units is being used. The realized bioliq® FP pilot plant 

operates with a feedstock feed rate up to 500 kg·h-1 and employs a natural gas furnace to produce flue 

gas used to simultaneously heat up and convey the heat carrier for the reactor loop (quartz sand). The 

Process Development Unit (10 kg·h-1) employs electrical heating and a bucket elevator and uses steel 

beads as a heat carrier. This smaller unit is used to investigate the effect of changing feedstock and 

process conditions on the product distribution. The mass balances are then used for creating an Aspen 

Plus® model combined with the design specifications and operational experience of the larger pilot 

plant. 

The first part of this study investigates the effect of wheat straw moisture content on fast 

pyrolysis yields experimentally in above mentioned process development unit for fast pyrolysis. Special 

attention is paid on producing consistent results on product composition in a fractionated 

condensation system to better describe effects of the amount of water present in the reactor and 

condensation system.  

The varying product distribution determined by the experiments with different moisture 

contents is then used to set up a process simulation in Aspen Plus in the second part of this study. By 

combining experiments with process simulation in such manner, a consistent model is achieved for the 

first time to investigate the impact of varying moisture content on process design. The model is used 

to calculate differences in heat sinks and sources throughout the process upon changing the feedstock 

moisture. The obtained data is evaluated to calculate feasible dryer options by using the heat available 

in the process and side products such as e.g. pyrolysis gas.  
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2. Materials and Methods 

2.1 Analytic methods 

After each trial, samples of the biomass, dry solids (char and ash), and both condensates were 

analyzed. 

The moisture content of the biomass and char was measured according to DIN EN 18134-3 

(drying at 105 °C). For each condensate, volumetric Karl-Fischer titration using methanol with Hydranal 

Composite-V was used to determine the water content. The ash content of the biomass and char was 

analyzed according to DIN EN ISO 18122. The samples were subjected to 250 °C for 60 min, followed 

by 550 °C for 120 min. Determination of the volatile content of biomass was performed according to 

DIN EN ISO 18123. The elementary analysis was performed according to DIN EN 15104 for the biomass 

and the OC, and DIN EN 51732 for the char. 

It is required to determine the content of ethylene glycol in the condensate due to the 

experimental procedure (see below). The quantification of ethylene glycol in the OC was done using 

proton NMR. Chemical oxygen demand (COD) for the AC was determined according to the DIN EN 

15705; the total organic carbon content (TOC) was measured according to DIN EN 1484. The OC is 

submitted to extraction with methanol, filtration, and drying to determine its solids content. 

Higher heating value (HHV) determination for biomass was made according to DIN EN ISO 

18125, while for char according to DIN 51900-3, both applying the dynamic mode. No corrections to 

acid content were performed due to the low amounts of acids formed. The Lower Heating Value (LHV) 

for both cases was calculated according to Eq. 1 assuming an enthalpy of vaporization of water of 2257 

J·g-1. 

𝐿𝐿𝐿𝐿𝐿𝐿𝑐𝑐ℎ𝑎𝑎𝑎𝑎 = 𝐿𝐿𝐿𝐿𝐿𝐿𝑐𝑐ℎ𝑎𝑎𝑎𝑎 − �
𝑀𝑀𝑀𝑀𝐻𝐻2𝑂𝑂

𝑀𝑀𝑀𝑀𝐻𝐻2
× %𝑊𝑊𝐻𝐻 + %𝑊𝑊𝐻𝐻2𝑂𝑂�× ∆𝐿𝐿𝑣𝑣𝑎𝑎𝑣𝑣,𝐻𝐻2𝑂𝑂 (1) 

The gas composition is measured online through gas chromatography using neon as a tracer. 

Its volumetric flow rate is also measured through the use of an online flowmeter. 
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The stoichiometric oxygen demand was estimated using Eq. 3 assuming the combustion of a 

generic organic compound (Eq. 2). The water produced by combustion can be estimated using Eq. 4. 

After that, the LHV of each species can be estimated in a similar way to the char (Eq. 5). The total LHV 

of the gas is the weighted average of each component (Eq. 6). 

𝐶𝐶𝑥𝑥𝐿𝐿𝑦𝑦𝑂𝑂𝑧𝑧 + �𝑥𝑥 +
𝑦𝑦
4
−
𝑧𝑧
2
�  𝑂𝑂2 → 𝑥𝑥 𝐶𝐶𝑂𝑂2 +

𝑦𝑦
2

 𝐿𝐿2𝑂𝑂 (2) 

𝑂𝑂2𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎𝑑𝑑𝑑𝑑,𝑖𝑖 =
�𝑥𝑥 + 𝑦𝑦

4 −
𝑧𝑧
2�  × 𝑀𝑀𝑀𝑀𝑂𝑂2

𝑀𝑀𝑀𝑀𝑖𝑖
 (3) 

𝑤𝑤𝑖𝑖 =
𝑦𝑦
2 × 𝑀𝑀𝑀𝑀𝐻𝐻2𝑂𝑂

𝑀𝑀𝑀𝑀𝑖𝑖
 (4) 

𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖 = 𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖 − 𝑤𝑤𝑖𝑖 × ∆𝐿𝐿𝑣𝑣𝑎𝑎𝑣𝑣,𝐻𝐻2𝑂𝑂 (5) 

𝐿𝐿𝐿𝐿𝐿𝐿𝑔𝑔𝑎𝑎𝑔𝑔 = �𝑥𝑥𝑖𝑖𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖
𝑖𝑖

 (6) 

GC-MS analyses of the pyrolysis condensates have been conducted by Thünen Institute, 

Hamburg, Germany. The method is described in detail elsewhere [34].  
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2.2 Feedstock 

Wheat straw (Triticum aestivum L.) was supplied by a local farmer (Dörrmann, Kraichtal-

Münzesheim, Germany), collected from a harvest of spring wheat and supplied in large bales (250-300 

kg each). Prior to the experiments, the wheat straw was cut to a particle size of <5 mm with a 

disintegrator (HZR 1300) and a subsequent cutting mill (LM 450/1000-S5-2), both supplied and 

installed by ‘Neue Herbold Maschinen- und Anlagenbau GmbH’ (Sinsheim/Reihen, Germany). Analyses 

of the feedstock are summarized in Table 1. 

Table 1: Elementary and moisture content analysis of the As Received feedstock. ar: as received, d: dry. 

