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Abstract

This thesis presents a behavior planning algorithm for automated driving in
urban environments with an uncertain and dynamic nature. The uncertainty
in the environment arises by the fact that the intentions as well as the future
trajectories of the surrounding drivers cannot be measured directly but can
only be estimated in a probabilistic fashion. Even the perception of objects is
uncertain due to sensor noise or possible occlusions. When driving in such
environments, the autonomous car must predict the behavior of the other drivers
and plan safe, comfortable and legal trajectories. Planning such trajectories
requires robust decision making when several high-level options are available
for the autonomous car.

Current planning algorithms for automated driving split the problem into dif-
ferent subproblems, ranging from discrete, high-level decision making to pre-
diction and continuous trajectory planning. This separation of one problem
into several subproblems, combined with rule-based decision making, leads to
sub-optimal behavior.

This thesis presents a global, closed-loop formulation for the motion planning
problem which intertwines action selection and corresponding prediction of
the other agents in one optimization problem. The global formulation allows
the planning algorithm to make the decision for certain high-level options
implicitly. Furthermore, the closed-loop manner of the algorithm optimizes
the solution for various, future scenarios concerning the future behavior of the
other agents. Formulating prediction and planning as an intertwined problem
allows for modeling interaction, i.e. the future reaction of the other drivers to
the behavior of the autonomous car.

The problem is modeled as a partially observable Markov decision process
(POMDP) with a discrete action and a continuous state and observation space.
The solution to the POMDP is a policy over belief states, which contains dif-
ferent reactive plans for possible future scenarios. Surrounding drivers are
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Abstract

modeled with interactive, probabilistic agent models to account for their pre-
diction uncertainty. The field of view of the autonomous car is simulated
ahead over the whole planning horizon during the optimization of the policy.
Simulating the possible, corresponding, future observations allows the algo-
rithm to select actions that actively reduce the uncertainty of the world state.
Depending on the scenario, the behavior of the autonomous car is optimized
in (combined lateral and) longitudinal direction. The algorithm is formulated
in a generic way and solved online, which allows for applying the algorithm
on various road layouts and scenarios.

While such a generic problem formulation is intractable to solve exactly, this
thesis demonstrates how a sufficiently good approximation to the optimal policy
can be found online. The problem is solved by combining state of the art Monte
Carlo tree search algorithms with near-optimal, domain specific roll-outs.

The algorithm is evaluated in scenarios such as the crossing of intersections
under unknown intentions of other crossing vehicles, interactive lane changes
in narrow gaps and decision making at intersections with large occluded areas.
It is shown that the behavior of the closed-loop planner is less conservative
than comparable open-loop planners. More precisely, it is even demonstrated
that the policy enables the autonomous car to drive in a similar way as an
omniscient planner with full knowledge of the scene. It is also demonstrated
how the autonomous car executes actions to actively gather more information
about the surrounding and to reduce the uncertainty of its belief state.

iv



Kurzfassung

Diese Arbeit stellt einen neuen Ansatz fiir die Verhaltensgenerierung auto-
matisierter Fahrzeuge in dynamischen, urbanen Umgebungen vor. Der Fokus
der Arbeit liegt im Besonderen auf der Beriicksichtigung von Unsicherheiten
die in einem urbanen Umfeld vorkommen. Diese Unsicherheiten existieren, da
die Intention der anderen Fahrer, ihr individuelles Fahrverhalten sowie mogli-
che Interaktionen mit dem autonomen Fahrzeug nicht deterministisch sondern
nur probabilistisch vorhergesagt werden kdnnen. Zudem ist die Wahrnehmung
der anderen Verkehrsteilnehmer durch die Sensorik zumindest Messrauschen
unterworfen, kann aber auch aufgrund von Verdeckungen unvollstindig sein.

Bisherige Ansétze zur Verhaltensgenerierung fiir das automatisierte Fahren
16sen das Problem durch eine Aufteilung in verschiedene Teilprobleme: die
Entscheidungsfindung fiir eine bestimmte Fahroption auf hochster Ebene, die
Préadiktion der anderen Fahrer sowie die Planung einer kontinuierlichen Tra-
jektorie. Diese Aufteilung des Problems, sowie die Verwendung regelbasierter
Ansitze zur Entscheidungsfindung, fiihrt in vielen Fillen zu suboptimalem
Fahrverhalten.

Diese Arbeit présentiert einen global optimalen Closed-Loop Ansatz, der das
Auswihlen einer Aktion des autonomen Fahrzeuges sowie die Priadiktion der
anderen Verkehrsteilnehmer in einer gekoppelten Problemformulierung be-
schreibt. Die globale Formulierung erlaubt hierbei, dass Entscheidungen fiir
Fahroptionen auf hochster Ebene implizit als Teil des Planungsproblems ge-
troffen werden konnen. Der Closed-Loop Ansatz optimiert ausserdem das Ver-
halten des autonomen Fahrzeuges fiir mehrere, mogliche zukiinftige Szenarien
beziiglich des Verhaltens der anderen Verkehrsteilnehmer. Die kombinierte
Formulierung der Planung fiir das autonome Fahrzeug sowie der Pridiktion
fiir die anderen Verkehrsteilnehmer erlaubt die Modellierung von Interaktion.
Dies bedeutet, dass die Reaktion der anderen Fahrzeuge auf das Verhalten des
autonomen Fahrzeugs bei der Verhaltensplanung bereits beriicksichtigt wird.



Kurzfassung

Das Problem ist als teilweise beobachtbarer Markov Entscheidungsprozess
(POMDP) auf einem kontinuierlichen Zustands- und Beobachtungsraum mit
diskreten Aktionen modelliert. Diese Formulierung wird durch eine Policy
gelost, welche reaktive Aktionen fiir zukiinftige Ereignisse enthilt. Das un-
bekannte, zukiinftige Verhalten der Fahrer in der Umgebung des autonomen
Fahrzeuges wird mit Hilfe von probabilistischen, interaktiven Fahrermodellen
beschrieben. Das Sichtfeld des autonomen Fahrzeuges wird wihrend der Op-
timierung der Policy iiber den kompletten Planungshorizont simuliert. Ebenso
werden mogliche zukiinftige Messungen des autonomen Fahrzeuges simuliert,
was dem Algorithmus erlaubt Aktionen zu wihlen, welche die Unsicherheit des
Weltzustandes aktiv minimieren. Der Algorithmus optimiert das Verhalten je
nach Modellierung nur in longitudinaler oder zugleich auch in lateraler Rich-
tung Eine generische Problemformulierung sowie dessen Losen zur Laufzeit
erlauben einen Einsatz des Algorithmus in vielfiltigen Szenarien.

Diese generische Problemformulierung exakt zu l6sen ist nach gegenwirtigem
Stand der Forschung nicht méglich. Dennoch zeigt diese Arbeit wie eine ausrei-
chend gute Approximation der optimalen Losung sogar wihrend der Laufzeit
(online) gefunden werden kann. Dies ist moglich indem hochmoderne, sto-
chastische Verfahren (Monte Carlo Baum Suche) mit spezifischen Heuristiken
des jeweiligen Problems kombiniert werden.

Der Algorithmus wird vielfach in der Simulation evaluiert. Dies geschieht in
Szenarien mit kreuzendem Verkehr mit verschiedenen, moglichen Intentionen,
interaktiven Spurwechseln in sehr kleine Liicken sowie Szenarien mit grossen
Sensorverdeckungen an Kreuzungen. Es wird gezeigt, dass der Closed-Loop
Planungsansatz ein weniger konservatives Verhalten ermdglicht als vergleich-
bare Open-Loop Planer. Ausserdem wird gezeigt, dass die Policy nahezu ein
Fahrverhalten ermoglicht, welches ansonsten nur mit einem allwissenden Pla-
ner erreicht werden kann. Zudem wird gezeigt, dass der Algorithmus in der
Lage ist, aktiv Aktionen zu wihlen, die die Unsicherheit des aktuellen Zustan-
des reduzieren.
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1 Introduction

The transportation industry faces the biggest change in its history: the au-
tomation of vehicles. Fully autonomous systems exist to date only in closed,
structured environments, such as factories and manufacturing cells. Nowa-
days, academia and industry work closely together on the transfer of such
autonomous systems to public environments [36]. This is the case for small,
unmanned delivery robots, autonomous vehicles and even aerial vehicles such
as drones.

Especially, automated vehicles are in the focus as they are currently of high
interest to the industry. The capabilities of advanced driver assistance systems
are enhanced over the years to continually improve safety and comfort (see
[88] for a definition of the different levels of automation). These systems
extend the degree of automation but still rely on a human driver to bear
responsibility. Nonetheless, completely automated systems are now on the
verge of becoming reality in small, geo-fenced areas [64] and are considered
to have game changing capabilities for the transportation industry.

The largest desired effect is hereby a expected, potential decline of accidents
and fatalities. This is the case as 94% of all accidents in the United States are
attributed to driver errors, with recognition (41%) and decision error (33%)
being the most critical reasons [97]. Such a drastically reduced amount of
accidents, combined with a reduced fuel consumption and optimized traffic
management may reduce the costs of operating a car. This will provide access
to individual transportation possibilities for people without driving license
or for elderly, intoxicated or disabled persons who are physically unable to
drive [78]. Especially, ride-hailing services may start to provide on-demand
transportation in inner cities at a reduced rate compared to common taxi
services. This is due to reduced operating costs because of spared drivers [76].
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It is of major importance how such autonomous systems behave in urban
traffic. The generated behavior must not only comply with traffic rules but also
be comfortable to gain the trust of the potential passengers [49]. Furthermore,
such cars must guarantee a certain degree of safety to be accepted by society and
regulating authorities. At the same time, autonomous vehicles cannot drive too
conservatively without creating frustration among surrounding human drivers
[26] or even getting completely stuck as they do not dare to move in scenarios
with a high degree of uncertainty [103]. To design such a system, different
problems have to be tackled.

A perception system records raw sensor data of the environment. This sensor
data is processed to detect static and dynamic objects. In a second step, the
dynamic objects are tracked over time. The sensor data of the perception
system may also be used to localize the robot in the environment.

A prediction system uses the information about the tracked objects as input
and provides their predicted future behavior.

The motion planner is responsible for guiding the autonomous car in a safe,
comfortable and legal way through the traffic. It is a crucial part of such
an autonomous system as it must cope with the accumulated uncertainties of
the previous layers while it must present a safe and comfortable plan at the
same time. This means, the planner must be able to act in semi-structured,
dynamic and uncertain environments. The environment is semi-structured

Figure 1.1: Left: ‘Electricity may be the driver’, advertisement of the Central Power and Light
Company in 1956 (graphic from [108]) . Right: Nonetheless, it took until 2015, that
vehicles, being rigorously designed for autonomous driving, were hitting urban roads
for testing passenger rides (graphic from [1], ©Waymo).
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Figure 1.2: A typical intersection as seen by an autonomous vehicle. Future trajectories of the
other vehicles are not known, but possible hypotheses can be made in a probabilistic
fashion (graphic from [106], ©Waymo).

because of the fact that other dynamic agents move on predefined entities such
as lanes, pavements, etc. Nonetheless, topological maps may be outdated
and the motion of the other agents is not necessarily limited to these entities.
The uncertain nature of the environment arises because of the limitations
(range, non-observable states) and noise in the perception system. Therefore,
the location of the autonomous car as well as the future trajectories of the
surrounding traffic can only be estimated in a probabilistic fashion. Especially,
the uncertain future behavior of the surrounding traffic poses a challenge for
generating sensible behavior for the autonomous car. This is the case as
there are numerous possible future scenarios which must be considered by the
autonomous vehicle. For example, it cannot be determined if another car will
drive straight or turn right at an intersection. figure 1.2 shows an example of
the variety of possible future trajectories of a real-world scenario.

The goal of this thesis is to develop a new behavior planning algorithm for
autonomous vehicles in urban environments.

The underlying idea of this work is, that generating an optimal behavior for the
autonomous car and predicting the uncertain future behavior of the other agents
is a coupled problem that must be modeled in a coupled manner to generate
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optimal behavior. While this results in a very hard problem formulation, the
goal of this thesis is to present an online algorithm for this problem.

The further introduction is structured as follows. At first, section 1.1 presents
the different uncertainties that arise in urban environments. In the following,
section 1.2 formally defines the problem of motion planning followed by an
overview of the state of the art in the field. Subsequently, section 1.3 gives
an overview of different planning architectures which can be used to generate
a behavior for the autonomous car. Section 1.4 gives an introduction about
the advantages of using policies in motion planning instead of trajectories. In
section 1.5, the main idea of this thesis is described. The last section of this
chapter, section 1.6, describes the main contributions as well as the outline of
the whole thesis.

1.1 Motivation: Motion Planning Under
Uncertainty

A motion planning algorithm for urban traffic scenarios must cope with the
uncertainty of various possible future scenarios. This uncertain prediction of
the other drivers is modeled in this work as described in the following (see
figure 1.3 for an illustration).

Atfirst, the intended path to follow of the other vehicle is not known but can only
be estimated in a probabilistic fashion. This is referred to as unknown intention
of the other agents. Secondly, assuming that the path of the other vehicle is
known, the motion on the path is dependent on the style of the respective driver
which is, again, unknown. This uncertainty is described by a probabilistic
driver model. Additionally, the potential influence of the future motion of the
autonomous car on the behavior of the other agent must be modeled. This
interplay is probabilistic (e.g. other vehicles yield to the autonomous car or
not) and is denoted as interaction throughout this thesis. Additionally, the
uncertain measurements of the configuration of the other vehicles are referred
to as sensor uncertainty, while the uncertainty, describing if other vehicles can
be perceived at all, is denominated as occlusion uncertainty.
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TN

- - —=¥»  Unknown Intention
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Figure 1.3: The planned path of the autonomous vehicle is depicted in blue, while the possible
motion hypotheses of the other car is drawn in red. Planning the motion for the
autonomous car requires us to take various uncertainties into account. This is at first
the unknown behavior of the other agents (due to their unknown intention, probabilistic
driver models and uncertain interaction with the autonomous car). Additionally,
sensor noise as well as the existence probability of possibly occluded objects must be
respected [124].

Motion planning algorithms must consider prediction uncertainties to plan safe
and comfortable trajectories. The motion prediction of the other drivers can
be represented in various ways.

The future behavior of the other agents can be presented by trajectories which
are either learned from data or modeled from human experience. This approach
is not capable of respecting every possible, future behavior, even if sets of
possible future trajectories are considered. Therefore it does not guarantee
safety.
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Probability density functions can be used to describe the probability of possi-
ble future configurations. While this allows for a precise modeling, describing
these probability distributions can be difficult. This is the case, as strongly
non-Gaussian distributions are difficult to model. Gaussian distributions on the
other hand are often unable to describe the real distribution and also introduce
so-called long tails. To overcome the problem of long tails, chance constraints
are often used to cut off the unlimited Gaussian distribution at a certain point.

Reachability Analysis calculates an over approximated set of possible future
vehicle configurations [2]. The approach allows us to guarantee safety of an
evaluated trajectory, given assumptions on the worst case behavior of the other
agents. Nonetheless, it may result in conservative trajectories as the reachable
set grows drastically over simulated time when future observations are not
considered.

1.2 Related Work: Motion Planning

The general problem of motion planning is to generate a possible path py or
trajectory &y from a given start state X to a goal state Xgoy With X € X. The
robot can traverse from one state to the other by using a certain control action
a € A. The trajectory must consider the dynamic and kinematic constraints of
the robot Ny while respecting constraints of the environment such as static and
dynamic obstacles Nj.x. A potential trajectory of the autonomous vehicle, &,
is evaluated by a cost function J which may be denoted as a weighted sum of
different measures such as total acceleration/jerk and collisions.

The goal of an optimal planning algorithm is to find the optimal trajectory &,
defined as

tgoal
&) = arg min/ J(x(t),a(o)t, (1.1)
&o 0

for given system dynamics X(f) = f(x(f),a(t)) and inequality and equality
constraints:

hi(x(t),a(t)) < 0,fori € [1,...,m],m € Ny (1.2)

gj(x,a) =0,for j € [1,...,n],n € No. (1.3)
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In the context of autonomous driving, constraints such as speed limits, traffic
rules (e.g. traffic lights), lane boundaries, static objects and dynamic objects
must be considered. Respecting dynamic objects is nontrivial as their future
trajectory is not known (probabilistic prediction) and may also depend on the
executed trajectory of the autonomous vehicle (interaction). This is the case
as the different agents cannot be considered as independent which makes it a
coupled problem.

The problem of optimally considering the uncertainty of future states can
be addressed by planning in the space of policies instead of in the space of
trajectories. An introduction to the planning of policies instead of trajectories
is given in section 1.4.

In the following, general characteristics of motion planning algorithms are
introduced first. This is followed by on overview of the state of the art in
motion planning.

1.2.1 Properties of Planning Algorithms

Motion planning algorithms can be described by several different characteris-
tics. The most common ones are shortly reviewed in the following.

Optimality - The algorithm guarantees to find the global optimal solution if
it exists. This is opposed to local algorithms, which find one local optimum,
depending on their initial solution.

Completeness - The algorithm guarantees to find a solution if one exists. This
can be relaxed to Resolution Completeness for grid-based planners, where
the planner is guaranteed to find the solution if the underlying grid cells are
sufficiently small. It can also be relaxed to Probabilistic Completeness which
assures that the probability to find a solution converges to one over runtime.
This is for example the case for many sampling based techniques.

Anytime - Anytime algorithms find an initial solution first and improve it over
time as long as further runtime is given. This is often the case for sampling
based algorithms such as Monte Carlo algorithms.

Online - An algorithm which is able to find a solution online, i.e. during
runtime. This allows the robot to not have an a priori plan for every possible
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scenario, but to solve the current situation when it occurs. It is desired to have
a planner which computes the solution online, s.t. it can account for changes
in the environment [94] (see section 2.3.4 for a detailed description of the
advantages).

1.2.2 Consideration of Constraints

Furthermore, motion planning algorithms can be distinguished in terms of
what kind of constraints are incorporated in the planning problem.

Dynamic constraints - The dynamics of the autonomous robot are considered
in the formulation by expressing them in the constraint equalities.

Kinematic constraints - Constraints concerning the degrees of freedom in
the movement of an autonomous robot. Of special interest in the context of
autonomous mobile robots are holonomic constraints. A holonomic robot
has only holonomic constraints, i.e. equality constraints based on coordinates
and time but no time derivatives. This allows the robot to move in a certain
direction independently of the current velocity. A non-holonomic robot has
inequality constraints which include time derivatives of the coordinates. A
standard car is for example a non-holonomic system as its capability to move
in lateral direction is dependent of its longitudinal velocity [35].

Kinodynamic constraints - A motion planning algorithm which considers
dynamic as well as kinematic constraints is referred to as kinodynamic planner.

Topologic and Traffic Rule Constraints - Further constraints may arise in the
area of autonomous vehicles when the topological map and traffic rules must
be considered.

1.2.3 Graph Search for Trajectory Planning

Search based motion planning algorithms (also called geometric motion plan-
ning algaorithms) aim to find the optimal trajectory by searching on a con-
structed graph. This allows for global, non-convex optimization due to the
combinatorial nature of the algorithms, but also requires some sort of dis-
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Figure 1.4: Comparison of different motion planning algorithms for grid based search (graphic
from [73]). A* (left) connects the center of cells which does not allow for considering
kinematic constraints of the vehicle. While Field D* [30] allows to plan smoother
paths/trajectories by interpolating on the edges of the corners of the grid, kinematic
constraints can still not be considered. The hybrid A* (right) uses motion primitives
to account for the kinematic constraints of the robot and assigns them to the related
erid cells [73]. While this reduces the size of the search tree, the algorithm is not
guaranteed to find the optimal solution anymore.

cretization (state or action discrete). The respective algorithms can be distin-
guished by the search algorithm itself and the way the graph is constructed.

Grid based motion planners generate the graph by discretization of the con-
figuration space Ceonfig Of the robot with a grid first. By assuming, that a
transition between neighboring cells is possible, the grid may be searched
with graph search algorithms such as Breadth-First Search (BFS), Depth-First
Search (DFS), the well-known Dijkstra algorithm [25] and its heuristic based
extension A* [86]. As grids are not able to account for the kinematic con-
straints of the robot, new search algorithms were introduced to find smoother
trajectories (Field D* [30]) or to even account for kinematic constraints by
sacrificing optimality [73]. The different ideas are sketched in figure 1.4.

As the number of grid cells grows dramatically when the kinematics of the
robot must be considered, another idea is to either create a state-lattice which
is constructed with feasible motion primitives in a way, such that smooth
transitions at every state are guaranteed (see figure 1.5) [82].

Instead of creating this state-lattice beforehand, it may also be constructed
online during search by expanding only the required nodes [83]. The growth
of the graph can be reduced by truncating branches whose estimated remaining
costs are too high. The costs can be estimated by heuristics which represent a
lower bound on the future costs. Typical heuristics for autonomous driving are
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Figure 1.5: An example of a constructed state-lattice. The motion primitives are chosen in a way
that continuous transitions from one motion primitive to another are always possible
(graphic from [82]).

Figure 1.6: Two different heuristics for planning a trajectory to the goal configuration (blue). Either
the non-holonomic characteristic of the car is considered (left) or potential obstacles
are considered (right) (graphic from [68]).

presented in figure 1.6. Further possibilities to construct a search-graph are
for example Voronoi diagrams, visibility graphs and cell decomposition [61].

1.2.4 Probabilistic Search for Trajectory Planning

Another possibility to construct a search graph is to use various sampling
techniques to cover the configuration space Ceonfig. These algorithms may
provide only probabilistic completeness [61].

The idea of Probabilistic Road Maps (PRM) is to sample possible states from
the configuration space Ceonfig and test if they have a potential collision with

10
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obstacles. If the state is collision free, it is connected with a local planner to
a neighboring state, given that a certain distance metric is fulfilled. This is
done until the resulting graph efficiently covers the search space or until the
maximum runtime is reached. The resulting graph may then be searched in a
second step with one of the graph search algorithms presented in section 1.2.3.
Potentially existing non-holonomic constraints of the robot may hereby be
considered by a subsequent local planning stage.

Another popular algorithm is the Rapidly Exploring Random Trees (RRT)
algorithm [62]. Instead of creating the graph at arbitrary sampled positions
in the configuration space Ceonfig, @ tree is grown by steering it in the most
undiscovered areas of the Ceonfig by sampling. By sampling uniformly in the
state space coordinates, the probability of sampling a state in a certain area is
proportional to the size of its Voronoi region. In other words, sparsely explored
areas in the state space are more likely to be sampled during the construction
of the graph.

1.2.5 Variational Trajectory Planning

The goal of variational approaches is to formulate the problem with a convex
cost functional. If such a convex problem formulation is possible, it allows
to solve the problem on a continuous state space by use of various gradient
descent methods. In general, the advantage of variational approaches is, that
these formulations can be solved very fast and the solution is continuous.
Nonetheless, because of the convex approximation of the problem, only a local
minimum is found. This local minimum is closest to an initial solution (e.g.
a reference path, reference trajectory). Therefore, to find the global optimal
solution, it must be ensured that the initial solution is close enough to the
optimal solution [61].

Despite the local nature of the algorithms, they often can be extended to find
the global optimum by being parameterized for different minima. This is
for example the case for the Mixed Integer Programming (MIP) extension of
convex optimization algorithms such as Quadratic Programming (QP).

A well-known variational motion planning algorithm is the Covariant Hamil-
tonian Optimization for Motion Planning (CHOMP) algorithm [119]. It can
be used for optimizing paths and trajectories locally. CHOMP uses functional

11
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gradient techniques to optimize smoothness and collision avoidance simulta-
neously.

Another popular variational approach for path and trajectory planning is pre-
sented in [89]. The approach uses a sequential convex optimization formulation
for the planning of collision-free trajectories. The sequential nature of the al-
gorithm penalizes collisions with a hinge loss in an inner loop and uses an
outer loop to increase the penalty coefficients if necessary.

1.2.6 Trajectory Planning for Autonomous Vehicles

This section reviews domain specific trajectory planning algorithms for au-
tonomous driving. In this context, trajectory planning algorithms typically
generate a trajectory which is local or global optimal on a certain time hori-
zon (typically 3s — 10s) or a spatial length. A local optimal trajectory refers
hereby to a trajectory describing a local minimum in the cost function. The
trajectory planner has no information about the long-term navigation goal but
is parameterized continuously by a higher layer. The main focus of the trajec-
tory planner is to optimize a reference trajectory or reach a goal state while
optimizing comfort and respecting constraints [78].

In the following, popular trajectory planning algorithms are presented. The
interested reader is referred to the surveys [36,78] for a broader overview about
motion planning algorithms for autonomous driving.

Global trajectory planners:

In [29], different geometric splines are used for creating simple longitudinal and
lateral motion patterns. The resulting trajectories are evaluated and, depending
of a rule-based decision maker, combined with other possible longitudinal
profiles. As soon as a sufficiently good trajectory is found, it is tracked by a
motion controller.

A resolution complete, optimal trajectory planning method is presented in
[112]. Kinematically feasible trajectories are sampled on the Frenet frame by
use of quintic polynomials. In a second step, the trajectory candidates of the

12
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created manifold are evaluated given a certain cost function. This leads to a
jerk-optimal solution, given the discretization of the sampled polynomials.

A spatio-temporal state lattice is used by [116] to plan trajectories in on-road
driving scenarios with dynamic obstacles. The resulting trajectories are based
on quintic polynomials and are second-order continuous.

Local trajectory planners:

The variational algorithm, Sequential Quadratic Programming (SQP) is used in
[115] to generate continuous trajectories. While the method is local, constraints
for static and dynamic objects are introduced in a way such that the resulting
solution is often globally optimal.

