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Abstract 17 

The Enhanced geothermal system in Soultz-sous-Forêts, located in the geothermal favorable Upper 18 

Rhine Graben, is a fracture-controlled reservoir that was highly investigated in the last decades 19 

generating a huge geoscientific database. Numerical reservoir models use this database to simulate 20 

the operation of the subsurface heat exchanger, yet suffer from simplifications regarding the transfer 21 

of experimental into model data, dimensional extension, and computational power and efficiency. 22 

The new extensive transient 3-D simulations, based on geophysical, geological and hydraulic data, 23 

highlight the hydraulic and transport feedback of the Soultz EGS due to convective and advective 24 

fluid flow. Developed with the goal of simulating the vast tracer test data during the reservoir-testing 25 

phase in 2005, the Finite Element Model is focusing on the main fractured zones, which connect the 26 

wells in the deep reservoir. It comprises 13 major hydraulically active faults and fractures in a 27 

13x11x5 km extending model domain, as well as open-hole sections of the wells GPK1 to GPK4 and 28 

their casing leakages. The simulation of the tracer experiment confirms the strong heterogeneity of 29 

the reservoir and highlights the importance of a potential fractured zone, hydraulically separating the 30 

reservoir in a northern (GPK1 to 3) and southern section (GPK4). This zone tends to connect the 31 

reservoir to the main fault system by hydraulically separating GPK4 from the other wells. The 32 

calibration and sensitivity analyses provide a unique, broad understanding of the reservoir flow zones 33 

providing information on the extension of the Soultz reservoir in the future and on the fluid pathways 34 

in the deep subsurface of the Upper Rhine Graben. 35 

Keywords 36 

Enhanced Geothermal System; Soultz-sous-Forêts; Discrete Fracture Network; tracer experiment; 37 

Finite Element, transport modeling  38 

1. Introduction 39 

The Upper Rhine Graben (URG) is one of the most distinct areas in central Europe for the utilization 40 

of geothermal energy. Favorable thermal conditions with gradients of greater than 100 K.km-1 41 

(Pribnow and Schellschmidt, 2000) have led to the development of several successful power plant 42 

projects targeting the hydrothermal sedimentary cover and the deep crystalline basement of the 43 

URG as Enhanced Geothermal System (EGS) (Genter et al., 2016; Vidal and Genter, 2018). EGS 44 

are designed to take advantage of natural permeable faults and fractures and improve their natural 45 
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hydraulic properties through chemical and hydraulic stimulation (Schindler et al., 2010). One of the 46 

first and most prominent European EGS is located at Soultz-sous-Forêts (Garnish, 2002; Gérard et 47 

al., 2006), targeting a fractured geothermal reservoir in a depth of up to 5000 m and temperatures 48 

up to 200 °C (Genter et al. 2010). Starting in the 1980s, a unique scientific database has been 49 

created, which opens the opportunity to study hydraulic processes in the geothermal reservoir, and 50 

especially along faults and fractures and on the matrix-fracture-interface (Genter et al., 2010; Sausse 51 

et al., 2010).  52 

Various experiments, such as tracer and circulations tests, were conducted to characterize and 53 

quantify fluid flow through a single fracture or fracture networks not only in the Soultz EGS but in 54 

laboratory and field experiments worldwide (Berkowitz, 2002). In laboratory scale, single fracture 55 

geometries were often described as self-affine rough surfaces with varying apertures exposed to 56 

laminar and/or turbulent fluid flow (Schmittbuhl et al., 2008). Meter-scale migration experiments, 57 

conducted in Underground Research Laboratories, considered fractures as shear zones with a high 58 

number of small discrete channels (Hadermann and Heer, 1996). Typically, Darcy flow was assumed 59 

within the shear zone (Moreno et al., 1988). In the reservoir scale, the geometry, interconnection, 60 

and behavior of fractures are sparsely known and accessible since wellbores and experiments 61 

provide point-like information of shape and fracture density (Dezayes et al., 2010) while geophysical 62 

measurements show the spatial distribution (Sausse et al., 2010). Detailed information about the 63 

reservoir hydraulics, including the reservoir fluid migration pathways, mean residence times, swept 64 

pore volume and heat exchange area between different wells, can be achieved using inter-well tracer 65 

experiments (Robinson and Tester, 1984). In the past, several tracer experiments were conducted 66 

in enhanced geothermal reservoirs which, however, were assumed to be simplified connections 67 

between two wells as a single planar structure or ideal fracture network when attempting to model 68 

(Ayling et al., 2016; Ghergut et al., 2016; Iglesias et al., 2015; Karmakar et al., 2016; Rose et al., 69 

2009; Sanjuan et al., 2006).  70 

An elegant way to resolve arisen issues of missing spatial information and unconnected data is to 71 

simultaneously apply structural and numerical models for investigating the natural and forced hydro-72 

thermal processes of an EGS (O'Sullivan et al., 2001). Various numerical studies of the Soultz 73 

geothermal reservoir have been conducted over decades for investigating different physical 74 

processes, such as natural convection (Bächler et al., 2003; Guillou-Frottier et al., 2013; Kohl et al., 75 

2000; Vallier et al., 2019) and the effects of mechanical stimulation to the reservoir performance 76 

(Baujard and Bruel, 2006; Kohl et al., 2006; Kohl and Mégel, 2007). Furthermore, inter-well 77 

circulation was investigated by fitting analytical and numerical solutions to the measured tracer data.  78 

Sanjuan et al. (2006) applied an analytical dispersive transfer model while Blumenthal et al. (2007) 79 

and Gessner et al. (2009) presented simplified models for the direct circulation between GPK3 and 80 

GPK2 wells. Kosack et al. (2011) compared three different inversion methods to evaluate their 81 
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applicability to the connection between GPK3 and GPK2. Vogt et al. (2012) applied the Ensemble 82 