Water, ar Ash, d Carbon, d Hydrogen, d Nitrogen, d Potassium, d Calcium, d HHV,d 

(%) (%) (%) (%) (%) (mg kg-1) (mg kg-1) (MJ kg-1) 

9.3 6.0 46.6 5.8 <0.5 12.600 4.000 18.4 

 

2.3 Pyrolysis trials 

Biomass was conditioned in batches of 25 kg of As Received wheat straw. Drying was 

performed in a tray batch convection dryer (Memmert Modell 700) overnight at 105 °C. The 

moistening was achieved by spraying deionized water on piles of As Received wheat straw and letting 

it sit overnight in air tight barrels. All moisture contents were determined for samples obtained prior 

to the experiment; the observed values are listed in Table 2. 

Table 2: Average moisture contents of the different feedstocks used in the trials (% wt.). 

 Dry As Received Moist 

Moisture 1.2±0.1% 9.3±0.2% 23.6±0.6% 

 

Additionally, the As Received (AR) feedstock was also used for an experiment with increased 

nitrogen sweep gas flow to investigate the influence of hot vapor residence time. The nitrogen sweep 

gas flow was increased from 1.3 Nm3 h-1 to 3.2 Nm3 h-1 which corresponds to an increase in volume 

flow by water vapour comparing AR and moist feedstock. In consequence, the change in hot pyrolysis 
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vapour residence time between AR feedstock with normal and high nitrogen sweep gas flow is 

comparable to the change between the AR and moist feedstock.   

The feedstock was sampled regularly during the experiments to monitor the input moisture 

content. Samples were taken from the biomass lock hopper, i.e. directly before biomass is fed into the 

reactor to account for changes during handling and storage in the silo. Each experiment was conducted 

at least in duplicates. In case of high uncertainty between two experimental runs, a third was added 

and the outlier was omitted for evaluation. 

The pyrolysis trials were conducted in the process development unit ‘Python’ with a feed 

capacity of 10 kg·h-1 [35]. At the beginning of an experiment pre-conditioned biomass is fed to a buffer 

silo, which feeds a screw that controls the feed rate to the reactor of about 7 kg·h-1. The pyrolysis is 

performed in a thermally isolated twin-screw reactor in which the biomass is mixed with steel beads 

of 1.5 mm diameter as a heat carrier. The heat carrier is heated electrically and recirculated around 

using bucket elevators. The pyrolysis products are fed into a double cyclone system via an exhaust 

hood on top of the reactor to recover the dry char at reactor temperature. 

The pyrolysis vapours enter the first condensation loop where they are quenched with cooled 

condensate at around 90 °C forming the OC, which is collected in a first condensation vessel. 

Uncondensed vapours and gases are directed through an electrostatic precipitator to remove aerosols 

and particles. The produced condensate is recirculated, cooled down, and re-injected into the quench 

as quenching medium. To start up this condensation system, ethylene glycol is used because it is 

readily miscible with the OC. Consequently, the OC produced from the experiments contains a 

significant amount of ethylene glycol. 

The second condensation loop to recover the AC is designed similarly to the first one but 

operates at lower temperatures of around 15 °C. The start-up medium of this condensate loop is water. 

The remaining non-condensable gas is removed and analyzed by an online gas chromatograph before 

being disposed of. 
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Both quenching systems are emptied at the end of each trial. Both condensates and char are 

weighed and sampled. Yields of the condensates are calculated by discounting the initial 

water/ethylene glycol filling.  

The reactor is heated up by starting the preheated heat carrier cycle and biomass feeding is 

started once a reactor temperature of 500±5 °C was reached. It takes around 10 min to ramp up 

biomass feeding to the desired feed rate. One can safely assume that pyrolysis operates in steady state 

as the reactor temperature is reached prior to start up and maintained throughout the runtime at 

500±5 °C. The condensation temperature in the first loop starts at 70 °C and it takes typically around 

20 min in order to reach the desired condensation temperature of 90±5 °C. The second condenser does 

not experience significant temperature changes during start up/ operation and is kept at 15±2 °C. 

2.4 Estimation of reactor energetic demand 

The heat carrier employed by the pilot plant is quartz sand with a nominal heat capacity of 

1.25 kJ·kg-1·K-1. The plant operates with a nominal flow rate of sand of 50:1 the amount of biomass. 

Assuming an average temperature loss over the reactor of 20 K [36], the heat demand of the reactor 

could be estimated to be 173 kW or around 1.25 MJ·kg-1. This value, however, does not take into 

consideration heat losses nor the effect of different moisture contents on the energetic demand. 

Henrich et al. [36] estimated the specific heat demand of different biomasses ∆ℎ𝑣𝑣𝑦𝑦𝑎𝑎𝑝𝑝,𝑎𝑎𝑎𝑎, 

employing the smaller process development unit (which was also used for the experiments reported 

here). From these values, they were able to predict the specific heat demands of water-free biomasses 

∆ℎ𝑣𝑣𝑦𝑦𝑎𝑎𝑝𝑝,𝑏𝑏𝑑𝑑  using Eq. 7. 

∆ℎ𝑣𝑣𝑦𝑦𝑎𝑎𝑝𝑝,𝑏𝑏𝑑𝑑 =
�∆ℎ𝑣𝑣𝑦𝑦𝑎𝑎𝑝𝑝,𝑎𝑎𝑎𝑎 − 𝑤𝑤 ⋅ ∆ℎ𝑤𝑤�

(1 −𝑤𝑤)  (7) 

The value for ∆ℎ𝑤𝑤 that brings the water from a liquid at 20 °C to a vapour at 500 °C was 

estimated as 3.39 MJ kg-1; 𝑤𝑤 represents the water content (% wt.). The value thereby calculated for 
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the water-free wheat straw results to 1.25 MJ kg-1. By employing the same Eq. 7 it becomes possible 

to estimate the specific heat for the desired moisture contents  

It is also possible to estimate the specific heat demand of the process based on the difference 

in temperature observed for the heat carrier in the results of the experiments presented here (∆𝑇𝑇). As 

the process development unit operates at a biomass feed rate of around 10 kg·h-1 and the Aspen Plus 

models employ a flow rate of 500 kg·h-1 it is necessary to rescale the flow rate of the heat carrier (Eq. 8). 