Another variational approach is presented in [38]. A local trajectory is gener-
ated by use of a linear time-varying Model Predictive Control (MPC), which
is formulated as a QP. The algorithm needs an initial solution which is im-
proved by a gradient descent algorithm. This guarantees to find a kinematically
feasible, locally optimal solution very fast.

Another QP formulation is used by the authors of [74] which use the QP
problem formulation at first to generate a longitudinal speed profile. In a
second step, the speed profile is also optimized in lateral direction. This
separation between longitudinal and lateral optimization allows on the one
hand for two simple problem formulations, but constrains the solution space
on the other hand.

The presented algorithms in this section allow to plan trajectories from a start
state Xy t0 a goal state Xgon. While the formulation of these problems often
allows to even consider the kinodynamic constraints of the robot, they lack
the possibility of explicitly considering interaction and the uncertainties of
real-world environments. This is due to their simplified problem formulations
which are used to make the problem either tractable at all or to represent the
trajectory in a continuous fashion.

13
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Figure 1.7: Schematic of a possible cost function evaluating the parameters of different continuous
trajectories. It can be seen that two possible homotopies (H' M and H®) exist (e.g.
passing a object on the left or right side). The a priori defined maneuvers (m" and
m@) are able to extract two local minima. Nonetheless, the global optimal trajectory
&, may not be found.

1.3 Related Work: Motion Planning
Architectures

An autonomous vehicle must not only optimize its trajectory but also make
high-level decisions, given the uncertain nature of the prediction. These deci-
sions are for example to either stop in front of or to traverse a zebra crossing,
pass before or behind a crossing pedestrian or to decide for a certain gap during
lane changes.

Formulating a continuous trajectory optimization problem which incorporates
decision making, interaction and uncertain prediction is possible but intractable
tosolve. Therefore, various planning architectures exist which split the problem
into different subproblems. Every subproblem considers only a single aspect
of the motion planning problem, which makes it tractable to solve. A trajectory
planning algorithm (as the ones presented in section 1.2.6) may therefore be
just a part of a larger planning architecture.

This section gives an overview of different, popular planning architectures
for autonomous vehicles. As there is no unified solution to the problem of
autonomous driving, many approaches exist. Designs focus either on au-
tonomous vehicles [78] in general, on cooperative vehicles [102] or specific

14
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frameworks are used for tasks such as the the Defense Advanced Research
Projects Agency (DARPA) challenge [34,73]. A general architecture or clear
definition of different frameworks is both missing and difficult to establish due
to the early stage of this technology.

Nonetheless, the following five modules are present in motion planning de-
signs:

Navigation layer - A navigation system is responsible of guiding the au-
tonomous car through the route network. It defines for example on which lane
to drive.

Behavior layer - The behavioral layer makes the high-level decisions such as
in which gap to merge, passing before or after a crossing vehicle, etc.

The behavior can either be optimized itself (as done in this thesis) or realized
as a selector, choosing an a priori defined maneuver m € M. A maneuver
m € M denotes an abstract, high-level behavior, which can be described
in an human understandable way (such as turning right, or crossing before
another vehicle). The goal of selecting a maneuver a priori to the planner,
is to constrain the problem to a small, convex solution space. A maneuver
may be equivalent to the global optimal behavior but may not necessarily. An
optimized behavior on the other hand represents the global optimal behavior on
the planning horizon which may not be found by using predefined maneuvers.
While a precise definition of a maneuver does not exist, it is often compared
to the mathematical concept of homotopies. Two continuous trajectories are
in the same homotopy class if a continuous, collision-free projection exists
that transforms one trajectory to the other one. For example, two different
trajectories, one overtaking an obstacle on the right side and one on the left
side lie in different homotopies, assuming a 2-dimensional configuration space.
General concepts for finding of homotopies are presented for path-planning in
[12] and for trajectory planning in [11]. Nonetheless, extracting the constraints
of homotopies is a complex problem in dynamic, urban environments due to
to the high uncertainty in the prediction of others. In [101], an approach is
presented for the retrieval of different driving corridors in autonomous driving
scenarios. It assumes a set-based prediction (realized with constant velocity
assumptions) to tackle the problem of uncertain prediction. The relation
between maneuvers and homotopies is visualized in figure 1.7.
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Prediction layer - The prediction module is responsible for providing the
estimated, future configurations of the surrounding traffic.

Trajectory layer - The trajectory planning layer is able to provide a smooth,
continuous trajectory. It is mostly dependent on input from the behavior
planner (parameterization) and the prediction module.

Controller - Finally, the generated trajectory is tracked with a controller.

The order of this list does neither imply, that the layers must be executed in
that order nor that a sequential execution of the modules is the only possibility.
Especially, the behavior, prediction and trajectory layers may be interleaved.

Different approaches in the area of motion planning for autonomous driving
may be distinguished based on how and in what hierarchical level the following
aspects are considered:

J the various uncertainties (see figure 1.3)
. interaction
. the type of constraints (objects, traffic rules, kinematics, dynamics).

The following notation is used throughout the thesis: The autonomous car is
defined as Ny and the surrounding vehicles are defined as Ny, with k € [1,K].
Correspondingly, the state of vehicle Ny at time ¢ is defined as (\’;(. The set
of predicted, future trajectories of the other vehicles Nj.x in the time interval
[to, 20 + T] is denoted as g?ltOKT The trajectory of an agent Ni is defined over
time as & (7).

The next sections present often used architectures which deal with possible
combinations of the behavior, trajectory and prediction layer in different ways.
Possible algorithms which are used within the architectures are reviewed. Fol-
lowing the focus of this thesis, the architectures are differed by how interaction
and prediction is considered throughout the motion planning process.

1.3.1 Non-Interactive Planning with Given Prediction

A common approach is to separate prediction and planning. In this case, all
the trajectories of the other agents, & 11:01:<T’ are predicted first.
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Predict other agents &, % — Select desired maneuver m € M
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Figure 1.8: The classic separation of prediction and planning is a hierarchical design. In a first step,
the other agents are predicted until the planning horizon 7" and a maneuver m € M
is chosen. In a second step, the trajectory &y of the ego vehicle is planned, given the
existing prediction of the other vehicles and a desired maneuver (such as Adaptive
Cruise Control (ACC), lane change).

Given the predicted trajectories, %t?g, a maneuver m is selected for the au-
tonomous car (by the behavior layer) and a correspondent trajectory is planned
by the trajectory planner (see figure 1.8).

This approach is based on the assumption, that the probabilistic future behavior
of the other agents is independent of the future behavior of the autonomous
agent, i.e.:
cto:T zto:T
P&\ 1€0) = PE[%). (1.4)

While this is a heavily used assumption in most prediction algorithms [65],
it is only valid if the behavior of the other agents Nj.x is independent of
the behavior of Ny. This assumption is valid for scenarios such as a leading
vehicle on a highway, but in urban scenarios various counterexamples exist (as
demonstrated in figure 1.9). Interactive behavior is hereby simply retrieved by
the reactive, replanning behavior of the algorithm [103].

As the interactive behavior of the other vehicles is not considered during
planning, this approach can lead to too conservative planning, especially when
considering many predicted trajectories [103].

This is because the behavior layer must choose a maneuver m in a way such that
it can be executed safely, without respecting that other agents may react to the
maneuver. The maneuver selector of such architectures is often realized as a
rule-based system, which chooses a certain maneuver m and parameterizes the
trajectory planner accordingly (e.g. to cross an intersection or to stop before).
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Figure 1.9: Two possible rule based maneuver selection algorithms from participants of the
DARPA urban challenge (namely vehicle Annieway (left) and vehicle BOSS (right)).
The decision of entering the intersection or stopping before is made in both cases with
rules concerning the positions and velocities of all vehicles. Nonetheless, the behavior
of the other agents is highly dependent of the autonomous car’s behavior (graphics
from [47] (left) and [107] (right)).

The trajectory planner is realized as planning algorithm (see section 1.2.6 for
an overview), optimizing on a certain temporal/spatial horizon. Two possible
maneuver selectors are shown in figure 1.9. Both planning algorithms make
the decision to cross or not with rules depending on the position and velocity
of the other car. Possible trajectory planners for this scenario are presented
in[112,115].

Possible algorithms for predicting the other cars may rely on physics-based,
model-based or interaction-aware models as surveyed in [65]. As part of this
thesis, prediction algorithms have also been designed which combine all of
these three methods. In [120], a interactive forward simulation of the scene is
performed, which generates a likelihood for each discrete maneuver given the
current scene. A classifier uses then the prior as well as current measurements
to provide probabilities for each maneuver. Another approach is to track
various possible interactive motion models with a particle filter [126] or a
multiple model unscented Kalman filter to infer the latent variables of the
driver model (e.g. the route intention) [127].

Such rule-based systems allow us to solve many of the simpler problems in real-
world environments [73,117] by use of a fast replanning behavior. Nonetheless,
handcrafting the decision rules for different cases is a costly process which may
require individual solutions for each scenario.
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However, the potential prediction of the other vehicles has to be constrained to
the most likely cases to impede conservative behavior. This is the case as the
many, possible predicted trajectories of the other agents narrow the free space
in which the robot is able to plan. This is also enforced as most trajectory
planning algorithms are not able to consider the interaction explicitly itself.

If interaction is not considered, i.e. the reaction of other agents to the trajectory
of the autonomous car is not modeled, the robot may only execute very con-
servative trajectories. In the worst-case, it may even lead to standstill behavior
because the robot cannot find a trajectory which does not collide with one
of the various possible predictions of the other agents. This is the so called
freezing robot problem [103].

1.3.2 (Interactive) Planning with Given Maneuvers

Another possibility is to design a framework in such a way that the behavior
layer retrieves the different maneuver possibilities first. Following a general
concept of robotics motion planning, the idea is to avoid a potentially exhaus-
tive search of the whole configuration space. Therefore, the idea is to extract
the different path or trajectory homotopies first to constrain the following op-
timization problem to this subspace [11]. The maneuvers can be described
with driving corridors represented by one reachable set per homotopy/ma-
neuver [101], with different constraints retrieved by a forward search [90], or
directly with a designed policy for every given maneuver [32,23].

In a second step, a trajectory is planned for every potential maneuver m €
M and the best one is selected for execution. This idea is demonstrated
in figure 1.10. This method has especially its advantages when used with
variational methods. As these methods are only able to find a local minimum,
the repeated calculation for every possible maneuver, may allow to find the
global optimum.

In [9], a deterministic local planner is used on every set of maneuver con-
straints to find the global optimum. Uncertainty and interaction are hereby
not considered. As the authors mention, it is difficult to extract all constraints
and calculating a trajectory for every maneuver may become intractable for
combinatorial problems with a high amount of possibilities.

19



1 Introduction

SELECT DESIRED MANEUVER m € M

¢m VYme M

CALCULATE .f(’)” =f (%O:T,?_‘)I:{T,m)
_ . zto:T =ty:T
SELECT EGO TRAJECTORY &((f) = arg mingm J(Ey €k om)

Figure 1.10: At first a certain set of possible maneuvers M is retrieved (e.g. cross the intersection
before/after the other car). Now a trajectory is planned for each of the maneuvers in
M and evaluated with a cost function J. The trajectory of the maneuver with the
minimum cost is then selected.

Different approaches consider planning and prediction as a combined problem,
such that the prediction of the other agents is also part of the planning problem.
In [118], the interaction in terms of the expected reaction of other vehicles to
the planned ego trajectory is considered in a deterministic way.

The authors of [84] use a Mixed Integer Quadratic Programming (MIQP)
approach. They assume static obstacles as well as dynamic agents with a
single predicted trajectory. Various maneuver possibilities for passing the
objects in different sequences are extracted and used for the formulation of the
MIQP formulation.

A combined planning and state estimation approach for all different maneuvers
is presented in [90]. The authors introduce so called collective maneuvers,
which describe the possible maneuver combinations in a certain scene. Every
vehicle tracks the maneuver probability of every other car online. By use
of a cooperative cost function every agent plans interactive maneuvers in a
collective maneuver set which is formulated as MIP.

In [37], the different maneuver homologies (i.e. relaxed homotopies) are ex-
tracted by introducing pseudo homologies first. Hereby the homology assump-
tion is further relaxed, so that trajectories with different end states may lie in
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the same homology, as long as both end states fulfill some conditions about
how they relate to each other.

The authors of [32,23] formulate the planning problem as a Markov Decision
Process (MDP) with possible, hand-tuned policies for each maneuver. This
allows for stochastic forward simulations of the whole scene given the different
policies to determine the expected cumulative reward of every policy. The
potentially non-linear and probabilistic transition function of the Markov De-
cision Process (MDP) allows considering interaction as well as uncertainty in
the planning problem.

In general, the approach of simply optimizing for one (section 1.3.1) or several
maneuvers (section 1.3.2) has drawbacks. At first, all maneuvers must be
enumerated beforehand, which is a challenging task that does not guarantee
finding the optimal behavior. Additionally, the solution space is absolutely
constrained to these a priori maneuvers. Solutions which e.g. optimize for two
possible maneuvers are not found.

1.3.3 Optimizing Interactive Maneuvers

The approaches in the previous two sections depend on the a priori selection of
a certain maneuver m or even a set of maneuvers for the autonomous vehicle.
Instead of defining certain maneuvers beforehand and planning corresponding
local optimal trajectories, graph-based search techniques allow to find a global
optimal solution [101] directly. This global optimal solution may contain a
high-level maneuver implicitly, such that there is no need anymore for an a
priori maneuver selection.

Such a search may either assume the prediction of the other agents as indepen-
dent or also model the interactive behavior of the other agents by representing
them directly in the state space. A probabilistic search, such as Monte Carlo
Tree Search (MCTS) allows even for representing the possibly interactive be-
havior of the other drivers in a probabilistic instead of a deterministic fashion.
The general framework is shown in figure 1.11.

As it is intractable to search the whole configuration space, it is essential for
these methods to constrain the search. This may be done with heuristics,
probabilistic sampling or intelligently designed search graphs.
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Figure 1.11: A search based optimization technique provides a trajectory solution directly and
optimizes the maneuver implicitly. It searches the whole configuration space Ceonfig
by expanding possible motion primitives and simulating the other vehicles simulta-
neously.

In [44], a visibility graph in the reachable set is created around the edges of
dynamic objects. This allows to create a minimum sized graph which can be
searched for the optimal solution. The graph resembles generated maneuver
hypotheses due to its minimum size and structure around existing objects. The
behavior of the other drivers is predicted in advance, such that it allows not for
interactive behavior.

The authors of [67] present a MCTS based planner for highway driving. The
approach is strongly focused on modeling the potential interaction during
planning but does not account for uncertainties.

In [59], a decentralized cooperative MCTS approach for lane changes is pre-
sented. Every agent optimizes a cooperative cost function, while neglecting
uncertainties. The authors use a hierarchical MCTS variation with macro ac-
tions and progressive widening to allow for continuous actions on a constrained
search space.

While these methods have the advantage of finding a global optimum, they are
considered difficult to use in reality. This is the case as the exhaustive search
may limit the online capability of the algorithm and reduces its completeness
to resolution completeness. This leads to a small, discretized action set A to
constrain the possible branching factor. Such a discretized action set reduces
the completeness of the planner to resolution completeness as the reachable
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state space is limited. This is due to the limited number of actions and the time
resolution.

1.4 Motion Planning with Policies

Most existing motion planning algorithms plan a trajectory from a given start
state Xgare t0 a goal state Xgoa. Executing a global optimal trajectory leads
to global optimal behavior, given that the system dynamics are deterministic.
This work assumes perfect localization and control during the execution of a
trajectory. Nonetheless, the future trajectories of the surrounding traffic are
not known and can only be described in a probabilistic fashion. Two distinct
approaches can be differed for this problem, namely open-loop and closed-loop
planning.

1.4.1 Open-Loop Planning

Open-loop motion planning algorithms do not consider future measurements
which arrive during the execution of the planned motion. In this case, two
possibilities exist. Firstly, every possible future motion of the other vehicle
can be respected by the planner. In figure 1.12a, a scenario is shown where
the planner has to consider three possible predictions (turning left/right and
passing the intersection) of the other vehicle for the scenario presented in
figure 1.3. Respecting every possible prediction leads to safe but potentially
conservative behavior. Another possibility is to consider only the most likely
prediction(s). While this allows for less conservative plans, safety cannot be
guaranteed as not every possible prediction is considered in the planning stage.

1.4.2 Closed-Loop Planning

Closed-loop motion planning on the other hand allows to consider the possible
future observations in the planning stage. Instead of a trajectory, these algo-
rithms plan a policy which contains reactive plans for different possible future
scenarios. Such a policy is shown in figure 1.12b for the scenario presented in
figure 1.3. The policy contains two plans about how to react to the observation
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depending of the next observed state.

Figure 1.12: Transfer of the scenario in figure 1.3 into a spatio-temporal cost map. The longitudinal
position on the planned path of the autonomous vehicle is plotted on the y-axis, the
planning time on the x-axis. The predicted maneuvers of the car on the left of the
intersection are depicted in grey, the planned trajectory of the autonomous vehicle is
depicted in black. The other car has three potential maneuvers (/] = cross straight,
my = turn left, m3 = turn right). Planning of closed loop policies allow for less
conservative driving. The policy contains future plans for all possible observations.
If it will be observed at # = 1 that the other car turns left, the autonomous car merges
before the other car. If maneuver m; is observed, it will execute the plan to pass
behind the crossing car. If the other car is observed to turn right, the autonomous car
has the same behavior as for maneuver m,.

which arrives at # = 1. This allows for less conservative initial actions as the
policy allows to react to the future observation. Closed-loop planning is rarely
used for online planning. This is the case as it must consider an infinite amount
of possible measurements which makes the approach often intractable to use.
In [28], the authors present Partially Closed-Loop Receding Horizon Control
(PCLRHC) to overcome this problem. The idea is to only consider the most
likely future observation. While this makes the approach tractable, it may lead
to unsafe behavior as relevant future observations may be ignored.

1.4.3 Definition of Policy Optimization

The goal of a policy is to map an action on a state to maximize the reward over
all possible, future scenarios (see figure 1.12b). Therefore, a potential policy
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1.5 Closed-Loop Behavior Planning Under Uncertainty

is evaluated by its expected reward to account for the uncertainty of the future
observations.

To account for these requirements, the motion planning problem is described as
follows. A probabilistic transition model is defined as T(X’, x,a) = P(X’|x,a),
describing the probability of ending in a new state x’, after executing a certain
action a in state x. A reward function R(X, ) is defined for executing an action
a€ Ainastate x € X.

Instead of minimizing a cost functional, the optimization aims for finding the
policy which maximizes the expected, discounted future reward:

S

t=0

7" :=argmax E . (1.5)

nell

The policy defines a mapping from states on actions, 7 : X — A, such that the
a = n(x). The future reward may be discounted by a discount factor 7y, to favor
immediate rewards over long-term rewards. This formulation allows to model
combinatorial decision problems with a non-linear, probabilistic transition
function T and a deterministic reward function R(x,a).

1.5 Closed-Loop Behavior Planning Under
Uncertainty

This thesis describes a new behavior planner for autonomous driving in urban
environments. The underlying idea is to formulate the behavior planner itself
as an optimization problem on a receding horizon.

The presented planner is not dependent on any a priori maneuver generation
but finds the global optimal solution on the receding horizon online. This
means that decisions, such as passing before or after a crossing pedestrian are
made implicitly by the optimization problem. The solution may represent a
typical high-level maneuver implicitly but not necessarily. This is enabled by
formulating the problem as a search-based planning problem, which respects
static/dynamic objects as well as other constraints such as traffic rules.
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Behavior planner

¢ decision problem

* fhor = 10s T

‘fref (t )

* may consider:
— prediction uncertainty
— interaction

x € R* = [s,d,v,1]"

Trajectory planner

* possibly convex problem

* thor ~ 38 % f(l‘)

* may consider:
— dynamic constraints
— kinematic constraints

Figure 1.13: The behavior planner optimizes the policy on a receding horizon in a global manner
and parameterizes the trajectory planner for finding the continuous local optimal
trajectory in the global minimum. The provided reference trajectory is the most
probable trajectory in the policy, s.t. & = argmaxge, P(€).

The planner respects all relevant uncertainties of the other agents (see fig-
ure 1.3) as well as their potential interaction with the autonomous car.

Considering the various different uncertainties with an open-loop planner
would lead to very conservative results due to the large manifold of possi-
ble, predicted trajectories. To overcome this problem, this thesis presents a
closed-loop planner which generates a policy over an uncertain belief space.
The policy contains reactive plans for possible future observations, i.e. mea-
surements of the uncertain behavior of the other agents. The policy is optimized
for the most probable future scenarios and also incorporates at what point in the
future certain beliefs (e.g. over the yielding behavior of other agents) become
more certain.

The problem is modeled as a Partially Observable Markov Decision Process
(POMDP). Solving this problem formulation exactly is known to be an in-
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tractable problem (see section 2.3.1). Therefore, the problem is reduced by
using only a discrete set of actions. The policy is retrieved from simulating
thousands of possible scenarios online on the planning horizon. This allows to
provide an optimized behavior online, that contains respective decisions and
considers uncertainty and interaction.

While such a policy considers the aforementioned uncertainties, interaction and
has the capability of decision making, the discrete actions lead to non-optimal
trajectories concerning comfort and smoothness. Therefore, the separation
between behavior planning and trajectory planning is also used within this
work. The behavior planner generates an optimal plan first, but under different
optimization criteria than the trajectory planner. In a second step, a local
trajectory planning algorithm optimizes the most probable trajectory in the
generated policy of the POMDP on a shorter horizon (figure 1.13). This is
e.g. done with optimization criteria like minimizing jerk [112] or minimizing
the total turn rate of the steering angle [38]. Simpler trajectory planning
approaches minimize acceleration by smoothing the speed profile without
considering the kinodynamic constraints [113].

1.6 Contributions and Outline

The main contributions of this thesis are the following:

Firstly, it presents a global optimization formulation for autonomous driv-
ing scenarios. This allows to generate a global optimal behavior instead of
behaviors which display certain high-level, hand-selected maneuvers only.

Secondly, this thesis shows how various uncertainties can be explicitly modeled
by a POMDP formulation. The uncertainties are namely the unknown in-
tentions of other drivers, their uncertain prediction, possible interaction, noisy
sensor measurements as well as the uncertainty introduced by occlusions. The
problem is formulated on a continuous state/belief space and uses a discrete
action space to optimize the behavior of the autonomous car.

By designing a closed-loop policy planner which respects not only the current
belief state but also the most likely future scenarios, less conservative behavior
can be realized. This formulation even allows the agent to actively reduce
the uncertainty by executing information gathering actions. Additionally,
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modeling intertwined prediction and planning allows to consider the reaction
of other agents to the trajectory of the autonomous car.

Thirdly, it is shown how this POMDP formulation can be solved online. This
is possible by extending state of the art solvers with domain specific heuristics
which allows to focus on promising branches in an otherwise intractable graph
search.

Finally, an extensive evaluation demonstrates the capabilities of the planner for
scenarios such as the crossing of intersections, lane changes in dense traffic and
the handling of occlusions. It is shown how the presented closed-loop planner
outperforms common open-loop planning approaches. It is demonstrated how
the planner allows for non-conservative behavior in uncertain environments
that can only be achieved by common open-loop planners if they have full
knowledge of the future scene, i.e. are omniscient.

The remaining thesis is structured as follows: Chapter 2 will introduce the
general POMDP formulation and explain in detail how POMDPs are solved in
this thesis. This is combined with general background and characteristics of
POMDPs including various techniques to solve them.

In Chapter 3, a deterministic planning algorithm based on the popular A* for-
mulation is introduced. It demonstrates how an optimal behavior planning
algorithm can be realized without using a predefined maneuver set. The algo-
rithm considers the predicted trajectory of dynamic objects and other dynamic
constraints (such as switching traffic lights). While it does not consider any
uncertainties, it demonstrates planning based decision making.

In Chapter 4 the POMDP planning approach is presented for intersection
scenarios. The algorithm optimizes a longitudinal policy under the uncertainty
of the unknown intention, driver models and interaction of the other agents.

Chapter 5 extends the action set, s.t. the policy is optimized in a 2D space.
This combined longitudinal and lateral optimization is combined with a belief
state formulation which includes the friendliness of the other drivers. It is
demonstrated how this formulation allows the agent to merge in too small gaps
by actively considering the potential interaction with the surrounding traffic.

Finally, Chapter 6 introduces how reasoning over potentially existing agents
in occluded areas can be formulated as a POMDP. The approach allows the
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autonomous car to actively gather more information about occluded areas by
explicitly considering the field of view of the car in the forward simulation.

Chapter 7 summarizes the results of the thesis and gives an outlook how the
approach may be extended and improved in the future.
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2 Background

This chapter introduces algorithms and their mathematical notations used in
this thesis. The theoretical foundations of sequential decision making under
different degrees of uncertainty are introduced. This is followed by an overview
of different solvers and a detailed discussion on how POMDPs are solved in
this thesis. Finally, the reduction of a 2-dimensional planning problem is
discussed, the so called path-velocity decomposition.

Sequential decision making models a problem where a series of decisions have
to be made. The problems may be distinguished by the nature of the transition
model and by the observability of the state. The transition model can either be
deterministic or probabilistic and the state of the environment may either be
fully observable or only partially observable. Partial observability of the state
leads to a description of the environment with a belief state as the real state
cannot be measured.

2.1 Planning with Deterministic Models

Given a set of discrete, fully observable states, a set of discrete actions and a
deterministic state transition function, s.t. X’ = f(x, a), the sequential decision
making problem can be solved by the graph search algorithms presented in
section 1.2.3. This is the case as the deterministic nature of the state transition
function and the fully observable state allows to present the planning problem
as a graph.