Kalman Filter (EnKF) to individually invert for the concentrations measured at GPK2 and GPK4. 83 

Gentier et al. (2010; 2011) developed a first Discrete Fracture Network (DFN) considering 84 

hydraulically active parts and fracture sets and independently adapted the model for both wells using 85 

a particle tracking method. It was concluded that it is not possible to create a single homogeneous 86 

statistical fracture model that reproduces both wells simultaneously, as the main structure interferes 87 

with the hydraulic field between GPK3 and GPK4. Radilla et al. (2012) fitted a model to the 88 

experimental data, connecting the individual wells on three independent and isolated pathways with 89 

an equivalent stratified medium approach. All authors commonly conclude that a single-fracture 90 

approach is not suitable to sufficiently describe the hydraulic flow in the complex Soultz geothermal 91 

reservoir. 92 

EGS are often simplified as theoretical/hypothetical fracture systems, connecting two wells along a 93 

line or one or more parallel plates (Bataillé et al., 2006; Fox et al., 2013; Vallier et al., 2019). It is 94 

known from the well-developed Soultz geothermal reservoir that this assumption does not 95 

adequately describe the structure of the heat exchanger system in an EGS (Genter et al., 2010). 96 

The understanding of the complex faults & fractures pattern and thus, on the tectonic history, 97 

preferential flow paths and hydrothermal circulations are crucial for the sustainable and safe design 98 

of a geothermal operation avoiding any artificially induced risks, like thermal breakthrough or induced 99 

seismicity (Zang et al., 2014). Therefore, the goal of the present study is a qualitative and quantitative 100 

evaluation of naturally and artificially induced fluid flow in a complex fractured geothermal reservoir 101 

to further investigate impacts of the considered limiting assumptions in the literature and better 102 

understand complex fluid circulation. Moreover, the knowledge gained allows the optimization of the 103 

design of future experiments and operation scenarios and the prediction of expected results (Kohl 104 

and Mégel, 2007). 105 

Herein, we present an extensive numerical study including the large structural complexity of the 106 

Soultz fault and fracture network solving a transient fully-coupled Hydro-Solute (HS) transport 107 

simulation with the TIGER code. The three-dimensional flow field and tracer propagation in the 108 

Soultz geothermal reservoir are predicted and represent a major extension of an earlier approach 109 

by Held et al. (2014). The model includes the granitic basement as well as several hydraulically 110 

active faults and fractures as discrete surfaces and the open-hole sections of the wells as discrete 111 

line features. Long-term inter-well circulation tests are initially used to forward invert the hydraulic 112 

parameters of the fracture network while the hydraulic model is further recalibrated to reproduce the 113 

inter-wells tracer experiment (Sanjuan et al., 2006). The combination of the numerical approach with 114 

different kind of experimental data allows quantification and evaluation of the flow field inside the 115 

heat exchanger of the Soultz EGS and the identification of inter-well connections over the complex 116 
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fracture network. The numerical approach allows a detailed characterization of the subsurface heat 117 

exchanger with the possibility to recognize feasible features for future expansion.  118 

2. The Soultz geothermal reservoir 119 

The Soultz geothermal system is located in the French-side of the central URG, which is part of the 120 

“European Cenozoic Rift System” extending from southern France to the North Sea (Ziegler and 121 

Dèzes, 2005). The major tectonic feature of the Soultz reservoir is a horst structure uplifting the 122 

Soultz reservoir between Hermerswiller and Kutzenhausen fault, narrowing the Cenozoic and 123 

Mesozoic cover to a thickness of 1400 m (Aichholzer et al., 2016). The underlying crystalline 124 

basement is characterized as a low-permeable naturally fractured rock (Hooijkaas et al., 2006; 125 

Sausse and Genter, 2005) with an alteration-dependent rock matrix permeability ranging from 10-126 

19 m² to 10-20 m² (Hettkamp et al., 1999). The existing fault- and fracture-system is a result of the 127 

tectonic history of the URG. The dominant fracture orientation (160 ±15°) is linked to the recent 128 

maximum horizontal stress orientation of 170 ±10° (Cornet et al., 2007; Evans et al., 1997). Other 129 

fracture sets are oriented with Rhenish (20 ±10°) and Hercynian (130 ±10°) orientation with a steep 130 

dip (>60°) to the west (Dezayes et al., 2010). The mean aperture is varying between 0.1 mm and 131 

250 mm (Dezayes et al., 2010). Fractures oriented parallel to the main stress field tend to remain 132 

open and thus contain increased permeability (Cornet et al., 2007), while those perpendicular or 133 

orthogonal to the main stress field have the tendency to be sealed.  134 

As shown in Fig. 1, the Soultz EGS can be divided into three sub-reservoirs (2000 m, 3500 m, and 135 

5000 m) and utilized by four wells (GPK1 to GPK4) (Schill et al., 2017). The boreholes were drilled 136 

into the western flank of the Soultz horst structure. The GPK1 well targets the middle reservoir with 137 

a maximum depth of 3600 m while GPK2 to GPK4 were drilled over 5000 m depth to exploit the 138 

deeper crystalline reservoir (Genter et al., 2010). The lowest 500 - 700 m section of each borehole 139 

is not equipped with a casing and left completely open against the rock. The remaining part is cased 140 

with leakages reported for GPK2 and GPK4 (Pfender et al., 2006). The leakage of the well GPK2 at 141 

the depth of 3880 m connects GPK2 to the major fractured and altered zone GPK3-FZ4770 and 142 

thereon to the well GPK3 (Sausse et al., 2010). Jung et al. (2010) concluded a fluid loss of more 143 

than 16 % in the leakage of GPK2 measured with the brine displacement method. The three deep 144 

wells are aligned NNW-SSE with a lateral distance of 650 m in a depth of 5000 m while the distance 145 

between GPK1 and GPK2 is 450 m. 146 
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 147 

