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Abstract

Preserving volume in the Allen-Cahn framework is appealing as a computationally-e�cient

alternate for Cahn-Hilliard approach. �e limitations of adopting volume-preserved Allen-Cahn

treatment to analyse curvature-driven morphological transformations in chemical equilibrium

is unraveled in the present work. �e outcomes of redistribution-energy technique, which op-

erates in Allen-Cahn framework, and a thermodynamically-consistent generalised quasi-Allen-

Cahn (qAC) treatment, involving a conserved variable, is comparatively studied to explicate the

limitations of the former. Analysis of representative microstructural evolution, in two- and three-

dimension, indicates that preserving volume in Allen-Cahn formalism renders an inaccurate

transformation mechanism and �nal phase-distribution, which signi�cantly deviate from the ex-

perimental observations and theoretical predictions. Moreover, it is shown that the redistribution-

energy technique, in its existing form, fails to recover the thermodynamic condition imposed on

the system.

Keywords: Spheroidization, morphological transformation, volume-preserve, microstructural

stability, phase-�eld approach

1. Introduction

Applicability of a material, in a given environment, heavily relies on the stability of the mi-

crostructure under the associated thermodynamical condition [1]. �e stability of a microstruc-
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ture is either perturbed by phase transformation, or a change in the morphological con�gura-

tion of the constituent phases [2]. While the phase-changes alter the volume-fraction of the5

phases, during the morphological transformation, the respective phase-fractions are preserved

all-through the evolution. In other words, the phase transformation is introduced by a deviation

in the chemical equilibrium between the phases, in contrast, the shape-change occurs in the equi-

librium governed by the curvature-di�erence in the morphology of the phases. �e continuing

equilibrium between the phases preserves the volume-fraction during the morphological evolu-10

tion. Despite these di�erences, both phase and morphological transformation of a microstructure,

signi�cantly a�ect the properties of the material [3, 4]. �erefore, the stability of a microstruc-

ture, under a given thermodynamic condition, is exhaustively analysed to understand and predict

the behaviour of a material.

Owing to the intricacies associated with the con�guration and the evolution of a microstruc-15

ture, theoretical treatments have always been adopted to complement and unravel the mecha-

nisms undergirding the experimental observations [5, 6, 7]. In conventional techniques, contex-

tually referred to sharp-interface approaches, the evolution of a microstructure is perceived by

monitoring the temporal migration of the interface which separates the two phases. Tracking of

the interface limits the applicability of this technique, despite its thermodynamical consistency.20

For instance, with increase in the morphological complexities of the evolving phases, the govern-

ing numerics become extremely convoluted [8, 9]. Moreover, singularity events like fragmenta-

tions cannot be directly formulated in sharp-interface approach. �erefore, phase-�eld technique

is alternatively adopted to investigate microstructural evolutions which involve complex shapes

and several singularity events.25

Phase-�eld approach overcomes the limitations of the sharp-interface technique by circum-

venting the need for tracking the interface [10, 11]. �is is achieved by introducing a scalar

variable called phase-�eld (φ(~x, t)), which is both spatially and temporally dependent. A sec-

tion of a system wherein the phase-�eld assumes a constant value is referred to as a phase or

bulk region. Correspondingly, region separating two phases, which is characterised by smoothly30

varying phase-�eld, is the interface. In the phase-�eld approach, as opposed to the conventional

technique, the microstructural evolution re�ects the spatio-temporal evolution of the scalar vari-
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able. Although the introduction of the phase-�eld replaces a conventional interface with a di�use

region, the overall thermodynamical consistency of the approach is veri�ed by elaborate numer-

ical treatments [12, 12].35

Based on phase-�eld the entire system is characteristically distinguished into interface and

bulk region. Accordingly, the overall energy-density, as a Ginzburg-Landau functional, is ex-

pressed as

F(φ(~x, t),∇φ(~x, t), η(~x, t)) = Fintf(φ(~x, t),∇φ(~x, t)) + Fbulk(η(~x, t), φ(~x, t)), (1)

where functionalsFintf(φ(~x, t),∇φ(~x, t)) andFbulk(η(~x, t), φ(~x, t)) represent the contribution of

the di�use interface and bulk region, respectively. �e driving-force for the phase transformation

is introduced in the bulk contribution through an appropriate variable, η(~x, t) [13, 14]. Depend-

ing on the system considered, the nature and the description of the variable changes [15, 16, 17].