One of the most well-known algorithms for graph search is the Dijkstra al-
gorithm [25]. It keeps track of two sets, a set of open nodes Xopen (nOt yet
expanded) and a set of closed nodes Xcoseq (already expanded). The idea
behind the Dijkstra algorithm is to select the node with the minimum cost-
to-come in Xopen as the next node to be expanded. This allows to steer the
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search in a promising direction and guarantees to find the shortest path [86].
Despite the directed search, the algorithm has still a worst-case runtime of
O(|E|+|V|log|V|). The algorithms in this thesis use a extension of the Dijkstra
algorithm, the so called A* algorithm [86]. It uses a heuristic to truncate non-
promising branches early. Instead of expanding the node with the lowest costs,
ie.x = argminy  x.c, the A* algorithm expands the node which describes
the state x = arg min Xopen X-CF h(x). The heuristic function /(x) estimates the

Algorithm 1 A* graph search on a receding horizon

I: Xstart> thors A HXsart: start state, thor: planning horizon
function A*(Xsart, frior, A)

2: Xopen = []’ Kelosed = []

3 Xopen € Xstart

4: while X;pen # 0 do

5 X « arg minXOpen X.g //X.g: heuristic + cost-to-come
6. if x.t > tyor then

7 return X

8 end if

9 for alla € A do

10: x'—x+a

11: if x” ¢ Xioseqa then

12: x'.c —x.c+J(x,a,x")

13: x'.g — x".c+ h(x")

14: x'.pe—x //X'.p: parent state of X’
15: if x" € Xopen and x".g < x/, g then

16: Remove x” in Xopen

17: end if

18: add X’ to Xopen

19: end if

20:  end for

21: add x to Xiiosed

22: end while

23: return trace back trajectory from x

remaining total costs from state X to the goal state. As long as the heuristic
function / is a lower bound to the real costs as well as consistent, the A* algo-
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2.2 Planning with Probabilistic Models

rithm is complete. Consistency is fulfilled if A(x) < J(x,a,X") + h(x")Vx, X’.
The A* algorithm is presented in Alg. 1 for planning on a limited time horizon.

2.2 Planning with Probabilistic Models

For the case of a probabilistic state transition function T(x’" | X,a) := P(x’ |
X,a), the sequential decision making problem can be modeled as a Markov
Decision Process (MDP). An MDP is defined by the tuple (X, A, T,R,y). The
reward function, R(x,a), defines a reward for choosing an action a € A in
state x. The reward is discounted over time ¢ by a discount factor y to favor
immediate rewards over long term rewards. The state x € X of an MDP is
assumed to be fully observable. The goal of an MDP is to find an optimal
policy, 7*, which maximizes the expected cumulative discounted reward, i.e.
the value V(x) when starting in state X and following the optimal policy
thereafter:

*(x) ;= arg max V7 (x). 2.1

To solve an MDP, a technique called dynamic programming is used. It is
described by Bellman’s principle of optimality:

Principle of Optimality: An optimal policy has the property that
whatever the initial state and initial decision are, the remaining
decisions must constitute an optimal policy with regard to the state
resulting from the first decision [8].

In other words, an optimal solution to a problem is composed by optimal
solutions of the subproblems. This is known as the Bellman equation [8]
which defines the optimal value function, V* of an MDP as follows:

V'(x) = max| R(x.a) + Z T(x,a,X")V*(x)|. 2.2)

x'eX

Widely known algorithms such as policy iteration and value iteration are
based on the idea of the Bellman equation [51]. These algorithms iteratively
perform backups over the (whole) state space X and update the value function
accordingly until convergence is reached. Although they guarantee to find the
optimal policy, they are are mostly used for offline MDP approaches. Their
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general computational complexity and the curse of dimensionality makes them
comparably slow and therefore only suited for low dimensional problems. On
the contrary, approximate techniques such as sparse sampling or MCTS are
better suited for online MDP approaches [51].

Certain assumptions even allow to simplify solving an MDP. In the case of
a linear system with a quadratic cost function, the general MDP formulation
becomes a linear quadratic regulator and can be solved analytically.

For more details about MDPs, the reader is referred to [51] and [86].

2.3 Planning with State Uncertainty

MDPs rely on the assumption that a state is fully observable. POMDPs on the
other hand do not rely on this assumption and are formulated over a probabilistic
belief state instead of a fully observable state. Since the current state is not
known, the belief state is described by b(x)Vx € X, i.e. the probability of
being in a certain state X.

A POMDP is defined by the tuple (X, A,T,0,Z,R, bo,y). The state is defined
as x € X and a possible action of the agent is defined as a € A. T(X,a,x’) =
P(X’|x,a) is the transition probability of ending in state x” when executing
action a in state x. R(x,a) is the reward for selecting action a in state x. The
initial belief of the problem is »°. Additionally, the discount factor y € [0,1)
is used to favor immediate rewards over long-term rewards.

The differences to an MDP are the possible observations 0 € O and the
observation function Z which allows to describe future beliefs b(x), given
possible future observations o, a prior belief b, the state transition probabilities
T and the observation function Z.

The observation function Z(x’,a,0) = P(o|x’,a) provides the probability to
observe a certain observation o after taking action a and ending in the new state
X’. The policy of a POMDP maps a belief state b an action, 7 : b +— a. The
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2.3 Planning with State Uncertainty

solution of a POMDP is the optimal policy, 7, which maximizes the expected
discounted cumulative reward

Z YR, n(b"))|B, nl . 2.3)
t=0

;= argmax E
T

The definition of the optimal value function can also be transferred to POMDPs,
such that the corresponding Bellman equation for belief states, V*(b) is defined
as follows:

V*(b) := max|R(b,a) + y Z T(h,a,b"\V*(b')|. Q2.4)
acA
b'eB
The reward model over a belief state, R(b, a), is defined as:
R(b,a) = > BX)R(X,a). (2.5)

xeX

2.3.1 Complexity of Solving POMDPs

POMDPs are often considered to be computationally intractable to solve ex-
actly. This is the case for two reasons:

The first reason is due to the curse of dimensionality: Even a limited number of
discrete states |X| leads to a (]X| — 1)-dimensional continuous belief space 8
[81]. Therefore, naive discretization of the belief space results in an exponential
number of belief states over the number of states.

The second reason is the curse of history: The number of possible action-
observation sequences, starting at a belief 1°, is (|A||O|)" and therefore grows
exponentially with the length of the history n. Nonetheless, to calculate exact
solutions to POMDPs, all possible histories must be considered.

This makes finding an optimal policy for a finite-horizon POMDP PSPACE
complete [79]. Solving a POMDP for an infinite horizon is even undecidable
[70].
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Nonetheless, many algorithms have been developed which calculate approxi-
mate solutions for POMDPs as surveyed in [85]. These approximate techniques
allow to successfully approximate optimal solutions online on large state spaces
(JX] > 100.000).

These positive results lead to further investigations about what underlying
characteristics of POMDPs make them easier to solve. The authors of [41]
introduce a so called covering number of a POMDP as the number of balls
of a certain diameter which are needed to cover the reachable belief space. It
is shown that a solution can be calculated in time polynomial in the covering
number of a reachable belief state and the authors argue that the number of
states may be a poor measure of the complexity of a POMDP.

2.3.2 Solving POMDPs

In the following, it is explained how the belief state of the world can be
estimated over time and how POMDPs can be solved. An overview of the most
common online POMDPs solvers is given.

Belief Update

The policy contains the optimal action a’ = 7(b") at time ¢, given the current
belief b'. The current belief 5' can be estimated with recursive Bayesian
estimation by using the last belief state, b* -1 the last action a’~! as well as the
actual observation o':

PH(xYY = P(o!,a', b). (2.6)

The Bayesian filter can also be used for state estimation only, as done in [126], to
track the model parameters of the surrounding agents. In general, formulations
with discrete states and formulations with linear-Gaussian transition models
and Gaussian observation models can be solved exactly [51]. For discrete state
problems a Bayesian discrete state filter is used. Problems on a continuous
state space with a linear-Gaussian transition and observation model can be
solved exactly with the well-known Kalman filter [46]. If the transition model
is non-linear, exact solutions do not exist anymore. For the case of a non-linear,
continuous transition function various modifications of the Kalman filter exist.
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Algorithm 2 Unweighted particle filter

1: function UPDATE BELIEF(b, @, 0)

20 b0

3: fori < 1to |b| do

4. X~b

5 repeat

6: X' ~T(x,a,Xx")
7 o' ~Z(o,a,x")
8 until 0o’ = o

9: add x'tob

10: end for

11: return b’

p(x) p(X) p(X)

X
p-—op p+o
(a) Analytic description of (b) Description with an un- (c) Description with a weighted
N(u, o). weighted set of particles. set of particles.

Figure 2.1: Different methods to present the probability density function of a normal distribution.
The representation with particles allows for describing arbitrary probability density
functions.

The extended and unscented Kalman filters allow to find non-optimal solutions
in these cases [45] by using linearized transition functions or approximated
Gaussian distributions.

The above mentioned approaches do only work, if the probability density
function of the belief state can be described analytically, e.g. with a (set of)
Normal distributions. Another possibility is to describe the probability density
function, by a set of (weighted) state instance, i.e. particles. The underlying
idea is shown in figure 2.1 for the case of a normal distribution. Additionally,
typical filters based on the idea of particles are able to track the probability
even for highly non-linear or even non-continuous transition models. This
work uses an unweighted particle filter to track the current belief state, the
pseudo code of the algorithm is presented in Alg. 2 and is inspired by [51].
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Point-Based Solvers

As introduced in section 2.3.1, one of the main difficulties in solving POMDPs
is the continuous belief state. Nonetheless, the authors of [100] showed, that
the value function of a POMDP is always piece-wise linear and convex in
the belief (see the left figure in figure 2.2 for an example). This characteristic
allows a simple representation of the optimal value function over the continuous
belief by a set of a-vectors. An alpha vector @, contains the reward for every
possible state, assuming action a, s.t. @, = R(-,a). The alpha vector describes
a |X|-dimensional hyperplane in the belief space 8 and allows to describe the
value function as

V(b) = max Z a(X)b(X). Q.7

a

xeX

The idea of POMDP value iteration is to describe every possible plan until

)
b

- - — @

L----

b2 bl b0

o
(V5]

Figure 2.2: Left: Point-Based Value Iteration (PBVI) keeps a set of a-vectors to approximate the
value function over the whole belief. Right: Grid based approaches approximate the
value function only for a set of belief-value pairs [14] (graphic from [81]).

a certain depth by a vectors. Nonetheless, solving a POMDP exactly with
such an approach is infeasible as the number of needed alpha vectors |a,| for
optimization depth of n grows exponentially, s.t. |a, | = |A|1O"~D/IO1=D [51],

The idea of point-based algorithms is to overcome that problem by backing
up the value function only for a discrete set of chosen belief-points. The first
algorithm, alleviating this idea, was the PBVI algorithm, proposed by [81].
The algorithm selects an initial set of belief points and estimates their value by
use of a-vectors. In a next step, further belief points are added if it introduces
a strong improvement on the value of the belief. Two other known algorithms
are Heuristic Search Value Iteration (HSVI) [98] and Successive Approxima-
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tions of the Reachable Space under Optimal Policies (SARSOP) [57]. Both
algorithms use graph search to limit the optimization to the reachable belief
while pruning the tree with upper and lower bounds. A complete survey of
point-based solvers can be found in [93].

Sampling-Based Solvers

While the point-based solvers in the previous section simulate full belief tra-
jectories, sampling-based solver use simulated histories to estimate the value
of certain belief states.

The belief state itself is hereby represented by particles (similar to the belief
state of a particle filter). Potential histories are simulated based on a particle.
Simply representing the belief state by a set of particles may sound like a simple
approach compared to representing the value function over a continuous belief
with a-vectors. Nonetheless, the characteristic of MCTS based search, i.e.
focusing on the most promising branch, allows to produce fast approximations
to the optimal value function for relevant beliefs.

The first Monte-Carlo algorithm for POMDPs was introduced by [96]. The idea
is to represent the current belief by a set of particles and construct a belief tree
by sampling possible episodes in the reachable belief. That way, the optimized
policy is only calculated for the current belief. Representing the belief state
by a set of particles allows to update the belief by an unweighted particle filter
given the current observation. This allows to keep the relevant part of the belief
tree alive instead of reconstructing the tree from scratch. The authors of the
Adaptive Belief Tree (ABT) algorithm adapt the algorithm to be able to keep
the belief tree even in cases where the model changes by detecting the relevant
episodes. A Determinized Sparse Partially Observable Tree (DESPOT) is
constucted in [99]. The idea is to constrain the growing of the belief tree by
observing if new branches do change the current optimal policy or not. The
authors of [21] drastically speed up the idea of DESPOT by parallelizing action
selection as well as roll-outs on a CPU and GPU simultaneously.
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2.3.3 The Simplified QMDP Formulation

While the POMDP formulation is very generic, simplified formulations ex-
ist. A popular one is the so-called Fully Observable Value Approximation
(QMDP). The idea behind a QMDP is to calculate a solution under the as-
sumption that the state uncertainty disappears after the fist planning step, i.e.
the next state is fully observable [69].

The QMDP approximation is defined as follows:

O(b,a) = Y’ B(X)Qmpp(X,a). 238)

xeX

This leads to selection of the action which maximizes the long term reward,
weighted over all states. The underlying assumption, that all uncertainty van-
ishes in the next step, makes it a overly confident, unsafe planner. Nonetheless,
it can be shown that a QMDP solution is an upper bound to the value function
of a POMDP [51]. This makes it very interesting for use as heuristic.

2.3.4 Policy Optimization: Online vs Offline

In the context of solving a POMDP, offline is referred to finding a sufficiently
optimized policy over the whole belief space prior to execution. An online
solver on the other hand, calculates only the optimal action for the current
belief assuming a certain optimization depth n. After execution of the optimal
action, the belief is updated and the optimal policy is optimized again for the
new belief.

As it is computationally challenging to solve a POMDP online, one might
argue that solving it offfine could be a possibility.

Nonetheless, this is not the case due to various reasons. At first, finding
a (belief) state representation for every possible scenario with a completely
varying number of agents, lanes, traffic regulations, etc. is intractable for
planning-based approaches due to the sheer manifold of situations. Even if
such a representation could be found, the dimensionality of the state space
may explode as every detail (geometries, lane markings) of the scene must be
incorporated in the state space. This makes the problem to solve by magnitudes
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harder. In the case of online approaches on the other hand, only the dynamic
agents must be part of a state space whereas scene information such as lane
geometries can simply be considered as actual parameters of the motion models
of the agents which does not change the dimensionality of the state space.
Moreover, online solver calculate the optimal policy for the current belief only
which allows them to only consider the reachable belief space on a limited
horizon. Additionally, even if a generic problem formulation can be found and
solved, describing and storing the resulting policy may become difficult due
its sheer size.

Nonetheless, the idea of offfine approaches is pursued in different, promising
ways. Learning based approaches try to tackle the problem of a generic input
space by using either various, preprocessed top-down views as input for a
deep imitation learning architecture (as done by Waymo’s ChauffeurNet [6])
or by learning directly from front camera images [13]. Nonetheless, these
approaches are currently in an early stage and are limited by the amount
of possible training data (including corner-cases) and have difficulties to give
guarantees on the learned behavior in the Deep Neural Net (DNN). Approaches
which combine both worlds exist and are very promising. The these cases, the
idea is to have an online graph/tree search which relies heavily on heuristics,
which are learned offline. Such a approach is for example used for the artificial
intelligence used to play and win against humans in the board game Go [95].
Hence the problem is solved online in this thesis.

2.4 Solving POMDPs in this Thesis

In this thesis the Toolkit for Approximating and Adapting POMDP Solutions
in Real Time (TAPIR) [50] is used to solve a POMDP online. It is an im-
plementation of the ABT algorithm [58], one of the fastest POMDP solvers
today. The algorithm is anytime and capable of solving large POMDPs even
on continuous belief states online.

It approximates the optimal policy by Monte Carlo sampling of potential
episodes in the reachable belief space. ABT uses MCTS, but modified for
POMDPs. This section explains at first the standard MCTS algorithm. It is
followed by the transfer of MCTS to POMDPs and further details on how ABT
and the implementation in this thesis works.
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2.4.1 Monte Carlo Tree Search

MCTS was first introduced in [22] where it was used for sequential decision
making in games. The transition model in games is probabilistic as the next
state of the game depends on the controllable action of the agent but also on the
unknown action of the other player. The general idea of MCTS is to combine
a deterministic tree search with random sampling. This allows to solve MDP
formulations, which cannot be solved by traditional graph-search due to the
non-deterministic nature of their transition model.

A major breakthrough occurred with the introduction of the Upper Confidence
Bound for Trees (UCT) algorithm [52]. UCT balances the search in a way
which allows to sample promising branches more frequently to achieve a very
precise estimate of the value of promising branches. Less promising actions
on the other hand are sampled less often. This procedure is very powerful
and allows to solve otherwise infeasible, probabilistic graph search. The
idea behind the UCT is similar to the exploration-exploitation dilemma in
Reinforcement Learning (RL), but happens completely offline. The nodes of
the tree correspond to states. The algorithm performs many simulations of
so-called possible histories to estimate the state-action value function Q(x, a).
One simulation is composed by four steps as shown in figure 2.3:

1. Selection: Traverse the tree until an expandable node is reached (non-
terminal state and unexpanded children)

2. Expansion: Expand the node
3. Simulation: Do aroll-out with a default policy to estimate future rewards

4. Backpropagation: The received rewards are propagated back to update
the statistics of prior nodes

The combination of a smart selection method (e.g. the UCT algorithm) and the
fast estimation of future rewards by a sufficiently good default policy allows
to reduce the search space drastically, which gives the algorithm its online
capabilities. For a more detailed description of MCTS, the reader is referred
to [19].
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Selection — Expansion — Simulation — Backpropagation \

Tree Def;lulf

Policy Policy
M
o A J
Figure 2.3: The 4 steps of MCTS: Selection, Expansion, Simulation, Backpropagation (graphic
from [19]).

2.4.2 MCTS for POMDPs

The idea of using MCTS for POMDPs was introduced in [96] and has been
advanced by ABT [58]. In the following, the ABT algorithm is explained in
detail as it serves as an algorithmic foundation in this thesis.

ABT describes the root node b of the belief tree 7~ by a set of particles. To
construct 7, ABT selects randomly one of the particles of the root node and
samples a so called episode u (see figure 2.4). An episode is one possible
scenario with a maximum length of the planning horizon #,,. It is described
by a sequence of quadruples (X,a,0,R). The tree is traversed by the UCT
algorithm during the selection step (see section 2.4.3 for further details). If
an expandable node is reached, a not yet expanded action is sampled. This
is followed by sampling a new state x” and by sampling a corresponding
observation o’ using the transition function 7 and the observation function Z.
The newly discovered belief state b, is therefore described by only one state
particle until further episodes reach that belief. From that belief, an optimal
roll-out strategy is determined online in the simulation step (see section 2.4.5
for further details on the roll-out) to get a first estimate of V(b"). The goal of
the ABT algorithm is to approximate the optimal policy 7*(Equation (2.3)).
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Figure 2.4: Construction of the belief tree by online sampling of possible episodes (graphic from
[124], ©2018 IEEE).

Estimating 77%(b) is done by estimating the Q-function Q(b, a) first. It describes
the expected reward, given a certain action, s.t.

O(b,a) = R(b,a) +y ) t(b,a,0)V*(r(b,a,0)). 2.9)
0€0

This allows to retrieve the optimal policy 7*(b) as

7*(b) := argmax Q(b,a) (2.10)
aeA

with 7(b, a, 0) being the belief update function, s.t. b’ = 7(b, a, 0), given the old
belief b, the received observation o and the previously executed action a.

In case of an MDP, the state-value Q-function, Q(x,a), is directly estimated
via the cumulative rewards following action a. The difference in the case of
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POMDPs is that the Q-function is estimated via the recorded episodes u. After
every episode, the rewards of the episode are backpropagated and Q(b,a) of
passed beliefs is updated. The Q-function is estimated as

O(b,a) =

Z V(u,n) @2.11)

u€Up,a)

U,

with Up,,q) € U being the subset of the set of all sampled episodes U, that
contain the sequence (b,a). The depth of the tree is defined as n, the value of
an episode u starting from depth n is defined as V(u,n). The value of a history
V(u,n) is defined as

|ue]

V(u,n) = Z Y R(u; X, u;.q). (2.12)

i=n

2.4.3 UCT Action Selection

Action selection is required during the selection step and in the expansion step.
Both can be formulated together as

~A LfA £ 0

log(IUp )
[Uwb.a)

(2.13)

arg max Q(b,a) +c ,otherwise

aeA

with A’ being the uniform distribution over all actions which have not yet
been selected in the corresponding belief state, |Uj| the number of episodes
containing belief b and |U, )| the number of episodes executing action a in
b. A scalar, proportional exploration coefficient is defined as ¢ and allows to
trade off between exploration and exploitation. This type of action selection is
called UCT [52].

The benefit of the UCT algorithm is twofold. First, it balances exploration
and exploitation. This avoids searching the belief space exhaustively and at the
same time allows to estimate promising solutions precisely very fast. Secondly,
the search focus on promising actions is needed to converge to the optimal Q-
function, given enough runtime. The Q-function Q(b, a) is estimated via the
mean of all episodes starting at b. It does only converge to the optimal Q-
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function Q*(b, a) if the actions of the optimal policy are selected more often
via the UCT action-selection (see equation (2.13)). Despite that the algorithm
may find non-optimal solutions given not enough runtime, it is observed that
simply more conservative policies are found in this case. This is the case as
the branch of the currently best action is most likely expanded and even an
unlikely collision is found very fast.

2.4.4 Belief State Tracking and Observation Clustering

The current belief state is represented via a set of particles containing the
possible state instances (see e.g. Figure 2.4). The belief state is tracked with
an unweighted particle filter using simple rejection sampling for two reasons
(see Alg. 2). First, the probability distribution of the belief state may become
very different to Normal distributions during the interactive forward simulation.
Therefore more exact filtering methods cannot be used. Secondly, tracking the
belief state directly in the belief tree allows to conserve the relevant part of the
tree and not to reconstruct the complete tree anew. This is possible by using
the subtree which is constructed by all the episodes, that contain the sequence
of the previously selected action and the new belief.

Observation Clustering

The belief update as well as the sampling of episodes in the belief tree requires
the binary comparison of two continuous observations. This is done by com-
paring two observations, o1 and 0, with their maximum Euclidean distance
Omax as follows:

o1 = 02,ift [|o] — 02]l2 < Omax- (2.14)

During the simulation of the belief tree, the observations which are following
a certain action a must be clustered into a discrete number of possible obser-
vations. This is the case as the structure of a tree can only be generated when
a discrete number of observations exist. Respecting the continuous nature of
the observation space also in the belief tree would lead to an infinite number
of possible observations.

The clustering method is presented in figure 2.5. Every possible observation
cluster is defined by a certain observation o;.4. If a new observation arrives,
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b} = f(ai,01) b = f(ai,07) by = flaz,03) b = f(az,04)

Figure 2.5: The clustering of continuous observations into a discrete set of possible observation
clusters. Every observation cluster is defined by one certain observation 0.4 which
defines the center of an observation.

it is tried to match it on one of the existing observation clusters. If this is not
possible, the new observation defines a new observation cluster itself. This
may lead to observation clusters which do overlap as shown in figure 2.5 for
the clusters generated by observations 03 and 04. A new observation which
matches both clusters is assigned to the cluster, which has been generated
first. This clustering is suboptimal due to two reasons. At first the center of
the clusters is selected without having seen all the data. Secondly, possible
overlapping clusters can introduce a higher uncertainty in a belief on a certain
depth of the tree than necessary. This may result in a suboptimal policy.

2.4.5 Calculating Optimized Roll-Outs

As soon as a new belief state is explored (labeled b’ in figure 2.4), the initial
value of the belief state is set to a heuristic estimate to allow the UCT algorithm
to converge faster. This can be done by a default roll-out strategy or even a
random walk until the planning horizon. Nonetheless, a good approximation
of the optimal value function of the newly explored belief V*(b) allows the
algorithm to converge by magnitudes faster [19]. In this theses, the heuristic
value is calculated by solving a deterministic, simplified problem online as
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soon as a new belief state is encountered. As the new belief state is at that
point described by one sample only, the belief state is deterministic until
more episodes pass this belief. By additionally removing the Gaussian noise
on the motion models of the other agents, the planning problem becomes
deterministic.

The optimization problem is solved by either a Dijkstra or A* graph search
throughout the thesis. Solving a graph search on a longer horizon is compu-
tationally too expensive for use as a heuristic. This is the case as the heuristic
will be called once per episode, i.e. several 1000 times during one optimization
run. Therefore, an approximation is used to the complete search by aborting
the graph search after a certain number of steps and using constant velocity ac-
tions afterwards. Throughout this thesis, optimization is used for the first three
steps, followed by a constant velocity roll-out until the optimization horizon.