Fig. 1: 2D-Subset of the geological setting of the Soultz geothermal reservoir including wells, open-hole sections, and the 148 
considered lithological units. The main fractures are shown as red lines; the expected hydraulic connections based on 149 
Sanjuan et al. (2006) and Aquilina et al. (2004) are shown in blue; orange stars indicate the reported casing leakages 150 

Circulation and inter-well tracer experiments allow the prediction of forced fluid flow and the hydraulic 151 

quantification of the connection between the individual wells, while spatial information, e.g. on the 152 

flow paths within the reservoir, is not known (Ghergut et al., 2013). At the Soultz site, several 153 

experiments have been conducted with different well setups during the long-term research activities 154 

(Schill et al., 2017). A tracer experiment carried out in 1997 examined the connection of GPK1 and 155 

GPK2 (Aquilina et al., 1998), while a tracer experiment in 2005 further focused on the main hydraulic 156 

connections in the deeper reservoir between GPK2, GPK3, and GPK4. Sanjuan et al. (2006) 157 

concluded two connections between GPK3 and GPK2 through a hydraulic short-circuit and an 158 

additional pathway of elevated length, while a poor link between GPK3 and GPK4 was observed. 159 

Further inter-well tracer experiments have been conducted confirming the main findings of this 160 

experiment (Sanjuan et al., 2015). 161 

3. Numerical modeling 162 

The numerical simulations are carried out with a Finite-Element (FE) open-source application called 163 

TIGER (THC sImulator for GEoscience Research) (Gholami Korzani et al., 2019), which is based on 164 

MOOSE (Multiphysics Object-Oriented Simulation Environment) framework (Gaston et al., 2009). 165 

TIGER has been developed to tackle thermo-hydraulic-solute transport problems in geothermal 166 

reservoirs including lower-dimensional features for fractures and well paths.  167 

3.1. Governing equations 168 

The approach assumes a Representative Elementary Volume (REV) for the porous media where 169 

interaction between the coupled processes can occur (Bear and Cheng, 2010). The hydraulic field 170 

is solved for the pore pressure by combining mass and momentum balances including Darcy’s law 171 

(Bundschuh et al., 2010) as: 172 

 
𝑏𝑆𝑚

𝜕𝑃

𝜕𝑡
+ 𝛻. 𝑏𝒒 = 𝑄 

Eq. 1 
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𝒒 =

𝒌

𝜇
(−𝛻𝑃 + 𝜌𝑙𝒈) 

Eq. 2 

where P is the pore pressure; t is the time; 𝑆𝑚  is the mixture specific storage of the liquid and solid 173 

phase; Q is the source term for injection and production; k is the permeability tensor; 𝜇 is the fluid 174 

dynamic viscosity; 𝜌𝑙 is the fluid density; g is the gravitational acceleration vector; q is the fluid or 175 

Darcy velocity vector and b is the scale factor for considering fractures (aperture) and wells (area). 176 

Lower-dimensional fractures are treated as discrete 2D elements while open-hole sections are 177 

discretized as 1D elements, sharing nodes, faces, and lines with the 3D continuum.  178 

The transport of solutes (e.g. tracers) is considered as spatial and temporal changes of concentration 179 

which are governed by an advection-diffusion-dispersion equation (Bear and Cheng, 2010).  180 

 𝑏
𝜑𝜕𝐶

𝜕𝑡
+  𝑏(−𝛻. 𝐃𝒎𝛻𝐶 +  𝒒𝛻. C) =  𝑄  Eq. 3 

where C is the solute concentration; 𝜑 is the porosity; 𝐃𝒎 is the sum of molecular diffusion and 181 

dispersion. The dispersion tensor is dependent on Darcy velocity and longitudinal and transversal 182 

dispersivity (Bear and Cheng, 2010), which generally describes the mixing around maximum 183 

concentration due to different mechanical effects (Bauget and Fourar, 2007). 184 

3.2. Numerical model 185 

A 3D-Discrete Fracture Matrix (DFM) model is used to ensure high accuracy in the geometrically 186 

complex reservoir by considering DFN and the surrounding matrix in the numerical analysis (Berre 187 

et al., 2018). The available information about the geological and tectonic settings, including well 188 

paths and open-hole sections, can be merged into a structural model of the Soultz geothermal 189 

reservoir. The used reservoir model, which is a subset of the structural model proposed by Sausse 190 

et al. (2010) and Place et al. (2011), is based on the 3D-model created by Held et al. (2014). 191 

However, the model is updated and extended in this study by introducing two additional fracture 192 

zones as 1) the WNW-ESE-oriented fracture “Separation” between the wells GPK3 and GPK4, and 193 

2) GPK1-FZ2856 fracture intersecting GPK1 in the middle reservoir. The Separation fracture was 194 

not drilled but suspected as an anomalous zone of either higher permeability or hydraulic barrier, 195 

separating the deeper reservoir into a northern and a southern part (Calò et al., 2016; Kohl et al., 196 

2006; Sausse et al., 2010). The fracture GPK1-FZ2856, identified using Vertical Seismic Profiling 197 

(Sausse et al., 2010), is added to allow better adjustment of hydraulic parameters close to the GPK1 198 

well. The model has an extension of 13 (E-W) x 11 (N-S) km with a vertical depth of 5 km (Fig. 2), 199 

located between 1000 m and 6000 m below surface. The extension of the domain is chosen, to avoid 200 

boundary effects on the area of interest and to possibly consider the effects of the regional flow field. 201 

