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A B S T R A C T

Manufacturing continuous fibre reinforced components often involves a forming process of textiles. Process
simulations using Finite Element (FE) techniques allow for an accurate virtual formability assessment, but are
typically time-consuming, especially for iterative design optimisations. To provide remedy, this work proposes
machine-learning (ML) techniques as easy-to-evaluate approximations of FE-forming results. While previous
studies focus on adjusting process parameters to achieve manufacturability, this work investigates local geo-
metry variations. Initially, an ML-model is trained on FE-based forming examples in order to relate geometric
features to forming results. During component formability assessment, an image-based recognition approach
identifies manufacturing-critical regions. Then, the ML-model estimates forming results for each region in-
dividually. The validity of local formability assessment for a minimum mutual distance is based on Saint-
Venant’s Principle and is supported by FE-based verification. The overall approach is validated on a complex
shaped box-geometry. Moreover, time-efficient exploration of local design alternatives to improve manu-
facturability is demonstrated.

1. Introduction

Due to their considerable mechanical properties, continuous fibre
reinforced plastics (CoFRP) have drawn wide attention in weight-sen-
sitive industries (e.g. aerospace or automotive). For optimum structural
performance, not only the material must be carefully adjusted, e.g.
stacking sequence and fibre orientation, but also defect free manu-
facture needs to be ensured - a challenging engineering task with po-
tentially competing goals.

Manufacturing CoFRP components comprises multiple steps, often
involving a forming step of a textile (draping). In textile draping, local
defects may significantly reduce the load bearing capacity [1] and
therefore, manufacturing effects should be reflected during structural
simulations via continuous virtual process chains [2]. Ensuring appro-
priate formability requires particular attention during component and
process design. To achieve defect-free formability, different optimisa-
tion approaches have been developed, which concentrate on process
parameter adjustment (e.g. gripper forces) for improved forming results
[3–5]. However, in many cases manufacturing problems stem from
inadequate component design rather than deficient process configura-
tion [6]. Thus, although considerable improvements can be achieved
through process optimisation, the potential gains are limited and

certainly cannot compensate for an arbitrarily detrimental component
design. In consequence, consideration of manufacturing during com-
ponent design greatly contributes to a lean development and prevents
costly redesign loops. Overall, a concurrent structure and process op-
timisation including geometry variations may be seen as the ultimate
goal of CoFRP component design.

This work addresses forming of plain-weave fabrics. A frequently
used criterion to assess the draping quality is the in-plane shear angle

12[5,7,8], which mainly forms in doubly-curved regions. Thus, local
component curvature limits the manufacturability of the part and re-
quires special attention during component design. Physically motivated
simulations by Finite Element (FE) models allow for a detailed de-
scription of the forming process. Amongst other things, they pay special
attention to accurately modelling the non-linear material behaviour
[9]. This is a challenging task, since material testing for model cali-
bration and validation is time- and cost-intensive and, in case of novel
or unusual material behaviour, new or enhanced modelling approaches
even need to be developed. While FE-techniques promise high physical
accuracy, they in turn require profuse numerical expertise for model
configuration and considerable computational resources. Especially at
early stages of the design process, when many design iterations need to
be evaluated, this quickly become laborious and time-consuming.
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Consequently, time-efficient models are a key factor in process and part
design strategies for CoFRPs.

Different approaches to time-efficiently account for manufacturing
during design have been developed: They range from qualitative design
and process selection guidelines [10], via analytical relations for simple
shapes [11] and geometry analysis tools, e.g. [12], to advantageous
shapes deduced from reverse draping approaches [13]. However, most
widespread for rapid forming assessment are purely geometric draping
simulations, so called kinematic methods. They are computationally
inexpensive, but involve many simplifying assumptions (cf. [14,15])
and disregard the actual physics (e.g. process conditions, friction or
material behaviour). Thus, current approaches for time-efficient form-
ability assessment are of limited accuracy.

The advent of Machine Learning (ML) introduces another option for
time-efficient process models. ML aims at constructing a numerically
inexpensive, phenomenological relationship between input (e.g. pro-
cess, material and/or geometry parameters) and corresponding output
(part quality). Loosely speaking, these models ‘learn’ the underlying
system dynamics from supplied input-output-examples and estimate the
outcome of new parameters [16]. Currently, in composite engineering
most ML-based applications focus on structural optimisation, e.g. part
stiffness or vibration characteristics, e.g. [17–19]. Although, beneficial
time-savings during optimisation are reported, e.g. [20], most ap-
proaches are component-specific and cannot be reused in other en-
gineering problems [21]. Consequently, developing generalised ML
models is an open field of research. Current generalisation approaches
for CoFRP focus on material properties, e.g. elastic constants [22,23],
but do not consider effects on component scale. To the author’s
knowledge, our previous works [24–26] are the first studies on com-
ponent scale which apply ML techniques for textile forming optimisa-
tion and forming-related composite design analysis. Results show that
current ML-techniques are capable of reproducing results from FE
forming simulations.