𝐹𝐹�𝐻𝐻𝐻𝐻,𝑣𝑣𝑖𝑖𝑝𝑝𝑝𝑝𝑝𝑝 = 𝐹𝐹𝑏𝑏𝑖𝑖𝑝𝑝,𝑣𝑣𝑖𝑖𝑝𝑝𝑝𝑝𝑝𝑝
𝐹𝐹𝐻𝐻𝐻𝐻,𝑃𝑃𝑦𝑦𝑝𝑝ℎ𝑝𝑝𝑑𝑑

�
𝑚𝑚𝑏𝑏𝑖𝑖𝑝𝑝,𝑃𝑃𝑦𝑦𝑝𝑝ℎ𝑝𝑝𝑑𝑑

𝑡𝑡𝑝𝑝𝑎𝑎𝑖𝑖𝑎𝑎𝑝𝑝
�

 (8) 

𝐹𝐹�𝐻𝐻𝐻𝐻,𝑣𝑣𝑖𝑖𝑝𝑝𝑝𝑝𝑝𝑝 corresponds to the rescaled heat carrier flow rate, 𝐹𝐹𝑏𝑏𝑖𝑖𝑝𝑝,𝑣𝑣𝑖𝑖𝑝𝑝𝑝𝑝𝑝𝑝 to the target biomass 

flow rate (500 kg h-1), and 𝐹𝐹𝐻𝐻𝐻𝐻,𝑃𝑃𝑦𝑦𝑝𝑝ℎ𝑝𝑝𝑑𝑑 to the observed heat carrier flow rate in the process development 

unit (1200 kg h-1). The real biomass flow rate verified on the Python trials is calculated using the total 

biomass used (𝑚𝑚𝑏𝑏𝑖𝑖𝑝𝑝,𝑃𝑃𝑦𝑦𝑝𝑝ℎ𝑝𝑝𝑑𝑑) and the duration of the trial (𝑡𝑡𝑝𝑝𝑎𝑎𝑖𝑖𝑎𝑎𝑝𝑝). 

The calculation of the specific enthalpy of the process was conducted with Eq. 9 using data 

from the experiments. The heat capacity of the heat carrier (𝑐𝑐𝑣𝑣) was assumed to be 447 J kg-1K-1. 

∆ℎ𝑣𝑣𝑦𝑦𝑎𝑎𝑝𝑝,𝑃𝑃𝑦𝑦𝑝𝑝ℎ𝑝𝑝𝑑𝑑 =
𝐹𝐹�𝐻𝐻𝐻𝐻,𝑣𝑣𝑖𝑖𝑝𝑝𝑝𝑝𝑝𝑝 ∙ 𝑐𝑐𝑣𝑣 ∙ ∆𝑇𝑇 ∙ 𝑡𝑡𝑝𝑝𝑎𝑎𝑖𝑖𝑎𝑎𝑝𝑝

𝑚𝑚𝑏𝑏𝑖𝑖𝑝𝑝,𝑃𝑃𝑦𝑦𝑝𝑝ℎ𝑝𝑝𝑑𝑑
 (9) 

The values required to apply these equations can be found in the Supplemental Information. 

2.5 Aspen Model 

2.5.1 Basic bioliq® model 

Aspen Plus simulations of the FP system were made to estimate heat losses and demands on 

different points of the pyrolysis process (see Figure 1 for a flow scheme). The aim is to estimate 

possibilities of heat recovery for the implementation of a dryer (which is not available in the pilot plant 

today) minimizing energy consumption. A previous model of the FP unit limits the chemical species 

considered to gases, not addressing the complexity of the liquid phases [37]. The present model 

addresses this situation by the introduction of several additional non-ideal substances that represent 
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the majority of the species detectable on the liquid phases by GC-MS, while ignoring any possible high 

molecular weight residue undetectable by said method. The compositions of the liquid phase were 

estimated from the GC-MS results from a previous bioliq® FP campaign in May 2015 (details see 

Supplemental Information) [38]. The composition of the gas phase was based on online GC 

measurements. The reactor was modelled using an RYIELD unit block based on these experimental 

results (see Supplemental Information for detailed parameters). As already reported in the 

introduction, the use of a reactor other than a ‘black-box’ is not feasible for complex processes 

involving solid, liquid, and gas phases. The model attempts to echo the stream temperatures and flow 

rates to allow a rigorous assessment of the stream properties and heat capacities. For the As Received 

case, stream flow rates and therefore products distribution and temperatures were estimated from 

values reported from previously mentioned bioliq® campaign. Values for the Dry and Moist cases were 

estimated through proportionality from the experimental results obtained in the present study. The 

experimental results were scaled up from the scale of the experiments (around 25 kg over 3h periods) 

to a pilot scale of 500 kg·h-1 wheat straw feed rate. Simulations assumed steady state had been 

reached. 

Both straw and char, as non-conventional solids in Aspen Plus, were characterized using the 

DCOALGEN model to calculate the heat of formation and the specific heat. For both substances, the 

LHV was supplied (see the Supplemental Information). In the case of straw, the heat capacity was 

provided with a value of 2021 J·kg-1·K-1. The employed equation of state was UNIFAC. The starting flow 

rate of straw was set to 500 kg·h-1 which reflects the reality of the bioliq® pilot plant. The values of the 

straw stream input to the reactor as well as the target values of the downstream exits are reported in 

the Supplemental Information. 
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Figure 1: Simplified scheme of the basic Aspen Plus simulation flowsheet. 

Associated to the reactor is a first CYCLONE model designed to emulate the separation of the 

chars that are entrained on the heat carrier loop and contribute to the heat supply. The CYCLONE unit 

block is set to Solids Separation mode while existent coolers that employ cooling water at different 

temperatures are simulated by heat exchangers (HE). The char is cooled by a HEATER unit block (HE1). 

The yielding gas/vapour phase is forwarded to the first condensation loop.  

The scheme in Figure 1 only differs from the Aspen simulation in that stream splits were 

modeled using SPLIT unit blocks (left out in the figure to increase readability). Through this, a more 

rigorous description of the condenser behavior is achieved, in which a large quantity of fluid is pumped 

around in order to quench the pyrolysis gases when compared to the amount produced.  