The minimum lateral distance between well and boundary is 4000 m.  202 

Minor simplifications were made regarding the location, dipping and hydraulic appearance of the 203 

fracture network by representing fractures as discrete features. Out-of-plane mixing effects like 204 
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surface roughness, fault gauge or internal mixing cannot be treated individually and are therefore 205 

summarized in the hydrodynamic dispersion (Bauget and Fourar, 2007). Tsang et al. (1988) 206 

concluded that it is suitable to use a statistically homogenous system (e.g. for aperture, permeability) 207 

if the transport dimensions are significantly larger than the spacing between the channels belonging 208 

to a fracture and the transport distance is large enough to remain unaffected by local heterogeneities. 209 

The wells GPK1 to GPK4 are discretized over the entire open-hole section (and casing leakage) and 210 

connected with at least two fractures to the reservoir. The element size differs between 1.5 m 211 

(around and along the wells) and 500 m (close to the boundaries) with a typical element size around 212 

40 m. As the fracture GPK3-FZ4770, establishing the main connection of GPK3 and GPK2 is inclined 213 

and not oriented parallel to the wells, the wells intersect the fracture in different reservoir levels 214 

resulting in the true distance of 840 m (compared to the often used 650 m derived from a pure 215 

horizontal distance). To consider the effects of hydraulic or chemical stimulation (Nami et al. 2008; 216 

Schill et al. 2017) and to minimize mesh dependency of the results, the main fracture GPK3-FZ4770 217 

is subdivided and refined around GPK2 and GPK3. In total, the model contains 141’271 nodes which 218 

are connected by 714’453 elements including 3D matrix, 13 fractures, and 4 wells as shown in Fig. 219 

2.  220 

 221 

Fig. 2: 13-fracture-model of the Soultz geothermal reservoir including wells (modified after Held et al. (2014)). Grey shows 222 
the extension of the matrix. 10 out of 13 discrete faults and fractures are shown. The central area of the mesh along GPK3-223 
FZ4770 and between GPK2, GPK3, and GPK4 is shown in detail. 224 

The pore pressure in the whole reservoir is assumed to be hydrostatic (Stober and Bucher, 2007) 225 

by setting the top and bottom boundary conditions (BC) as Dirichlet BC and the model initial condition 226 

(IC) in accordance. Injection and extraction rates are applied as time-dependent mass-flux-function 227 
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on top of each open-hole section. The matrix permeability is assumed to be orthotropic with higher 228 

permeability in N-S-direction to take the regional stress field of the URG and small-scale fractures 229 

into account (Cornet et al., 2007). A natural S-N-oriented graben-parallel background flux of 1 m³.h-230 

1 (Bächler et al., 2003; Sanjuan et al., 2006) is applied to the main faults and fractures as a function 231 

of the individual aperture. 232 

The injected fluorescein tracer is assumed to be conservative in terms of reaction and sorption during 233 

transport as well as radioactive and thermal decays (Adams and Davis, 1991; Berkowitz, 2002). 234 

Solute diffusion, dispersion, and advection into the granitic basement are neglected (Bodin et al., 235 

2003), as the porosity of the matrix is significantly smaller than the ones of the DFN (Aquilina et al., 236 

2004). The solute (re-)injection is applied as time-dependent Dirichlet BC inferred from concentration 237 

measurements at GPK3 wellhead. The parametrization of the matrix and fluid properties took into 238 

account the conditions in the reservoir (e.g. increased temperature and salinity, Table 1). For 239 

enhancing the accuracy, minimizing unwanted numerical diffusion and conservation of the sharp 240 

concentration front, a second-order semi-implicit time-integration method (Crank and Nicolson, 241 

1996) and a Streamline Upwind method (Brooks and Hughes, 1982) are applied.  242 

Table 1: Constant model input parameters for the fluid and solid phases, the reservoir brine properties are in accordance 243 
with Kestin et al. (1981) representing a brine with 150 °C, 35 MPa and 1.5 mol.kg-1 salinity  244 

Parameter Value 

Fluid density [kg.m-3] 1065 

Fluid dyn. viscosity [Pa.s] 2.3x10-4 

Fluid compressibility [Pa-1] 2x10-9 

Matrix compressibility [Pa-1] 5x10-13 

Fracture porosity [-] 1 

Matrix porosity [-] 1x10-2 

Solute diffusion [m².s-1] 4x10-10 

4. Results 245 

4.1. Calibration of the hydraulic and solute processes 246 

The transmissivities of the Soultz fracture network are calibrated against two circulation tests 247 

conducted in 2009 (Schindler, 2009) and 2011 (Genter et al., 2011). Flow rate changes at wellheads 248 

and their effects on the reservoir pore pressure were used to quantify the transmissivities of the 249 

faults and fractures. Flow velocity logs from each borehole were used to assign the measured portion 250 

of flux to the individual fractures since the matrix tends to have significantly lower permeability. The 251 

calibration is necessary because two further fractures, compared to Held et al. (2014), affect the 252 

pressure field and the capability of TIGER in applying time-dependent BCs enabling more accurate 253 

modeling of the reservoir. 254 
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A circulation test, with average flowrates between 9 and 20 l.s-1, conducted in early 2011 (Genter et 255 

al., 2011) allowed the calibration of the fractures connected to three wells of GPK1, GPK2, and GPK3 256 

through production in GPK2 and reinjection in GPK1 and GPK3. Fig. 3 shows the pore pressure 257 

changes at GPK1 to GPK3 after the calibration of the fractures’ transmissivity. For GPK1, no flow 258 

rate data was recorded from 8th to 10th day of the experiment leading to no flow in the simulation. 259 

However, the pressure response almost fitted the measured data. The lower pressure increase in 260 

GPK1, compared to GPK3, indicates a good connection of the borehole to high permeable zones. 261 

For GPK2, the simulated data slightly underestimates the pressure response in the first 50 days, 262 

while it overestimates later. A casing leakage was reported after day 47 (Genter et al., 2011), 263 

affecting the experimental results. This leakage caused the fluid already pumped in the pipe to flow 264 

back into the reservoir and led to lower measured pressure change for the measured flow rates. That 265 

leakage was not incorporated in this study as it only affects the internal system of GPK2 well.  266 