1.1. Scope of this work

This work investigates the idea of using ML-techniques in textile
formability assessment of variable geometries to obtain physically ac-
curate predictions while maintaining computational efficiency. The
overall aim is to recognise distinct geometric features in a component
and make on the corresponding local forming result by an ML-algo-
rithm. The predicitive ML-algorithm learns the forming dynamics from
a data base of physics-based FE-draping examples. For preclusion of
potential overlay effects, advanced material behaviour effects, e.g.
onset of curing/crystallisation or rate-dependent behaviour, are not
considered. This allows the isolated study of the algorithm’s learning
capacity vis-à-vis geometry variations. Feature recognition is performed
on an image-based geometry representation. Being a frequent and se-
vere forming challenge, rounded corners serve as an example use-case.
For first implementation and general verification of approach validity,
this work eliminates corner interaction effects through spatial separa-
tion: According to Saint-Venant’s Principle (SVP), corner strain fields
ought to form independently given a minimum distance. While this
work uses fabric forming for approach validation, the overall idea is
deemed applicable to other material classes as well (e.g. stitched non-
crimp fabrics).

The paper is organised as follows: Section 2 describes the overall
methodology of design assessment including a brief introduction of the
used ML-technique and the geometry recognition approach. Section 3
presents the FE-forming setup and data processing strategy used for
training data generation. Numerical evidence on the validity of in-
dependent evaluation of geometric features (Saint-Venant’s Principle) is
presented in Section 4. Ultimately, the approach is used to time-effi-
ciently predict and improve the manufacturability of a complex shaped
box-geometry in Section 5.

2. Methodology

2.1. General workflow

Conceptually, this work treats an FE forming simulation as a func-
tion G Q:FEM that maps a set of geometry parameters G to a re-
sulting set of part quality attributes Q. Analogous to previous work on
draping optimisation, e.g. [5,7,8], the part quality Q is described by the
in-plane shear angle 12, i.e. =Q 12. Since the evaluation of FEM is
costly and laborious (simulation run), the general aim is to establish an
approximative ML-based model function µ G Q:ML to substitute

FEM (i.e. ground truth) in a certain target region Gtarget, i.e.
gµ G GML FEM target .

It may be noted, that FEM can be evaluated (i.e. simulation run),
but is otherwise unknown (“black-box”). Therefore, classical approx-
imation techniques, e.g. Taylor Series expansion, are inapplicable, since
mathematical prerequisites (continuity, differentiability, etc.) cannot be
ensured. Even if the prerequisites were satisfied, numerical differ-
entiation rapidly exceeds reasonable computational efforts for higher
derivatives in multi-dimensional spaces. Under these circumstances,
only data-driven approaches are eligible that approximate FEM based
on n evaluations – the core task of ML.

Evaluation of the model function µML is embedded in a workflow as
schematically illustrated in Fig. 1. The algorithm accepts a 3D-geometry
of interest as an input and identifies geometric features (i.e. corners).
Each recognised geometric feature in the component is assigned a set of
describing geometry parameters gi. All features are collected in a set

= …g g gm{ , , , }k
k1 2C . For a valid prediction, the identified parameters

gi
kC must lie inside the range of a previously sampled training data

set nD for the model function µML (i.e. g g: Conv( )i i
nD ), where

Conv( )nD denotes the convex hull of nD . Otherwise, nD needs to be
extended by additional samples. For maximum information gain, a
design of experiments (DoE) strategy may be used. Ultimately, for each
gi in an ML-algorithm µML previously trained on nD predicts the pro-
spective forming result (i.e. 12).

2.2. Machine learning model

The model function µML is preselected from a function class M . A
basic requirement ofM is that its functions are highly-flexible, so that
they are able to conform to any ground truth. Common function classes
are polynomials, support vector machines, decision trees, artificial
neural networks and Gaussian Process Regression (GPR) [27]. This
work employs GPR, also known as Kriging, as it has shown superior
prediction performance in other engineering applications [28–30]. The
performance of ML-models is usually quantified by error metrics, which
measure how well the model captures the data-inherent dynamics and
generalises to unknown input. Common error metrics are e.g. mean
square error, coefficient of determination or maximum absolute de-
viation (outlier analysis). They are usually determined by model vali-
dation techniques, such as cross-validation, or are measured on a se-
parate test set [16]. Thereby, error metrics provide guidance on the
choice of suitable model functions, possibly complemented by existing
knowledge on the problem (e.g. a priori known periodicity). With these
metrics, a preceding comparative study of the authors revealed superior
predictive capabilities of GPR compared to standard regression ap-
proaches, which were found susceptible to outlier-predictions, see [26]
for model validation details. Additionally, model training is less ex-
pensive compared to e.g. deep neural networks, and in sparse-data-si-
tuations GPR is less prone to data-overfitting [31].