2.4.6 Creating Consistent Plans

It is desired that the behavior layer creates consistent plans. This means that
the reference trajectory does not jump from one behavior to another without
major changes in the predicted behavior of the other agents. Nonetheless,
this undesired effect can occur because of the fact that the algorithm replans
frequently and that the reference trajectory is not tracked accurately. This
is the case as the trajectory planner optimizes the trajectory with another
cost function, focusing on comfort instead of behaviors. Next to this desired
deviation of the trajectory planner, the controller itself is not able to track the
trajectory exactly. Therefore, the driven trajectory deviates from the planned
&t (see figure 2.6 for a visualization). In the case of replanning the trajectory,
which happens frequently in a receding horizon control, the planner may find
another, cheaper maneuver due to the different start state. To prohibit such a
jump in behaviors, the current desired state on the reference trajectory instead
of the measured state is used for replanning. The idea is presented in figure 2.6
with an example based on trajectories but works in the same way for closed loop
planning with policies. This method is also used for replanning of trajectories
without integrating a drift due to control errors [110].
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possible deviation
of controller

t=1
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Figure 2.6: The trajectory planner as well as the control algorithm deviate from the reference
trajectory &ef. Frequent replanning behavior may therefore result in a jump from one

maneuver (¢ r’e ?0, i.e. passing before the dynamic agent) to another (fr’e ?1 , i.e. passing

behind the dynamic agent). To avoid this undesired behavior, replanning at # = 1
is performed from the currently desired state xges = fr’e ?0(1) instead of the currently
measured state Xmeas-

2.4.7 Batch Sampling of Episodes

The ABT algorithm is anytime. Therefore, the planner has to trade off between
the used time interval for the optimization of the policy and the introduced
delay until sampling of episodes is done and a policy is available. The more
time is used for sampling of episodes, the better the policy is approximated.
On the other hand, the earlier the policy is send to the trajectory layer, the less
delay is introduced between the sensor measurements and the corresponding
policy. Hence, it is chosen in this work to approximate the policy by sampling
possible episodes for 200 ms (see figure 2.4). After 200 ms, the reference
trajectory &pr is extracted from the approximated, optimal policy . It is
send to the trajectory planning layer for execution. The reference trajectory is
extracted from the optimal policy by choosing the most likely trajectory which
is included in the policy:

&ret = argmax P(£). (2.15)

Sen

While the solution is optimized for 200 ms, a step size of At = 1s is used to
construct the tree to allow for a planning horizon of 8-10s. Therefore, the
particle filter can only match an observation, which is received after 1s. The
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spare time until a new observation arrives is used to sample additional episodes,
to make the tree more robust. This is done in several blocks of 200 ms and the
updated &t is send to the planning layer after every block (see figure 2.4 for
more details).

2.5 Reducing the Dimensionality of the
Action Space

The autonomous agent is operating in a dynamic, 2-dimensional workspace
(assuming a planar environment). To allow the autonomous agent to reach
various configurations in the workspace, the action space A must contain
actions for its longitudinal accelerations as well as different steering angles
and also the combinations thereof. Nonetheless, the size of the action space
grows exponentially with its dimension, due to combinations of actions in
different dimensions. Even if the 2-dimensional action set A is reduced by
non-holonomic constraints, it may be intractable to solve if the number of
discrete actions in each dimension increase.

The idea of the path-velocity decomposition [48] is to decompose the problem
into two simpler subproblems:

1. plan a path around static obstacles while considering kinematic
constraints
2. plan the longitudinal speed profile considering dynamic objects and

dynamic constraints.

The path-velocity decomposition is applicable, as long as the path is indepen-
dent of the longitudinal velocity. As this is the case for many scenarios of
automated driving (see [113] for a comparison of scenarios), the path-velocity
decomposition is widely used for motion planning algorithms for autonomous
driving. In this thesis, path-velocity decomposition is used throughout all
chapters, except for the algorithms concerning lane changes (chapter 5) and
in parts for the algorithms handling occlusions (chapter 6). These scenarios
present a strongly coupled problem which require combined longitudinal and
lateral optimization.
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Decision Making

This chapter describes an optimal behavior planner for urban environments.
Most current motion planning frameworks are based on rule-based decision
making for one of a discrete set of potential maneuvers (see section 3.1).
Such an approach relies on an a priori selection of a discrete set of maneu-
vers. Nonetheless, the a priori definition of such a set as well as the design
of a logical-reasoning based arbiter for the maneuver decision may become
infeasible in complex, urban environments. This is the case as their countless,
different road topologies including intersecting lanes (as opposed to highways),
a varying number of other vehicles/pedestrians and multiple traffic rules lead
to a large amount of parameters to be considered. This is either intractable
with a rule-based system or leads to suboptimal behavior.

The main contribution of this section is the presentation of a globally optimal
planner that optimizes in the space of behaviors and trajectories. Its non-
convex formulation allows for planning of global optimal trajectories on a
receding time horizon. That implies that the planning algorithm itself allows for
implicit decision making. It considers various different events and constraints
at the same time in the optimization formulation. These are traffic rules (e.g.
traffic lights, speed limits) as well as dynamic objects which are formulated
as constraints. The planner is an open loop planner, i.e. an estimated future
trajectory of the other agents is considered but future, possible observations
are not considered. The result is a reference trajectory representing an optimal
behavior which contains all decisions implicitly. A key idea of the algorithm
is to do a path-velocity decomposition (see section 2.5) first and optimize the
velocity only in longitudinal direction on the preplanned path. While this
does not allow for combined, longitudinal and lateral optimization, the optimal
solution may still be found in most scenarios (see [113] for a comparison of
the different cases). The longitudinal formulation enables fast solving of an
A* formulation by use of a heuristic based on the idea of Inevitable Collision
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States (ICS) [31]. The provided trajectories are dynamically feasible, safe
and legal. Also, comfort is optimized over the complete planning horizon.
The presented deterministic planner can be used as a standalone, open loop,
behavior planning module. Additionally, it is also used as heuristic itself in
the presented algorithms in the following chapters.

The chapter is based on and was previously published in [121].

3.1 Related Work

Solving the global optimization problem under the high demand of combined
longitudinal and lateral comfort optimization and environment constraints is
considered to be computationally intractable [116]. Nonetheless, motion plan-
ning algorithms which solve single, capsulated subproblems, exist. In [71,63]
the approaching of and decision making at traffic lights is handled from an
energy-optimal perspective while [72] minimizes jerk while making crossing
decisions at intersections. Anticipatory, energy efficient approaching on slower
vehicles is presented in [55]. A supervised learning model for car following
behavior is presented in [114]. An algorithm which also does a path-velocity
decomposition [48] and plans in the velocity-time frame is presented in [43].
It creates a graph first by planning trajectories between the edges of cross-
ing vehicles and searches the generated graph for the minimum-cost solution
afterwards. This allows for global optimization but on a very sparse graph.

As these algorithms only solve certain subproblems, a local trajectory planner
is normally embedded in a framework, where a higher layer does the decision
making for a certain behavior and parameterizes the trajectory planner accord-
ingly. These decision making systems are often rule-based and for example
formulated as a decision tree [3] or as a state machine as teams of the DARPA
Urban Challenge [107,117] did. Another approach is to represent the situation
with high-level, semantic states and search the generated graph in a second
step [53]. Nonetheless, the retrieved solution may be dynamically infeasible
and must therefore be validated [54]. The approach also requires a set of rules
which describe how the current situation may be processed into the high-level,
abstract state space. Instead of rule-based systems, also the maneuver with
the minimum acceleration or minimum total cost may be chosen, as done
in [111,56]. While the approach of only considering a limited amount of
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predefined maneuvers is feasible on highways, this may become intractable in
urban environments due to the high amount of varying topological situations
and corresponding maneuver possibilities. Especially, more complex maneu-
vers such as early braking during following behavior because of a traffic light
switching to red in a larger distance is difficult to be designed by a rule-based
system.

None of these algorithms is able to find the optimal maneuver in urban environ-
ments under the combined consideration of comfort-optimization, respecting
traffic rules and a varying number of dynamic objects.

3.2 Problem Formulation

The algorithm expects a global path rq of the autonomous vehicle Ny. This
path can be retrieved by a path planning algorithm such as the variational, local
planner presented in [119]. The path must be at least represented by sampled
global positions ¢; € R? and i € [0,...,1], € N, with an assumed, sufficiently
dense, spatial sampling distance such that an approximate transformation to
the Frenet frame is possible. The transformation to the Frenet frame describes
the arc length s € R along the path ry from a path origin g to the current point
g;i as: q; — s [112].

The absolute velocity is bounded by § € [0, vipax | With viax (s) being a function
of the path’s curvature « at distance s, i.e. vpax(s) = f(k(s)) and the vehicle’s
acceleration a being the system’s bounded input @ € [apin, @max |- The motion
of the autonomous car on its path can be described by a set of linear, differential

equations:
s 10 If]s +
| 10 0]s

Along the given path r( exists a finite set E of events e; that are described

. A es es @i e
by 4-tuples: e¢; = (zstm,tend, 50" start 50.en d).

(1)} a. 3.1

The event e occupies the lane

€i
for a time interval [z} .25} | at positions [so’smrt, 50 en d] These events must

not intersect with the position s of the autonomous vehicle at any time. In
addition, a finite set L of traffic laws /;(s) is imposed along the road and limits
for example the absolute velocity. The goal of the driving strategy is to generate
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an optimal behavior in longitudinal direction, represented as trajectory. This
may be formulated as the following combinatorial optimization problem:

Ihor

a(r) = argmin " J(s,5,5,k(5), E, L). 3.2)
a(t) 1o

As this problem does, in general, not only have one global minimum but
different local ones (i.e. different maneuvers) as well as various constraints
(e.g. speed limits), it is a constrained non-convex problem.

The task of the behavior planner is hereby to find a global optimum, i.e. a long
term solution (#,,; > 10s) for the combinatorial optimization problem. The
reference solution is then provided to the trajectory planner presented in [112]
and executed in a jerk optimal way. This combination of a global and a local
planner is described in section 1.5 illustrated in figure 1.13.

3.3 Approach

This algorithm plans global optimal behavior that consider traffic laws, long
term comfort and human driving conventions.

The corresponding optimization problem is formulated as a global, discrete
planning problem [61] and solved with an A* graph search [86]. The state
space X C R3 describes only the configuration of the autonomous robot. This
is sufficient as the problem is solved online and because the other agents are
predicted independently and because possible future measurements are not
taken into account. Therefore, the state is described by x = [s,v,¢t]T € X,
with s being the longitudinal position along the path, v being the longitudinal
velocity and with ¢ being the the corresponding time. The search graph is
expanded online by use of a set of discrete set of actions A, used for a sample
time of Af. As no states with a negative velocity, v; < 0 are considered, the
result is a directed, acyclic graph.
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Figure 3.1: Idea: The algorithm maps a typical urban traffic scene (top figure) into a spatio-
temporal cost map (bottom figure) along the planned path of the autonomous car. The
objects of the traffic scene are represented as constraints in the free space of the cost
map. This allows to find a global optimal behavior while respecting various events
simultaneously (graphic from [121], ©2016 IEEE).

3.3.1 Transition Model

The discretized state transition from a state x to the next state x’ is formulated
as

1 [t aco o]°] L2
1%
X=l=lo 10 o[+ ar |a (3.3)
t OOIAt1 0

with a being the action of the autonomous car, i.e. the acceleration, selected in
state X and executed for At.
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3.3.2 Cost Function

The step cost J(x,a,X’,E,L) is the cost for taking action a in state X to
traverse to state x’. The total cost of a trajectory is the sum of all intermediate
costs [86, p. 68], s.t.

Xgoal

J(&) = Z J(x,a,x'E,L). (3.4)

X=Xstart

The goal is to find the path from the start state to a goal state with minimal costs.
A sum of different costs terms is used to describe the different optimization
objectives:

J(x,a,x",E,L) = Jy(x',L) + Ja(a) + Jg(x, X", E) (3.5)

with Jyv(x”) being the cost for any deviation to the desired speed, Ja(a) being
the cost for taking action a and Jg(X, X’, E) being the cost for a collision while
traversing from x to x’.

Action Set

The discrete set of actions A represents different accelerations during a discrete
planning step A¢. Punishing accelerations quadratically reduces the duration
and intensity of acceleration which increases the driver’s comfort. Therefore,
the acceleration costs are defined as:

Jala) = a*. (3.6)

Reference Velocity

A so called reference velocity is defined to guide the autonomous vehicle to
drive with appropriate velocity. Therefore, a desired speed vqes(s) is defined
along the planned path, ry, of the autonomous car. The desired speed at
position s is the desired speed under the assumption that no events exist. It
is a combination of the current legal speed limit vi,y(s) and veyeve(s), i.e. the
limit introduced by the road’s curvature. The maximum curve speed veyrve iS
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defined as in [56] via a maximum allowed lateral acceleration, a;4¢ max., in the
curve which is defined by its curvature «(s) along the path of the autonomous

vehicle:
aj. R
Veurve(S) = ﬂ a:;(c;)rve . (3.7

The desired speed is retrieved by applying a smoothed curve approach filtering
to the minimum of the different velocities:

Vdes($) = Min(viaw (), Veurve (5))- (3.8)
This is shown in figure 3.2.

The velocity-dependent costs, Jy, are defined by the deviation to the desired
velocity vges. Too high velocities are punished quadratically, too low velocities
are punished linearly to allow lower velocities during decelerating upon events
(as red traffic lights). Jy(x;+1) is then defined as follows:

(V’ - Vdes(sl))z’ v > Vdes(s/)
(s =10, V= vaes(s”). (3.9)

%(Vdes(sl) =V, V< vges(s”)

This is done for curve approaches but not for curve departures. This is the case,
as the approach phase helps the algorithm to converge faster at these points.
When leaving curves, the delta to the desired velocity automatically draws the
velocity to the desired velocity.

Representation of the Environment

Along the path, there may be merging/crossing cars, traffic lights and crossing
pedestrians. Independently of their different causes of existence and type, a
behavior planner must incorporate all events in the decision making process.
The idea of this work is to present a very generic event definition, capable
of presenting arbitrary scenarios along the road. The set of existing events is
defined as E = {ey,en,...,er}. A set of events may consist of different types
of events such that E = Eg U Ep U E4 with Eg and E 4 representing events with
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Figure 3.2: Along the path 7y, the desired velocity is limited by speed limits and the curvature.
The desired velocity is retrieved by smoothing the jumps to lower velocities with an
approach deceleration (graphic from [121], ©2016 IEEE).

a constant position/area on the path ro and Ep events with a time-dependent
position.

A static event eg prohibits the autonomous vehicle to traverse a certain position
s on its path ry at a certain position during a time interval [755,.755 | and can
therefore be defined with the 3-tuple

_ es es e
es = (1550105 5°%). (3.10)

Dynamic events on the other hand have a time dependent position such that
s = f(r). In addition, a specific dynamic event ep has a defined length
of the corresponding object, /°P, and therefore a plane in the position-time
dimension of the state space X (see Fig. 3.1). It also allows for the definition
of a following distance d“”, which defines a spatio-temporal cost map M“?,
to realize a smooth following behavior of the autonomous car. The cost map
MeP is realized as an increasing linear function, defined by s¢? (¢), d°P,[°P in

. €D.i eD,i
the interval 71,7, "]
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Therefore, the dynamic event is defined as the 5-tuple

ep = (zeD 1 seD(t),deD,leD). G.11)

start’ “end’

Area events are defined as a conditional spatial cost map. They get activated
when the autonomous vehicle is in the area and v = 0 holds. Therefore, they
are only defined by a spatial tuple, such that

ea = (sft;‘rt, S:Ifd). (3.12)
The total event-based costs are defined as

JE(X, X" E) = Jgg (X, X") + Jg, (X') + JE, (X))

= D T X+ 3 ey (X)) + Y ey (X))
Es

Ep Ea
with

—
I = {00, ifxx’'Nes #0

es 0, otherwise
and (3.13)
00, ifx’ € ep
Jop, = 4 MP(X), ifx" € M°P,
0, otherwise
and
. e e
g, = Carea, 1fS € [sst;‘n, serf‘d] Ny = O‘
A 0, otherwise

—
The motion primitive connecting x and X’ is defined as xx’. Allowing the ego
to stop on an area can be balanced with the area costs, Carea.

The various, different event types define interfaces which allow to frame rel-
evant things along the road as events. This enables easy extension of the
behavior planner as extending simply means to frame a new event as one of
the different event types and add it to the cost function. The behavior planner
will immediately respect the new event and consider it in the combined deci-
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sion making process. Hence, adding an event is completely independent from
the other events. This limits the complexity of the algorithm from a design
perspective as every event may be considered and added independently of the
others.

Modeling of Traffic Lights as Dynamic Events

The decision making and speed adaptation at traffic lights motivated different
other publications [72,56,63]. Therefore, the representation of a traffic light as
static event is demonstrated. The interval [tf[jn t;fd] defines the forbidden (red
phase) time interval, while s° is the position of the traffic light. If no further
CAR2X information is available, the current green and red phase is assumed to
last forever. During a yellow phase, the legal length of the yellow phase is used
to predict the traffic signal switch, such that g5 is the predicted start of the
red phase and t:nS ', is set to infinity. That way, the algorithm implicitly handles
the decision to pass or not to pass a (recently switched) traffic light. While
the algorithm’s event is therefore independent to potentially available CAR2X
information that information can be easily added if available by a different

event handling.

Modeling of Leading/Merging Vehicles as Dynamic Events

A dynamic event ep, which is in front of the autonomous vehicle is parame-
terized by the 5 tuple (teD P, 5P (1), d°P, leD) . As the focus of this work is

start> “end’

on the planning algorithm but not on predicting the longitudinal behavior of
other vehicles, the velocity of dynamic events is assumed to be constant (i.e.
a constant velocity prediction). Nonetheless, a better prediction function can
be easily included by replacing the linear function s°2(f). In addition, lane
changes (onto the path ry) are predicted with a simple rule-based classifier
based on a threshold concerning the other vehicles lateral position and lateral
velocity. The time interval [152,,22 | of the corresponding event is set ac-
cordingly. Such an intention estimation enables foresighted decision making
in terms of early reaction to the planned trajectory of the other vehicles.
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Modeling of Crosswalks and Intersections as Area Events

Area events are used to allow the autonomous vehicle to cross certain areas,
but to prohibit the autonomous vehicle to enter certain areas when they cannot
be left again. This may be the case when the path of the autonomous vehicle
lies on an oncoming/crossing lane (e.g. in the case of overtaking/intersection
crossing) or on a zebra crossing.

3.3.3 Domain Specific Heuristics

The A* algorithm uses a heuristic to speed up the graph search by truncating
non-promising branches early (see Alg. 1 for details). Such a heuristic must be
admissible (underestimate the real costs) and consistent (the heuristic must be
monotonically decreasing along a path to the goal). The idea of this work is to
use the concept of Inevitable Collision States (ICS) [31] as a heuristic. AnICS
is a state from which at least one collision is inevitable in the future given the
available system input. When a new state x is generated, it is tested for being
an ICS. If this is the case, the remaining estimated costs are at least the collision
costs. By setting the heuristic value of the state, 4(x) to the collision costs,
an admissible and consistent heuristic is found which furthermore allows to
react to upcoming events which are currently ahead of the currently expanded
graph depth or even the planning horizon itself. In the case of a movement
in a one dimensional direction, the test for an ICS can be done analytically
and is therefore fast enough to be used as heuristic. Formally written, a newly
expanded state x may be labeled as an ICS if and only if

1
Vaeﬂ,E!eeESUED:{s+v~t+§at2|te[0 o[}ne#0. (3.14)

The concept is demonstrated for static events in Fig. 3.3.

3.3.4 Goal State Formulation

A state x is defined as a goal state x¢ if 7 = for as done for MPC approaches
[60]. This ensures a constant behavior length in the time domain. Setting the
goal state condition to a more complex equation, advanced problems may be
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Figure 3.3: Analytic calculation of the Inevitable Collision States [31]. The plot shows the potential
trajectories with maximum acceleration/deceleration for the two different states x| and
xo with vi > v;. If a collision is inevitable, the heuristic of this state may be set to
oo, It can be seen, that a collision cannot be avoided for x;, while the static event can
be avoided for state xj. Therefore, 2(x;) = 0 while h(x;) = co (graphic from [121],
©2016 IEEE).

tackled. The behavior planner may be used for example for gap approaches for
lane changes as demonstrated in successive work of this algorithm [113].

3.3.5 Implementation

As the A" planner considers only one simple prediction for the surrounding
traffic, it must run with a higher frequency to reactively account for sudden
changes in the environment. Therefore, the behavior planner is set to a re-
planning frequency of 10 Hz. As the behavior planner shall only provide a
reference solution for the trajectory planning layer, the step size is chosen in
a coarse way of At = 1s to allow for a long planning horizon of #,,, = 13s.
The set of actions A is A = {-2,—1,0,1}. It is important that the behavior
planner generates consistent behavior. Therefore, instead of planning from the
actual, measured state xpyeqs(fo) the currently desired state, retrieved from the
previous planning step, xqes(fo) is used as the start state xg, (see section 2.4.6).
Furthermore, to fulfill Bellman’s Principle of Optimality in a discrete planning
problem, the actions must be sampled at the same absolute points in time. This
is impossible when sample steps of Az = 1 s are used with a planning frequency
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f = 10Hz. Therefore, the first planning step is not executed with a length of
At but with the temporal difference to the last solution’s second state.

To prevent the generated graph from expanding too many nodes, only the
cheapest state of two very close states is expanded. This is a similar approach
as done for the Hybrid A* planner [73]. Closeness between state A and B is
defined by

(ta —tg)* + (sa —sp)* + (va—vp)* < L. (3.15)

3.4 Results

The behavior planner is implemented in the software framework for automated
driving which is used at the BMW Group for research and development. It is
tested in a complex simulation scenario which allows to show the capabilities
of the planner.

3.4.1 Performance

The algorithm’s performance is evaluated on a simulated round course con-
taining four different intersections with traffic lights, various road curvatures
and randomly generated traffic. The system runs on an Intel Core i7-4900MQ
CPU at 2.8 Ghz. The runtime of the algorithm depends strongly on the length
of the planning horizon f,,; and the micro traffic situation, i.e. the number
and configuration of the different events. Therefore, the worst-case runtime is
approximated empirically by running many simulations in an urban scenario,
using different planning horizons. Figure 3.4 shows the runtime for a worst
case scenario during driving on a evaluation circuit with four traffic lights and
intersections. The average runtime is lower than the worst-case runtime by
a factor of 10. While this gives an idea of the runtime of the planner, more
efficient implementations exist.

3.4.2 Qualitative Simulation Scenario

To evaluate the different capabilities of the algorithm, a complex situation
is set up and evaluated in a simulation run. The situation with its recorded
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Figure 3.4: Empirical worst-case performance of the algorithm for different planning horizons #yq,
during the simulation of the round course scenario (graphic from [121], ©2016 IEEE).

data is shown in figure 3.5 and described in the following. The autonomous
car drives along a road, when another agent cuts in before it (Sit. 1). The
other car is predicted to enter the autonomous vehicle’s lane in two seconds.
Adding this cut-in action as a dynamic event allows the autonomous vehicle
to react anticipatory and cooperatively by starting to decelerate already before
the other car enters the lane. Subsequently, the autonomous car follows the
other car with ACC behavior, realized by the spatio-temporal cost map. At
(2), the autonomous vehicle starts to brake upon a red traffic light, which is in
front of the vehicle running ahead. At (3), the traffic light switches from red
to yellow and the forbidden passing time (ongoing yellow period) of the traffic
light is predicted to last for another second. In addition, it is detected that
the preceding vehicle changes its lane to the left and it is predicted to actually
leave the lane in two seconds. It can be seen in figure 3.5b, how the driving
strategy optimizes its behavior over these different events. While the vehicle
ahead is braking during its lane change, the autonomous vehicle already starts
to accelerate to vges as it incorporates the prediction of the vehicle in front
(when it will leave the lane) and that the currently red-yellow traffic light will
have switched at arrival time. It can also be seen, that the maximum velocity
is constrained by the slight road curvature, such that vges is lower than viuy.
In this situation, the algorithm optimizes its behavior under consideration of
other vehicles, a currently switching traffic light and the road’s curvature.
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(a) Snapshot of situation 1: A cut-in is detected by ~ (b) Snapshot of situation 3: The traffic light ahead

the autonomous car. The time of the entering the switches from red to yellow. Therefore, the
autonomous lane is predicted and allows for a current red-yellow phase is predicted to last
foresighted reaction. for one second (duration of red-yellow phase).

As the vehicle ahead is predicted to leave the
autonomous lane in 4 seconds, the autonomous
car can start to accelerate.

Figure 3.5: Overview of the driven trajectories of the simulation scenario, described in section 3.4.2
(graphic from [121], ©2016 IEEE).
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3.5 Summary

This chapter demonstrates how a global, open loop planner can be used for
implicit decision making for autonomous driving. Furthermore, it is shown
how the provided reference trajectory of the global planner can be used for the
parameterization of a local trajectory planner. The introduced global planner
is able to consider various events and provides an optimal solution accord-
ingly. Generic interface formulations for so called static, dynamic and area
events allows for fast and simple extension of the algorithm to consider more
incidents on the road. Although deterministic interaction could be considered
in the framework, interaction as well as uncertainties are not modeled in this
approach. The presented algorithm is only able to handle deterministic pre-
diction(s) of the surrounding traffic but may reach its limits for scenarios with
many agents, very uncertain prediction or required interaction. Nonetheless,
this algorithm can be succesfully used for motion planning in the presented
urban scenarios. This is, as fast replanning behavior may also allow to solve
complexer scenarios including interaction and uncertain prediction. Addition-
ally, this algorithm will serve as a heuristic for the probabilistic algorithms,
presented in the next chapters of this thesis.
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Intentions of Crossing Traffic

The open-loop behavior planner in chapter 3 transfers traffic rules and the
predicted behavior of other agents in the environment directly into a spatio-
temporal cost map. That planner considers only the most likely prediction of
every agent and does neglect the information of possible future observations.
The uncertainty in the prediction is addressed by frequent replanning. This is
possible if the various possible future scenarios do not differ heavily (e.g. ACC
scenarios).

Figure 4.1: Visualization of the closed-loop, online algorithm: The planning algorithm approxi-
mates the optimal policy on a receding horizon for the most probable future scenarios
online. The optimal policy 7* is shown in blue, plotted with its velocity over the
longitudinal distance. The policy branches for cases where different, possible, future
observations lead to different optimal actions for the autonomous car. It even finds
behaviors for the different homotopy classes automatically. The other vehicles follows
one of two possible paths (drive straight, turn right) and are modeled with interactive,
probabilistic driver models.
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In urban environments on the other hand, the manifold of possible paths of the
other vehicles (i.e. intention uncertainty) is larger due to a road topology with
splitting/joining/crossing road elements (e.g. at intersections). Additionally,
sensor and model uncertainty create even more possible predicted trajectories
in even different homotopies (pass before or after). Moreover, the uncertain
interactive nature of the agents must be modeled to account for the inter-
relationships between the actions of the agents. A summary of all these
uncertainties is displayed in figure 1.3.