The measurements of GPK3 show high scattering up to 20 days, which was caused by strongly 267 

varying flow rates at the start of the experiment. After 20 days, the flow rate was kept constant, 268 

leading to a steady pressure change until the end of the experiment. The obtained pressure changes 269 

for GPK3 did not well match the measured data between day 5 and 15. The missing match could be 270 

the result of several factors like borehole or skin effects, (re-) opening of small-scale fractures, 271 

changes in the flow regime and leakages in the tubing. Since the proposed model focusses on long-272 

term evaluation, the calibration was done by fitting the mean steady section of the experimental data. 273 

It is worthwhile noting that the injection wells (GPK1 and GPK3) have almost the same average flow 274 

rates (approx. 9 l.s-1) and at the same time have significantly different pressure responses. The 275 

immediate pressure decline after the pump shutdown shows a small storage effect along the different 276 

fractures and the granitic matrix.  277 

 278 

Fig. 3: Pressure changes in comparison with the measured data and results of Held et al. (2014). Positive pressure changes 279 
represent fluid injection. 280 
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A single-well circulation test in 2009 (Schindler, 2009) was used to calibrate the transmissivities of 281 

the fractures in the southeastern part of the reservoir connected to GPK4 (Fig. 4). Strongly varying 282 

flow rates up to the 10th day were only partially considered because their influence on the long-term 283 

reservoir behavior is negligible. Discrepancies between simulated and measured data occurring after 284 

110 days are probably due to disturbances in the experimental sequence. Therefore, the steady 285 

pressure change between day 30 and 110 was used for the calibration of the hydraulic features. 286 

 287 

Fig. 4: Pressure changes compared with the measured data and results of Held et al. (2014) for GPK4. Missing 288 
experimental data leads to zero values.  289 

The faults and fractures were calibrated for their transmissivities and the granitic matrix for the 290 

permeability and hydraulic diffusivity (Table 2). In comparison to Held et al. (2014), the calibrated 291 

data differs slightly. It is worthwhile noting that the fractures close to the wells affect the calibration 292 

results decisively. Therefore, the calibrated transmissivities have a high accuracy in the vicinity of 293 

the wells, but give only a rough estimate for the hydraulic properties of remote faults and fractures.  294 

Table 2: Calibrated transmissivities of the faults and fracture network and the permeability of the matrix.  295 

Name Transmissivity [m².s-1]  Permeability [m²] 

GPK3-FZ4770 4.80E-05 Granitic matrix x 1.34E-16 

GPK1-FZ2856 5.00E-05  y 3.30E-16 

GPK1-FZ2120 3.80E-04  z 1.65E-16 

GPK3-FZ5020 1.68E-05   

GPK4-FZ4710 3.80E-05   

Soultz fault 6.80E-05   

Kutzenhausen fault 6.80E-04   

MS-GPK2-2000a 5.10E-05   

MS-GPK3-2003a 3.90E-04   

MS-GPK4-20045b 3.20E-05   

Hermerswiller fault 6.80E-05   

PS3-Int (VSP) 6.40E-04   

Separation 6.80E-05   
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GPK3-FZ4770-GPK2 5.65E-05   

GPK3-FZ4770-GPK3 2.95E-05   

 296 

4.2. Flow field 297 

The findings of the circulation experiments can be coupled to multi-well tracer experiments for 298 

quantifying the inter-well connection and flow field of the Soultz geothermal reservoir. A 145-day 299 

tracer test was carried out between July and December 2005 in the wells GPK2 to GPK4 (Sanjuan 300 

et al., 2006). During the experiment, fluorescein tracer was injected in GPK3 and extracted from 301 

GPK2 and GPK4. The fluid, extracted with average flow rates of 11.9 l.s-1 (GPK2) and 3.1 l.s-1 302 

(GPK4), was reinjected in GPK3 with 15 l.s-1. The fluorescein concentration during injection was 303 

146 mg.l-1 over 24 h. Before the first injection, 8 days of circulation provided a stationary flow field. 304 

The results of the experiment and best-fit modeling for the wells GPK2 and GPK4 are shown in Fig. 305 

5 and Fig. 7. The peak velocities of the different pathways were fitted under the assumption of the 306 

obtained transmissivities in the previous section by adapting the permeability to the expected and 307 

measured travel time and fluid velocities along the affected fractures. The mixing around the 308 

breakthrough maximum was achieved by adjusting the longitudinal and transversal dispersivity and 309 

the variation of the aperture. In addition, the 95% confidence interval as the result of the standard 310 

error of the mean modeled solute concentration is presented. 311 

 312 

Fig. 5: Simulated and measured fluorescein concentration at well GPK2; The grey crosses are the experimental data, and 313 
the black line shows their mean value. The red line shows the best-fit model with a 95% confidence interval as the red 314 
shadow. 315 

Fig. 5 shows the modeled and observed results of GPK2 for the tracer breakthrough curve (BTC). 316 

The maximum concentration (730 µg.l-1), giving a peak velocity of 2.6 m.h-1, was observed after 317 

13 days. A strong tailing is noticeable until the end of the experiment, which could be the result of 1) 318 

diffusive exchange with matrix, 2) dispersive effects in the fracture channeling and/or 3) the 319 

interconnection of the wells by different fracture sets (Becker and Shapiro, 2000). As shown in Fig. 320 
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8 the tailing could be related to the latter option. It is possible to identify and quantify two to three 321 

different hydraulic pathways connecting GPK3 and GPK2 (Fig. 6). The main solute influx in GPK2 322 

was identified to occur along the fracture GPK3-FZ4770, connecting the open-hole section of GPK3 323 

with the casing leakage of GPK2. The entire amount of tracer along this pathway was swept after 324 