For the microstructural evolution governed by the curvature-di�erence, and the ability of

the system to reduce the interfacial-energy per unit volume, which is the primary focus on the

present work, the contribution of the bulk region is deemed insigni�cant [18, 19]. �erefore, the

overall energy-density, with only interface contribution, is wri�en as

F(φ(~x, t),∇φ(~x, t)) =

∫
V

[
εγ|∇φ(~x, t)|2 +

1

ε
fpen(φ(~x, t))

]
d~x︸ ︷︷ ︸

Fintf(φ(~x,t),∇φ(~x,t))

, (2)

where the V is the volume of the system. As indicated in the above Eqn. (2), the energy den-40

sity exclusively formulated based on interface contribution comprises of two terms. �e �rst

term on the right side of Eqn. (2) is the gradient-energy density, where γ and ε are interfacial

energy-density and length-scale prefactor that dictate the width of the di�use interface [20]. �e

penalising potential, which ensures that constant value is assigned to the phase-�eld on the either

ends of the di�use interface, is the second term on the right side of Eqn. (2). Having appropriately45

de�ned the functional, the system is allowed to evolve towards a phenomenological decrease in

the overall energy-density of the system.

�e temporal evolution of the phase-�eld rendering curvature-driven transformations in a
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system exclusively de�ned by the interface contribution is formulated as

τε
∂φ(~x, t)

∂t
= −∂F(φ(~x, t),∇φ(~x, t))

∂φ(~x, t)
(3)

= 2εγ∆φ(~x, t)− 1

ε
f ′pen(φ(~x, t)).

�e microstructural changes corresponding to the above evolution equation ensures the pro-

gressive reduction in the overall energy-density. During the evolution of the phase-�eld, the

relaxation of the constant τ maintains the stability of the interface [21]. Furthermore, in Eqn. (3),50

∆φ(~x, t) indicates the Laplacian of the phase-�eld, ∇2φ(~x, t), while the phase-�eld derivative

of the penalising potential is represented by f ′pen(φ(~x, t)). �e evolution Eqn. (3) is generally

referred to as Allen-Cahn equation [22].

In order to estimate the kinetics of the evolution in the phase-�eld approach, a sharp contour

is realised within the di�use region. �is contour, which is described as

Γ = {~x ∈ V |φ(~x = 0.5}, (4)

is monitored to estimate the transformation rate. In has been exhaustively reported that, when

τ = 1, the evolution in the Allen-Cahn framework adheres to the relation

v(~x, t) = K(~x, t), ~x ∈ Γ (5)

where v(~x, t) and K(~x, t) are the normal velocity and mean curvature, respectively [23, 24, 25].

In other words, the evolution of a phase, Eqn. (3), in the absence of a bulk driving-force is entirely55

dictated by the curvature.

Owing to the ability of the Allen-Cahn approach to recover the in�uence of the curvature on

the evolution, this technique has been extensively employed in investigating curvature-driven

energy-minimising transformation [26, 27, 26]. However, a characteristic feature associated with

the evolution Eqn. (3) is that the phase-�eld, which denotes the volume fraction of a phase, is non-60

conserved. Consequently, the volume of the evolving phase is not preserved, but progressively

changes with the transformation. �erefore, curvature-driven energy-minimising changes in a

microstructure, which have been analysed through the Allen-Cahn technique, have largely been

con�ned to grain growth [28, 29].
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As introduced earlier, the curvature-driven morphological evolutions extend beyond grain

growth. Particularly, under chemical-equilibrium, the shape-changes are characterised by the

preservation of the phase-fractions [30, 31, 32]. Consequently, a�empts have been made to

preserve volume in the Allen-Cahn framework in order to extend its applicability. Preliminary

treatments include an additional term in the Allen-Cahn evolution Eqn. (3), which thwarted any

change in the volume-fraction during the transformation [33, 34, 35]. �e evolution equation in

its extended form reads

τε
∂φ(~x, t)

∂t
= 2εγ∆φ(~x, t)− 1

ε
f ′pen(φ(~x, t)) + λ1(t), (6)

where the term λ1(t) ensures that the volume of a phase at any given instant is equal to its initial

volume, ∫
V

φ(~x, t)d~x =

∫
V

φo(~x)d~x (:= constant). (7)

�e additional term λ1(t) in Eqn. (6), formulated as the Lagrange multiplier, is wri�en as

λ1(t) =
1

ε

∫
V

f ′pen(φ(~x, t))d~x. (8)

It is important to note that the term, that preserves the volume in the Allen-Cahn evolution

Eqn. (6), λ1(t), exclusively exhibits temporal dependency while remaining independent of the

spatial condition. Owing to this nature of the Lagrange multiplier, a non-local e�ect is intro-

duced in the simulations, which becomes evident in phases with low fraction( [36]and references

therein). In other words, the term λ1(t), preserved the volume of the phases only when they are

above a critical limit. �erefore, the subsequent extension of this technique involved augment-

ing a prefactor, that rendered a spatio-temporal dependency to the volume-preserving term [37].