GPR is a non-parametric universal approximator based on Bayesian
statistics theory [32]. Suppose, a data set = …g gm{( , ), , ( , )}n

n
n

1 12
1

12D

with n stored observations of input points …g Gn1 and corresponding
output … Qn

12
1 has been sampled. GPR then aims at inferring the most

likely distribution, that the observations in nD have been sampled from.
To that, between each two points a suitable covariance function kij



(“kernel”) is selected. Along with a preselected mean, commonly 0, this
fully defines the Gaussian prior distribution. The kernels convey the
notion, that close points in the input space ( g g 0i j ) yield alike
results and remote points ( g gi j ) do not influence each other. A
common choice for kij is a squared exponential function:

= =
g g

k x x k, exp 1
2

,i j ij
i j

0
2

2

(1)

where = …g g m g( , , )i
i

D
i

1 are points in the D-dimensional input space.
The maximum allowable amplitude 0 and the length scale are hy-
perparameters, which are collected in the vector = ( , )0 . The kernels
are aggregated in the symmetric covariance matrix K . Using Bayes’s
theorem, model training is then done by maximising the negative
logarithmic likelihood gp ( ( , )):

=g K Kp nln( ( ( , ))) 1
2

1
2

ln det( )
2

ln 2 max.T 1 !

(2)

Predictions 12 for a new input point g are possible by evaluation of
= kK 1

12 , wherein the vectors k and are defined by
= …k g g g gk m k( ( , ), , ( , ))1 n and = …m( , , )n T

12
1

12 , respectively.

2.3. Geometry encoding and recognition

Integral part of the algorithm is the ability to recognise features in a
given geometry. From a manufacturing perspective, formed geometries
must necessarily be undercut free to allow for collision-free tool closure.
Therefore, without loss of information, a bijective projection of the
geometry into the tool-plane is tractable, which can be encoded in an
image. Besides an advantageous dimensional reduction to a 2D re-
presentation, an image-based representation enables access to nu-
merous processing techniques. Specifically, advanced ML-algorithms

specialised in computer vision enable object recognition, classification
and tracking in images [33]. However, proper configuration of such
advanced algorithms is time-expensive. Thus, for first implementation
and assessment of the general approach feasibility, a simplified feature
recognition technique is applied, namely 2D normalised cross-correla-
tion [34].

This work uses a topographic map with contour lines of constant
elevation (isoheights), cf. Fig. 2a). Beginning from the top, isoheights
divide the geometry in user-specified intervals in tool direction z, e.g.
this study uses 5mm. Since pixels carry spatial information, image re-
solution is a critical parameter for information conservation and re-
quires particular attention. If the resolution is too low, processing is
fast, but geometry information is not retained and vice versa. In this
work, a resolution of 0.25 px/mm is empirically found to yield a good
trade-off for time-efficient but satisfactory recognition confidence
(c 0.85cor , cf. Eq. (3)).

The geometric features must be detected irrespective of their posi-
tion in the component. Consequently, translation invariant feature re-
cognition is required. It may be noted, that rotation invariance is not
aspired in this work since forming results strongly depend on the re-
lative angle between fabric and geometry feature due to anisotropic
material behaviour. Additionally, scale invariance is not pursued since
pixels carry spatial information and thus, images must not be scaled.

Inspired by image processing in neural networks, convolving tem-
plates across a target image (investigated geometry) ensures translation
invariance. The convolution operation may be seen as sliding a tem-
plate over the target image until a match (i.e. high correlation) is ob-
served. Since pixels are discretised values, a discrete convolution op-
eration is performed yielding the normalised 2D cross-correlation [34]:

=c u v
T x y T x u y v

T x y T x u y v
,

, ,

( ( , ) ) · ( ( , ) )

x y xy

x y xy x y
cor 2 2

(3)

wherein T x y( , ) is the target image, Txy the average of T x y( , ) under the
template positioned at u v( , ). Summation range for x and y is the
region under . For increased recognition robustness, in this work, the
isoheights are additionally thickened by two pixels to allow for minor
mismatches between template and target. The templates stem from a
large repository with =n 1372tpl geometry samples with known para-
meters g. The procedure is visualised in Fig. 2 b). The according geo-
metry parameters are then extracted from a lookup table and parsed to
the ML-model µML for evaluation.