The quench was simplified as a Mixer unit block, set at 80 °C. The condensers (C1 and C2) are 

also simplified as FLASH2 unit blocks, operating at 90 °C and 28 °C, respectively. In both cases, the 

condensed liquid phase is cooled down using HEATER unit blocks (HE2 and HE3, respectively); a 

fraction is recovered as product stream (either OC or AC, see Supplemental Information) and the 

remaining liquid is pumped around according to the scheme in Figure 2. In the case of the first 

condensation loop, the pumparound is split: one fraction is directed to the quench, while the second 
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is directed to the condenser. This setup represents the actual design and operation of the bioliq® FP 

pilot plant.  

2.5.2 Air pre-heating and drying 

Atmospheric air moisture content was considered an important factor for correct estimations 

of flue gas quality and dryer operation. The fresh air is assumed to be 15 °C at a relative humidity of 

77% based on local annual averages. A drying scheme based on a single-stage direct dryer without 

recirculation was introduced and two options for drying agents were considered. The first option 

employs atmospheric air (Air Drying model) and the second flue gas (Flue Gas model). In both cases, 

the biomass is preheated in a heater block and the dryer exhaust is used to pre-heat the atmospheric 

air (HEATX block). A FLASH2 unit block operating at adiabatic conditions was employed to simulate the 

expected condensation. The DRYER unit block was simulated in Shortcut adiabatic mode, which only 

requires the target moisture content to be set. A temperature gap of 5 °C between the inlet hot stream 

and the outlet cold stream was assumed for the integration of the dryer exhaust. 

Wheat straw as a material is prone to fire hazard due to the low moisture content and the 

amount of dust present. This danger is kept to a minimum when the temperature of the material is 

kept well below its self-ignition temperature (220 °C) [39]. A maximal final air temperature of 170 °C 

was set according the current heuristics recommending a gap of 50 K [40]. 

 

Figure 2: Simplified scheme of the air pre-heating system implemented in Aspen Plus. Solid lines 
represent material streams, while dotted lines represent heat streams. 
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The Air Drying model (Figure 2) employs a total of three heaters, apart from the integration 

with the exhaust (H1). The second heater (H2) employs heat from the first condenser (HE2), the third 

heat (H3) from solids cooling (HE1) and the fourth (H4) uses an undisclosed source of heat, such as e.g. 

flue gas or fuel burning. The heat from the second condenser (HE3) was not employed because its heat 

is available at a too low temperature. 

Calculator unit blocks were employed to ensure that the air moisture was kept constant when 

varying the air flow and to split the available heat from the HE2 between pre-drying the feed and the 

air. Design spec blocks were employed to warrant a dryer solid output of 500 kg·h-1 by varying the total 

biomass feeding rate, as well as ensuring the maximum temperature of the second heat exchanger 

would not exceed 80 °C. 

 

Figure 3: Simplified scheme of the flue gas heating system implemented in Aspen Plus. Solid lines 
represent material streams, while dotted lines represent heat streams. 
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The Flue Gas model (Figure 3) only resembles the Air Drying one in the dryer and feedstock 

pre-heating. It integrates the dryer to the heat carrier loop of the pyrolysis unit by using the sensible 

heat of the flue gas exiting the heat carrier loop. 

The combustion of the pyrolytic gas in the furnace is modeled as an RGIBBS unit block at a set 

temperature of 910 °C. This block employs Gibbs energy minimization at adiabatic operation to 

estimate chemical equilibria and final yields. The heat carrier, modelled as solid SiO2, includes a 

fraction of char (the same composition as the one separated in the cyclone after the reactor, see Figure 

1), and is fed to an RYIELD block coupled with a FORTRAN routine that decomposes the char into 

elementary components. This heat carrier runs in a loop from the reactor to a lift pipe and back to the 

reactor. The flue gas from pyrolysis gas combustion and the heat carrier meet in a second RGIBBS unit 

operating at 589 °C, which represents the lift pipe. The char is degraded in this unit according to the 

design of the bioliq® pilot plant. The heat of char oxidation plus the heat from the flue gas warrant that 

the heat carrier reaches the correct temperature. The solids are separated in an SSPLIT unit block and 

the gas is cooled down twice. First, it heats up the fresh combustion air using an HEATX model. Second, 

it is cooled down to 170 °C to comply with the aforementioned fire hazard limits. As with the Air Drying 

model, the exhaust of the dryer is cooled down with the fresh combustion air and disposed of 

atmospherically. It is noted that the heat carrier is not actually cooled and recirculated to provide heat 

to the reactor in contrast to the illustration in Figure 3 as these are separate Aspen models. 

2.5.3 Sensitivity analysis for determination of optimal conditions 

Sensitivity analyses were conducted in order to select an optimum for both the Flue Gas Drying 

and the Air Drying models. These analyses were conducted using the Sensitivity tool in Aspen Plus.  

Table 3: Sensitivity analysis variables, their ranges, and interval. 

Variable Range Increment 

Fresh Air Flow Rate (kg/h) 100 – 3500 100 

Biomass Pre-Heating (kW) 0 – 18.3/23.4 a 5 

Extra Heat (H4) (kW) 0 – 25 5 

a: Energy expense required to bring the biomass up to 80 °C, depending on being As Received/Moist biomass. 
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The most relevant parameters analyzed were the temperature of the air at each heating stage 

and the relative humidity of the exhaust air, ensuring that values over 100% would not be reached (see 

Table 3). This value was estimated from the temperature (T) and dew points (TD) of the exhaust (which 

are calculated automatically by the software), using a modified August-Roche-Magnus approximation 

(Eq. 10) [41]. 

𝑅𝑅𝐿𝐿 = 100% ×
exp �17.625 × 𝑇𝑇𝐷𝐷

243.04 + 𝑇𝑇𝐷𝐷
�

exp �17.625 × 𝑇𝑇
243.04 + 𝑇𝑇�

 (10) 

Despite the fresh air flow being the most relevant parameter due to economic and engineering 

constraints, two other parameters were considered for further analysis: maximization of the use of the 

HE2 heat and maximization of the dryer efficiency (Eq. 11) [42].  

𝜀𝜀 =
𝑚𝑚𝑊𝑊,𝑣𝑣𝑎𝑎𝑣𝑣 × ∆𝐿𝐿𝑣𝑣𝑎𝑎𝑣𝑣

𝑄𝑄𝑔𝑔𝑠𝑠𝑣𝑣
 (11) 

In the equations above, 𝑚𝑚𝑊𝑊,𝑣𝑣𝑎𝑎𝑣𝑣 stands for the water removed in the dryer, and therefore 

𝑚𝑚𝑊𝑊,𝑣𝑣𝑎𝑎𝑣𝑣 × ∆𝐿𝐿𝑣𝑣𝑎𝑎𝑣𝑣 represents the power the drying fluid requires to supply. 𝑄𝑄𝑔𝑔𝑠𝑠𝑣𝑣 stands for the sum of 

all heat supplied by heaters H2, H3, and H4. 