With the prefactor, the term in Eqn. (8) transforms to

λ2(~x, t) =

√
2fpen(φ(~x, t))

ε

∫
V

f ′pen(φ(~x, t))d~x. (9)

�e outcomes of the Allen-Cahn treatment, separately involving the terms in Eqns. (8) and

(9), has been extensively compared to the conventional approach which preserves the volume-

fraction [38]. �is technique that inherently preserves the phase-fraction by treating the phase-

�eld as a conserved variable is generally referred to as Cahn-Hilliard approach [39]. �e temporal
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evolution of the phase-�eld under the Cahn-Hilliard treatment is expressed as

ε
∂φ(~x, t)

∂t
= −∇ ·

[
M(φ(~x, t))∇∂F(φ(~x, t),∇φ(~x, t))

∂φ(~x, t)

]
, (10)

where M(φ(~x, t)) dictates the mobility of the di�use interface [40]. �e comparative analysis65

unraveled that the results of the volume-preserved Allen-Cahn and Cahn-Hilliard technique are

signi�cantly di�erent. Despite the exhaustive investigation, the following critical aspects have

not been addressed in this comparative study:

• A unique approach of preserving volume by introducing a redistribution-energy density

as a bulk contribution [41, 42], as opposed to modifying the phase-�eld evolution equation,70

is not considered.

• �e disparity in the morphological changes in relation to the microstructural transforma-

tion is not convincingly discussed.

�erefore, in the present work, volume-preserved morphological evolutions, which are pertinent

to the observed microstructural transformations, rendered by the redistribution-energy based75

Allen-Cahn technique is analysed. Moreover, instead of the Cahn-Hilliard approach, the out-

comes of the redistribution-energy treatment is compared to the results of a generalised ‘quasi-

Allen-Cahn’ (qAC) technique, wherein a conserved variable is introduced and solved to preserve

the phase-fractions. �e consistency of the qAC technique by separately veri�ed by comparing

it with the well-established Cahn-Hilliard approach.80

2. Phase-�eld models

2.1. Redistribution-energy technique

�e techniques, hitherto, adopted to preserve volume in the Allen-Cahn framework [33, 37],

modify the phase-�eld evolution equation to preclude any change in the phase-fraction. In con-

trast, the redistribution-energy treatment averts any change in the volume of the evolving phases

by augmenting a bulk-energy contribution [41, 42]. �e functional that encompasses the overall
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energy-density of the system, for the redistribution-energy model, is expressed as

F(φ(~x, t),∇φ(~x, t)) =

∫
V

[
εγ|∇φ(~x, t)|2 +

1

ε
fpen(φ(~x, t)) + g(φ(~x, t))

]
d~x, (11)

where g(φ(~x, t)) represents the redistribution-energy density. In the present redistribution-

energy approach, obstacle potential is employed to penalise the scalar variable [20, 43]. Cor-

respondingly, the penalising energy-density is expressed as

1

ε
fpen(φ(~x, t)) =


γ

ε

16

π2
φ(~x, t) [1− φ(~x, t)]︸ ︷︷ ︸
≡ 1
ε
fob(φ(~x,t))

, φ ∈ { G ≡ [0, 1] }

∞ φ ∈ { G ≡ [0, 1] } .

(12)

In Eqn. (12), the Gibbs simplex which heavily penalises the phase-�eld when it is not bound by

[0, 1] is represented by G.

For the current two-phase consideration, the redistribution energy-density is wri�en as the

interpolation of the individual contributions, χα(t) and χβ(t),

g(φ(~x, t)) = χα(t)h(φ(~x, t)) + χβ(t) [1− h(φ(~x, t))] , (13)

where h(φ(~x, t)) is the interpolation function of the form h(φ) = φ2(3 − 2φ). �e formulation85

of the redistribution-energy density in Eqn. (13) inherently circumvents any non-local e�ects in

the numerical treatment.