Fig. 2. Visualisation of the geometry encoding scheme in tooling direction z
along with the corresponding isoheights-image (a) and the corresponding 2D
image-based recognition approach by pattern matching (b). (For interpretation
of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Fig. 1. Schematic workflow of the proposed design
evaluation algorithm. After initial training of a
model function, geometries of interest are scanned,
relevant geometry features are extracted and time-
efficiently evaluated by the model function. (For
interpretation of the references to colour in this
figure legend, the reader is referred to the web ver-
sion of this article.)



3. Training data generation from forming simulations

3.1. Preprocessing

For automated geometry generation, a parametric CAD-model is
used. The parameterisation scheme and range (cf. Table 1) is inspired
by [35,28] and aims at a wide coverage of possible corner geometries.
In future applications, additional schemes may be used to enhance the
overall scope of geometric features to a holistic ‘draping catalogue’.

For maximum information gain during exploration of the geometry
parameter space G, Latin Hypercube Sampling (LHS) [36] is used.
Amongst others, it is a popular space-filling sampling plan for de-
terministic computer experiments. It strives for a uniform distribution
of sample points in the geometry parameter space

= gr r w w G( , , , , )x y1 2 , while avoiding recurrences of parameter le-
vels. Since extrapolations are generally inadvisable, additional samples
at the boundary of G are drawn using Box-Behnken- and a full factorial
design, as suggested in [37]. Doubly-symmetric tool surfaces are de-
duced from the corner geometry samples g Gi . To build the data base
Dn, a significant number of simulations is required and thus only so-
called macroscopic forming simulations are computationally practic-
able. They treat each ply within the stack as one continuum with
homogenised mechanical properties and have reached a remarkable
level of physical accuracy even for complex textile architectures [38].
Subsequently, FE-draping simulations are set up within an in-house
developed forming simulation framework based on the commercial FE-
code ABAQUS[39,9]. This framework conveniently enables a fully auto-
matised pre- and postprocessing of draping simulations. Also, it com-
prises a subroutine library for several constitutive models describing
intra- and inter-ply behaviour. A single ply fabric is formed in one
stroke within 1 s. The fabric is always of rectangular shape. To account
for the decoupled membrane and bending behaviour, the layer consists
of superposed membrane (M3D3) and conventional shell elements
(S3R). Thickness-compaction is neglected, i.e. a constant layer thick-
ness is assumed. A visualisation of an example simulation setup is given
in Fig. 3.

In this work, a hyperelastic constitutive equation for the non-linear
membrane behaviour is used with a constant in-plane shear modulus
G12 =1MPa and a longitudinal stiffness in warp and weft direction

=E E1 2 =1000MPa. The material model enables a covariant

description of material stiffnesses at large strains, so that its behaviour
in non-orthogonal, fibre-parallel frames can be correctly described, see
e.g. [9,39,40]for modelling details and experimental validation. For
reference, Fig. 3c) shows the results of a virtual bias extension test of
the material. The curves qualitatively agree with experimental findings
for fabric reinforced thermoplastic materials at low deformation rates
and moderate temperatures [41,42]. The selected material configura-
tion facilitates sufficiently large membrane section forces as required
for validation of Saint–Venant’s principle (cf. Section 4). A Coulomb
friction coefficient of = 0.3 models tool-ply contact. Isothermal pro-
cess conditions as well as spatially and time-wise constant material
properties are assumed, i.e. rate-dependencies and additional effects
from curing or crystallisation for respective material classes are not
considered. While a detailed experimental validation is beyond the
scope of this work, the overall forming behaviour appears plausible
compared to aforementioned experimental findings. Owing to the
methodological nature of this study, material and process parameters
may be perceived as generic and do not aspire comprehensive model-
ling of a particular material. Altogether, the model is configured so as to
allow for an isolated study of the algorithm’s learning capacity towards
geometry variations.

The in-plane shear-angle 12 quantifies the draping quality.
Typically, excessive shear deformations increase the likelihood of un-
wanted defects, such as wrinkling, textile folding or poor resin in-
filtration due to fibre compaction. Apart from a deficient visual ap-
pearance, these defects substantially compromise the load bearing
capacity and may lead to part reject [1]. The actual formation of defects
is a complex interaction of in-plane stresses, in-plane shear stiffness and
out-of-plane-bending stiffness [43]. Thus, for simplicity, this work as-
sumes an empirical limit shear angle = °5512

lim to distinguish defective
from defect-free forming results.