For the case of the Flue Gas model no sensitivity analysis was conducted and the lowest fresh 

air amount that would assure the maximum relative humidity of the exhaust air (keeping the limit of 

max. 100 %) was taken as the optimum point. 
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3. Results and discussion 

3.1 Fast pyrolysis trials 

The as-received moisture content was found to be 9.3(±0.3)% by weight for all experiments 

(see also Table 1). After drying, moisture content was 1.2(±0.1)% and 1.2(±0.4)% by weight for the 

duplicate experiments. Naturally, moistening was less accurate and resulted in a moisture content of 

24.0(±1.5)% and 23.2(±1.7)% by weight. Especially the high heterogeneity of the moisture content in 

this latter case does have a significant effect on dry and carbon balances of the experiments. After the 

moisture content was evaluated for the ‘Moist’ case, the nitrogen flow rate was adjusted to account 

for the increase in volume flow from the As Received to the Moist feedstock experiments due to steam 

release by 1.9 m3 h-1 at normal conditions. 

 

Figure 4: Yields of the different product phases expressed as a mass fraction of the biomass input (as-

received basis). Solids/OC corresponds to the solids fraction present on the organic-rich condensate, analysed as 

the fraction that is not soluble in methanol. 
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Mass balance closure of the experiments was between 95-101% (see Figure 4). Losses in the 

mass balance are likely due to light volatiles in the pyrolysis gas that is neither condensed at final 

condenser temperature (20 °C) nor detected by the online GC for gas analysis. It is noted that mass 

balances are only overestimated for the case of increased nitrogen flow. At the same time, gas yields 

are as high as in the base case. This is unexpected since the oil yield is significantly higher and gas yield 

should, therefore, be lower. The amount of non-condensable gas is measured by a constant tracer 

(neon gas) that is used to calibrate the peak areas of the GC measurement and the uncertainty 

associated with this method increases when the tracer is diluted – as is the case with increased 

nitrogen flow. It is likely that the overestimation of the mass balance is due to an overestimation of 

the gas flow for the case of the experiments with high nitrogen flow rate.  

Yields of char and non-condensable gas increase with decreasing moisture content on an as-

received basis (Figure 4). This would be expected, as fewer organic material is present in the biomass 

feedstock with higher moisture contents. At the same time, the presence of water in the reactor would 

lead to steam cracking reactions that would increase gas contents and decrease the amount of larger 

organic molecules. The amount of OC and AC rises, which again is an effect of this kind of balance 

because any moisture present in the feedstock will add to the yield of condensate. The FPBO yield for 

the as-received case is in the same range as results from experiments in a fluidized bed reactor which 

were reported to be between 47.5 and 60.6% by weight [43]. When comparing the effect of the 

sweeping gas flow to the base case experiment one can observe a rise in condensate yield while the 

solids and gas yield stays constant. This is in line with the expectation that a reduction of hot vapour 

residence time reduces secondary cracking reactions [44]. While the as-received balance is not very 

suitable to compare the different process conditions, it does deliver the required basis for the 

flowsheet simulations that are described further below. 
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Figure 5: Organic yield expressed on a dry basis. 

When analyzing the results in Figure 5, it is noted that the deviation between the duplicate 

experiments with Moist feedstock is significantly higher than for all other runs. This effect is attributed 

to the high water content in the process which lowers the precision of balances, especially of the 

organic oil yield calculation. The low organic oil yield observed in the experimental runs is generally in 

line with results reported elsewhere and primarily a result of the feedstock’s high ash content 

[32,34,45]. 

Recent experiments with wheat straw with the same experimental setup resulted in lower 

organic oil yield but in that case, the ash content was significantly higher and it is concluded that the 

results are still consistent [46]. Surprisingly, the results deviate significantly from experiments with 

wheat straw from the same source but a different harvesting year [47]. Although the previously used 

wheat straw has slightly higher ash content, also the organic oil yield is higher. This could be explained 

by the difference in the harvesting year and/or feedstock lot because straw exhibits a high 

heterogeneity compared to wood (without bark). In addition to the potential difference in feedstock 

characteristics, some changes in experimental procedure might add to the observed effects: 1) the 

pipe connection between cyclone and quench was exchanged in the meantime to one with a larger 
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diameter, thus increasing the vapour residence time and 2) the nitrogen supply was refurbished and 

simultaneously the flow rate reduced to almost 50%. 

When considering the situation of the high N2 flow, a substantially higher organic oil yield than 

in all other three cases can be observed. This can be attributed to a shorter residence time and, 

therefore, a lesser extension of cracking reaction. 

 

Figure 6: Distribution of carbon between the product phases expressed as mass fraction of carbon 

input. 

The results for the organic oil yield contradicts the expectation that organic oil yield increases 

with biomass dryness because the heating rate, and hence the temperature at which primary pyrolysis 

takes place inside the biomass particle, is increased. This becomes even more evident when evaluating 

carbon balances (see Figure 6). It can be observed that for both Dry and Moist wheat straw less carbon 

is recovered in the FPBO than for the As Received case. Additionally, it can be concluded that for the 

Moist feedstock fewer dehydration reactions have taken place because relatively less carbon is 

recovered in the oil as compared to the base case while the organic oil yields are about the same for 
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both cases. This observation can be explained by the influence of hot vapour residence time on the 

product distribution and a change in thermodynamic equilibria for dehydration reactions [13]. The 

higher the moisture content, the higher the steam load in the system and the shorter the hot vapour 

residence time. The results of the experiments indicate that there is an optimization problem for the 

moisture content of the feedstock with regard to primary pyrolysis temperature and hot gas residence 

time. It is furthermore concluded that this optimum must be somewhere in between a moisture 

content of 1 and 24% by weight for the case of wheat straw, i.e. the As Received case does not 

necessarily reflect this optimum in oil yield. This is an important consideration for an existing pyrolysis 

installation because the equipment size that determines hot vapour residence time is usually fixed.  