�e temporal evolution of the phase-�eld in the redistribution-energy framework is expressed

as

τε
∂φ(~x, t)

∂t
= 2εγ∆φ(~x, t)− γ

ε

16

π2
[1− 2φ(~x, t)]− g′(φ(~x, t)), (14)

where g′(φ(~x, t)) is the �rst derivative of the redistribution energy-density that reads

g′(φ(~x, t)) =
[
χα(t)− χβ(t)

] ∂h(φ(~x, t))

∂φ(~x, t)
. (15)

�e phase-�eld derivative of the redistribution-energy density, in Eqn. (15), acts as the driving

force for preserving the phase-fraction during the evolution.
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�e redistribution-energy technique, in principle, operates by allowing the interface to evolve90

locally under the in�uence of the curvature. However, when the evolution is accompanied by a

decrease in the volume, the loss is compensated through the driving force g′(φ(~x, t)), which intro-

duces an appropriate local interface-migration elsewhere, thereby counterbalancing any change

in the phase-fractions.

2.2. Generalised quasi-Allen-Cahn approach95

An alternate approach for preserving volume can be motivated from multiphase physical

systems, wherein each phases are characterised by de�nite features like density or concentra-

tion. For instance, in a pure (or single-component) system, at the triple-point of its unary phase-

diagram, three phases which are distinguished by their densities co-exist in a de�nite proportion.

Any change in this phase-fraction is solely established by an appropriate phase transformation100

that demands a driving-force. �erefore, by associating the phases with an additional scalar-

variable, and imposing an equilibrium through this newly introduced parameter, precludes any

phase transformation, thereby ensuring temporally unchanging volume [44, 45]. While the addi-

tional variable, which is generally conserved, aides in preserving the phase-fraction, the ability of

the system to reduce the interfacial energy actuates the curvature-driven transformation. Similar105

approach has already been adopted in previous works by employing concentration to establish

the volume-preserving equilibrium [46, 47]. However, it is conceivable that such physical at-

tributions o�en limits the applicability of the treatment. Accordingly, in the present analysis,

a phase-�eld model referred to as generalised quasi-Allen-Cahn (qAC) technique is formulated

based on a non-speci�c conserved variable, η.110

Re�ecting its motivation, and akin to the redistribution technique delineated in the previous

section, the volume fraction of the phases in the generalised qAC treatment is preserved by the

bulk contribution. Correspondingly, the overall energy-density of the system with the newly

introduced conserved variable is expressed as

F(φ(~x, t),∇φ(~x, t), ηα(~x, t), ηβ(~x, t)) =

∫
V

[
εγ|∇φ(~x, t)|2 +

1

ε
fob(φ(~x, t)) + fvp(ηα, ηβ, φ)

]
d~x,

(16)
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where fvp(ηα, ηβ, φ) represents the energy density of the phases which facilitates volume preser-

vation. Since treating η as a continuous variable lend itself to a non-physical coupling of the

interface and bulk contributions, phase dependent variables, ηα and ηβ , are considered in the

above formulation. �e overall volume preserving energy-density in Eqn. (16), fvp(ηα, ηβ, φ), is

expressed as the interpolation of individual phase contributions,

fvp(ηα(~x, t), ηβ(~x, t), φ(~x, t)) = fαvp(ηα)h(φ) + fβvp(ηβ)(1− h(φ)). (17)

In above Eqn. (17), the function which interpolates the individual volume-preserving energy-

densities, fαvp and fβvp is identical to the one adopted in the redistribution-energy formalism

(Eqn. (13)).

In order to establish an equilibrium, which ensures volume preservation, by the appropri-

ate initialisation of the system through the newly introduced variables, ηα and ηβ , the energy

contributions of the individual phases are formulated as

fαvp(ηα(~x, t)) = Aα[ηα]2 +Bαηα +Dα (18)

fβvp(ηβ(~x, t)) = Aβ[ηβ]2 +Bβηβ +Dβ,

whereAΘ,BΘ andDΘ, with Θ ∈ {α, β}, are parabolic coe�cients. �e description of individual

contributions in Eqn. (18), fαvp and fβvp, is partially motivated by the geometrical nature of the free-

energy densities of the phases in binary systems. �is polynomial formulation of the individual

energy-densities uniquely characterises the volume-preserving equilibrium. In other words, the

�rst derivatives of the individual phase-contributions are equal,

∂fαvp(ηα)

∂ηα
=
∂fβvp(ηβ)

∂ηβ
≡ µαvp = µβvp = µvp, (19)

when the interacting phases α and β are in equilibrium. In Eqn. (19), µvp denotes the volume-

preserving potential. Furthermore, the description of the individual bulk-contributions in Eqn. (18)115

favours the invertibility of the phase-dependent variable, ηα and ηβ , and the corresponding

volume-preserving potential, µαvp and µβvp. Considering the phases are in equilibrium across the

interface, the invertibility allows the treatment of the volume-preserving potential as the contin-

uous variable, and ascertaining the spatially-varying phase-dependent variables.
9



A homogenised parameter, expressed as

η(ηα, ηβ, φ(~x, t)) = ηαh(φ) + ηβ [1− h(φ)] , (20)

collectively represents the nature of the phase-dependent volume-preserving variables across120

the di�use interface. A smooth-monotonic function relating individual phase-contributions in

Eqn. (17) is adopted to interpolate ηα and ηβ .