3.2. Postprocessing

As local instead of global forming results are of interest, post-
processing concentrates on evaluating the shear angles at individual
corners. Around each corner’s apex, a rectangular evaluation region is
defined by = + +l h r rout

1
cos( ) 1 2 and =l rin 1 and projected onto the

undeformed fabric, as presented in Fig. 4a). Elements inside the pro-
jection are collected in an evaluation set. The region boundaries are not

Table 1
Geometry parameterisation scheme, considered parameter range and geometry examples for visualisation.

Parameterisation Symbol Meaning Range Examples

r1 Top Radius …5 40 mm
r2 Bottom Radius …5 40 mm

Draft Angle … °5 40
wx Width in x …50 300 mm
wy Width in y …50 300 mm

w w/x y Aspect Ratio …1.0 2.0
h Height 50 mm

Fig. 3. Visualisation of an exemplary draping si-
mulation setup (a), a qualitative plot of the absolute
shear angle distribution after forming (b), non-
linear in-plane shear curve obtained in a virtual
bias extension test (c). (For interpretation of the
references to colour in this figure legend, the reader
is referred to the web version of this article.)



fix, but depend on the corner parameters, which ensures that the eva-
luation region always encloses the main deformations independent of
the current geometry parameter setting. The shear angles within the
evaluation set are collected in a vector = …m( , )12 12

1 , where i
12 is the

shear angle of the i-th element in the set. The entries of 12 are sorted
into a histogram with bins of °10 . An example histogram along with the
according evaluation set can be seen in Fig. 4b). As they pose no
manufacturing relevance but only distort the histogram, shear angles
below °5 are discarded. From the histogram, statistical metrics are
computed, which give a lower dimensional representation of the dis-
tribution. Specifically, the maximum shear angle 12

max, average shear
angle 12

avg and corresponding standard deviation 12
std are used. Higher

order statistical moments, e.g. skewness and kurtosis, are also con-
ceptually usable, but being less intuitive they are not considered in this
work.

The procedure is repeated for each geometry parameter set gi and
ultimately, the metrics of all training geometries are aggregated in a

training data base, e.g. = = …g i n, , , , 1n
i 12

max
12
avg

12
std

i i i
D , and

training of µML is performed according to Eq. (2). In total, =n 81
samples ( =n 71train training and =n 10val validation samples) per fibre
orientation are found a sufficient data base for the considered corner
geometries in this work, cf. [26] for model validation details.

4. Saint-Venant’s principle in fabric forming

This work assumes, that strain fields of geometric features form
independently of each other given a minimum mutual distance (Saint-
Venant’s Principle, SVP). In the following, theoretical background and

numerical evidence is provided for justification of this assumption.
One formulation of SVP states, that the order of magnitude xm ( ) of

a strain component at a position of interest x in a loaded body is
confined by

=x
x

m
d

( )
( )

p

O
(4)

if < xd ( )[44]. Therein, is the diameter of a conceptual surface S

enveloping the region with the cause of strain (i.e. double-curvature in
fabric forming). The variable xd ( ) denotes the distance between x and
the region’s centre and p is a load case dependent decay exponent, with
p 0 in general. In the following, d is used for xd ( ) for brevity. Clearly,
with increasing distance (i.e. d/ 0) or higher values for xp m, ( )
decreases and thus, strain fields localise in the vicinity of their cause.
The value of pdepends on the resulting loads transferred across S ,
while in general, vanishing resultant loads yield higher values of p. In
other words, the strain state at x ought to remain nearly unaffected of
other strain fields in the body given either a sufficient distance or
vanishing resultant loads.

4.1. Phenomenological study

A parametric study is used to validate the hypothesis of strain field
independence. Six fibre orientations between = °0 and = °45 are
draped onto box-geometries with constant corner geometries while
stepwise increasing the distance d between the corners. Fig. 5 illustrates
the procedure exemplarily for a pyramid corner with

= = °g r r w w( , , , , ) (5 mm, 5 mm, 40 , 75 mm, 75 mm)x ypyr 1 2 and
= °22.5 .

Fig. 4. Definition of evaluation region and pro-
jection scheme onto the undeformed fabric (a).
Histogram of the shear angle distribution after
forming of an exemplary corner geometry along
with a qualitative plot of the forming result for
visualisation (b). (For interpretation of the re-
ferences to colour in this figure legend, the
reader is referred to the web version of this ar-
ticle.)