Extending the idea of the A* planner in chapter 3 by simply adding every possi-
ble maneuver in the spatio-temporal cost-map would lead to very conservative
behavior or even standstill [103]. This is the case as the autonomous vehicle
plans a trajectory which avoids every possible future trajectory of the other
agents. In the worst case, the only safe trajectory is standstill.

To overcome this drawback, this chapter presents a problem formulation as
global, closed-loop planner on a receding horizon. A POMDP is used to
formulate the problem due to its generic nature (see section 2.3 for the formu-
lation). The solution to a POMDP is an optimal policy instead of an optimal
trajectory which optimizes the expected reward, starting from an initial belief
state. It contains reactive plans for possible, future observations. A path-
velocity decomposition is used to design a longitudinal planning problem. The
capabilities of the planner are demonstrated for the crossing of intersections
with a various number of other agents and road geometries.

The key contributions of this chapter are as follows:

. consideration of uncertain driver models and uncertain intentions for
other agents

. consideration of interactive behavior of the other vehicles
. explicitly take possible, future observations into account
. online optimization of a closed-loop formulation on a continuous state

and belief space

. combination of MCTS with a deterministic A* roll-out heuristic for fast
convergence to the optimal policy

This chapter is based on and was previously published in [122, 124, 129].
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4.1 Related Work

Low-level motion planning approaches separate the problems of planning and
prediction and consider uncertainties most times only in a limited way. These
simplifications are done to allow to formulate the problem in continuous time
with continuous actions. Hence, it is formulated on a state space of higher
dimension including e.g. derivatives of acceleration and velocity of steering
angle [38]. This allows to plan a very smooth, continuous trajectory which is
e.g. jerk optimal [112].

In the following, algorithms which do respect uncertainties and/or interaction
are reviewed. The focus is strongly on algorithms in the context of intersection
crossing of autonomous vehicles.

Uncertainty

One possibility to integrate the controller uncertainties directly in the con-
troller itself is demonstrated in [66]. By using a stochastic MPC with chance
constraints, the execution uncertainty of the robot may be directly considered
in the controller.

The well-known sampling-based RRT* algorithm is extended in [7] to include
localization and controller uncertainties via a Gaussian belief space.

The authors of [24] build so called risk maps with the existence probabilities
of other vehicles given their potential future maneuvers. Then a trajectory is
planned on the combined risk maps, which therefore reacts to the most probable
case. In a second step, the generated trajectory is extended with branching
back-up trajectories for the case that improbable scenarios are happening.

Interaction

Interaction can be modeled as a multi-agent planning approach [90]. By
preselecting a discrete set of possible, collective maneuvers, each problem can
be formulated as QP problem and solved via a MIP. The maneuver of the other
vehicles is unknown but tracked with an Interacting Multiple Model (IMM)
filter.
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In [118], a reactive model is integrated in the prediction model of the other
drivers. The variational problem formulation is extended with a dynamic
programming approach over the possibly interacting trajectories. This allows
to consider interaction while using a variational formulation.

Belief State Planning with a POMDP

A popular formulation of a belief state planning algorithm is a POMDP (sec-
tion 2.3). This is because its generic formulation allows to describe com-
binatorial optimization problems with state and model uncertainty, while no
limitations on the transition function exist. Nonetheless, this generic formula-
tion makes it also difficult to solve. Therefore, it is often solved offline. In [92],
the merging at a T-Junction is formulated as a Mixed Observability Markov
Decision Process (MOMDP) on a discrete action and observation space. A
simple behavior model is used for the other agent, based on their intended route
at the intersection and the level of aggressiveness. The authors demonstrate
promising results for one real-world scenario.

While these results are promising, offline approaches do not generalize well
for complex scenarios with a variable number of agents and lanes (see sec-
tion 2.3.4). In [5], a similar scenario to the one presented in [92] is shown and
solved online with the MCTS based solver Partially Observable Monte Carlo
Planning (POMCP). While the state space and action space is discretized,
promising results are shown for various planning problems in environments
with dynamic agents.

The authors of [4] use a online POMDP for the navigation in environments,
densely populated with pedestrians. They represent the unknown intentions of
the pedestrians as latent variables in their belief state. As they are operating at
low speeds, a safe state can be reached very quickly.

The complex POMDP model is simplified in [32] by having a discrete set of
policies instead of actions for the other vehicles as well as for the autonomous
vehicle. A Bayesian model and the Viterbi algorithm are used to calculate the
belief state over possible policies of the other agents onlineThe policy for the
autonomous vehicle is then selected by the expected reward of each policy,
given the most probable policies of the other vehicles.
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Figure 4.2: A typical urban intersection with the autonomous car Ny driving on path r and one
oncoming vehicle N1 which may intersect with ry (graphic from [124], ©2018 IEEE).

The authors of [15] demonstrate an online POMDP planner for intersection
scenarios. They track the belief state with an IMM and describe the behavior
of the other vehicles with two possible models: constant velocity or constant
acceleration. The other vehicles are modeled to switch their model with a
certain probability. The problem is modeled on a continuous state space
with continuous actions. The performance of the POMDP is nonetheless
constrained by the simple motion models of the other vehicles.

4.2 Problem Formulation

This work focuses on the online decision making for the ego vehicle, i.e.
the generation of a sequence of desired accelerations ay = (af)o,a(’)‘,a(’f,. o),
e.g. for traversing an unsignalized intersection with an arbitrary layout and
a variable number of other traffic participants with unknown intentions and

probabilistic motion models.

The path of the ego vehicle pg is assumed to be collision-free regarding static-
obstacles and is either generated by a path planner a priori or simply retrieved
from the road geometry of a given map. In a second step, the longitudinal
velocity is planned along pg. This practice is referred to as path-velocity
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decomposition in the literature [48] and reduces the trajectory planning problem
to a one dimensional workspace.

The environment is populated by a set of agents N = {Ny,...,Ng}, with
K € Ny and the ego vehicle Ny. Every other agent Ny, with k € {1,...,K},
has a set of future path hypotheses. The path of the ego vehicle, ry, and all
other path hypotheses are retrieved from the topological map R, defined as
R = {ro,r1,...,m}, with I € No, r; = {qi 0qi.1,- - -»qi.7-19i,7 } for i € {0,,1},
j€{0,...,J} and J € Ny, and ¢; ; € R? being the position of waypoint j of
route i. Every agent Ny is assumed to drive on a certain route on which its
motion is described by v (¢) € [0, vpax] for time 7 € [0, c0). For every agent Ny
a set of possible path hypotheses is defined as P, C R.

As the various route elements may intersect with each other, an intersection
function c(r;, r;) is defined as

Lifrinr 0
=1 T Geqo. i # ). 4.1
0, otherwise

The different paths are retrieved from the road network and may therefore
be referred to as routes. An example of this route definition can be seen in
figure 4.2.

Given the uncertainty about the movement of the other cars, the autonomous
vehicle has to continuously choose an optimal acceleration ¢* to maximize the
expected, cumulative discounted future reward:

itht|X0

t=0

. 4.2)

a* := argmax E
a

The reward may take into account collisions, the total acceleration (provid-
ing comfort) and the deviation to a traffic-law and curvature based reference
velocity
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4.3 Approach

This chapter describes the algorithm to generate an optimized policy for the
autonomous vehicle online. The main focus is hereby that it takes the uncertain
future behavior of the other vehicles into account. The approach describes the
road layout in a generic way and can therefore be used for arbitrary intersections.
An external prediction algorithm is not needed as the other agents are simulated
stepwise ahead as part of a forward simulation. Various models are used, one
for each of the different possible maneuvers. The models contain interactive
behavior which allows the planning of complex and interactive maneuvers
for the autonomous car. To reduce the dimension of the state space and to
simplify the representation, possible path hypotheses acite generated for the
other vehicles. The path hypotheses are extracted from the topological map.
This allows a low-dimensional, compact agent representation with the path of
the other agent as hidden variables (figure 4.3). The configuration of the other
agents can then simply be described in longitudinal direction on their path.
The problem description from Section 4.2 is formulated as a POMDP to allow
for the representation of state uncertainty (belief states) and model uncertainty.

The POMDP problem formulation is solved online with the library TAPIR,
which is an implementation of the sampling-based ABT algorithm (see [50]).
Because the utilized ABT algorithm samples multiple episodes to approximate
the solution, the model properties of the POMDP (e.g. probability distribu-
tions) do not need to be specified explicitly but as a generative model. As
previously presented in the longitudinal planning approach in the authors’
previous work [121], the algorithm provided here solves the motion planning
problem in a coarse way on the behavioral layer (see [102] for the definition).
The solution is an optimized policy. Parts of the policy are then provided to
the trajectory planning layer for smooth execution.

4.3.1 State Space

The motion models of the different agents are not independent, as interactive
behavior is represented in the forward simulation. Therefore, all agents are
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represented in the state space. A certain state X € X is defined in continuous
space as

X = [X0, X1, X2, .., Xk]" (4.3)

The state of the autonomous car is represented by X and the surrounding
agents are represented by xy,k € {1,...,K}. The configuration of all agents
is described by their longitudinal position s on their path p; by use of the
Frenet-Serret formulas.

The state of the autonomous car is thus defined as
_ T
Xo = [0, vo] 4.4)
and the state of the other vehicles is

Xk = L5 vispi] T 4.5)

The path pi defines the latent variable which cannot be measured directly
but only inferred over time. Nonetheless, a discrete set . of potential path
candidates is retrieved from the topological map for every vehicle N;. The
notation of the state space is illustrated in Figure 4.3.

4.3.2 Action and Transition Model

A simple physical transition model is used instead of more advanced kinematic
models as the planning problem is solved on the behavior layer. The transition
model of the other vehicles is a discrete time physical model with a step size
of At:

si] [1 A O se]  [4(Ar)?
vil=|0 1 Ofwi|+| Ar |ak.ke{0,... K} (4.6)
Pl 10 0 Tfpk 0

As mentioned in Section 4.2, the path of an agent is assumed to be constant,
such that p; = pi. It represents the hidden state which is not dynamic. The
acceleration ay is retrieved from a car-following model (Intelligent Driver
Model (IDM) [104]) which also respects reference velocity, vf, Which is
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Figure 4.3: Visualization of the definition of the state space (graphic from [124], ©2018 IEEE).

retrieved by constraining the lateral acceleration (as shown in section 3.3.2).
The IDM is extended by adding an interaction-based acceleration ajn,:

03, ife(rk,r0) = 0,

o L@
-1.5 s 1fc(rk,r0) =1A (tc,k - tc,O) S [1,5]

Aint,k =

Assuming a constant velocity v, #. x is the time needed by agent & to reach the
conflict point where both paths intersect. The interaction based acceleration is
an empirically chosen heuristic value, but could also be learned from training
data or be a probabilistic function.

The acceleration is also constrained by a maximum acceleration amax. The
acceleration of the other vehicles is additionally perturbed by use of Gaussian
noise to represent the model uncertainty. Nonetheless, precise motion models
(either learned or tuned) are favorable to keep the variance low. This is the
case as a high variance leads to a high degree of uncertainty of the future
position/velocity of the other vehicles, which may lead to a more conservative
policy. The resulting total acceleration for every other agent is therefore:

ai = min(aref,k + ding,k» amax) + N(O, 0-2)- (4.8)
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The transition model of the ego vehicle is defined in the same way as for the
other vehicles in equation (4.6), except that its path must not be incorporated
in its state. This is the case as the autonomous vehicle has only one path,
calculated a priori.

4.3.3 Reward Model

The reward R(x,a) model is defined as follows:
R(X,a) = Rcoll(X) + Rvel(X) + Racc(a)- 4.9

The term R, punishes a collision with a high negative reward. The second
term, Ry(x), punishes the deviation to a reference velocity (defined as a de-
sired velocity on a road without vehicles, see section 3.3). It is defined as,
Ryel = =Kyt (Veer — VO)z,ifVO > Vet and Ry, = =K, _(Vret — v0),ifvo < viet. By
quadratically punishing too high velocities, the ego vehicle is more unlikely to
clearly overshoot the desired velocity. Punishing lower velocities in a linear
way motivates the planner to drive with the desired velocity but allows for
slower solutions (e.g. because of a temporarily occupied lane). The third term,
R, punishes accelerations to avoid unnecessary reactive behavior.

4.3.4 Observation Model

An observation o € O is also defined on the whole state vector, with
o = [og,01,...,0x]". (4.10)

The observation of the autonomous vehicle is defined as oy and the observations
of the other vehicles are defined as o with k € {1,...,K}.

The state of the autonomous vehicle is considered as fully observable and
therefore the state and the corresponding observation is equal:

00 = [s0,vo]". 4.11)

The possible route of the other vehicles is not directly observable. There-
fore, neither the route, nor the longitudinal position on the (unknown) route
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can be measured. Instead, the longitudinal position is transformed to global
coordinates which are used as observation, s.t.:

ok = [Vie, Xt yie] - (4.12)

The ABT algorithm solves a POMDP formulation by generating the be-
lief tree via sampling of possible episodes. Hereby, the observation model
Z(o,x’,a) = P(o|x’,a) does not need to be given explicitly but possible obser-
vations must be sampled when episodes are generated.

The path py of another vehicle Ny is generally unobservable. After generating
a new state with the transition model xl’( = [s,’(,v,’(, p,’(] T this state is used to
generate the corresponding observation. By using the unambiguous trans-
formation W Ty, a possible future observation following the new state can be

W
created: [s7,v/,p’] — [V oo X Vo] (see Figure 4.2). Comparing the
real, measured observations with the previously generated observations will

allow to infer the hidden state over time.

Additionally, observation noise is embedded in the model. Instead of simply
adding Gaussian noise to the deterministic observation which is retrieved from
the new state X', the uncertainty of the perception concerning the lane of the
other vehicle is included. The perception of the other vehicle is normally
tracked and probabilistically mapped on a certain route. This uncertainty
is modeled with the probabilities from a Bayes classifier. It simulates the
uncertainty concerning the tracked route of another vehicle in future time
steps. The Bayes classifier uses a 2-dimensional feature vector f; (velocity
and position based, see Figure 4.4) for vehicle Ng, that can be generated from
the observation space:

Jien
fie= [fk 2]

The probability of vehicle Ny being on a certain route r, P(py = r), withr € Py
can be defined via Bayes rule as

|Vk Vref,r; (Sk)| (4.13)
“ [Xk,pred,r; Yk,pred,r; ] ”2 ’

P(r)P(fic.1, falr:
PO = rlfirs fin) = 2O ;(}Zkll ﬁf’;’;'r ), (4.14)
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qpred,ry .
\J /;
Figure 4.4: Demonstration of the distance feature f; » for the generation of the observation clas-
sifier. It is defined as the Euclidean distance between the simulated observation’s

position (Xobs, Yobs) and the assumed BEuclidean position gpred,r; given a certain path
hypothesis pj. = r; € P (graphic from [124], ©2018 IEEE).

With the assumption that every route has the same a priori probability, s.t.
(P(pr=r1) = P(pr=r2) = P(pr=r3)...), the law of total probability and the
assumption of independent features, equation (4.14) may be rewritten to:

P(fi1lri)P(fi21ri)
i P(fialr)P(fialr)

P(prc = ril fi,1s fre2) = (4.15)

P(fi/2|ri) can be learned from sample data, or simply designed as done in
this work. It is normally distributed with P(fi|r;) = N(0,4.0) and P(fo|r;) =
N(0,6.0) to simulate the uncertainty of the lane object matching. The obser-
vation oy is generated for every particle based on the probability of route r;
that is sampled from equation (4.15).

4.3.5 Implementation

The POMDP formulation in this chapter is solved as described in section 2.4.
As roll-out plan, a graph search is combined with a constant velocity roll-out
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Table 4.1: Simulation parameters

c 20000  thor 8 Reon  —10000
1 K,, -100 K,_ —-100

as described in section 2.4.5. The important parameters of the POMDP are
given in table 4.1.

4.4 Resulis

This section shows the results of the POMDP behavior planner. The evaluation
is twofold: At first the convergence as well as the policies for various uncer-
tainties are shown. This is done with a simple example to show the capabilities
of the planner. As the planner approximates the optimal policy online, the
intent of the first section is to show with what probability the optimal action is
found. The second part of the evaluation demonstrates the capabilities of the
planner in full simulation scenarios for the crossing at a complex intersection.
A proprietary simulator at BMW Group is used for the simulations [39]. The
system (containing the simulation environment and the algorithm) runs on an
Intel Core i7-4910MQ CPU with 2.9 GHz for the simulation scenarios.

4.4.1 Convergence

The ABT algorithm approximates the optimal policy online by sampling of
episodes. During the runtime of the anytime algorithm (see section 2.4), the
optimal policy is constructed from the sampled episodes. In the following, it
is evaluated how well the optimal policy can be approximated for the scenario
shown in figure 4.5. The convergence rate is shown in figure 4.6 as a function
over the optimization time of the anytime algorithm. The convergence results
are shown for various heuristics to motivate their usage. The approximation
quality is evaluated with a loss function, defined as the absolute difference
between the optimal action of the ground truth and the approximated Q-value:

L(Q,0") = |0(b,a") - Q*(b,a")|. (4.16)
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Figure 4.5: The simple example scenario for the evaluation of convergence to the optimal policy.
The scenario is chosen such that the path probabilities of the initial belief are P(p; =
r1) = 0.05 and P(p; = r2) = 0.95. The initial velocities are vo = 8.6 i and v; = 8
(graphic from [124], ©2018 IEEE).

The ground-truth is generated by sampling episodes until convergence is
reached and sampling of further episodes does not lead to a change of the
policy anymore. The upper plot of figure 4.6 shows the absolute difference of
the approximated values of Q-function compared to the values of the optimal
Q-function. The plot in the middle of figure 4.6 shows the average number of
episodes which are sampled during runtime. The lower plot of figure 4.6 shows
the percentage of how likely a non-optimal action selection is. The plot shows,
that all heuristics result in a significantly reduced probability of selecting a
non-optimal action for a runtime of up to 500 ms. The reason for this, is that
the heuristics allow to steer the search in the right direction. Nonetheless, for a
longer sampling time, the heuristic approaches underperform the non-heuristic
approaches. This is the case as the heuristics underestimate the potential future
reward (i.e. potentially overestimating costs). This is especially the case for
the constant velocity heuristic. As the heuristic must present a lower bound
on the value function, the heuristic is non-optimal and prohibits exploring the
right branches in the long run. It can also be seen, that the 3-step Dijkstra
heuristic performs better than the n-step Dijkstra heuristic. This is the case as
the 3-step Dijkstra heuristic needs less calculation time, because of the smaller
optimization horizon. This allows to sample more episodes to capture the state
uncertainty, which the heuristic itself is not capable of considering.
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Figure 4.6: Comparison of the convergence of different heuristics for the scenario presented in
figure 4.5 (graphic from [124], ©2018 IEEE).

81



4 Planning with Uncertain Intentions of Crossing Traffic

In the following some additional remarks about convergence are given. The
general assumption is, that the problem becomes exponentially harder to solver
for an increasing number of other vehicles and an increasing number of poten-
tial paths, |P|. Nonetheless, as the algorithm only searches in the reachable
belief space, adding non relevant vehicles (i.e. not directly influencing the ego
vehicle’s reward) does not make the problem harder to solve. This is the case
as sampling based POMDP solvers scale with the reachable belief space and
not in general with the size of the belief space [41]. It is even noticed, that also
problems with more relevant vehicles may lead to faster convergence as the
reachable, free belief space is smaller because of the more possible trajectories
of the other vehicles. This may lead then to a smaller exploration space of
the algorithm and therefore to faster convergence. It may be summarized that
the complexity of the underlying POMDP formulations varies mostly with the
given micro traffic situation.

4.4.2 Policy Behavior Planning

The approximated policy presents an optimized behavior for various future,
possible scenarios which may arise during the execution of the policy. This is
the case, as the policy contains not only a single trajectory, but an optimized
reactive action for the most probable future scenarios. This section shows
the policies for different degrees of considered uncertainty. The policies for
the scenario in figure 4.5 are shown in figure 4.7. The other vehicle has two
possible paths to drive on (drive straight or turn right), but it is unknown at the
beginning on which of both paths it is driving. The optimal behavior of the
autonomous vehicle is strongly related to the future behavior of the other vehi-
cle. The open-loop planner (figure 4.7a) has to slow down immediately as it is
not able to incorporate future observations in the planning phase. This means,
that the planner reacts to both possible future situations simultaneously. On
the contrary, the POMDP planner (see figure 4.7b - e) for various considered
uncertainties) is able to reason about both possible scenarios. This results in
a policy that postpones the decision of crossing vs. braking to a future point
in time when more observations has been recorded. It can be seen, that the
introduction of further uncertainties (such as motion model uncertainty (fig-
ure 4.7¢), observation uncertainty (figure 4.7d) and sensor noise (figure 4.7f)
results in a more conservative policy which also contains more branches to
account for the increased number of scenarios. One can also notice that the
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4 Planning with Uncertain Intentions of Crossing Traffic

Figure 4.8: Top view of the T-junction scenario as presented in (graphic from [124], ©2018 IEEE).

introduction of the interaction model (figure 4.7¢)) allows for a less conser-
vative policy again (i.e. less braking, faster intersection approach), compared
to not incorporating interaction (figure 4.7d)). This is because the planner is
going to consider that the other vehicle is going to react on the actions of the
autonomous vehicle, given that it is nearer to the intersection.

Simulation: Merging on a T-junction

This section presents the recorded trajectories of a simulation run for merging
at a T-junction. The scenario, presented in figure 4.8, is as follows. The ego
vehicle intends to do a left turn to merge into a main road at a T-junction. While
the other vehicles on the main road have the right of way, the ego vehicle must
yield if required. The ego vehicle has to decide whether to merge before or
after vehicle N,, which is approaching the intersection from the right. While
merging before vehicle N, would be possible, an approaching vehicle from
the left (V;) makes the scenario more complex. This is because vehicle N;
has two possible options and therefore its predicted behavior is not known to
the autonomous vehicle. The options of vehicle N; are driving straight and
intersect with the autonomous vehicle or turning right without any influence
on the behavior of the autonomous car. In addition to the uncertainty of the
chosen route of vehicle N, the ego vehicle also has to consider the uncertain
longitudinal prediction of both vehicles which is realized by the interactive
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Figure 4.9: Evaluation for a T-junction scenario where vehicle 2 turns right. The upper figure
compares the different trajectories for the different planners. The lower figure shows
the path probabilities of vehicle 2, generated by the particle filter (graphic from [124],
©2018 IEEE).

and probabilistic motion model. This uncertainty is incorporated by adding
Gaussian noise on the interactive motion model (see equation (4.8)).

The upper figure of Figure 4.9 shows the driven trajectory of the autonomous
car for different planners as well as the desired reference velocity. The lower
figure shows the estimated probability for each maneuver of vehicle N,, tracked
over time. The following description of the scene follows the description in
the corresponding publication [124].

At the beginning, the ego vehicle accelerates up to the desired curve velocity
(defined in [121]). After 9 seconds, the belief for the behavior of vehicle N, is
still uncertain, therefore the planner starts to decelerate slightly to reduce the
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Figure 4.10: The figure shows the planned positions over time when the POMDP planning is
executed with different fixed probabilities and with the probability from prediction
and POMDP sampling (graphic from [124], ©2018 IEEE).

probability of a collision and to have more time to receive new measurements.
Thus, the two possible options, yielding to vehicle N or merging immediately,
are kept open for the ego vehicle. This behavior (also known as information
gathering) is the result of the policy because the observation model has sim-
ulated, that the next measurements will lead to a less uncertain belief state.
Because of the observation model, it can even infer at what point in time the
belief becomes less uncertain and approach the intersection accordingly. After
12 seconds, the prediction is precise enough such that the ego vehicle can cut
in before vehicle Nj.

For the same scenario, Figure 4.10 plots the position over time and especially
the predicted time interval during which the other vehicles occupy the areas
that conflict with the path of the ego vehicle. It can be seen that the point of a
conflict between the ego vehicle and vehicle N, is constantly postponed while
vehicle 2 breaks upon the intersection, leading to even having no conflict at all
when the turning behavior of vehicle N, becomes apparent.
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Figure 4.11: Top view of a more complex intersection scenario with three other vehicles (graphic
from [124], ©2018 IEEE).

The POMDP approach is compared to different planning algorithms with ei-
ther omniscient behavior (no uncertainty about the behavior of vehicle N;) or
conservative behavior (open-loop planner). It can be seen, that the POMDP
planner performs nearly as well (it is able to merge before vehicle 1) as the om-
niscient approach, which has no uncertainty about the future behavior of both
vehicles at all. The open-loop planner approach on the other hand considers
all possible trajectories and does not incorporate future measurements. This
results, as shown in figure 4.9, in a conservative suboptimal trajectory, such
that the ego vehicle cannot merge before vehicle N;.

Simulation: Crossing of a Complex Intersection

A key strength of the algorithm is that it can be used for various intersections
because of its generic formulation. Therefore, the performance of the algorithm
is also presented for a more complex scenario. The scenario in Figure 4.11,
contains a larger, unsignalized intersection, with in total 10 different possible
routes for the other three vehicles. The results are very similar to the previous T-
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Figure 4.12: Evaluation of the complex intersection scenario. The figure shows the planned
positions over time for three different planners as well as the predicted and actual
conflicts. The lowest rectangles represent the conflict area with vehicle Ny, the
rectangles in the middle the conflict area with vehicle N, and the upper rectangles
the conflict area with vehicle N3 (graphic from [124], ©2018 IEEE).

junction scenario. Again, the POMDP planner acts with very similar behavior
as the omniscient approach (see figure 4.12 for the trajectories). On the other
hand, the resulting behavior of the open-loop planner is very conservative as
the planner has to consider many different predictions at the same time.