�e temporal evolution of phase-�eld for the present formulation of the generalised qAC

approach is expressed as

τε
∂φ(~x, t)

∂t
= 2εγ∆φ(~x, t)− γ

ε

16

π2
[1− 2φ(~x, t)]−

∂fvp(η, φ)

∂φ
, (21)

where τ is the relaxation constant. �e driving-force for the phase-�eld evolution is dictate by
∂fvp(η,φ)

∂φ
, which is estimated as

∂fvp(η, φ)

∂φ
=
{
fαvp(η)− fβvp(η)− µvp

[
ηα(~x, t)− ηβ(~x, t)

]} ∂h(φ)

∂φ
, (22)

owing to the consideration of phase-dependent variables, and their treatment across the interface,

Eqn. (19).

Eqns. (21) and (22) indicate that the evolution of phase-�eld is primarily governed by the125

volume-preserving potential, µvp. When a two-phase system is initialised by assigning minimas

of the parabolic energy-densities of the individual phases, an equilibrium which counteracts any

phase transformation is established. �is equilibrium consequently renders an equal volume-

preserving potential across the interface. However, the introduction of a curvature-di�erence,

e�ects the potential in accordance with the Gibbs-�omson relation [48, 49]. �e deviation from130

the equilibratedµvp induces a de�nite driving-force ultimately resulting in a phase-�eld evolution

governed by the curvature. In other words, while the appropriate initialisation of the system

through the phase-dependent variables, ηα and ηβ , establishes an equilibrium that preserves

volume, the in�uence of curvature on the potential actuates the morphological transformation.

Owing to the dominant role of the volume-preserving potential, µvp, in directing the morpho-

logical changes, its temporal evolution is solved instead of the conserved variables. However, the
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evolution of the potential is formulated by considering the changes in the homogenised variable,

η, with time. Based on Eqns. (19) and (20), the temporal evolution of the η can be expressed as
∂η(ηα, ηβ, φ)

∂t
=
∂η

∂φ

∂φ

∂t
+

∂η

∂µvp

∂µvp

∂t
. (23)

Moreover, the evolution of this homogenised variable in response to the gradient in volume-

preserving potential induced by the curvature-di�erence is independently wri�en as
∂η(~x, t)

∂t
= ∇ ·

[
M(φ)∇µvp(K)

]
, (24)

whereK is the mean curvature. Since the η is a conserved variable, its evolution equation adopts

a form like Cahn-Hilliard relation. �e parameter M(φ) in Eqn. (24) is mobility, which dictates

the evolution rate of the homogenised variable, η. Di�erent forms of mobility, including a scalar

constant, can be adopted to e�ect the kinetics of η evolution. However, in the current frame-

work, a rather sophisticated formulation which includes the geometrical feature of the individual

energy-contributions in adopted. �e mobility involved in Eqn. (24) reads

M(φ) = Dα

(
∂2fαvp

∂η2

)−1

h(φ) +Dβ

(
∂2fβvp

∂η2

)−1

(1− h(φ)), (25)

whereDα andDθ are constants which relate to the di�usion coe�cients in each phases, and can

be suitably chosen to depict the nature of the bulk-phases. Furthermore, given the description

of the individual phase-contribution in Eqn. (18), the terms ∂2fαvp
∂η2

and ∂2fβvp
∂η2

are equivalent to the

parabolic coe�cients, 2Aα and 2Aβ , respectively. By combining Eqns. (23) and (24), the tempo-

ral evolution of the potential, which primarily governs the volume-preserved curvature-driven

transformations, is wri�en as
∂µvp

∂t
=

{
∇ ·

[
M(φ)∇µvp(K)

]
− (ηα − ηβ)

∂h(φ)

∂φ

}{
∂η

∂µvp

}−1

, (26)

where, owing to the invertibility of the individual energy-densities,
{

∂η
∂µvp

}−1

is the inverse of135

the second derivative of matrix contribution ( 1
2Aβ

).