Fig. 5. Setup of the parametric study exemplarily shown for = °22.5 and the pyramid corner geometry. The distance d between two corners is stepwise increased
while tracking the shear angle statistics. The corner geometries remain constant. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)



The evolution of shear angles with d is tracked and plotted for visual
interpretation (Fig. 6). As it bears most graphicness, the evolution of

12
max is used for discussion. The graphs show three main characteristics:

First, starting from a maximum value, 12
max decreases and approaches a

minimum value in an asymptotic manner. Secondly, the difference
between initial and final values depends on and is lowest when the
fibres are oriented perpendicular to the blank perimeter (i.e. = °0 ).
Thirdly, each graph with °0 poses a significant drop (dashed
vertical lines). Beyond these drops 12

max is approximately constant,
which implies mutual independence of corner strain fields. Analogous
results are obtained for three other corner geometries.

4.2. Mechanical justification

The mutual independence of forming results can be justified by SVP.
Consider again the pyramid corner gpyr for the doubly-symmetric case

= °45 with employed symmetry conditions at the boundary (Fig. 7a)).
Since only a 2D-shell rather than 3D-body is considered, the enveloping
surfaceS degenerates to a lineL at the boundary. As can be seen from

the qualitative plots, distinct shear bands form along warp and weft
direction (Fig. 7b)). Depending on d, they end either inL for small d or
in the free edge when d increases. Since shear deformations inevitably
cause shear stresses, reaction forces and moments across L can be
extracted. The selected material properties (cf. Section 3.1) facilitate
sufficiently large forces and moments for unambiguous separation of
intra-ply forces from material strains and inter-ply forces from e.g.
friction. Fig. 7 shows their evolution with d by means of the average
absolute force per unit length across L in normal and tangential di-
rection, i.e. =f fmean( )n,t

avg
n,t L . Also the according mean absolute line

moment mz
avg about the z-axis with respect to the origin O is given, i.e.

= +m f x f ymean( )z
avg

n nL L . Note, that the forces and moments are
normalised to account for continuous growth of boundary length with
d.

The line forces fn,t
avg decrease with d and pose a minimum at about

d =300mm. The line moment mz
avg is initially approximately constant

but then also drops precipitously at d =300mm. In consequence, vir-
tually no resulting load from the strain field is transferred across the
boundary for d > 300mm. The minor growth of fn,t

avg stems from

Fig. 6. Evolution of 12
max with the distance d between two pyramid corners. With growing d, 12

max approaches a constant value for each fibre direction , implying
strain field independence. Dashed vertical lines mark the predicted minimum distance dmin according to Eq. (5). (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

Fig. 7. Schematic visualisation of the simulation setup and extraction scheme of loads transmitted through the boundary for = °45 and =g gpyr (a). Visualisation of
shear bands movement from the boundary to the free edge with growing d (b). Plot of the evolution of transmitted loads with d (c). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)



increasing inter-ply frictional forces between tool and ply due to greater
contact area rather than from material strains. This approximate ab-
sence of transmitted forces satisfies the special conditions of an astatic
equilibrium, i.e. resulting tractions and moments are in equilibrium and
remain in equilibrium when rotated about an arbitrary angle. For an
astatic equilibrium, p 4 prevails in Eq. (4)[44]. Thus, SVP predicts a
strong localisation effect for >d dSVP =300mm. Compared to the
corresponding shear angle evolution (Fig. 6, bottom right), precisely at

=d dSVP =300mm (dashed vertical line) a distinct drop of 12
max to a

constant value is apparent (i.e. strain field independence) as predicted
by SVP. Therefore, SVP is applicable and justifies an individual as-
sessment of forming results.

4.3. Minimum distance for independence

Visual comparison of d < 300mm and d > 300mm (cf. Fig. 7b)
and (c)) indicates, that shear bands need to end on the free edge for full
independence. Thus, pure geometric considerations enable the de-
termination of an independence criterion of two neighbouring corners:
Conceptual straight lines through the double curvature’s apexes in warp
and weft direction must coincide outside the fabric. For graphicness,
shear angles after forming are plotted onto the initial, undeformed
configuration (cf. Fig. 8).

As an example, a rectangular fabric cut is considered. With the
distance l of the corners’s apexes to the fabric’s edge and the fibre or-
ientations , the minimum required distance for independence is found
to be

= +d l· tan( ) 1
tan( )

.min
(5)

Other formulae may be derived for different sheet geometries. Note,
that dmin is independent of the actual corner geometry and depends only
on fibre direction and the apex’s distance to the fabric edge l. For
validation of Eq. (5), the predicted independence distances d ( )min are
also included in Figs. 6 and 7 as dashed vertical lines. Since they co-
incide with the observed drops of 12

max to a constant level and the
minimum of fn,t

avg and mz
avg, respectively, they validate the independence

criterion and the validity of SVP. Since the drops diminish gradually for
° ° = = °d d0 , ( 10 ) ( 10 )min min may be used to prevent

dmin . In the special case of = °0 , immediate independence is
observed, thus = °d ( 0 )min =0mm complements Eq. (5).