The hypothesis that hot vapour residence time is affecting the organic oil yield is supported by 

trials using increased nitrogen flow. Especially the residence time with solids that contain minerals 

plays a significant role in secondary polymerization/charring reactions [44]. This situation is the case 

in the experimental setup employed here because vapour needs to flow inside the reactor and 

subsequently to the cyclones prior to solid removal. It is expected that the hot vapour residence time 

is below 1 s, but the experimental results presented in this manuscript indicate that this short 

residence time already has a significant impact on the formation of condensable products. 

 

Figure 7: Water content as a fraction of the organic-rich condensate. 
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The moisture content of the biomass (Figure 7) leads to a big impact on the water content of 

the OC, especially comparing the Moist and the As Received cases. An increase in water content is 

expected because the equilibrium in the first condenser is heavily influenced by a larger fraction of 

water vapour [8][48]. For the runs with increased N2 flow rate, it is observed that the OC water content 

is in the same range as the As Received and Dry situation. The carry-over of water vapour due to the 

higher sweeping gas flow rate might explain the higher AC fraction in this situation (see Figure 4) and 

the lower hot vapour residence times might have led to a lower occurrence of steam cracking reactions 

that would help decrease this water content. 

 

Figure 8: Yield of GC detectable compounds, expressed as mass fraction of biomass input (dry basis). 

Around 50-56% of the organic compounds could be detected by GC/MS. It has to be noted that 

the interpretation of this data has to be treated with care due to the chosen experimental setup 

because of the design of the condensation. Both condensates are recirculated to cool down fresh 

incoming vapours. Especially the OC is recirculated at around 80-90 °C, which leads to aging reactions 

of the produced condensate during the process. In the bioliq® pilot plant, a mean residence time of 

around 6 hours was determined for the condensate due to this recirculation, by which a kind of 

artificial aging is obtained [38]. The duration of this aging may differ up to one hour between 

experimental runs due to differing durations of the biomass feeding. The only substances that show 
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obvious trends are organic acids, which almost exclusively consist of acetic and propionic acid, and 

non-aromatic aldehydes, which almost exclusively consist of hydroxyacetaldehyde (Figure 8). Average 

yields of other major substances from the total of the experiments reflect a typical composition of 

FPBO from wheat straw and are as follows [34]: organic acids 42.8(±4.0) mg kg-1, non-aromatic 

aldehydes 11.1(±4.3) mg kg-1, non-aromatic ketones 45.5(±3.0) mg kg-1, furans 8.0(±1.6) mg kg-1, 

phenols 5.3(±1.2) mg kg-1, guaiacols 10.4(±3.0) mg kg-1, syringols 5.4(±1.5) mg kg-1, and anhydrosugars 

10.9(±2.3) mg kg-1; all values are reported on dry feedstock basis. 

From Figure 8 it can be observed that the amount of produced organic acids and non-aromatic 

aldehydes decreases with increasing hot vapour residence time (hot vapour residence time increases 

as follows: high N2 flow < moist < as received < dry). Organic acids are considered to be largely stable 

in homogeneous secondary pyrolysis reactions [49]. However, solids are removed outside the reactor 

and significant heterogeneous solid/vapour residence time has to be assumed. Reduction of organic 

acids by heterogeneous cracking reactions has also been reported elsewhere [50], which explains the 

observed trend from Figure 8. Non-aromatic aldehydes are known to be readily degraded at 

temperatures around 500 °C, which is the temperature in the downstream section of the reactor [44]. 
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3.2 Process simulation 

The aim of the Aspen simulations is to calculate heat flows in the fast pyrolysis process. The 

model was adapted to reflect the experimentally determined mass flows, i.e. there are no deviations 

between experiment and model due to the applied method of creating the Aspen model (see 

Supplemental Information for detailed input parameters). One important task was the representation 

of the condensation stages and the pressures used in the individual liquid-vapour separation (FLASH2) 

unit blocks had to be set considerably lower than real values in order to achieve good agreement with 

experimental results. The pyrolysis plant operates slightly below atmospheric pressure whereas this 

value had to be lowered in the simulation to 860 kPa and 95 kPa for the first and second condensers, 

respectively. This significant difference reflects a shortcoming of the chosen UNIFAC model. Despite 

this effort, the species distribution in the streams was fairly close to the ones observed experimentally, 

with deviations of major compounds < 20% in almost all cases (see Supplemental Information for 

details). It is concluded that the derived heat streams represent a solid basis for further evaluation. 

3.2.1 Process heat demand  

Based on the experimental results, the process heat demand and how it can be covered with 

pyrolysis by-products have to be evaluated for varying feedstock moisture contents. The energy 

demand of the pyrolysis reactor will change with varying moisture content of the feedstock according 

to the data presented in Table 4. 

Table 4: Specific reactor heat demands per mass of feedstock (MJ kg-1). 

 Eq. 7 Experiments 

Dry 1.28 1.38 

As Received 1.45 1.33 

Moist 1.75 1.61 

 

The values obtained by the formula (Eq. 7 [36]) show how the heat demand of the reactor 

increases with moisture content because more heat must be supplied to evaporate water from the 

biomass in addition to supplying the heat of reaction for pyrolysis. The results obtained from the 
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pyrolysis experiments presented in this study deviate from this trend in that there is an unexpected 

increase in heat demand from the As Received to Dry case. This effect could be explained with a change 

in the heat of reaction for pyrolysis. An increase in the temperature at which primary pyrolysis takes 

place is expected at lower moisture content. Higher primary pyrolysis temperature leads to more liquid 

products being formed and consequently to a higher heat demand for pyrolysis. However, the 

experiments conducted here are not suitable to support this hypothesis and the observed increase in 

heat demand between the As Received and Dry case might also be due to experimental error. 

It is also noted that the estimations performed using Eq. 7 consider the presence of bed 

heating and heat losses on the reactor, while the estimations from the experiments presented here 

are solely based on the loss of temperature experienced by the heat carrier over the length of the 

reactor. In that sense, the values obtained through Eq. 7 seem to yield a more consistent result than 

the ones derived from our experiments and will be used in the subsequent calculations. 