3. Results and discussion

In the present work, the limitations of preserving volume in the Allen-Cahn framework is

explicated by comparing the outcomes of the redistribution-energy technique with that of the
11



Figure 1: �e volume-fraction of the precipitate−α during its morphological evolution governed by the curvature-

di�erence inherent to the shape. �e initial distribution of the phases in the simulation domain is included as a

subset of the plot.

generalised quasi-Allen-Cahn (qAC) approach. To that end, a representative microstructure, both140

in two- and three-dimension, comprising of a precipitate−α in matrix−β is considered. �e

simulation domains devised for the current investigations are homogeneously discretised into

voxels of dimension ∆x = ∆y = 1× 10−9m. �e evolution equations formulated in the previous

sections, Eqns. (14), (21) and (26), are solved over the discretised domain by forward marching

Euler’s scheme. Approximately, six gridpoints are assigned to the di�use interface by �xing145

the length-scale variable at ε = 3∆x. Since the present study primarily focuses on elucidating

the limitations of preserving volume in the Allen-Cahn framework, the dimensionless time t is

employed for the comparative analyses. Furthermore, the material parameters, including the

parabolic ��ing for the volume-preserving energy-densities, are adopted from Refs. [48, 50, 44].

3.1. Volume preserve150

�e ribbon-shaped precipitate with rectangular cross-section morphologically evolves into a

cylindrical rod governed by the inherent curvature-di�erence in its shape. �is shape-change is

referred to as cylinderization [31, 32]. For the two-dimensional investigation, the cross-section of

the ribbon-like α− precipitate in β−matrix is considered. �e initial con�guration of the phases

12



Figure 2: �e isoline representation indicating mechanism of cylinderization exhibited by the precipitate in the

redistribution-energy and quasi-Allen-Cahn treatment. �e temporal change in the morphology of the precipitate

under the redistribution-energy model is presented in the le� panels, while the outcomes of the qAC model is shown

on the right. �e precipitate shape at timestep t2 is highlighted in red and shown separately.

are illustrated as a subset of Fig. 1. �is representative microstructure is allowed to evolve in155

the redistribution-energy and generalised quasi-Allen-Cahn framework by solving the evolution

Eqn. (14) and, Eqns. (21) and (26), respectively.

�rough the incremental change in the shape of the precipitate, the system reduces its over-

all energy-density by minimising the interfacial-energy per unit volume. �e volume-fraction

of the precipitate during the morphological transformation, under both the approaches com-160

pared in the present study, is monitored and presented in Fig. 1. �is illustration indicates that

the redistribution-energy and generalised quasi-Allen-Cahn technique preserve the volume of

the precipitate, despite its temporal evolution. And no visible deviation from the initial phase-

fraction is observed.

3.2. Disparity in cylinderization mechanism165

�e progressive change in the morphology of the precipitate cross-section, ultimately leading

to a disc shape, is shown in Fig. 2. �e results rendered by the redistribution-energy and gener-

alised qAC model are collectively depicted in this illustration. Moreover, the contour de�ned in

Eqn. (4) is adopted to cumulatively present the shape-change during the cylinderization.
13



Both redistribution-energy and generalised qAC approach invariably allow the cross-section170

of the precipitate to evolve into a disc-shaped structure. However, cylinderization mechanism

adopted by the precipitate vary with the treatment. �e di�erence in the transformation mech-

anism is visible in shape adopted by the phase-α in timestep t2, which is shown separately in

Fig. 2.

While the shape of the precipitate at timesteps t1, t3 and t4 are seemingly identical, as shown175

in Fig. 2, the disparity is evident in timestep t2. �e redistribution-energy technique preserves the

convexity of the phase-α during the evolution, akin to Refs. [33, 37], whereas in the generalised

qAC treatment, the convexity in the shape of the precipitate is compromised. In other words, in

the redistribution-energy formalism, the curvature-di�erence is minimised by recession of the

termination and a counterbalancing migration of the interface at the mid-section of the precipi-180

tate. �e local migration of the interface in the central region of the phase-α preserves the volume

and renders the characteristic morphology at t2, as illustrated in the lower le� panel of Fig. 2. �e

cylinderization mechanism, pertaining to the redistribution-energy framework, can be viewed as

morphological transformation wherein the mass from the high-curvature terminations are uni-

formly deposited in the all �at surfaces. �e continual migration of mass from the termination185

to available �at surfaces transforms the rectangular cross-section to elliptical structural which

ultimately assumes a disc shape. In contrast, in the generalised qAC treatment, as shown in right

panels of Fig. 2 at t2, thick ridges are formed in the longitudinal ends of the precipitate. �is

longitudinal perturbations indicate that the cylinderization in the generalised qAC model is es-

tablished by the transfer of mass from the high-curvature source to the immediate-neighbouring190

sinks (�at surfaces). �e �ux from the receding termination to the adjacent low-curvature region

facilitates the growth of the ridges, which ultimately coalesce to form an elliptical shape that

subsequently transforms to a disc.