5. Application example

In the following, the overall approach is exemplarily applied to
rapidly assess and improve manufacturability of a generic, complex
shaped box-geometry, whose corners fall into the parameterisation
scheme delineated above. Two fibre orientations are considered ( = °0
and = °45 ). The distance d between the corners reflects the minimum

required distance for independence = > = °°d d50 mm ( 0 )0 min and
= = ° =°d d175 mm ( 45 ) 170 mm45 min for =l 85 mm. (See Fig. 9).

5.1. Geometry recognition

Image-based geometry parameter extraction is performed following
the approach described in Section 2.3. Converting 3D-geometries to a
2D isoheight image and convolving the templates yields the location of
the corners. Convolving one template takes about 240 µs on a nVidia
1050TiTM-GPU with a total recognition time for =n 1372tpl geometry
templates of about 5min. The best matches are plotted into the target
image along with the correlation coefficient ccor. An example of the
output-image is given in Fig. 10. The correlation coefficient ccor is in-
serted as well for each corner, showing a recognition confidence of
c 0.91cor for the considered corners. Empirically, c 0.85cor is found
sufficient, to ensure that the mismatch between identified and actual
parameters is less than 1.5 mm and 1 °, respectively.

Upon closer examination, minor mismatches between target and
template can be observed, e.g. in the lower left corner with =c 0.912cor .
This occurs for two reasons: First the non-continuous discretisation to
pixels introduces some error, but more importantly, the geometries of
template and target do not match exactly, but are just very similar to
each other. Although great care was taken to provide a sufficiently
densely sampled template repository (1372 templates), an exact match
for arbitrary geometry parameters is rarely achieved. However, the
obtained results hint general validity of image-based recognition.

5.2. Model evaluation

The extracted parameters for each corner are parsed to the pre-
viously trained model function µML for evaluation of the shear angle
statistics ( ,12

max
12
avg and 12

std). Two fibre orientations are considered

Fig. 8. Exemplary determination of the minimum required distance dmin for
independence of two doubly-curved regions aligned to the edges of a rectan-
gular fabric cut. The plot shows the limit case of beginning independence (i.e.

=d dmin). As d increases, the shear bands separate further, as d decreases, the
shear bands move together and shear strains interact. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web
version of this article.)

Fig. 9. Visualisation of the box-geometry (left) and the governing geometry
parameters for each corner to create the example box-geometry considered in
this work. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

Fig. 10. Visualisation of the recognised geometry features for the considered
box-geometry through template matching. Isoheights in identified regions are
plotted in black and framed, while non-matching pixels are marked pink. (For
interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)



( = °0 and = °45 ). For validation, corresponding FE draping simu-
lations are performed using the forming framework described in Section
3 (cf. Fig. 11a) for an example plot). Bearing most manufacturing re-
levance, the ML-prediction and FE-result for 12

max are visually compared
in Fig. 11b). Additionally, 12

avg and 12
std are given in Table 2 for com-

pleteness. Overall, a good agreement is observed.
The maximum absolute error between FE- and ML-prediction of 12

max

is °5.2 ( 10%), while all other differences stay below °3 . Similar good
agreement is found for 12

avg and 12
std, except for one outlier at corner C4.

Upon closer inspection, this particular parameter combination lies in a
region, which has only sparsely been sampled, leading to higher pre-
dictive uncertainties. Adjusting sampling control parameters for a more
uniform sample distribution or a higher number of samples may alle-
viate this.

5.3. Design improvement

According to the ML-prediction in Fig. 11, forming of corner C1 and
corner C4 exceeds the limit shear angle = °5512

lim (dashed horizontal
line) for the fibre orientation = °0 , while °45 -plies stay below. Con-
sequently, the current part design does not facilitate manufacture of
°0 -plies and requires a redesign.

To explore and visualise the effect of different corner designs, the
ML-model µML can beneficially be employed: In a sensitivity study,
draft angle and fillet radius r2 (cf. Table 1) show the highest impact on

12
max and are thus selected for the redesign. Fig. 12 shows an according

plot. The red line indicates the locus of designs yielding 12
lim after

forming. Designs ‘left’ of the red line (i.e. >12
max

12
lim) are deemed non-

manufacturable and vice versa. This visualisation of µML facilitates
component design: From the ‘manufacturable’ design zone, the designer
can pick any parameters that suit best to other design requirements
(e.g. packaging, functional requirements).