90 days of circulation. The second pathway along GPK3-FZ4770 and MS-GPK2-2000a was noticed 325 

after 26 days and has a maximum concentration of 161 µg.l-1 after 90 days with a peak velocity of 326 

0.5 m.h-1. The third pathway, along GPK3-FZ5020 and MS-GPK2-2000a, shows a strong dilution 327 

with reservoir fluids, which is why no peak concentration can be detected in the simulation. The lower 328 

total measured concentration compared to the second pathway tracer concentration after 90 days 329 

(Fig. 6) can be explained by additional mixing along the well trajectory of GPK2. The mixing took 330 

place when the higher concentrated fluid, entering the open hole section of GPK2, passed the casing 331 

leakage on its way upwards and was mixed with the less concentrated fluid of the upper pathway. 332 

These pathways were also confirmed in further experiments conducted in 2010 and 2013 along this 333 

pathway (Sanjuan et al., 2015).  334 

 335 

Fig. 6: Simulated tracer concentration at the GPK2 wellhead by showing the contributions of the individual pathways 336 

The result of the simulation at GPK4 in comparison to the experimental data is shown in Fig. 7. The 337 

first arrival occurred 23 days after injection while the maximum concentration (31 µg.l-1) was 338 

measured at the end of the experiment. A peak in the concentration, similar to the recorded one for 339 

GPK2, cannot be observed within the experimental period. The BTC shows typical behavior with 340 

clear mixing effects, such as strong dilution and no clear maximum. The reported scattered 341 

measured data could not be reproduced in the simulation. Predictions about the mean transfer time 342 

and maximum concentration are therefore subject to a high degree of uncertainty. Assuming a 343 

continuous circulation and constant flow rates, the peak concentration of 48 µg.l-1 was observed after 344 

1.5 years followed by a decline to 23 µg.l-1 at the end of the long-term forecast (5 years) (Fig. 7b). 345 

The relatively late arrival time at GPK4 compared to GPK2 indicates the low fluid velocity (0.06 m.h-346 

1) of this pathway. Combined with the low tracer concentration and widely spread peak, a poor 347 
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hydraulic connection between both boreholes is clear probably due to the Separation fracture. The 348 

fracture is oriented in WNW-ESE-direction and thus acts as an anomalous zone, which hydraulically 349 

unlinks the two parts of the reservoir from each other by creating a preferential pathway and drainage 350 

along itself. Fig. 8 shows the dimensionless solute concentration on the affected faults and fractures 351 

at several time steps. The proposed different hydraulic pathways can be identified as areas with an 352 

increased solute concentration, which allow the movement of the solute between the injection and 353 

extraction wells.  354 

 355 

Fig. 7: Simulated and measured dimensionless fluorescein concentration at GPK4; A) over the experimental duration; B) 356 
long-term forecast for 5 years. The grey crosses are the experimental data, and the black line shows their mean value. 357 
The red line is the result of the best-fit model with a 95 % confidence interval as the red shadow.  358 
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 359 

Fig. 8: Comparison of tracer concentrations in different faults and fractures. Left side) View from southwest, right side) 360 
View from the northeast. A-B) the mainly affected fractures, C-D) the tracer concentration at GPK2 reaches the maximum, 361 
E-F) the second pathway reaches the maximum and G-H) the end day of the experiment. 362 
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In addition to the hydraulic characterization of the DFN, effects of other factors, including tracer 363 

reinjection and background flux, which are of great importance for the (long-term) evaluation of the 364 

fracture network, were studied. The reinjection of the tracer-enriched produced fluid in GPK3 affected 365 

the evolution of long-term concentrations. After the arrival of the main peak, the reinjection of 366 

enriched fluids leads to elevated tracer concentrations along GPK3-FZ4770. At the end of the 367 

experiment period, Fig. 9a illustrates a 20 % reduction in the tracer concentration at GPK2 if the 368 

tracer reinjection was neglected. This factor influenced the concentration obtained for GPK4 less 369 

prominently than for GPK2 but a 6 % reduction is still documented in Fig. 9b.  370 

Another factor is the effect of the natural background flux along the main faults and fractures due to 371 

the natural convective system of the Soultz reservoir. A minimum velocity of 11 cm.yr-1 reported by 372 

Vallier et al. (2019) and fluxes for faults and fractures were accordingly calculated. However, fluid 373 

velocity within fractures and faults generated by injection and production scenarios was dramatically 374 

higher than the induced velocity by the background convective flux. Consequently, the influence of 375 

this natural flux on the produced tracer concentration at GPK2 is negligible (Fig. 9a), and ignoring 376 

this factor causes an increase of about 2% in the concentration for GPK2. For GPK4, the background 377 

flow is opposing the available hydraulic gradient and thus lowers the recorded tracer concentrations 378 

by around 5% at the end of the tracer experiment (Fig. 9b). 379 

 380 

Fig. 9: Sensitivity of concentration due to background flux and tracer reinjection of the wells GPK2 (A) and GPK4 (B). Note 381 
the different axis scale. 382 

5. Discussion 383 

Our results, therefore, confirm the existence of different pathways, connecting the wells of the Soultz 384 

geothermal reservoir along different faults and fractures. The wells GPK3 and GPK2 show a good 385 

and fast hydraulic connection, which is realized by three different pathways with different travel and 386 

residence times. Low measurable tracer concentrations indicate a poor hydraulic connection 387 

between GPK3 and GPK4. The convective background flux, as proposed by Sanjuan et al. (2006), 388 
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has a minor effect on the resulting concentrations, as the forced fluid velocities exceed the natural 389 

convective velocities by several orders of magnitude.  390 

 391 

Fig. 10: The main fractures and flow paths connecting the wells GPK3 and GPK2. The first pathway connects both wells 392 
along GPK3-FZ4770, the second pathway along GPK3-FZ4770 and MS-GPK2-2000a and the third pathway along GPK3-393 
FZ5020 and MS-GPK2-2000a. The streamlines are displayed for visualizing the fracture flow.  394 

