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Abstract
The number of cells in a sample of an open pore foam is usually expressed as ppi (pores per inch), but it
is not easy to deduce the total number of cells in a sample from this information. In this paperwe
derive a linkage between the cell number of a foam sample, the volume fraction of the solid and the
mean thickness of its ligaments bymeans of computer simulations.

1. Introduction

Manyworks deal with geometric properties of open-pore foams, their description and estimation.
In [1], Jang et al depict individual ligaments and cells of open-pored polyester urethane open cell foams and

aluminiumopen cell foams using x-Ray tomography. They examine several pores and ligaments and analyse
them statistically, identify closedwalls and find nodes inwhichmore than three ligamentsmeet. Then, the
authorsmodel open-pored foams using theKelvinCells and the identified geometric parameters. They also
consider isotropic random foam generated by Surface Evolver.With thesemodels, they simulate the elastic
properties of the computermodels and find that they depend on geometric parameters of the samples.

Redenbach [2]models foams bymeans of randomLaguerre tessellations using knowledge of the
heterogeneity of cell shape and size, which are obtainedwith the help of the so-called sectional image processing
chain. Finally, she examines hermodels with regard to E-moduli, effective heat conduction and acoustic
absorption coefficients.

In [3] variousmethods of algorithmic foam generation are presented: Voronoi tessellations, Laguerre
tessellations, Lattice Based Structures, PoissonVoronoi Tessellation,Hard-Core Voronoi Tessellation, Poisson
Laguerre Tessellation, Laguerre Tesselation using randompackings of balls, and the RandomPertubation of the
Wearie-Phelan Foam.Numerous geometric parameters of the open-pored structures are investigated: shape
factors, the number of nodes and the number of ligaments per unite volume, the number of the faces per unite
volume, themiddle total ligament length per unite volume, the surface area of cells per unit volume, themean
number of faces of a typical cell, themean area of the faces of a typical cell, themean surface area of a typical cell,
themeanwidth of a typical cell, themean volume of a typical cell and themean ligament thickness.

In [4], de Jaeger et al analyse their self-producedmetal foams bymeans ofμCT, extract the classic parameters
(porosity (greater than 0.88), surface-to-volume ratio, pore radii (elliptical shape), ligament lengths, ligament
cross-sections) and derive further (less obvious) parameters (Heywood circularity factor, axial shape factor, etc.).
Using this knowledge the authors build iterative orthotropic Kelvin cell foams and validate them against the
actual real foams. The comparison parameters are porosity and surface-to-volume ratio. The agreement is
very good.

In [5]Bock et al perform x-ray analysis of geometric properties and compare themwith existing computer
models. They determine the ligaments density (number of the ligaments per squaremeter), ligament thickness,
ligament length, ligament orientation and the pore shape distribution.

In [6] themodelingmethod has great similarities with ourfilling algorithm [7]. The authors reproduce actual
foams, which they take from the literature and forwhich there are experimentalmeasurements, and then they
performCFD simulations (pressure drop) to validate their foammodels with a very good agreement. They also
perform simulationswith tomographically reconstructed samples, and compare the results with those of
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Figure 1. Synthetically generated open pore foam samples of the physical size ´ ´2 2 2 cm3, with pore radius andwith ligament
thickness of (a) 0.9 mmand 0.1 mm, (b) 0.9 mmand 0.2 mm, (c) 0.9 mmand 0.5 mm, respectively. The samples are produced by
means of simulation software Pace3D [9] combinedwith algorithmic fillingmethod described in [7].

Figure 2. Synthetically generated open pore foam samples of the physical size ´ ´2 2 2 cm3, with pore radius andwith the ligament
thickness of (a) 1.5 mmand 0.2 mm, (b) 2.0 mmand 0.2 mm, (c) 3.0 mmand 0.2 mm, respectively.The samples are produced by
means of simulation software Pace3D [9] combinedwith algorithmic fillingmethod described in [7].

Figure 3.Pore number in open foam samples for ligament radius of 0.1 mm. Pore and ligament radii are input parameters and the
pore number is an output parameter of ourfillingmethod.