Also the current designs of Corner C1 and C4 are marked in Fig. 12.
They lie inside the non-manufacturable zone and require thus an ad-
justment to achieve manufacturability. The successful reduction of 12

max

below 12
lim is presented in Fig. 13, along with an FE-simulation for re-

ference. The asterisks denote a redesigned corner. Again, ML-model
prediction and FE-simulation match well, with a maximum difference
of °3 for C1* and C4*. For completeness, the result of µML and FE-
result for = °45 before and after redesign are also given, and pre-
servation of manufacturability during redesign is observed, i.e.

= ° <( 45 )12
max

12
lim for all corners. Consequently, the trained ML-

model function µML has successfully been applied to efficiently assess
manufacturability and facilitated redesigns of individual geometric
features.

Finally, an overall reduction of numerical effort is observed. For
instance, =n 1116eval function evaluations generate the corner design
map (Fig. 12). The ML-model only requires training and validation FE-
samples, in this case a total of =n 81 simulations. Thus, the simulation
effort reduces to =n n/ 81/1116 7.2%eval compared to an entirely FE-
based computation. Assuming the model training effort to be small
compared to the simulation effort, the numerical break-even-point is
then governed by the required number of training samples and the
expected number of function evaluations. In general, the more

Fig. 11. Visualisation of the Box-geometry and FE-forming result for = °0 (a). Comparison of 12
max for each corner as predicted by the ML-model and an FE-

Simulation (b). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 2
Mean and Standard Deviation of the shear angle distribution 12

avg and 12
std, re-

spectively, as predicted by the ML-model and an according FE-draping simu-
lation for the considered example box-geometry.

C1 C2 C3 C4

12
avg

12
std

12
avg

12
std

12
avg

12
std

12
avg

12
std

0° ML 24.9 13.7 21.3 6.8 19.2 8.0 33.2 16.4
FEM 22.0 10.8 19.2 7.4 15.2 6.9 21.4 12.4

45°
ML 20.0 11.1 13.3 3.4 13.2 4.6 22.7 10.2
FEM 22.3 10.0 13.0 4.0 12.3 4.6 22.2 10.8

Fig. 12. Corner design map for visual manufacturability assessment. The red
line is the locus of = = °5512

max
12
lim and separates manufacturable from non-

manufacturable designs. Markers indicate the location of corner C1 and C4
before (red) and after redesign (yellow). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this
article.)



repetitive/iterative the task/optimisation is, the greater the computa-
tional benefit.

6. Conclusion and outlook

A machine-learning-based approach is presented to rapidly assess
and improve formability of CoFRP components. To this, an algorithm
identifies doubly-curved and thus potentially critical geometry features
in a component of interest using an image-based recognition technique.
A set of geometry parameters is extracted for each recognised feature,
from which an ML-model infers individual forming results in short time.
The validity of separately assessing individual features in a component
is justified by Saint-Venant’s Principle (SVP) and numerical verification.
The approach is exemplarily applied to a complex shaped box-geometry
with rounded corners. Being trained on physics-based FE-draping si-
mulations, the ML-model is able to maintain physical accuracy while
being numerically inexpensive as a use-case study shows. Additionally,
design maps deduced from the ML-model give a comprehensive visua-
lisation on the impact of local design variations. Thus, the designer can
explore many design alternatives in an intuitive manner without need
for laborious and computation-intensive FE-simulations.

Further investigations are still envisaged. In particular, extensions
of the considered geometry range beyond a priori specified features (i.e.
corners) needs to be addressed. Also, future models must be able to
cope with arbitrary instead of pre-specified fibre orientations, which
requires rotation invariant feature evaluation. One option to this are
Convolutional Neural Networks (CNN). They are capable of learning
system dynamics from generic data and can describe full-field physical
effects in real-world engineering problems [45,46]. First results using
CNNs for textile draping appear promising [47]. Also, including addi-
tional variables for, e.g. variable material properties, multiple layers or
variable process conditions (e.g. temperature or tool closing profile), is
of high importance in future approach developments since forming
results may signficantly differ under variable conditions.

This feasibility study uses a plausible, but generic FE-fabric model
for ML-approach validation. Nonetheless, being based on known me-
chanical theory (SVP), the developed ML-concept is deemed directly
transferable to other fabric materials. Thus, in industrial applications,
fully-validated material models may be used in an analogous manner
for training data generation. Prospectively, such ML-approaches could
result in a fast and easy-to-use software tool for engineers to evaluate
and improve different part and process configurations at early stages of
the design process.
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