Experimental observations [31, 32] and theoretical investigations [51, 48, 49] indicate that,

of the two fundamentally-di�erent cylinderization mechanisms, illustrated Fig. 2, the outcomes195

of the generalised qAC technique are physically and thermodynamically consistent than the

redistribution-energy model. �erefore, adopting redistribution-energy approach to simulate

curvature-driven morphological evolution in two-dimensional microstructure would render an
14



Figure 3: Temporal change in the cross-section of the precipitate, as an isoline representation, accompanying the

cylinderization process in the Cahn-Hilliard treatment is overlaid on the outcomes of the generalised quasi-Allen-

Cahn approach.

inaccurate transformation mechanism, eventhough an agreeable �nal morphology might be es-

tablished.200

3.3. Consistency of generalised quasi-Allen-Cahn approach

As introduced earlier, the conventional technique to simulate curvature-driven transforma-

tions, wherein the volume-fractions of the phases are preserved, involves treating the phase-�eld

as a conserved variable [39]. Although a variant of the generalised quasi-Allen-Cahn approach,

involving concentration as the conserved variable, is employed as an alternate for the Cahn-205

Hilliard treatment, the outcomes of these two technique have hardly been compared [52, 53, 44].

To expound the thermodynamical consistency of the present generalised qAC formalism, the

results are compared with the Cahn-Hilliard approach.

For the current energy-density consideration in Eqn. (16), devoid of any bulk contributions,

the phase-�eld evolution in the Cahn-Hilliard framework is expressed as

ε
∂φ(~x, t)

∂t
= −∇ ·

[
M(φ(~x, t))∇

(
2εγ∆φ(~x, t)− γ

ε

16

π2
[1− 2φ(~x, t)]

)]
, (27)

where M(φ(~x, t)) dictates the mobility of the phase-�eld [54]. �e right panel of Fig. 3 shows

the isoline representation of the morphological transformation rendered by this approach for the210

initial con�guration illustrated in the le� panel. For comparison, the results of the generalised

qAC treatment, formulated in the present work, is overlaid on the outcomes of the Cahn-Hilliard
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Figure 4: �e spheroidisation mechanism exhibited by a three-dimensional uncapped rod in the redistribution-

energy framework is compared with the generalised qAC results.

approach. �e excellent agreement in the interface pro�le, at di�erent timesteps, of the two

techniques asserts the thermodynamical consistency and the volume-preserving capability of

generalised quasi-Allen-Cahn formalism.215

3.4. Comparing three-dimensional spheroidisation

For the comparative analysis of the outcomes rendered by the redistribution-energy and gen-

eralised qAC approach in a three-dimensional setup, the spheroidisation of the uncapped rod

is considered. An uncapped rod, owing to the curvature-di�erence between the termination

and remnant �at surface, transforms into a spheroid [55, 56]. �e spheroidisation mechanism220

is fundamentally dictated by the aspect-ratio of the rod, which is the ratio of the length to its

width [51, 50].

An uncapped three-dimensional rod of aspect ratio 10, as shown in Fig. 4, is allowed to evolve

primarily governed by the inherent curvature-di�erence in its initial shape, under redistribution-

energy and generalised qAC formulations. �e outcomes of both these techniques are include in225

the illustration Fig. 4.
16



Previous experimental observations [55], analytical [51] and numerical investigations [50]

have shown that spheroidisation mechanism of uncapped rod of aspect ratio 10 involves ‘ovula-

tion ’ , wherein a single precipitate splits into two, ultimately, forming two spheroids. As shown

in Fig. 4, the results of the generalised quasi-Allen-Cahn treatment are consistent with the ex-230

isting reports. However, the redistribution-energy formalism renders a termination-migration

governed direct spheroidisation of the precipitate. �is noticeable disparity in the transformation

mechanism can be a�ributed to the failure of the redistribution-energy treatment to capture the

appropriate evolution of the interface, which results in the longitudinal perturbation. Moreover,

while the ultimate distribution of the phases consists of two spheroids in generalised qAC tech-235

nique, a single spherical precipitate is formed at the end of the transformation in redistribution-

energy technique.