2

Eng. Res. Express 2 (2020) 025029 AAugust and BNestler



algorithmicmodels, againwith a very good agreement. They also compare the specific surface of their own
algorithmic and experimentalmodels. They again identify quite a goodmatch.

High resolution x-raymicrotomography is used in [8] for the characterization of pore structure and effective
thermal conductivity of iron ore sinter.

But no source known to us presents amethod for estimating the number of the cells in a open pore foam
sample.

Figure 4.Pore number in open foam samples for ligament radius of 0.2 mm. Pore and ligament radii are input parameters and the
pore number is an output parameter of ourfillingmethod.

Figure 5.Pore number in open foam samples for ligament radius of 0.3 mm. Pore and ligament radii are input parameters and the
pore number is an output parameter of ourfillingmethod.
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Usually, the number of the pores in a volume is a quantity difficult to estimate. Instead, the volume fraction
of the solid and the thickness of the ligaments are often experimentally known andmeasurable parameters of a
foam. In our preliminary article [7], amethod to create synthetic open porous structures is presented by setting
geometrical parameters such as themean pore radius, themean ligament radius and by controlling the volume
fraction of the solid. This algorithm automatically evaluates, howmany pores are randomly set in the domain for

Figure 6.Pore number in open foam samples for ligament radius of 0.4 mm. Pore and ligament radii are input parameters and the
pore number is an output parameter of ourfillingmethod.

Figure 7.Pore number in open foam samples for ligament radius of 0.5 mm. Pore and ligament radii are input parameters and the
pore number is an output parameter of ourfillingmethod.
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the defined geometric input parameters. Also the volume fraction of solid can be determined bymeans of a post-
processing tool.

Using thisfilling algorithmwe generate several hundreds of open cell structures and investigate the
dependence of the number of pores in afixed volume element on the ligament thickness and on the volume
fraction of the foam specimen. This allows the derivation of amathematical expression for the correlation of
these three quantities (equation (1)).

2. Amethod to create synthetic open pore foam structures

Our algorithm to create random synthetic pore structures is described in detail in [7], which is embedded in the
simulation software Pace3D [9].We briefly outline themain steps: first, imaginary pores of a given radius are set
in a domain randomly but as compactly to each other as possible. Their imaginary centers are the network of
outlets for theVoronoi decomposition of the domain. The edges of theVoronoi polygons are then thickened to
the diameter l2 modeling the ligaments of the open cell structure. The algorithm automatically establishes the
pore number set in the domain.

3. Results on pore number determinations

Wechoose several combinations of the pore radius (0.7 mm ... 4.0 mm) and ligament radius
(0.1 mm ... 0.5 mm) and analyse up to 900 computational samples.

Examples of generated structures are shown infigures 1 and 2.
pore foam samples of the physical size ´ ´2 2 2 cm3, with pore radius andwith the ligament thickness of

(a) 1.5 mmand 0.2 mm,
Figures 3–7 illustrate the dependence of the pore number on the solid fraction in the domain forfive

ligament radii of respectively 0.1 mm, 0.2 mm, 0.3 mm, 0.4 mmand 0.5 mm. Pore and ligament radii are input
parameters for thefilling algorithmweuse to create the samples. The pore number is an output value of the
creation procedure. All five functions for the dependence of the pore number on the solid fraction are comprised
infigure 8.

The constructed function infigures 3–7 is based on thefitting function ( ) = +f x ax bx2 . Figure 9 displays
the coefficients a and b for thefive values of the ligament radii. They can befitted byAeBx. Thefitting functions
were found using the command line program gnuplot, which in turn uses the nonlinear least-squares (NLLS)
Marquardt-Levenberg algorithm [10]. All in one the number ofN pores in a 1 cm3 can be calculated bymeans of:

Figure 8. Fitting functions for the dependence of pore number in open foam samples on the volume fraction of the solid forfive
different ligament thicknesses. The fitting function is given in equation (1).
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( ) ( ) ( )= - + -N l s l s0.789 exp 9.021 4.613 exp 10.562 , 12

where l is the radius of the ligaments and s is the solid fraction (in percent) of the foam sample.

4. Conclusions

In the present study, we derive amathematical formulation to describe the quantitative dependence of the pore
number on the two parameters: ligament thickness and the fraction of the solid.
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