3.2.2 Aspen Simulations: calculation of heat flows 

The heat demand of the reactor is supplied by the heat carrier, which in turn is heated by three 

main heat inputs to the bioliq® fast pyrolysis process. First, hot flue gas heats and lifts up the heat 

carrier so that it can flow back to the reactor. For ease of operation, combustion of natural gas is used 

in the bioliq® pilot unit to provide this hot flue gas. The second heat input is partial combustion of char 

which is entrained in the heat carrier cycle to help sustain and control the temperature of the heat 

carrier. For the case of As Received wheat straw an amount of around 15 kg·h-1 is combusted to serve 

this purpose. Third, a constant flow of 32 kg·h-1 of slightly superheated steam at 5 bar is employed to 

assist the transportation of the heat carrier. This corresponds to a heat demand of 24.6 kW.  

The developed Aspen Plus model was used to calculate the major heat sources and sinks 

resulting for the design of the bioliq® pilot (the results are summarized in Table 5). Three cases were 

calculated for wheat straw with the investigated different moisture contents, reflecting the 

experimentally observed changes in product distribution and composition. It is desirable that the heat 

demand of the process should be primarily covered by combusting the pyrolysis gas, which is a by-
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product with low value due to its unfavourable composition (LHV < 5 MJ kg-1, see Supplemental 

Information). A furnace efficiency of 80% [51] was assumed for the furnace. Only if additional heat is 

required, char was considered to assist heat supply to the process (notwithstanding the combustion 

of entrained char for temperature control purposes). 

It is obvious that the Dry case leads to the most favourable energy consumption. In that case 

it could even be feasible to cover the heat demand for steam production with the pyrolysis gas. All of 

the produced char would then be available for gasification within the bioliq® concept or other potential 

applications [52,53]. These observations may prove important advantages for the Dry case even 

though less organic liquids are produced. It is noted that these advantages only come into full effect if 

the heat demand for drying incoming feedstock can be covered by the currently unused internal heat 

sources, which are represented by the heat exchangers in the product recovery section (see Table 5). 

Currently, these are operated with cooling water connected to a secondary air fan cooler. The results 

from the Aspen simulations show that the biggest changes in available heat for the different feedstock 

moisture contents are in the OC heat exchanger, i.e. the additional water vapour in the process has a 

significant impact in the first condensation stage. Of the heat sources, only HE1 presents a working 

temperature that could be used to produce conventional process heat through the use e.g. of process 

steam. The downside is that it presents the lowest energy availability of the three. The temperature 

range of HE3 means that its heat is not useful for any immediate applications despite the significant 

energetic potential. Flue gas from the liftpipe is another heat source in the process but currently used 

to preheat incoming combustion air. 

Finally, it is noted that even for the As Received case no additional natural gas is required to 

fuel the heat carrier cycle, meaning that most of the required process heat can be covered by pyrolysis 

gas and a minor fraction of the char. Similar results were observed for the case of grape residues, but 

it was also reported that it heavily depends on the type of feedstock employed [54].  
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Table 5: Relevant heat sources and sinks resulting from Aspen simulation of the fast pyrolysis process. 

Details to char and gas flows can be found in the Supplemental Information. 

 Dry As Received Moist 
Overall Heat Demand (kW) 221 252 305 
Heat Input by Steam Supply (kW) 25 25 25 
Heat by Entrained Char Combustion (kW) 126 121 98 
Remaining Heat Demand (kW) 70 106 182 
Pyrolytic Gas Required (mass fraction) 73% 99% 100% 
Char Required (mass fraction) 0 0 10% 
Unused Heat Sources    

HE1: 515-20 °C (kW) 22 22 16 
HE2: 90-84 °C (kW) 105 107 123 
HE3: 30-28 °C (kW) 62 63 63 

 

3.2.3 Aspen Simulations: biomass drying 

The experimental results of this work (chapter 3.1) indicate that biomass feedstock with lower 

moisture content leads to an increased production of char and gas, while producing lower amounts of 

OC with lower water content. On the one hand these observations do not appear to favour the drying 

of biomass feedstock prior to fast pyrolysis, on the other hand Dry feedstocks would reduce the energy 

expenditure in the pyrolysis process. As shown above this could lead to the case where all auxiliary 

energy can be supplied by combusting the by-product pyrolysis gas. Moreover, it may be desired to 

control the moisture content in the produced OC and/or to maximize the solid by-product in regard to 

gasification fuel production which essentially is the main focus of the bioliq® process [4]. Based on 

these considerations the integration of a dryer in the pyrolysis process is investigated with the aim to 

use waste heat within the plant. The three investigated moisture contents (Table 2, and throughout 

the previous sections) are reflected in this consideration, with the water removed and energy input 

presented in Table 6. 
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Table 6: Water removal and its energy demand in the dryer, the enthalpy of vapourization of water was 

assumed to be of 2257 kJ·kg-1. 

 Water Removed (kg·h-1) Energy Dryer (kW) 

Moist → Dry 146.2 91.6 
Moist → AR 93.6 58.7 

AR → Dry 44.3 27.8 

 

As stated before (section 2.5.2), two models of drying were considered: Air Drying and Flue 

Gas Drying. The first (Figure 2) employs a series of heaters that utilize existent waste heat (H2, H3, 

which represent heat from the char and OC heat exchangers, respectively) followed by a final heater 

that is powered by an external source (H4) to bring the mass of air to the optimum temperature. The 

latter (Figure 3) uses the flue gas from the liftpipe prior to preheating the fresh combustion air (which 

is the current use of the flue gas). 

The main parameter varied during the analysis of this system is the minimum amount of fresh 

air that ensures a maximum relative humidity of the dryer exhaust inferior to 100% (to avoid saturation 

and condensation). For the case with air drying, the heat supplied to the heater H4 was modified as a 

second parameter. The range of parameter variation is explained in the Method Section (Table 3). 

Air Drying  

The effect of varying the air flow rate is evaluated by two parameters: the use of heat 

recovered from the OC condensation loop and the efficiency of the dryer (see Eq. 12). Although it is 

not the primary controlled variable, the effects of varying the heat supplied to H4 and the heat carrier 

preheating create dispersion in the results, often resulting in more than one valid value for each 

considered air flow rate. A linear trendline is indicated to ease the analysis of this dispersion; this does 

not impose any physical meaning on the results. 
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Figure 9: Percentage of the employed HE2 heat as a function of the air flow rate. 