4.5 Summary

This chapter demonstrates a closed-loopmotion planning algorithm for au-
tonomous driving in uncertain, urban environments. The algorithm is able to
retrieve an optimized policy online for the crossing of arbitrary intersections.
To reduce the complexity of the algorithm, the behavior of the autonomous
vehicle is optimized in longitudinal direction along a preplanned path. A set
of path hypotheses is generated for each surrounding vehicle a priori.
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The key focus of the algorithm is the incorporation of various uncertainties,
namely:

. perception uncertainty
. path uncertainty

. model uncertainty

. interaction.

The POMDP formulation is solved online by combining Monte Carlo sam-
pling (the ABT algorithm) with near optimal roll-out heuristics which can be
calculated fast at runtime. By considering possible future observations ex-
plicitly, the algorithm is able to predict in what ways the current belief state
may change in the future. This enables the postponing of decisions, such as
merging before or after another vehicle, as the algorithm is able to predict that
future observations will lead to a less uncertain prediction. The policy implic-
itly contains the different maneuvers for the different homotopy classes. It is
shown in various simulation scenarios how the algorithm outperforms simpler
approaches (namely open-loop planner), which do not consider the uncertain-
ties explicitly. The results show, that the possibility to postpone decisions
allows the algorithm to drive less conservative trajectories. These trajectories
are even similar to the ones of omniscient planning algorithms which have full
knowledge about the future trajectories of the surrounding vehicles.
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5 Coupled 2D Planning for
Interactive Merging

The algorithms in the previous chapters (chapter 3 and chapter 4) are based on
the simplification of an a priori path-velocity decomposition [48]. By planning
a path around static obstacles first, the planning problem is reduced to one
spatial dimension and therefore easier to solve due to a lower dimension of the
action and state space. This is a valid approach for scenarios where the path of
the autonomous car is independent of the longitudinal velocity (e.g. crossing
of an intersection). Nonetheless, scenarios exist, where this assumption is
not valid. This is for example the case for lane changes (see [113] for a

Figure 5.1: Visualization of the closed-loop, online algorithm: The planning algorithm approxi-
mates the optimal policy on a receding horizon for the most probable future scenarios
online. The optimal policy 7* is shown in blue, plotted with its velocity over the
itudinal distance and lateral offset. The policy contains reactive plans, depending on
different, future observations of the environment. The plans correspond to the differ-
ent, reachable homotopy classes. It can be seen, that the policy approaches the gap
and merges in case of an observed yielding behavior of the other vehicle.
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scenario overview) where the longitudinal position of the actual lane change is
dependent on the previous longitudinal velocity. This is especially important
for merging in dense traffic, where the longitudinal speed profile incorporates
gap-approach and speed adaption.

This chapter extends the algorithm presented in chapter 4 to lane change sce-
narios. It describes an algorithm which is able to execute lane changes that are
requested from the navigational layer (as described in [102]) of an autonomous
vehicle. Lane changes are necessary to follow the desired route through the
topological map, to circumvent obstacles or to progress faster depending on
the current traffic flow information. The presented algorithm optimizes longi-
tudinal and lateral planning in a combined manner. It incorporates potential
interaction with other traffic participants (their reaction to a merge attempt)
and the uncertainty of the corresponding prediction. The policy is optimized
in a closed-loop manner by considering future observations about the behavior
of the other vehicles. Especially for lane changes in congested traffic, gaps on
neighboring lanes are often small, such that planning of a collision-free merge
trajectory is not possible. Instead, the possibility to merge depends on an inter-
active, friendly behavior of another vehicle. The presented algorithm reduces
the uncertainty about the friendliness of the other drivers by approaching gaps
to gather information about their potential behavior. This allows for merging
in congested traffic where gaps of sufficient size do not exist.

The main contributions of this chapter are as follows:

. gap selection, approach and merge are combined in one algorithm and
are implicitly part of the optimal policy

. combined longitudinal and lateral optimization

. explicit modeling of the interaction with other vehicles

. trained model to predict yield behavior of the surrounding vehicles

. online optimization of a closed-loop formulation on a continuous state

and belief space

. combination of MCTS with a deterministic A* roll-out heuristic for fast
convergence to the optimal policy

The chapter is based on and was previously published in [125].
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5.1 Related Work

Lane changes can be divided in different stages which are: gap selection, gap
approach, gap evaluation and the merge maneuver into the gap. More often
than not, these tasks are separated into different algorithms instead of being
solved in one generic algorithm. While this allows for a simpler algorithm
design, it also reduces the space of possible, interactive solutions which may
lead to suboptimal behavior. It may even lead to not finding a solution at all in
critical cases. In the following, simple gap assessment algorithms are reviewed
first and are followed by various planning algorithms.

5.1.1 Gap Assessment Algorithms

The first algorithms which performed lane changes in real traffic were realized
during the Darpa Urban Challenge [20]. These approaches were rule-based
and separated the lane change into different subtasks. For example, the winning
team [107] designed an arbiter which evaluated the feasibility to merge into a
certain gap based on the velocities of the surrounding drivers, the gap size and
further metrics.

More advanced rule-based concepts go a step further and asses the utility of
different gaps. Hereby, not only the current state, but also the measurement
uncertainty as well as the predicted behavior of the other agents is used to
decide for suitable gaps. Nonetheless, the lane change itself is still separated
into a gap approach and a merge maneuver [3]. While such a utility based
approach cannot guarantee safety, other algorithms exist which can guarantee
the safety of lane changes by using verification methods based on reachability
analysis [80].

Another approach which uses a POMDP formulation is presented in [105]. The
authors design a high-level state space of eight states and account for sensor
uncertainty of the surrounding vehicles. Limiting the horizon of the policy to
two planning steps allows to solve the problem online.
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5.1.2 Planning-Based Algorithms

Next to the gap assessment algorithms, various algorithms exist which generate
a trajectory or policy to merge into a certain gap. The algorithms can be
distinguished by their capability of combined longitudinal and lateral planning
as well as the consideration of interaction and uncertainties.

Longitudinal Planning

Given a map layout in which the current lane of a certain vehicle merges
into another lane, combined longitudinal and lateral planning must not be
considered. This is the case as the spatial coordinates of the merge position
are independent of the velocity of the autonomous car but defined a priori by
the topological map (the point where both lanes start to intersect).

The authors of [27] use a Probabilistic Graphical Model (PGM) to infer from
various measurements how likely a yielding behavior of the other vehicles is.
Given the estimated yield probabilities, the algorithm selects a certain target for
a longitudinal, model-based ACC planner. In [23], the authors introduce Multi
Policy Decision Making (MPDM), which provides a fast solution fora POMDP
formulation. They use a predefined set of potential policies describing high
level maneuvers (such as lane following, merge, . . . ). By use of online forward
simulations, the value of each policy is estimated, given various potential
behaviors of the other agents. Finally, the policy which maximizes the expected
reward is chosen. The complexity of the forward simulations is reduced by
using non-probabilistic motion and observation models.

To avoid such a forward simulation, the authors of [75] use passive Actor critic
RL to learn the value function for a similar framework.

The algorithm presented in chapter 4 may also be used for longitudinal merg-
ing scenarios and allows to generate an optimal policy given uncertainty of
prediction and interaction.
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Longitudinal and Lateral Planning

A hybrid formulation for the merge problem is presented in [113]. At first, a
deterministic graph search algorithm plans a trajectory into a gap of sufficient
size while neglecting uncertainty and interaction. In a second step, an MPC
algorithm is used to optimize the speed profile in longitudinal and lateral
direction separately.

The authors of [74] use an a priori defined set of constraints to optimize a
longitudinal speed profile, by use of a QP, to approach and merge in a certain,
preselected gap. In a subsequent step, another QP formulation is used to
optimize the lateral speed profile for the lane change. Again, the formulation
does not allow to incorporate interaction and uncertainties.

The authors of [67] demonstrate how cooperative and interactive behavior may
be generated for the case of lane changes on highways. The well-known MCTS
algorithm is used to model the deterministic interaction between the various
traffic participants. The degree of aggressiveness in the interactive, cooperative
behavior is designed by weighting the costs of the other drivers in a combined
cost functional. A similar approach with continuous actions is presented
in [59]. The authors use a decoupled MCTS formulation and use guided search
and semantic actions to allow for solving the problem on a continuous action
space. While both approaches are able to model interaction and uncertainties,
hidden variables are not introduced. Therefore, the algorithms do not reason
over a belief state which also prohibits information gathering.

5.2 Approach

This chapter describes the design of an algorithm which generates an optimal
policy for the lane change problem in congested traffic. To respect the uncer-
tainty of the other drivers (uncertain interaction and prediction) in an optimal
way, a policy is generated over a belief state. To allow for actively gathering
information about the hidden states of the surrounding drivers, possible fu-
ture observations are considered during planning. This leads to a closed-loop
optimization of the optimal policy by use of a POMDP. This allows for the
generation of a behavior, in which the autonomous car approaches the most
promising gap given the current scene configuration, while already consider-
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ing various potential future scenarios (merge or abort merge) in the optimal
policy. However, using a simple vehicle model and discrete actions leads to
non-optimal smoothness of the trajectory regarding higher derivatives such as
jerk.

To address this limitation, the most probable trajectory is extracted from the
policy. This trajectory is then optimized by a sampling-based [112] or a
MPC-based trajectory planning algorithm [38], using continuous actions (see
section 1.5 for further details).

The problem is solved online with the anytime, MCTS-based ABT algorithm
(see section 2.4 for further details). The generic problem formulation as well
as the online capability allows the application of the algorithm in various
real-world scenarios.

5.2.1 State Space

To allow the modeling of interaction, the autonomous car Ny as well as the
other agents N are represented in the state space. An actual state x € X is
defined in continuous space as

X = [Xo, X1, X2, . ., xk]". 5.1)

Hereby, X represents the state of the autonomous car and Xj, with k €
{1,...,K}, represents the states of the other agents N; on the same or neigh-
boring lanes. The position of a vehicle Nj is described by the Frenet-Serret
formulas on a certain lane I at longitudinal position s, with longitudinal
velocity vi and lateral position di (see figure 5.2). The origin of the Frenet-
Serret coordinate system is located at the beginning of the next intersection
(see figure 5.2). The state of the autonomous vehicle is defined as

X0 = [s0. do, vo, lo]". (5.2)
while the other vehicles are described with

Xi = st vio I, T (5.3)
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Figure 5.2: Visualization of the dimensions of the state space of the autonomous and the other cars.
The desired lane of the ego vehicle is always defined as [ = 0 (graphic from [125],
©2018 IEEE).

The variable my describes a hidden variable. It cannot be measured directly,
but inferred via observations over time. The variable is used to describe the
friendliness of the other driver i.e. if he will react by yielding (m; = 1) to a
merge attempt or not (my = 0).

5.2.2 Action and Transition Model

The action space A is defined as A = Ajong X Ay with a set of discrete lon-
gitudinal accelerations Ajong = {—1 s%,Osmz, lsmz} and a set of lateral velocities
Arar = {—Via’y, 0%, viar§ }. A possible action of the ego vehicle is defined as
aap = [ag’long,v(),lat] . The non-holonomic kinematics (see section 1.2.2) of
the autonomous car are taken into account by constraining vi; via a maximum
side slip angle as defined in [74]:

Vit = min(0.17vp,0.5 ?). (5.4)

While the action in longitudinal direction is a discrete acceleration, the action
in lateral direction is a lateral velocity. The underlying assumption, that a
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lateral velocity may be reached immediately is valid as long as the lateral
velocity is constrained on the current longitudinal velocity.

The transition model T(x’, X, ag) of the autonomous car and the other vehicles
is defined for discrete time with a step size of At as followed for the different
dimensions:

1
s; = Sk — VAL — Eak,longAtz ke{0,... K}
v,’( = Vi + Atag long ke{0,...,K}
my = my ke{0,...,K}
1= kel,.. K}
=l +1 di + vy S x%, ke {0}
d; = diviciac + (] = k) Wiane ke{0}.

The width of the lane is assumed to be constant, s.t.Wiane(Sk) = Wiane. Further-
more, the assumption is made, that the other vehicles do not change lanes and
drive in the middle of their lane. While the action of the autonomous car, ay, is
part of the optimization problem, the action of the surrounding agents, ax(X),
with k €{0,...,K} is determined by a model, given the current state.

5.2.3 Motion Model of Surrounding Agents

For the behavior generation of the surrounding agents, the IDM [104] is used
to realize car following behavior. It is also adapted for the case of interactive
yielding.

In general, two possible behaviors must be modeled: Cooperative yielding to
the merge attempt of the autonomous vehicle or non-yielding car following
behavior. These two behaviors can be modeled by either using the preceding
vehicle as target vehicle Niger for the IDM (not yielding) or by using the
merging, autonomous car as target vehicle. If a preceding vehicle does not
exist, the desired reference velocity vx ges is approached. The reference velocity
is based on the road curvature and speed limit and extracted as described in
section 3.3.2.
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Table 5.1: IDM parameters

T 0.5s 0 4

aipm 175?2 0'2 0.1

dpm 2m AV Vi — Viarget

b —0.8822 Dk Starget + Ltarget - Sk

The acceleration Ni(x) of another vehicle Ny used for the transition model is

]_( Vi )5_(¢(vk,Avk))z} FNO,GY) (55

Vtarget Pk

Aai = dipm

and A
Vi Avy
(v, Avg) = dipm + i T + —/——. (5.6
2 aIDMb
The model parameters are the desired time headway 7', a comfortable dece-
laration b, a minumum distance dipyp, a maximum acceleration aypy and the
acceleration exponent 6.

The target vehicle Mg is set depending of the yield classification Py yielq:

NO lf Pk’ ield = 1
Niarger = peld =1 57
Nk,from otherwise

Nk front denotes the leading vehicle of vehicle Ny on the lane /; and L; denotes
the absolute length of vehicle k.

For the case of non-existing front vehicles, Equation (5.6) is set to zero. The
acceleration of the model is disturbed with Gaussian noise to account for
prediction uncertainty. The parameters for the IDM are given in table 5.1.

5.2.4 Observation Model

The variable my, is a hidden state and describes if the driver of vehicle Ny will
behave cooperative or not during a merge attempt. This variable cannot be
measured directly but can be inferred observations over time. The POMDP
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formulation allows to predict what possible future observations may be mea-
sured and in what way they are going to influence future belief states. This
enables the policy to choose certain actions which lead to more precise belief
states, a behavior known as information gathering. This means for the merge
scenario, that configurations in which the autonomous vehicle is approaching a
certain gap are preferred, as the potential interactive behavior can be observed.
Is is assumed, that there is no measurement noise and therefore the observation
0 = Z(X’,a) is defined as follows:

o = [og,01,.. .,OK]T (5.8)

with 09 = [}, dj, v, ;] T and o = [s;. v, 1] | T for ke{0,.. K}

5.2.5 Reward Model

The reward function R(X,a, X’) is the sum of different possible rewards, moti-
vating different behaviors:

R(Xv a, X/) = Rvel + Ract + Rend_lane + Rwrong_lane + Rccnter + Rcoll- (59)

The different rewards are explained in more detail in the following.

Reference Velocity

The goal of Ry is to realize a behavior which follows a certain reference
velocity, defined for each lane. The reference velocity is defined based on the
maximum speed limit, adapted by a comfortable reference speed in curvatures
including an approach phase (see section 3.3.2 for more details). The reward
is defined as:

=100 - (vrer — VO)Z LT vo > Vier

Ryel(X() = { (5.10)

—100 - (Vrer — vo) ,ifvg < Vref.
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Desired Lane

The purpose of the desired lane rewards is to motivate a lane change in general
(Rwrong_lane) and in particular when the lane is going to end (Rend_tane). The
reward for being on a non-desired lane, Ryrong_1ane(X0), is simply defined with
a negative reward of —600 if the autonomous vehicle is not on its desired lane
(Ip # 0). The end of lane reward, Rend 1ane(X0), is @ negative reward whose
absolute value increases linearly over the last 50 meters of a lane from O to
—-1000.

Lane Center

A quadratic reward on the lane center, Reeper(X0), is used to motivate the ego
vehicle to drive in the middle of the lane, with Reepter = —200 - dg.

Action Selection

To minimize the used accelerations the action of the ego vehicle has a reward

of Ryct(a) = —100 - (a(z)’long +2- |V0,1az|).

Collision

Finally, a collision reward Rcoy(X) punishes with —10° if the autonomous car
is entering the longitudinal area of another vehicle on the lane of the other
vehicle. A simple linear increasing cost map at the back of the other vehicles
is used to realize following behavior after a merge, as done in section 3.3.2.

5.2.6 Learned Yielding Model

For the surrounding agents, two possible motion models exist. Yielding to a
possible merge attempt or simply following the existing front vehicles. The
POMDP formulation is based on the definition of realistic transition models.
Therefore, the idea is to learn from recorded data what world situation is most
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' P(Nk,front = NOlfk)

Figure 5.3: The probability P(Ny front = Nolfi) for a yield of vehicle Ny for various possible
configurations of the autonomous car in the gap. The probability is drawn over feature
dy and the feature, s3 —so. The probability is also shown for three different velocities of
the autonomous vehicle vy. The other two vehicles are driving with v = vi 41 = 5%
(graphic from [125], ©2018 IEEE).

promising to see a yield reaction of the other agent. This allows that the policy
steers the autonomous car to the most promising position. A logistic regression
classifier is used to determine the probability of vehicle Nj yielding to Ny, in
a given scene, described by the feature vector f:

fi = [ L @k do, vo, sk = 50, Vis Vi tront] - (5.11)

The longitudinal position of the ego vehicle in the gap is described with s — s
and the absolute gap size @r = Sk front + Lk front — Sk and the length of the front
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vehicle as Liager. The result of the logistic regression classifier is the yield
probability of vehicle Ny for a scene described by f:

P(Nk,front = NOlfk) = 1

The vector 6 is the trained weight vector of the logistic regression model.

The probability P(Nk front = Nolfi) and a threshold probability Byielq is used
to choose the front car Ni frone Of agent Ni as follows:

Nk,from =Ny, if P(Nk,front = N0|fk) > ﬁyield Amy = 1. (5.13)

Increasing/decreasing the threshold allows for less/more aggressive policies.

The classifier is trained with recorded data of real-world lane changes. Used
training data is labeled to the two different maneuver classes, represented by
using a different target vehicle for the IDM. The feature vector f is normalized
and scaled by its variance such that every feature can contribute in the same
way. The training data contains 4847 positive data points (vehicle yields to the
merge request) and 1691 negative ones (vehicle does not yield). The accuracy
of the algorithm is 84.3% in the test set.

5.2.7 Implementation

As in chapter 4, the merge planner is solved as described in section 2.4. The
used parameters are presented in table 5.2.

Heuristic Function

To steer the construction of the belief tree in a promising direction, the value
of newly explored belief states is estimated by use of a heuristic function
section 2.4. The value estimate is obtained with a roll-out g(x) from the
current particle. The roll-out uses a near-optimal plan, generated by an A* [61]
graph search with three steps and a following constant velocity action up to the
planning horizon. This idea is described in section 2.4.
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Table 5.2: TAPIR parameters

c 20 y 1.0
thor 108 At 1s

The A* [61] search itself also needs a heuristic which is realized over the reward
Rnon_des_lane- The heuristic Apon_des_1ane presents an estimate of the future costs
by calculating how many further steps are at least on a non-desired lane:

1
hnon_des_lane =—600 - |.(|10| - 1)Wlane + Ewlane + Sgn(l())dOJ- (514)

5.3 Results

The scenarios are set up in a simulation software at the BMW Group and
the algorithm is evaluated on a system with an Intel Core i7-4910MQ CPU
with 2.9 GHz. The simulation vehicles are controlled with a rule-based expert
system [39] and not the IDM, which is used in the forward simulation.

5.3.1 Analysis of Belief State Policy

At first, a generated policy and its capability to plan closed-loop interactive
behaviors is examined in detail. The policy is shown in figure 5.4 for the merge
scenario presented in figure 5.1. The plot shows the subset of all sampled
episodes which are part of the approximated optimal policy, which considers
various possible future scenarios. The figure is split up in two parts. While the
right side shows how the belief over the friendliness of the other drivers (1
and my) is predicted to change, the left side shows the actual policy. It can be
seen, that the two maneuvers of the rear vehicle ((non) cooperative behavior)
of the gap are present in the policy. But, the policy does not only respect
the two different maneuvers but also the uncertain longitudinal prediction in
each maneuver class. Additionally, it can be seen that the policy considers the
current uncertainty of the belief and incorporates that more information will
be available in the next time step. At r = 1s the belief tree is predicted to split
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Figure 5.4: Policy of the ego car (blue) for merging onto another lane with two other vehicles (red).
It can be seen that the ego car accelerates first up to the velocity of the gap (implicit gap
approach). The policy contains two different future plans depending on the behavior
of the other vehicle. After receiving the next observation, the ego vehicle plans to
merge either before or behind the other car. The optimal policy contains 37 potential
scenarios and was optimized for 2000 ms to retrieve many episodes. The POMDP
policy is compared to a open-loop planner, which does not respect future observations
but considers all predictions simultaneously. It can be seen, that the open-loop planner
plans directly for the more conservative maneuver, i.e. merging behind Ny, (graphic
from [125], ©2018 IEEE).

in one tree representing possible cooperation and another tree representing
non-cooperative behavior of the rear vehicle (figure 5.4, right side). A non-
cooperating rear vehicle will lead to a merge behind it, while a cooperative
behavior allows the autonomous car to merge in front. The right picture of
figure 5.4 show how the estimation of m is predicted to change, given particular
actions of the autonomous car. It can be seen, that the belief of the rear vehicle
is assumed to be known in the next time step (by observing the reaction to the
merge attempt) while it is not yet known at 5°. It is also interesting to see, that
no better estimation will be available for the front vehicle, as information about
the belief state can only be gathered by approaching the corresponding gap.
As the autonomous car does not approach the gap in front of the first vehicle,
information about its possible cooperative behavior will not be gathered.
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The policy of the closed-loop POMDP planner is compared with the policy of
an open-loop planner. The open-loop planner assumes the same initial belief
state as the POMDP, but does not incorporate future measurements. This
prohibits it to take into account that more observations will be perceived which
allow to estimate the state m more precisely and to postpone the merge decision
accordingly. Therefore, the open-loop planner has to plan a more conservative
policy and merge behind the rear vehicle.

5.3.2 Online Simulation

Addtionally to the direct evaluation of the policy in the previous section, this
section shows a qualitative evaluation of the performance of the planner in an
online simulation. The online simulation is run for the scenario shown in fig-
ure 5.1 which is extended by two more vehicles, such that four vehicles occupy
the neighboring lane. Given the uncertainty in the longitudinal prediction, the
gaps are too small to allow for planning of a trajectory in one of them. The
longitudinal position of all vehicles is shown in the upper plot of figure 5.5. It
can be seen, that the autonomous car Ny approaches the gap between vehicle N,
and N3 first by approaching the longitudinal position of N3 (f = 2s — 65). The
autonomous car observes, that vehicle N3 does not start to act cooperatively
(i.e. braking to allow a merge). Its hidden state, m3 is therefore inferred to be
non-cooperative, i.e. m3 = 0 which can be seen in the lower plot of figure 5.5.
The autonomous car stops the merge attempt, slows down (see third subplot in
figure 5.5) and approaches the other gap in front of vehicle N4 (see the velocity
during the gap approach r = 35 — 9s of Np). At time r = 10s, a significant
observation is received, i.e. vehicle Ny is braking for the autonomous car. This
results in an inferred estimation of m4 = 1 for Ns. That leads to a predicted,
cooperative trajectory of vehicle Ny, such that the autonomous car starts to
merge immediately. The merge friendly behavior of the other agents may be
estimated in a discrete manner as the behavior of each maneuver class is very
different and no measurement noise is assumed. As soon as the lane change of
the autonomous vehicle has happened (r = 11s), the belief state is not tracked
anymore.

This example shows how the different phases of a lane change: decision for
a gap, approach, yield prediction and merge are handled implicitly in one
optimization problem. None of these steps is needed to be modeled in a single
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module, which is the case for the state of the art. Aside from that, one of
the key strengths of a POMDP formulation show up in this simulation. The
planner uses actions to reach positions (close to a potential merge gap), where
it can gather information about the latent states of the other agents. This allows
the planner to quickly asses the possibility to merge in a certain gap and to act
accordingly.

One can also notice, that the trajectory planning layer provides a smoother
execution of the reference trajectory, which is provided by the POMDP. This
also leads to deviations to the reference trajectory, which can be seen, e.g., for
the lateral position of the autonomous car (second plot in Figure 5.5) where the
behavior planner expects the autonomous car to enter the other lane at t = 13s,
while it already happened at ¢ = 11s due to a small offset.

5.4 Summary

This chapter presents a behavior planning algorithm, based on a POMDP
formulation, that allows to execute lane changes in densely populated environ-
ments. It is demonstrated how the different stages of a lane change algorithm
(gap selection, gap approach and merge) can be modeled in one optimization
problem. The policy is optimized in a closed-loop manner by respecting possi-
ble future observations. These observations allow to derive information about
the hidden variables of the driver models. The models respect the

. longitudinal uncertainty in the prediction
. unknown willingness for yielding.