As shown in Fig. 9, re-circulated brine, containing tracers, can lead to a significant long-term increase 395 

in the overall concentration and it should be considered in momentum analysis of tracer recovery, 396 

swept volume and heat exchange area (Shook, 2005). The cumulative tracer recovery ratio, R𝑓𝑙𝑢𝑜, 397 

is the sum of the recovered solutes of each pathway (Fig. 6). It can be calculated from the time-398 

concentration plot by multiplying the concentration data with the production flow rate and the inverse 399 

of the totally injected tracer-mass. As calculated in Table 3, the total tracer recovery during the 400 

experimental period is 25.0 %, which GPK2 and GPK4 contributed 24.6 % and 0.4 %, respectively. 401 

The total recovery of the model presented is well comparable with the experimental data and the 402 

extrapolated results from it (23.5 % (Sanjuan et al., 2006) and 25.3 % (Sanjuan et al., 2015)) 403 

although the individual contributions are not exactly matched. The stronger influence of the second 404 

pathway for GPK2 in the numerical simulation is partly caused by the slight overestimation after 78 405 

days as demonstrated in Fig. 6. The overestimation of the long-term values can have various causes. 406 

One possible reason are unknown fractures, which are hydraulically connected to the second 407 

pathway. Such fractures could not be considered in the model, because they were not drilled and 408 

therefore neither their geometric appearance nor their hydraulic influence on the reservoir are known 409 

(Mégel et al., 2005). Another explanation of the slight differences can be the connection of the two 410 

fractures since its internal structure is unknown, but complex flow pattern and thus mixing processes 411 

can occur here (Berkowitz et al., 1994). The neglected thermal decay of the fluorescein can also 412 

lead to slight deviations in the results, especially over a longer period of time (Adams and Davis, 413 

1991). On the other hand, considering tracer diffusion into the matrix can increase the long-term 414 

concentration results, while the peak is lowered (Ghergut et al., 2018). This simplification is 415 
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nevertheless permissible since there is no evidence of matrix diffusion (Radilla et al., 2012) and the 416 

system is strongly convective, with the time scale of the transport process being significantly shorter 417 

than that of the diffusion into the matrix (Bodin et al., 2003). 418 

The swept volume can be calculated from the recovery rate. The swept volume, 𝑉𝑠𝑤𝑒𝑝𝑡, is a measure 419 

of the pore volume swept by tracer during an experiment as (Levenspiel 1972):  420 

  𝑉𝑠𝑤𝑒𝑝𝑡 =   q𝑖𝑛𝑗 ∗  τ ∗ R𝑓𝑙𝑢𝑜  Eq. 4 

where τ is the mean residence time, corrected for the tracer recycling and q𝑖𝑛𝑗 is the injection rate. 421 

Key assumptions for these calculations are a steady flow field on the affected fractures and the 422 

usage of a conservative tracer without mass losses. The swept or pore volume for the connection of 423 

GPK3 and GPK2 is 4000 m³ for the first pathway and 10300 m³ for the second pathway. The swept 424 

volume for the first pathway and Sanjuan et al. (2006) are a perfect match, while the value of the 425 

second pathway is rising by around 60 %, which is due to the higher recovery rate in simulations. If 426 

a mean transfer time for GPK4 is calculated at the end of the experiment (145 days), the total swept 427 

volume is 133 m³, which corresponds to Sanjuan et al. (2006). However, it is significantly smaller 428 

compared to the main pathways between GPK3 and GPK2. 429 

Table 3: Summary of the recovery ratio and swept pore volume of the inter-well flow between GPK3 - GPK2 and GPK3 - 430 
GPK4 as resulting from recovered solute concentrations in comparison to Sanjuan et al. (2006) 431 

Wells 
𝐑𝒇𝒍𝒖𝒐 [%] 𝑽𝒔𝒘𝒆𝒑𝒕 [m³] 

This study Sanjuan et al. (2006) This study Sanjuan et al. (2006) 

GPK2 – 1st pathway 14.5 15.6 4000 3900 

GPK2 – 2nd pathway 10.1 7.9 10300 6500 

GPK4 0.4 1.8 133 120 

Total 25.0 25.3 14533 10520 

 432 

The results confirm the existence of a fractured zone between the wells GPK3 and GPK4. After 433 

calibration of the numerical model using hydraulic and tracer tests, the Separation fracture, which is 434 

oriented WNW-ESE, could be assigned as a hydraulic conduit between the NNW-SSE striking 435 

fractures. The fracture is connecting the northern reservoir with the main fault system and creating 436 

a preferential fluid pathway. Since the fractures intersecting GPK4 (MS-GPK4-20045b and GPK4-437 

FZ4710) have a higher resistance to fluid flow than the Separation fracture, the tracer is mainly 438 

transported and mixed along this fracture and only little amount passes to the southern reservoir and 439 

GPK4. The results are in agreement with the microseismic inversion of Kohl et al. (2006), which 440 

indicated a seismically inactive E-W-striking plane that could be either highly permeable or totally 441 

sealed. Calò et al. (2016) concluded a seismic anomalous zone between the two wells from Vertical 442 

Seismic Profiling as well. Barton et al. (1995) observed that fractures oriented perpendicular to the 443 

maximum horizontal stress have a higher probability to be sealed. Here, the fracture possesses a 444 
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high hydraulic conductivity, even as the orientation is unfavorable in terms of dilation with respect to 445 

the regional stress field. Localized stress perturbations and a transition in the stress regime (from 446 

normal-faulting to strike-slip) are known for the deepest parts of the Soultz reservoir (Cuenot et al., 447 