In two-dimensional setup, as discussed in Sec. 3.2, the redistribution-energy approach es-

tablishes the expected �nal-morphological con�guration, while digressing in the transformation

mechanism. However, in the three-dimensional consideration, in the addition to the deviation240

in the spheroidisation mechanism, this technique fails to achieve thermodynamically-consistent

and analytically-predicted �nal distribution of the phases.

3.5. Capturing thermodynamic nature of system

A numerical technique can be deemed ‘quantitative’ only when its outcomes re�ect the ther-

modynamical nature of the system. For instance, in a domain comprising of two closed systems245

with di�erent-sized elliptical precipitate associated with each, as shown in Fig. 5, a quantitative

treatment renders an evolution wherein the morphological change in one precipitate is indepen-

dent of the other. In other words, in a domain wherein the mass transfer across the precipitate is

thwarted by a barrier, the Ostwald ripening should not be introduced despite the di�erences in

the size of phase-α.250

To examine the quantitative nature of the redistribution and generalised quasi-Allen-Cahn

approach, a setup as illustrated in Fig. 5 is considered. As opposed to previous domain con�gura-

tion, in this setup zero-Neumann condition is imposed along the boundaries. �e barrier, along

with the appropriate boundary condition, prevents the �ux across the domain. �e temporal

17



Figure 5: �e morphological evolution of the precipitates in a domain comprising of two closed-system in the

redistribution-energy and generalised quasi-Allen-Cahn framework.

evolution of the phases under the redistribution-energy and generalised quasi-Allen-Cahn tech-255

nique is shown in Fig. 5. In the generalised qAC treatment, the transformation complies with the

imposed thermodynamical condition, and the precipitates transform independently into a disc

shape. Whereas, inspite of distinguishing the domain into two closed-systems by introducing

a barrier, a morphological change which re�ects coarsening through Ostwald ripening is ren-

dered by the redistribution-energy technique. �is evolution of a representative setup in Fig. 5260

indicates that the redistribution-energy formalism is not entirely quantitative.

4. Conclusion

Owing to its versatility, and proven thermodynamical-consistency, phase-�eld modelling

have been extensively adopted to investigate microstructural evolutions. In addition to the phase

transformations, the microstructural changes include morphological transformation of the phases265

in chemical equilibrium, which is characterised by temporally-invariable phase-fractions. In the

phase-�eld framework, curvature-driven transformations, wherein the volume of the phases are

preserved, are conventionally treated by Cahn-Hilliard approach. �is approach preserves the

18



volume by treating the phase-�eld as a conserved variable. However, owing to the computa-

tional and numerical intricacies associated with the Cahn-Hilliard treatment, other alternatives270

are formulated to render volume-preserved morphological evolution governed by curvature. �e

limitations of one such alternate, which hitherto has not been considered, is elucidated in this

work by comparative analysis.

As opposed to the phase-�eld techniques wherein the volume of the evolving phase is pre-

served by the inclusion of an appropriate Lagrange multiplier, the redistribution-energy treat-275

ment conserves the phase-fraction through bulk contribution. Despite this unique formulation,

the present study shows that the morphological evolution, particularly the preservation of con-

vexity, rendered by the redistribution-energy approach is similar to the Lagrange-multiplier

based techniques. Moreover, when compared to the generalised quasi-Allen-Cahn treatment,

which is realised to be consistent with the well-established Cahn-Hilliard approach, the outcomes280

to be redistribution-energy technique are inaccurate, and deviate noticeably from the experimen-

tal observations and theoretical predictions. �e limitations of employing the redistribution-

energy approach to investigate microstructural transformations can be summarised as:

• In two-dimensional condition, the redistribution-energy technique establishes an agree-

able �nal microstructural con�guration. However, it is identi�ed that the transformation285

mechanism, which renders this phase distribution, is physically improbable and thermo-

dynamically incoherent.

• �e inability of the redistribution-energy approach to recover the appropriate mechanism

adversely e�ects the evolution in three-dimension. �e microstructure emerging from the

redistribution-energy treatment is fundamentally di�erent from the existing analytical and290

numerical reports.

• In its current formulation, the phase-�eld evolution under the redistribution-energy tech-

nique do not re�ect the thermodynamical condition imposed on the system.

Given the aforementioned limitations of preserving volume in Allen-Cahn framework, immense

a�ention should be paid before adopting this approach for microstructural investigations. More-295
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over, an extensive comparative study focusing on the numerical e�ciency of the quasi-Allen-

Cahn technique when compared to the Cahn-Hilliard will be reported in the upcoming works.
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