Incorporating these uncertainties in the closed-loop optimization of the policy
allows the autonomous car to merge in (too) narrow gaps. The formulation as a
POMDP allows for a behavior, where the autonomous car approaches the gap
to reduce the uncertainty about the prediction of the other vehicle (yielding
to the merge attempt or not) by considering possible future observations.
For every possible future observation, the policy contains a reactive plan
to act accordingly. To allow for optimal approach behavior, the action of
the autonomous car is optimized simultaneously in longitudinal and lateral
direction. MCTS is used with domain specific heuristics to allow for solving
the non-convex, probabilistic optimization problem online.
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6 Planning under Sensor
Occlusions

The previous chapters demonstrate how various uncertainties can be consid-
ered explicitly during behavior planning for autonomous vehicles. For ex-
ample, the unknown intention and the likelihood for yielding/interaction of
the other drivers can be modeled as hidden variables in their motion models.
Nonetheless, these algorithms work under the assumption that the physical
state of the environment can be fully observed. This is an invalid assumption
in real-world environments as occluded objects may not be perceived.

Figure 6.1: Visualization of the closed-loop, online algorithm: The goal of the autonomous car
is to turn left at an intersection. Due to the constrained Field of View (FoV), other
potential vehicles cannot be observed. The policy is shown in blue, with its velocity
plotted over the longitudinal distance. It can be seen, that the policy contains several,
closed-loop plans (crossing or stopping) for the point of time in the future where a
sufficient FoV will exist (graphic from [123], ©2019 IEEE).
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In this chapter, the behavior planning algorithm from the previous chapters
is advanced. A formulation is presented which considers explicitly that other
agents may be occluded and that they cannot be perceived by the sensors of
the autonomous car.

Handling this existence probability in an optimal way is a non-trivial problem.
Simply using a worst-case assumption for the configuration of another vehicle
is not possible. This is the case, as the worst-case configuration of the other
agent is dependent on the behavior of the autonomous car, which is yet to be
optimized.

Standard approaches limit the longitudinal velocity of the autonomous car,
such that braking before a possible conflict point is always possible if the FoV
is not large enough at the current point in time. This results in planning of
a trajectory which leads to a stop in front of the occlusion. This trajectory
is executed until the FoV is suddenly large enough, s.t. a potential occluded
vehicle is not relevant anymore. At that point in time, replanning generates a
new trajectory which does not respect the occlusion anymore. This behavior
is rather conservative, even a full stop, the so called freezing robot is possible
(see [103]).

This chapter presents a less conservative approach. The presented algorithm
reasons over a belief state, representing the existence probability of occluded
vehicles, so called phantom vehicles. It considers occluded areas, created by
static as well as by dynamic objects. Hereby, the planner does not only con-
sider the current FoV but also reasons about the future change of the FoV. This
is done, by simulating the FoV over the planning horizon, to model at what
vehicle configurations the FoV may be sufficiently large. Such closed-loop
planning allows for behaviors which actively explore the environment to re-
duce uncertainty in the belief. Potentially existing, i.e. phantom vehicles, are
described by their reachable set instead of their configuration. This represen-
tation allows to represent an unknown number of vehicles in an occluded area
by one set. By combining the FoV simulation with the simulation of possible
phantom vehicles, the decision point in the policy can be determined.

The problem is formulated as a POMDP, which creates a policy containing
various future plans for different future observations (see figure 6.1).
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The key contributions of this chapter are as follows:

. modeling of the FoV during planning to allow for information-gathering
. modeling of phantom vehicles with their reachable sets

. evaluation in various simulations

. online optimization of a closed-loop formulation on a continuous state

and belief space

J combination of MCTS with a deterministic A* roll-out heuristic for fast
convergence to the optimal policy

This chapter is based on and was previously published in [123, 130].

6.1 Related Work

A worst-case approximation of potential vehicles in an occluded area can be
done by reachability analysis. The general idea of reachability analysis is to
describe all possible, future configurations of a certain vehicle by a set [2].
This idea can be transfered to occlusions, by describing all possible vehicle
configurations in one occlusion by one reachable set. An unknown number
of objects in one occluded area can therefore be described by one reachable
set only. By use of motion models and certain assumptions on the underlying
parameters, all future configurations of these vehicles can also be described
by one reachable set. The authors of [87] use a simple heuristic to calculate a
safety distance to the occluded areas. The occluded areas itself are calculated
by a geometric model. In [77], the authors provide a safety verification method
for planning trajectories under occlusions. Kamm’s circle [109] is used for
the physical models to define the reachable set, describing all possible, future
vehicle configurations, more exactly. The approach is evaluated with static
and dynamic occlusions at intersections. In [40], the unobservable area at the
current point in time is extracted by mapping a static grid on a topological
map. As long as potential objects are not far enough away from the path of the
autonomous vehicle, planning on that area of the path is not allowed.

The aforementioned approaches assume no knowledge about vehicles inside
the occlusions. In [33], the authors observe vehicles entering the occlusion and
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track it throughout their time of being not observable. Various potential tracks
are created when the vehicle enters the occluded area (for the different possible
behaviors in the occluded area) and tracked throughout the intersection with a
hybrid Gaussian Mixture Model. The behavior planner can therefore respect
the occluded car by respecting the various hypotheses. As soon as the vehicle
leaves the occlusion, the observation is matched on the most likely synthetic
track, using the Kullback-Leibler divergence.

The previous approaches consider occlusions by constraining the planner with
predictions or reachable sets of potentially existing vehicles. In the following,
approaches which reason over the uncertainty directly during optimization of
a trajectory are presented. The authors of [17] use a POMDP to respect obser-
vation uncertainty due to occlusions in their planning problem. A scenario-
specific discretization of the state space is learned and a policy is approximated
offline with the solver presented in [18]. The resulting policy contains infor-
mation gathering actions which decrease the uncertainty about the positions of
the other agents by optimizing the set of possible observations. It is shown that
the approach is capable of merging into traffic under existence of non-trivial
occlusions with an a priori known number of other vehicles

A POMDP formulation is used in [16] to cross occluded intersections and
zebra crossings while considering the occlusions generated by static obstacles.
The authors use a scalable approach which transfers the problem to several
subproblems, containing the autonomous car and one other vehicle. After
solving the POMDP for every subproblem, a common Q-function is retrieved
by using the sum or minimum of the different Q-functions. The authors use
a Gaussian belief over the position of occluded agents and solve the problem

offline.

The authors of [91] use a POMDP to model occlusions at intersections. The
problem formulation assumes a fixed number of agents in the environment,
including in occlusions. Raytracing is used for the calculation of the FoV,
which is mapped on a lanelet [10] representation. The problem is solved
offline with use of the ABT algorithm.

A Deep Reinforcement Learning (DRL) approach for the crossing of inter-
sections with occlusions is presented in [42]. The authors use a discretized
state space, realized as a grid with color codes as input for a Deep Q-Learning
(DQL) formulation. The results demonstrate that the network is able to learn
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explorative behavior in front of intersections. However, DRL impedes gener-
alization to unseen scenarios and suffers from approximation errors.

6.2 Approach

This chapter presents the problem formulation for online decision making for
an autonomous car under occlusions. The drawbacks of existing approaches
are overcome by combining the strengths of reachability analysis, probabilistic
reasoning and closed-loop planning. By representing occluded vehicles with
reachable sets, all possible vehicle configurations in one occlusion can be
represented by one set. The set of possibe occluded vehicles on one occluded
lane is referred to as phantom vehicle because of their uncertain existence.
The phantom vehicles are used within a POMDP formulation to allow for
probabilistic reasoning over their existence probability. Simulating the future
FoV during planning allows even for active information-gathering. Static and
dynamic obstacles are considered during the calculation of the FoV. The focus
of the approach is, that the algorithm finds implicitly an optimal behavior for
the handling of occlusions.

6.2.1 State Space

The problem is defined with a state space that is a composition of the state x¢
of the autonomous car Ny, the states x; with k € 1,..., K of the surrounding
vehicles Ny and the states x; with [ € [K + 1,. .., L] of the so called phantom
vehicles N, i.e. possibly existing vehicles in occlusions. As it is infeasible to
describe all possible vehicle configurations in occlusions by particular states,
the idea is to describe all possible configurations on a occluded lane by one
set. This set can be described for the longitudinal modeling as one phantom
vehicle with infinite length and a certain maximum velocity (see section 6.2.3
for more details).

The state of the environment is described as

X = [X0y X1y v s KK Xl e XD 6.1)
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with the state of the autonomous car defined as
T
Xo = [s0.do, vol (6.2)
and the states of the other vehicles as

X = [siovio pil T (6.3)

and the states of possible phantom vehicles as

x1 = s al” (6.4)

The autonomous vehicle Ny follows a path pg which is generated collision-free
regarding static obstacles and is either generated by a path planner a priori or
simply retrieved from the road geometry of a topological map, s.t. po = ry (see
section 2.5 for an introduction to the path-velocity decomposition). The other
agents drive on a certain path p; which is extracted from the road Topology
R, st.pr =1, € R ={r,...ry} for I € N. Agents are described by its
longitudinal position s and its absolute velocity v in the Frenet frame on their
path p. The velocity of the phantom vehicles is not part of the state space
as they are assumed with a certain maximum velocity. The variable g is a
boolean, indicating whether there is a car in the occluded area (g = 1) or not
(g = 0). Therefore, g; = 0 describes a world configuration in which there is no
vehicle behind the field of view on p;. The state cannot be directly measured
but only be inferred over time. Again, the policy is described over a belief state
b(x) which describes the probability, that another car exists in the occlusion.
Simulating the phantom vehicles ahead in the belief tree allows to infer at what
future configuration the required FoV will be reached.

6.2.2 Observation Model

The state of the environment cannot be fully observed due to the existence
of hidden states. Nonetheless, the hidden states can be inferred over time by
possible observations of the environment. The observation space is defined in
a similar way as the state space, s.t. an observation o € O is

0=[00,X1,...,XK,XZ,...,XL]T. (65)
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phantom vehicles

dynamic object

static object

Figure 6.2: This schematic demonstrates the a state space representation advanced from chapter 4.
All vehicles are encoded by their distances to the intersection on their respective path.
The autonomous vehicle follows its path, po = r(, while the other vehicles have various
path hypotheses (7, ..., rs). Crossing paths define conflict areas, which may not be
occupied by the autonomous and another (phantom) vehicle at the same time. The
conflict areas are not drawn for simplification issues but are explained in detail in
chapter 4. Phantom vehicles are drawn as red boxes (N;), starting at the edges of the
FoV of the autonomous car Ny which is mapped on each lane (red dashed line) of the
topological map (graphic from [123], ©2019 IEEE).

The localization of the autonomous car is assumed to be noise free. The
autonomous car can therefore be fully observed and the observation is defined
as: o9 = [S(),V()]T.

The observation of the surrounding vehicles is defined in global coordinates, as
the path is a latent variable and cannot be observed directly: ox = [vg, Xk, yk]T.
This is done in the same way as presented in section 4.3.4.

For every potential phantom vehicle, an observation is also generated. The
goal is to define an observation which is independent of the unknown number
of possible agents in the occlusion and that can be matched on the phantom
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vehicle. This must be the case as the number of vehicles in an occlusion is
unknown. Therefore, a observation is defined by the FoV on every lane. The
FoV ¥ defines the edge of the FoV on the path of phantom vehicle / (see
figure 6.2), s.t. 0; = [V}, p1]-

6.2.3 Representation of Phantom Vehicles

Representing all possible vehicle configurations in the occluded area is com-
putationally infeasible. Nonetheless, the idea of using a certain worst-case
configuration instead is also not viable. This is the case as a worst-case con-
figuration cannot be calculated as it is completely dependent of the future
trajectory of the ego vehicle which is yet to be optimized. This coupled prob-
lem is analytically not solvable. The idea of the problem formulation is to
define a phantom vehicle for each occluded lane, representing all possible
vehicle configurations in a certain occlusion. This is realized by placing a
phantom vehicle at the start of the FoV with assumed infinite length and a
velocity above the speed limit (to represent a worst-case speeding assump-
tion), S.t. Vphantom = 1.3 Vmax. If every possible, occluded vehicle configuration
would be represented explicitly, a certain subset of these configurations would
be discovered, when the FoV is expanded. Nonetheless, in this work, the idea
is to represent all these configurations by one reachable set. Instead of splitting
the set into many discretized subsets, the idea is to sample if the phantom ve-
hicle is detected or not. The probability of this sampling is proportional to the
revealed occluded area during the transition from x to x’. This is realized via
the traffic density, defined as a uniform probability distribution in the occluded
area. Given the uncertainty of the existence of another vehicle, the only safe
way to cross is a sufficiently high, free FoV at the future point in time where
the crossing decision has to be made. The probability Py (AY) for the existence
of at least one phantom car in the revealed FoV with length AY = ¥’ -\, is
defined with the Bernoulli distribution:

0 ,forAY < 0
Py(AY) = % JforAW > 0ANAY < w. (6.6)
1 ,forAY >= w

The specific volume w is defined as the average number of vehicles in an
occluded area per 100 m.
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(a) g = 1As; > ¥;: Aphantom (b)) g = 1 A ¢ = 0: A phantom (c)g =1A¢ = 1: A phantom
car which has been already car is sampled to not drive car is sampled to drive out of
moved out of the FoV before out of the occluded area. the occluded area.
is set a step forward.

Figure 6.3: The three different cases of phantom vehicles which must be handled by the proba-
bilistic transition model (graphic from [123], ©2019 IEEE).

6.2.4 Action and Transition Model

The presented planning approach can be used with a longitudinal action set
Along or a union of Ajone and an additional lateral action set Ay, While the
longitudinal action set only allows the autonomous vehicle to follow its path
ro exactly, the union with a Ay, allows the autonomous car to drive with offset
to the path, to potentially increase the FoV if needed. The longitudinal action

set is defined as
m m m

m
Along = {-2—,-1-,0—,1=}. 6.7

ong { sz 52 52 52 } ( )
For the case of combined longitudinal and lateral actions, non-negative longitu-
dinal actions are combined with a set of lateral velocities Ajy = {—Viag, 0, Viat}»
S.t.

ﬂlong,lat = ﬂlong U ({ﬂlong 2 0} X L?llat)' (6.8)

In this case, the planning problem changes from a longitudinal one to a
combined longitudinal and lateral planning problem. The lateral velocity
actions are proportionally constrained by the longitudinal velocity of the au-
tonomous car to guarantee kinematic feasibility. Therefore, vy, is defined as
Viae = min(0.17vy,0.75) as explained in section 5.2.2.
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The motion model for the autonomous vehicle is formulated with the discrete
longitudinal dynamics as

so] [ -Ar 0][so] [-3Ar2 0
’r _ 7| long
xp=1[vo|=10 1 Of|w|+| Ar 0 [V ] (6.9)
| [0 0 1]|do] 0 Art™

For the surrounding vehicles it is defined as

st [U -Ar O][se]  [-3Af
xp=|vi[=10 1 Of|w|+]| At |a (6.10)
rlo0 0 1|n 0

The action a; of another agent Ny is retrieved from an extended version of the
IDM which e.g. also adapts to road curvatures section 4.3.2.

For the phantom vehicles, various cases exist for the transition model. As the
states are expanded during simulation, every state transition (X, X") defines a
current and next FoV for every lane, i.e. (W(so), ¥/(s0)). The transition model
of the phantom vehicles is dependent on g and the amount of new exploration,
i.e. A¥(so0,5)) = ¥’ (s5) — ¥P(s0). A positive A¥ denotes an increased FoV and
a negative AY denotes a decreasing FoV on a certain lane.

The different cases are explained in the following:

Case 1: g = 0. In the case of a state which is representing a non-existing
phantom vehicle, the transition is:

X) = [max(‘yl"l’[),m,gl] T (6.11)

If the state represents an existing phantom vehicle, various transitions
exist (see figure 6.3):

Case 2a: g = 1 A s; > ;. The first possibility is that a phantom vehicle
moved already out of the occluded area in previous steps of the for-
ward simulation. In that case, it is simply advanced for the passed time

step:
Xl' 1 0 0]]s; 1
X = ;=10 1 0||pi|—[0]1.3 - vmax - At. (6.12)
gl 00 1]la] |0
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For the cases that an existing phantom vehicle is still at the edge of
the FoV, a sample ¢ is drawn form the Bernoulli distribution, s.t. ¢ ~
Py(AY).

Case 2b: g = 1 A ¢ = 0. If a phantom vehicle is sampled to not drive out of
the occlusion (¢ = 0), it is simply set to the new field of view:

x; = [max(¥5,¥)).pr.r] " (6.13)

Case 2c: g =1A¢ =1. A vehicle is sampled to drive out of the occlusion
(¢ = 1). The min operator is needed to respect the cases in which the
environment changes in a way s.t. the FoV decreases:

x) = [min(¥, W) = 1.3Avimat prog1] " (6.14)

6.2.5 Reward Model

The immediate reward in POMDPs is defined for a state-action pair. To balance
various objectives, the overall reward contains different terms:

R(x,a) = Rayi(ap) + Ryet(v) + Reon(X). (6.15)
Accelerations are punished with a small negative reward, s.t. Ryt = —IOOa(z),
to maximize comfort.
—400 - vy — ,Vp <
Rvel(X) _ |VO Vdes| , Vo Vd.es ) (616)
=400 - (vg — vges)~ ,otherwise
A crash with a (phantom) vehicle is punished with R, = —20000. In

the case of combined 2-D planning, a special lateral reward, Reeper =
Rrov(X0) + Raci1ae + Ra(dp), is added to the the reward functional. Rroy
motivates increasing the FoV, while Ry, acc and Ry punish lateral accelerations
or driving with lateral offset.
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6 Planning under Sensor Occlusions

Table 6.1: Parameter values for the evaluation of the occlusion POMDP planner.

c 20000 Or 1s

vy 0.8 thor 68
P iiom

6.2.6 Implementation

The algorithm is implemented by use of the ABT algorithm. It is implemented
in the same way as the algorithms from chapter 4 and chapter 5. The framework
and implementation is explained in detail in section 2.4. As mentioned, the
algorithm is heavily based on a deterministic roll-out. The optimal behavior
in the roll-out is determined with an A* graph search using a heuristic based
on the idea of ICS for collisions with ghost vehicles.

6.3 Results

The occlusion-aware planning approach is evaluated with the parameters given
in table 6.1. The POMDP planner of this thesis is evaluated against two other
approaches: An omniscient planner, acting with full observability of occluded
objects in the scene and a baseline approach, which makes its decision based
on the current FoV only. This baseline approach does not simulate the FoV
ahead and does therefore not consider how the FoV changes during execution.
This is an often used standard approach which is only able to solve the problem
by constant replanning. The approach is evaluated in scenarios with static and
dynamic occlusions.

6.3.1 Static Occlusion

The algorithm is at first evaluated in a scenario with a static occlusion (see
figure 6.4 for the scenario). It is generated by the edge of a house and has
the effect that the autonomous car is unable to fully observe another lane.
The speed limit is reduced to vipax = 5.5 [%], as this emphasizes the different
planning behaviors. Results, showing the behavior of the autonomous car are
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conflict area ‘ (7)/

©
=
= =

Figure 6.4: An urban scenario with a static occlusion. It is evaluated for several initial configura-
tions of the occluded vehicle (graphic from [123], ©2019 IEEE).

presented in two parts. First, figure 6.5 compares the driven trajectories of the
POMDP planner, the omniscient planner and the baseline approach during a
simulation run. Secondly, the planner is evaluated in a quantitative way by
comparing its performance over many simulations (table 6.2) to account for its
probabilistic nature.

Qualitative Evaluation:

figure 6.5 shows the driven trajectories for the scenario demonstrated in fig-
ure 6.4 for the different planners (POMDP, omniscient, baseline). In the
beginning (until r+ = 4s) all planning approaches accelerate towards the in-
tersection. From ¢ = 4s on, POMDP and the omniscient planner are able
to accelerate further, while the baseline approach already starts to decelerate
because the current FoV is not yet large enough for safe crossing of the inter-
section. Because the baseline planner is not able to predict the FoV, it starts
to brake immediately. The POMDP planner on the other hand, acts nearly
as optimistic as the omniscient approach, due its capability, to already plan
several options for future observations. This behavior, of planning for various
future scenarios, can also be seen in figure 6.1.
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Figure 6.5: Simulation of a scenario with a static occlusion and a close oncoming vehicle (graphic from [123], ©2019 IEEE).

6 Planning under Sensor Occlusions
o
_
[\8)
W
S~
W
o
N
oo
©

122



6.3 Results

Table 6.2: Evaluation of the scenario with a static occlusion, described in figure 6.5 (graphic
from [123], ©2019 IEEE).

Setup Planner t[s] 2laol [Z]
baseline 13.309 10.320

No car omniscient  11.237 8.880
POMDP 11.481 8.660

baseline 13.355 10.560

setup (1) omniscient 11.283 8.520
POMDP 11.632 9.390

baseline 13.942 11.500

setup (2) omniscient 12.803 10.670
POMDP 13.353 13.560

baseline 15.316 14.090

setup (3) omniscient 13.881 14.618
POMDP 15.384 16.490

baseline 16.194 13.817

setup (4) omniscient 10.249 9.816
POMDP 10.654 9.515

baseline 14.262 12.326

setup (5) omniscient 10.953 8.720
POMDP 11.334 9.357

baseline 13.638 11.421

setup (6) omniscient 10.946 8.700
POMDP 11.362 8.930

baseline 13.775 10.540

setup (7) omniscient 10.961 8.670
POMDP 11.358 8.870
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Figure 6.6: A typical scenario in which the autonomous vehicle wants to turn left, but the view is
occluded by another vehicle. Different possible configurations of the other vehicle are
denoted in brackets (graphic from [123], ©2019 IEEE).

Quantitative Evaluation:

As the POMDP formulation is solved by a sampling-based solver, the generated
solution is not deterministic. Moreover, it is not known which configuration
of the occluded car is most interesting. Therefore, each of the 7 scenarios
presented in figure 6.4 is run 50 times and the results are compared in terms of
average time to cross the intersection and in terms of the average, accumulated,
absolute acceleration of the autonomous car. This is shown in table 6.2. It can
be seen that the POMDP performs nearly as good in terms of average crossing
time and comfort as the omniscient planner, due its capability of predicting the
FoV. The baseline approach crosses the intersection 30% slower in average and
has less comfort (i.e. accelerates/decelerates more often) due its more reactive
approach.

6.3.2 Dynamic Occlusion

The planner is also evaluated in a dynamic scenario (see figure 6.6). It presents
a typical situation in which the autonomous vehicle intends to turn left at an
intersection while the oncoming traffic cannot be observed as it is occluded by
a front vehicle of the autonomous car.

The scenario is evaluated in a quantitative way by doing 50 simulations for each
planner (POMDP, omniscient, baseline). The results are shown in table 6.3.
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6.3 Results

Table 6.3: Evaluation of the scenario with a dynamic occlusion, described in figure 6.5 (graphic
from [123], ©2019 IEEE).

Setup Planner t[s] > laol [S%]
baseline 9.505 8.600

No car omniscient  9.116 9.100
POMDP 9.197 9.160

baseline 11.382 10.100

setup (1) omniscient 11.724 11.200
POMDP 11.637 11.071

baseline 13.638 12.960
setup (2) omniscient 13.573 13.406

POMDP 13.491 12.700
baseline 14.274 13.074
setup (3) omniscient 10.927 10.925
POMDP 12.247 11.789
baseline 9.194 9.024
setup (4) omniscient  9.087 9.030
POMDP 9.107 8.900
baseline 9.430 8.745
setup (5) omniscient  9.109 9.040
POMDP 9.201 8.930
baseline 9.584 8.630
setup (6) omniscient  9.105 9.090
POMDP 9.285 8.650
baseline 9.638 8.660
setup (7) omniscient  9.109 9.060
POMDP 9.382 8.730

It can be seen, that the POMDP does not outperform the other planners as
strongly as for the static scenario. Only in setup three, the baseline planner
is obviously outperformed by the POMDP planner. The reason for this is,
that the vehicle in front of the autonomous car drives over the intersection and
therefore creates the occlusion only for a short period of time. Therefore, only
very specific world configurations are solved with more intelligent behavior by
the POMDP planner.
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Figure 6.7: Extensive evaluation for combined lateral and longitudinal planning as shown in (graphic from [123], ©2019 IEEE).
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i.e. the Freezing robot problem. and turning left is possible.

Figure 6.8: Presentation of a scenario where actively exploring the surrounding is necessary. The
POMDP planner is once executed without and once with lateral planning (graphic
from [123], ©2019 IEEE).

6.3.3 2D Motion Primitives

This sections demonstrates a scenario with the goal of showing results for
a combined optimization of lateral and longitudinal optimization including
information gathering behavior. The scenario is shown in figure 6.8. The sce-
nario demonstrates an occluded left turn and is set up in a way s.t. that actively
exploring the FoV is the only possibility for safe turning. In this scenario, the
action vector Ajong/1ar is selected to allow for lateral explorative behavior. As
this combined optimization problem (lateral, longitudinal, information gath-
ering) is very hard to solve online the additional reward Ry, is introduced to
motivate lateral exploration (both are defined in section 4.3).

The scenario is set up in a way, that the autonomous vehicle is not able to turn
left without lateral planning, as the FoV is not big enough for safe traversing.

In figure 6.8, two snapshots of the planning problem are shown, comparing the
longitudinal POMDP with the POMDP formulation with Ajong/1a- 1t can be
seen, that the longitudinal POMDP gets stuck at the intersection, demonstrating
the freezing robot problem.
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6 Planning under Sensor Occlusions

Additionally, the driven trajectory of the POMDP planner is compared with
the driven trajectory of the omniscient planner in figure 6.7. It can be seen
that both planners drive nearly the same trajectory with the only difference of
a lateral offset of the POMDP planner to increase the FoV.