 

Maximizing the use of the process heat (Figure 9) is one of the priorities of this work. All 

observed maxima coincide with the lowest feasible air flow rate. A low air flow rate implies smaller 

equipment sizes and lower operating costs. It also has an overall greater influence on the drying 

process compared to the other investigated variables. For the AR → Dry case, the graph indicates a 

consistently low use of recovered heat because the temperature obtained after recycling dryer exhaust 

air is very close to the target 80 °C that would be provided by the HE2 heat. The most demanding case 

of drying Moist → Dry reaches only a maximum heat utilization of 47.8%. Obviously, the temperature 

of this heat source is too low be fully exploited for drying feedstock. 
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Figure 10: Efficiency of the dryer as a function of the air flow rate. 

 

The efficiency of the drying process (Figure 10) represents the fraction of the energy given to 

the air that is used to remove water from the biomass. The results indicate that the heat supplied to 

the air to bring it to the drying temperature is mostly wasted for small moisture content differences, 

leading to low efficiencies. Again, the minima of each case are at the lowest air flow rate which also 

coincides with the highest usage of recovered heat.  

It can be directly concluded from the sensitivity analysis that all cases with lowest air flow rate 

represent optimum design choices (see Table 7). It is important to state that the values were 

considered valid whenever the relative humidity was lower than 100%, thus disregarding the effect of 

external perturbations or condensation in tubes for design purposes. 
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Table 7: Optimum values for the case of ‘Air Drying’ for all three situations in study. 

 Moist → Dry Moist → AR AR → Dry 

Temp Biomass (°C) 80 80 80 

Temp Air (°C) 170 170 170 

Fresh Air Flow (kg·h-1) 2400 1400 600 

H4 Heat (kW) 40.55 14.16 0 

% HE2 used 47.8 35.2 23.0 

Wasted HE2 Heat (kW) 79.91 91.72 99.42 

Wasted HE1 Heat (kW) 0 0 15.77 

Thermal Efficiency (%) 81.5 78.4 69.9 

 

The results of Table 7 indicate that the potential of HE1 was hard-capped by the temperature 

limit, which was imposed for safety reasons. None of the cases was able to fully utilize the HE2 heat 

due to its low temperature level. Larger air masses were able to employ all available HE1 heat, while 

still requiring extra heat. The case AR → Dry did not make use of all the heat provided by HE1 and is 

the only case that does not require external heat. H4 extra heat requirements can be potentially 

achieved by integration with the flue gas (see next section), by combustion of unutilized pyrolysis 

products (see previous section), or by combusting additional fuels such as e.g. natural gas. 

Flue Gas Drying  

A study on the viability of using the flue gas resultant from replacing the currently employed 

natural gas by pyrolysis gas on the furnace was also performed. The values were estimated for a 

situation of complete combustion, considering that the temperatures and behaviour of the current 

furnace have not changed. 
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Table 8: Optimum values for the case of ‘Flue Gas Drying’ for all three situations in study. 

 Moist → Dry Moist → AR AR → Dry 

Fresh Air Flow (kg·h-1) a 2300 1300 500 

Excess Heat (kW) 0 0 14.17 

a: The feedstock is preheated to 80 °C in order to use part of the HE2 heat. 

 

Enough heat is available to dry incoming feedstock for all cases. The airflow requirements 

estimated for Flue Gas Drying case are slightly lower than the ones verified for the Air Drying case (see 

Table 8). These results imply slightly lower operational costs versus the Air Drying case. All estimated 

air flows are required to achieve a valid relative humidity of the exhaust air below 100 %.  

It was not possible to keep the temperature limit (170 °C) through heat integration alone for 

the lowest demand case, requiring a second form of heat removal from the system to comply with the 

fire hazard values. In this case another high-temperature heat source is created that would be available 

for other purposes. It is noted that this proposed setup would require the furnace to operate with high 

excesses of oxygen which renders temperature control by char oxidation impossible. This setup fulfils 

its purpose within the scope of this study, but it would need some changes (e.g. a second combustion 

stage) to not interfere with the current operation strategy of the bioliq® pilot plant. Furthermore, this 

setup does provide the heat requirement to dry moist feedstock but it would also limit the use of 

recovered heat from the process.   
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4. Conclusions 

Fast pyrolysis experiments of wheat straw treated for different moisture contents have been 

performed with a process development unit. The results indicate that wheat straw treated to be moist 

(23.6% water content) led to a lower production of char and gas, and a larger amount of liquids as 

compared to the use of as received feedstock (9.3%). Interestingly, it was also observed that dry 

feedstock (1.2%) produces less organic-rich condensate than for the case of as received feedstock. This 

effect may be the result of counteracting effects from varying heat rates due to the heat of evaporation 

and changes in the hot vapour residence time due to additional steam flow. Experiments with an 

increased sweeping gas flow rate support this conclusion.  

The number of organic acids and nonaromatic aldehydes was observed to increase with the 

feedstock moisture content, which might indicate the presence of water or the energy demand of its 

vaporization have a protecting effect preventing the degradation of these compounds. The lower gas 

residence times in the reactor caused by a greater sweeping flow rate lead to a lower rate of 

degradation, more effectively than higher feedstock moisture contents. 

The experimentally determined product distributions upon changing the feedstock’s moisture 

content have been used to set up a consistent Aspen model for the determination of heat flows within 

the process. Calculations have shown that the pyrolysis gas, of no commercial value due to a very high 

inert content, is able to cover the heat demand of the fast pyrolysis reactor for two of the three 

different feedstock moisture contents. This allows more char to be recovered and subsequently 

employed for biofuel production via gasification or other alternative uses.  

The cooling of char presents a temperature range that would allow for the production of 

conventional process heat, such as e.g. steam, but with a comparatively low heat availability. The 

cooling of the first condensation loop was identified as the prime energy source due to a large energy 

availability even though the usable temperature sets some limits to its use. The lower energetic 

demands of a process run with a low moisture content biomass paired with an FPBO with lower water 

content indicate that the integration of a dryer appears to be useful. 
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Single stage direct dryers were simulated to reduce the moisture content of the same biomass 

from a value of 23.6% wt. to either 9.2% or 1.3% wt., and from 9.2% to 1.3% wt.. A sensitivity analysis 

was conducted to investigate the potential use heat sources from the pyrolysis process to integrate 

the dryer in the process. The optimum points for both Air Drying and Flue Gas Drying options yielded 

similar results in terms of airflow demand. The first enables a partial use of the available process heat, 

while requiring an extra source of heat to reach the desired drying temperatures. The latter enables 

the use of a heat that is currently only employed for preheating of furnace air, but makes little use of 

other process heat. 
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