2006; Dorbath et al., 2010). Comparable observations could also be made for the nearby Bruchsal 448 

geothermal power plant. Several antithetic fractures have been detected, which are misaligned with 449 

the recent stress field and are a result of the complex tectonic history of the URG (Meixner et al., 450 

2016). Those misoriented fault zones can, as indicated in this study, have an impact on the local 451 

flow field.   452 

In the northern part of the reservoir, the fracture GPK3-FZ4770 creates the shortest pathway 453 

between the wells GPK3 and GPK2, with the main contribution to the inter-well flow and an average 454 

fluid velocity of 2.6 m.h-1. As the breakthrough curve is completely captured within the experimental 455 

time, the minimum heat exchange area for this pathway can be calculated. The minimal heat 456 

exchange surface area is the area of the fracture surfaces swept by fluid traveling from the injection 457 

to the production well assuming a parallel plate model with the known pore volume and aperture 458 

(Robinson and Tester, 1984). The area along the GPK3-FZ4770, which was analytically calculated 459 

from the pore volume swept (1.1x106 m²), is half of the area (2.1x106 m²) determined by the analysis 460 

of the streamlines between the wells in the simulation results (Fig. 10). In reality, the heat exchange 461 

area tends to be even higher due to the complex internal structure of fractures, which is simplified in 462 

the model. Fractures in the area of Soultz are typically described as zones of highly clustered shear 463 

fractures with varying aperture and length. A core zone is surrounded by a damage zone and 464 

hydrothermally altered granite (Dezayes et al., 2010). Shook (2003) developed a concept for 465 

quantifying the relationship between the flow capacity of the set of fracture channels and its storage 466 

capacity. According to this approach, the fracture GPK3-FZ4770 can be described as a set of 467 

clustered channels with non-uniform internal structure in which half of the fluid produced in the 468 

experiments passes through 27 % of the pore volume. Therefore, the heat surface area, where the 469 

exchange between the fracture and the matrix occurs, tends to be larger than calculated and 470 

simulated with the parallel plate approach. The flow field along the fracture is asymmetric. As already 471 

shown in Fig. 8, most of the fluids recovered in GPK2 originated from a relatively small area between 472 

the two boreholes. However, a great amount of the injected solute remained in deeper sections of 473 

the reservoir and the fracture GPK3-FZ4770 without ever entering the influence region of GPK2. 474 

Detailed quantification of the minimal heat exchange area for the second and third pathways, as 475 

shown in Fig. 8 is not possible as the flow and the inter-well connection occur at a set of fractures 476 

with different flow velocities and residence times, and time-concentration plot (Fig. 6) shows ongoing 477 

recovery beyond the end of the experiment. The same issues also apply to the connection between 478 

GPK3 and GPK4.   479 
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The new results of the deep connection of the GPK2, GPK3 and GPK4 wells allow the reassessment 480 

of the performance of the Soultz-sous-Forêts heat exchanger system. The recalibration of the 481 

hydraulic model points to rapid fluid pathways in the central-northern part of the reservoir (between 482 

GPK1 and GPK2) increasing the risk of a (thermal) breakthrough. In contrast, for the operating 483 

scheme used in the tracer experiment, short circuits are rather unlikely due to the connection to the 484 

large-scale circulation system. The same applies to the current economic operation, where reservoir 485 

brine is produced from GPK2 and reinjected into GPK3 and GPK4 wells (Mouchot et al., 2018). 486 

Moreover, it could be shown that the northernmost part of the deep reservoir (north of GPK2), as 487 

well as the connection of the separation fracture to the regional fault system, has enlarged hydraulic 488 

conductivity and thus could potentially be the target for future research and exploration. The 489 

hydraulic model presented here can be used as a basis for the design and prediction of future 490 

experiments. 491 

6. Conclusion 492 

In the past, many attempts have been made to describe the flow field in the Soultz geothermal 493 

reservoir. Mostly, the individual interconnections of the wells were considered separately, while a 494 

holistic and more general description of the reservoir pathways often failed. In this paper, the 495 

developed and presented concept allows the simultaneous matching of the tracer’s breakthrough 496 

curves on both production wells and the qualitative and quantitative identification of the different 497 

hydraulic interconnections along the fault and fracture network based on the structural model of the 498 

Soultz reservoir. 499 

The Soultz EGS can be described as a fractured reservoir connecting different wells along flow 500 

channels generated by the main hydraulic pathways. The hydraulic connection of GPK3 and GPK2 501 

was established along highly transmissive pathways with two fluorescein peak times of 13 and 502 

90 days. The main direct pathway is occurring along the fracture GPK3-FZ4770, which accounts for 503 

14.5 % of the tracer contribution. The cumulative tracer recovery of the different pathways is 504 

25 % while the total swept volume is 14533 m³. The minimal heat exchanger surface on the main 505 

pathway is 2.1x106 m². The value is twice as large as the expected value from the analytical 506 

evaluation of the experiment. In contrast, the connection between GPK3 and GPK4 has no directly 507 

identifiable fluid pathway. The forecast modeling predicted a peak arrival after 1.5 years of 508 

continuous injection with the maximum tracer concentration which is 10 times lower than for GPK2. 509 

Only a small amount of tracer is recovered from the well GPK4 (0.4 %), and the swept pore volume 510 

is approximately two orders of magnitude smaller (133 m³) than the direct and well-established 511 

connection of GPK2. The impeded connection between GPK3 and GPK4 is presumably related to a 512 

WNW-ESE-oriented fractured zone, establishing a preferential fluid pathway, connecting the 513 

northern reservoir with the local fault network, while the southern reservoir is only connected by 514 

minor transmissive fractures to this conductive zone. According to the new hydraulic model, further 515 
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exploration and experimental research should focus on the connection of the Soultz geothermal 516 

reservoir to the regional fault network.  517 
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