6.4 Summary

This chapter extends the POMDP formulation of the previous chapters, s.t.
explicit reasoning over potentially occluded objects is incorporated. An on-
line, closed-loop planner is presented which generates optimized behaviors for
scenarios with occlusions. The key focus of the algorithm is the

. propagation of the FoV over the planning horizon
. representation of occluded vehicle configurations with reachable sets
. probabilistic reasoning over the existence of occluded vehicles.

The generic POMDP formulation allows to reason over a varying number of
occlusions on arbitrary map layouts, generated by static or dynamic obstacles.
The policy is optimized for the existence uncertainty of vehicles in occlusions.
The policy contains various, closed-loop plans for different future scenarios
of (not) revealing vehicles in the occluded areas. Simulating the FoV over the
planning horizon allows the autonomous car to choose actions which maximize
the FoV for critical areas. The POMDP approach is compared in simulation
scenarios to simpler approaches which make decisions based on the current
FoV only. It is shown how the POMDP approach is able to outperform
these approaches in terms of intersection crossing time and total, accumulated
acceleration. The created behavior of the POMDP planner is even similar to
the one of an omniscient planner with full knowledge about the configurations
of the occluded agents. This is possible because of the capability of the planner
to predict what information may be perceived in the future and to postpone the
decision accordingly.
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7 Conclusion

The first contribution of this thesis is the introduction of optimization based
behavior planning and decision making for autonomous driving. Instead of
selecting a certain behavior from an a priori defined set of potential behaviors,
the planners of this thesis generate an optimal behavior itself. Hereby, the
planner respects the predicted trajectories of the other agents as well as traffic
rules in one cost functional. The underlying decisions are made implicitly
during the non-convex optimization of the trajectory/policy instead of by a
rule-based system.

The main contribution of this thesis is the presentation of such a global planner
which optimizes in the space of policies instead of trajectories. It considers
the uncertainty of the behavior of the other agents as well as their potentially
interactive behavior explicitly by combining prediction and planning in one
problem. The respected uncertainty of the other agents are namely the un-
known intention to follow a certain path, their uncertain longitudinal motion
models, possible interaction as well as uncertain measurements and existence
uncertainty due to occlusions. The problem is formulated with discretized
actions on a continuous state and observation space. The result is a policy over
the current belief state, describing the optimal action of the autonomous car,
given the most likely future scenarios.

Such a policy allows for less conservative behavior compared to a reactive
trajectory planner. This is the case as the optimization for various future
scenarios often results in a behavior which postpones decisions under the
knowledge that more information about the other drivers is likely to be available
in the future. It also allows for actively gathering information about the intent
of the other drivers to reduce the uncertainty of the tracked belief space of the
world.

Such a generic problem formulation is considered to be intractable to solve
on a continuous state space. The second main contribution of this thesis is to
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demonstrate how such a problem formulation can be solved online. This is
realized by combining state of the art solvers, based on MCTS, with domain
specific heuristics.

Summarized, the main contributions of the thesis are:

. Formulation of behavior generation as a POMDP

. Formulation on a continuous state and observation space

. Combining a state of the art solver with domain specific near-optimal
roll-outs

. Solving a intertwined planning-prediction formulation online

o Evaluation of all algorithms in various, online simulation scenarios

The capabilities of the planner are incrementally advanced and demonstrated
throughout the thesis:

At first, chapter 3 presents how a sequential decision making formulation can
be used to generate one behavior (i.e. a single trajectory) which is optimal
given various, future, deterministic events on the road.

In chapter 4, the problem formulation is advanced to a belief state. The al-
gorithm handles uncertain prediction as well as the interaction of the other
traffic participants with the autonomous car. This allows the algorithm to act
non-conservatively for scenarios in which dynamic agents with uncertain pre-
diction are potentially crossing or merging on the path of the autonomous car.
The algorithm optimizes the policy on a longitudinal path over the uncertain
belief state of possible predicted trajectories of the other agents.

In chapter 5 the algorithm is advanced in two ways. At first longitudinal and
lateral optimization is combined in one problem formulation. This allows
the algorithm to adapt the right longitudinal speed and merge in a gap at the
same time. Secondly, the algorithm is able to perfom so-called information
gathering actions (approach a certain gap) to estimate the intent to yield of
other drivers. This allows the algorithm to merge in gaps, which are initially
too small. The algorithm generates a combined longitudinal and lateral policy
over the belief space.
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Finally, chapter 6 presents an extension to the algorithm which allows to
reason over the existence uncertainty of potentially occluded objects. By
sampling different scenarios, the algorithm is able to implicitly find a optimal
policy for the autonomous car, with a sufficient field of view to act safely. It
can implicitly predict at what point in the future enough information will be
available. The resulting policy contains respective plans to act accordingly,
given the corresponding observation. The algorithm generates a policy over
the belief of possibly existing, occluded objects.

7.1 Future Research Directions

The presented algorithms can be further advanced in several directions.

The current problem formulation, does not allow to formally guarantee safety
as it optimizes the expected reward. Changing the problem formulation to
POMDPs with constraints would allow to guarantee safety on a theoretical
basis. Secondly, just as the problem formulation, the approximate solver also
cannot give safety guarantees. This is due to the sampling-based nature of the
solver which can miss important episodes in theory. This could be overcome by
extending the overall architecture, s.t. formal verification methods are applied
on the optimal action before execution. These changes would allow for a
formally safe architecture.

The particle filter which tracks the belief state over time is implemented as
an unweighted version. This is done as the real observation of the filter is
directly matched on one observation in the belief tree to keep the tree alive. As
the episodes in the belief tree are unweighted itself, matching of observations
is easier to fulfill by use of an unweighted particle filter. Nonetheless, the
performance of the particle filter is not very efficient, due to the large step-
size of the POMDP planner and the unweighted version of the filter. Further
research could go in the direction on how to use weighted particle filters with
a higher frequency, while simultaneously keeping the belief tree intact.

The particle filter as well as the policy optimization itself may be improved by
using learned instead of hand-tuned motion models. First promising results
were already realized during this thesis [128].
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Further room for improvement lies in the solver itself. All state of the art
solvers rely on Monte-Carlo sampling of episodes. The procedure of sampling
possible episodes to construct the belief tree is predestined for parallelization
to speed up the solving of POMDP formulations by magnitudes. Parallelized
Monte-Carlo solvers have been published recently [21].

For the case that drastically faster solving of POMDPs becomes tractable in
the future, the coupling between behavior planner and trajectory planner may
be revised. Under the assumption, that the problem can be solved for a larger
action space, the possible configuration space of the autonomous car can be
sampled more densely. By combining this with sampling over the parameters of
motion primitives that are optimized for minimum jerk/acceleration, smoother
policies may be created which could make the trajectory planner obsolete. The
technique of progressive widening would allow to even generate a policy on a
continuous parameter/action space.

132



Bibliography

Literature

(1]

(2]

(3]

(4]

(5]

(6]

(7]

Waymo press footage. https://waymo.com/press/ [Online. Accessed:
2019-08-23] 2019.

M. Althoff, “Reachability analysis and its application to the safety
assessment of autonomous cars,” PhD thesis, Technische Universitit
Miinchen, 2010.

M. Ardelt, C. Coester, and N. Kaempchen, “Highly Automated Driving
on Freeways in Real Traffic Using a Probabilistic Framework,” IEEE

Transactions on Intelligent Transportation Systems, vol. 13, no. 4, pp.
1576-1585, 2012.

H. Bai, S. Cai, N. Ye, D. Hsu, and W. S. Lee, “Intention-aware on-
line POMDP planning for autonomous driving in a crowd,” in /IEEE
International Conference on Robotics and Automation, pp. 454-460,
2015.

Y. Bai, Z. J. Chong, M. H. Ang, and X. Gao, “An Online Approach for
Intersection Navigation of Autonomous Vehicle,” in IEEE International
Conference on Robotics and Biomimetics, pp. 2127-2132, 2014.

M. Bansal, A. Krizhevsky, and A. S. Ogale, “Chauffeurnet: Learn-
ing to drive by imitating the best and synthesizing the worst,”
arXiv:1812.03079 [cs.RO]. 2018.

H. Banzhaf, M. Dolgov, J. Stellet, and J. M. Zollner, “From Footprints
to Beliefprints: Motion Planning under Uncertainty for Maneuvering
Automated Vehicles in Dense Scenarios,” in /IEEE International Con-
ference on Intelligent Transportation Systems, pp. 1680-1687, 2018.

133


https://waymo.com/press/

Bibliography

(8]
(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

134

R. Bellman, Dynamic Programming. Princeton University Press, 1957.

P. Bender, O. §. Tas, J. Ziegler, and C. Stiller, “The combinatorial aspect
of motion planning: Maneuver variants in structured environments,” in
IEEE Intelligent Vehicles Symposium, pp. 1386-1392, 2015.

P. Bender, J. Ziegler, and C. Stiller, “Lanelets: Efficient map representa-
tion for autonomous driving,” in IEEE Intelligent Vehicles Symposium,
pp- 420425, 2014.

S. Bhattacharya and R. Ghrist, “Path Homotopy Invariants and their
Application to Optimal Trajectory Planning,” in IMA Conference on
Mathematics of Robotics, pp. 139-160, 2015.

S. Bhattacharya, V. Kumar, and M. Likhachev, “Search-based path plan-
ning with homotopy class constraints,” in AAAI Conference on Artificial
Intelligence, pp. 1230-1237, 2010.

M. Bojarski, D. D. Testa, D. Dworakowski, B. Firner et al., “End to end
learning for self-driving cars,” arXiv:1604.07316 [cs.CV]. 2016.

B. Bonet, “An epsilon-Optimal Grid-Based Algorithm for Partially Ob-
servable Markov Decision Processes,” in International Conference on
Machine Learning, pp. 51-58, 2002.

M. Bouton, A. Cosgun, and M. J. Kochenderfer, “Belief State Planning
for Autonomously Navigating Urban Intersections,” in /[EEE Intelligent
Vehicles Symposium, pp. 825-830, 2017.

M. Bouton, A. Nakhaei, K. Fujimura, and M. Kochenderfer, “Scalable
Decision Making with Sensor Occlusions for Autonomous Driving,”

in IEEE International Conference on Robotics and Automation, pp.
20762081, 2018.

S. Brechtel, T. Gindele, and R. Dillmann, “Probabilistic MDP-behavior
planning for cars,” in IEEE International Conference on Intelligent
Transportation Systems, pp. 1537-1542, 2011.

S. Brechtel, T. Gindele, and R. Dillmann, “Solving Continuous
POMDPs: Value Iteration with Incremental Learning of an Efficient
Space Representation,” in International Conference on Machine Learn-
ing, pp. 370-378, 2013.



Bibliography

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas et al., “A Survey
of Monte Carlo Tree Search Methods,” IEEE Transactions on Compu-
tational Intelligence and Al in Games, vol. 4, no. 1, pp. 1-43, 2012.

M. Buehler, K. Iagnemma, and S. Singh, “The darpa urban chal-
lenge: Autonomous vehicles in city traffic,” Springer Tracts in Advanced
Robotics, 2009.

P. Cai, Y. Luo, D. Hsu, and W. S. Lee, “Hyp-despot: A hybrid parallel
algorithm for online planning under uncertainty,” arXiv:1802.06215
[cs.AI]. 2018.

R. Coulom, “Efficient selectivity and backup operators in monte-carlo
tree search,” in International Conference on Computers and Games, pp.
72-83. Springer, 2006.

A. G. Cunningham, E. Galceran, R. M. Eustice, and E. Olson, “MPDM:
Multipolicy decision-making in dynamic, uncertain environments for
autonomous driving,” in IEEE International Conference on Robotics
and Automation, pp. 1670-1677, 2015.

F. Damerow and J. Eggert, “Risk-aversive behavior planning under
multiple situations with uncertainty,” in IEEE International Conference
on Intelligent Transportation Systems, pp. 656-663, 2015.

E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numererical Mathmatics, vol. 1, no. 1, pp. 269-271, 1959.

J. D’Onfro. T hate them’: Locals reportedly are frustrated with alpha-
bet’s self-driving cars. https://www.cnbc.com/2018/08/28/locals-rep
ortedly-frustrated- with-alphabets-waymo-self-driving-cars.html [On-
line. Accessed: 2019-08-23] 2018.

C. Dong, J. M. Dolan, and B. Litkouhi, “Interactive ramp merging
planning in autonomous driving: Multi-Merging leading PGM (MML-
PGM),” in IEEE International Conference on Intelligent Transportation
Systems, pp. 1-6, 2017.

N. Du Toit and J. Burdick, “Robot motion planning in dynamic, uncer-
tain environments,” IEEE Transactions on Robotics, vol. 28, no. 1, pp.
101-115, 2012.

135


https://www.cnbc.com/2018/08/28/locals-reportedly-frustrated-with-alphabets-waymo-self-driving-cars.html
https://www.cnbc.com/2018/08/28/locals-reportedly-frustrated-with-alphabets-waymo-self-driving-cars.html

Bibliography

[29]

(30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

136

D. Ferguson, T. M. Howard, and M. Likhachev, “Motion planning in
urban environments,” Journal of Field Robotics, vol. 25, no. 11-12, pp.
939-960, 2008.

D. Ferguson and A. Stentz, “The field D* algorithm for improved
path planning and replanning in uniform and non-uniform cost envi-
ronments,” CMU Technical Report, 2005.

T. Fraichard and H. Asama, “Inevitable collision states. a step towards
safer robots?” in IEEE/RSJ International Conference on Intelligent
Robots and Systems, pp. 388-393, 2003.

E. Galceran, A. G. Cunningham, R. M. Eustice, and E. Olson, “Multi-
policy decision-making for autonomous driving via changepoint-based
behavior prediction,” in Robotics: Science and Systems, 2015.

E. Galceran, E. Olson, and R. M. Eustice, “Augmented vehicle track-
ing under occlusions for decision-making in autonomous driving,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems,
pp. 3559-3565, 2015.

T. Gindele, D. Jagszent, B. Pitzer, and R. Dillmann, “Design of the
planner of Team AnnieWAY's autonomous vehicle used in the DARPA
Urban Challenge 2007,” in IEEE Intelligent Vehicles Symposium, pp.
1131-1136, 2008.

H. Goldstein, C. Poole, and J. Safko, Classical Mechanics. Addison
Wesley, 2002.

D. Gonzalez, J. Pérez, V. Milanés, and F. Nashashibi, “A review of
motion planning techniques for automated vehicles,” IEEE Transactions

on Intelligent Transportation Systems, vol. 17, no. 4, pp. 1135-1145,
2016.

T. Gu, J. M. Dolan, and J.-W. Lee, “Automated tactical maneuver dis-
covery, reasoning and trajectory planning for autonomous driving,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems,
pp. 5474-5480, 2016.

B. Gutjahr, L. Groll, and M. Werling, “Lateral Vehicle Trajectory Opti-
mization Using Constrained Linear Time-Varying MPC,” IEEE Trans-



Bibliography

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

actions on Intelligent Transportation Systems, vol. 18, no. 6, pp. 1586 —
1595, 2017.

A. Hochstédter, P. Zahn, and K. Breuer, “A comprehensive driver model
with application to traffic simulation and driving simulators,” in /EEE
Human-Centered Transportation Simulation Conference, 2001.

S. Hoermann, F. Kunz, D. Nuss, S. Renter, and K. Dietmayer, “Enter-
ing Crossroads with Blind Corners. A Safe Strategy for Autonomous
Vehicles,” in IEEE Intelligent Vehicles Symposium, pp. 727-732, 2017.

D. Hsu, W. S. Lee, and N. Rong, “What makes some POMDP problems
easy to approximate?” in Advances in Neural Information Processing
Systems, pp. 689-696, 2007.

D. Isele, A. Cosgun, K. Subramanian, and K. Fujimura, “Navigating
Intersections with Autonomous Vehicles using Deep Reinforcement
Learning,” in ArXiv, 2017, arXiv:1705.01196 [cs.Al].

J. Johnson and K. Hauser, “Optimal acceleration-bounded trajectory
planning in dynamic environments along a specified path,” in /EEE
International Conference on Robotics and Automation, pp. 2035-2041,
2012.

J. Johnson and K. Hauser, “Optimal longitudinal control planning
with moving obstacles,” in IEEE Intelligent Vehicles Symposium, pp.
605-611, 2013.

S. Julier and J. Uhlmann, “Unscented Filtering and Nonlinear Estima-
tion,” Proceedings of the IEEE, vol. 92, no. 3, pp. 401-422, 2004.

R. Kalman, “A new approach to linear filtering and prediction problems,”
Transactions of the ASME-Journal of Basic Engineering, vol. 82, no.
Series D, pp. 35-45, 1960.

S. Kammel, J. Ziegler, B. Pitzer, M. Werling et al., “Team AnnieWAY’s
autonomous system for the 2007 DARPA Urban Challenge,” Journal of
Field Robotics, vol. 25, no. 9, pp. 615-639, 2008.

K. Kant and S. W. Zucker, “Toward efficient trajectory planning: The
path-velocity decomposition,” The International Journal of Robotics
Research, vol. 5, no. 3, pp. 72-89, 1986.

137



Bibliography

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

138

K. Kaur and G. Rampersad, “Trust in driverless cars: Investigating key
factors influencing the adoption of driverless cars,” Journal of Engi-
neering and Technology Management, vol. 48, pp. 87-96, 2018.

D. Klimenko, J. Song, and H. Kurniawati, “Tapir: A software toolkit
for approximating and adapting pomdp solutions online,” in Proc. Aus-
tralasian Conference on Robotics and Automation, 2014.

M. J. Kochenderfer, C. Amato, G. Chowdhary, J. P. How et al., Decision
Making Under Uncertainty: Theory and Application, 1sted. The MIT
Press, 2015.

L. Kocsis and C. Szepesvdri, “Bandit based monte-carlo planning,” in
European Conference on Machine Learning, pp. 282-293, 2006.

R. Kohlhaas, T. Bittner, T. Schamm, and J. M. Zollner, “Semantic state
space for high-level maneuver planning in structured traffic scenes,” in

IEEFE International Conference on Intelligent Transportation Systems,
pp- 1060-1065, 2014.

R. Kohlhaas, D. Hammann, T. Schamm, and J. M. Zollner, “Plan-
ning of high-level maneuver sequences on semantic state spaces,” in
IEEFE International Conference on Intelligent Transportation Systems,
pp- 2090-2096, 2015.

R. Kohlhaas, T. Schamm, D. Nienhiiser, and J. M. Zollner, “Antic-
ipatory energy saving assistant for approaching slower vehicles,” in
IEEFE International Conference on Intelligent Transportation Systems,

pp. 1966-1971, 2011.

R. Kohlhaas, T. Schamm, D. Lenk, and J. M. Zollner, “Towards driving
autonomously: Autonomous cruise control in urban environments,” in
IEEE Intelligent Vehicles Symposium, pp. 116—-121, 2013.

H. Kurniawati, D. , and W. S. Lee, “SARSOP: Efficient Point-
Based POMDP Planning by Approximating Optimally Reachable Belief
Spaces.” in Robotics: Science and Systems, 2008.

H. Kurniawati and V. Yadav, “An online POMDP solver for uncer-
tainty planning in dynamic environment,” in International Symposium
on Robotics Research, pp. 611-629, 2013.



Bibliography

[59]

[60]

[61]
[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

K. Kurzer, F. Engelhorn, and J. M. Zollner, “Decentralized Cooperative
Planning for Automated Vehicles with Continuous Monte Carlo Tree
Search,” in IEEE Intelligent Vehicles Symposium, pp. 452-459, 2018.

W. H. Kwon, A. M. Bruckstein, and T. Kailath, “Stabilizing state-
feedback design via the moving horizon method,” International Journal
of Control, vol. 37, no. 3, pp. 631-643, 1983.

S. LaValle, Planning Algorithms. Cambridge University Press, 20006.

S. M. Lavalle, “Rapidly-exploring random trees: A new tool for path
planning,” Tech. Rep., 1998.

A. Lawitzky, D. Wollherr, and M. Buss, “Energy optimal control to
approach traffic lights,” in IEEE/RSJ International Conference on Intel-
ligent Robots and Systems, pp. 4382-4387, 2013.

P. Le Beau. Waymo starts commercial ride-share ser-
vice. https://www.cnbc.com/2018/12/05/waymo-starts-commercial-rid
e-share-service.html [Online. Accessed: 2019-08-23]

S. Lefevre, D. Vasquez, and C. Laugier, “A survey on motion prediction
and risk assessment for intelligent vehicles,” Robomech Journal, vol. 1,
no. 1, pp. 1-14, 2014.

D. Lenz, T. Kessler, and A. Knoll, “Stochastic model predictive con-
troller with chance constraints for comfortable and safe driving behavior
of autonomous vehicles,” in /IEEE Intelligent Vehicles Symposium, pp.
292-297, 2015.

D. Lenz, T. Kessler, and A. Knoll, “Tactical Cooperative Planning
for Autonomous Highway Driving using Monte-Carlo Tree Search,” in
IEEE Intelligent Vehicles Symposium, pp. 447-453, 2016.

M. Likhachev and D. Ferguson, “Planning long dynamically feasi-
ble maneuvers for autonomous vehicles,” The International Journal
of Robotics Research, vol. 28, no. 8, pp. 933-945, 2009.

M. L. Littman, A. R. Cassandra, and L. P. Kaelbling, “Learning policies
for partially observable environments: Scaling up,” in International
Conference on Machine Learning, pp. 362-370, 1995.

139


https://www.cnbc.com/2018/12/05/waymo-starts-commercial-ride-share-service.html
https://www.cnbc.com/2018/12/05/waymo-starts-commercial-ride-share-service.html

Bibliography

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

(78]

[79]

140

0. Madani, S. Hanks, and A. Condon, “On the Undecidability of Proba-
bilistic Planning and Infinite-Horizon Partially Observable Markov De-
cision Problems,” in AAAI Conference on Artificial Intelligence, 1999.

S. Mandava, K. Boriboonsomsin, and M. Barth, “Arterial velocity plan-
ning based on traffic signal information under light traffic conditions,” in
IEEFE International Conference on Intelligent Transportation Systems,
pp. 1-6, 2009.

A. Mazzalai, F. Biral, M. D. Lio, M. Darin, and L. D’Orazio, “Au-
tomated crossing of intersections controlled by traffic lights,” in /EEE
International Conference on Intelligent Transportation Systems, 2015.

M. Montemerlo, J. Becker, S. Bhat, H. Dahlkamp et al., “Junior: The
stanford entry in the urban challenge,” Journal of Field Robotics, vol. 25,
no. 9, pp. 569-597, 2008.

J. Nilsson, M. Brannstrom, J. Fredriksson, and E. Coelingh, “Longitu-
dinal and Lateral Control for Automated Yielding Maneuvers,” IEEE
Transactions on Intelligent Transportation Systems, vol. 17, no. 5, pp.

1404-1414, 2016.

T. Nishi, P. Doshi, and D. Prokhorov, “Freeway Merging in Con-
gested Traffic based on Multipolicy Decision Making with Passive Actor
Critic,” arXiv:1707.04489 [cs.Al]. 2017.

A. Nunes and K. Hernandez, “Autonomous vehicles and public health:
High cost or high opportunity cost?” psyarXiv:10.31234/osf.io/6e94h.
2019.

P. F. Orzechowski, A. Meyer, and M. Lauer, “Tackling Occlusions &
Limited Sensor Range with Set-based Safety Verification,” in /[EEE

International Conference on Intelligent Transportation Systems, pp.
1729-1736, 2018.

B. Paden, M. Cap, S. Yong, D. Yershov, and E. Frazzoli, “A Survey of
Motion Planning and control techniques for self-driving urban vehicles,”
IEEE Transactions on Intelligent Vehicles, vol. 1, pp. 33-55, 2016.

C. Papadimitriou and J. Tsisiklis, “The complexity of markov decision
processes,” Mathematics of Operations Research, pp. 441 — 450, 1987.



Bibliography

[80] C. Pek, P. Zahn, and M. Althoff, “Verifying the safety of lane change
maneuvers of self-driving vehicles based on formalized traffic rules,” in
IEEE Intelligent Vehicles Symposium, pp. 1477-1483, 2017.

[81] J. Pineau, G. Gordon, and S. Thrun, “Point-based value iteration an
anytime algorithm for POMDPs,” in International Joint conference on
Artificial Intelligence, pp. 1025-1032, 2003.

[82] M. Pivtoraiko and A. Kelly, “Efficient constrained path planning via
search in state lattices,” in International Symposium on Artificial Intel-
ligence, Robotics and Automation in Space, 2005.

[83] M. Pivtoraiko, R. A. Knepper, and A. Kelly, “Differentially con-
strained mobile robot motion planning in state lattices,” Journal of
Field Robotics, vol. 26, no. 3, pp. 308-333, 2009.

[84] X. Qian, F. Altche, P. Bender, C. Stiller, and A. de La Fortelle, “Op-
timal trajectory planning for autonomous driving integrating logical
constraints: An MIQP perspective,” in IEEE International Conference
on Intelligent Transportation Systems, pp. 205-210, 2016.

[85] S. Ross, J. Pineau, S. Paquet, and B. Chaib Draa, “Online planning
algorithms for POMDPSs,” Journal of Artificial Intelligence Research,
vol. 32, pp. 663-704, 2008.

[86] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach.
Prentice Hall Press, 2009.

[87] M. Sadou, V. Polotski, and P. Cohen, “Occlusions in Obstacle Detec-
tion for Safe Navigation,” in IEEE Intelligent Vehicles Symposium, pp.
716721, 2004.

[88] SAE International, “Taxonomy and Definitions for Terms Related to On-
Road Motor Vehicle Automated Driving Systems,” SAE International,
Tech. Rep. SAE J 3016, 2014.

[89] J. Schulman, J. Ho, A. Lee, I. Awwal et al., “Finding locally opti-
mal, collision-free trajectories with sequential convex optimization,” in
Robotics: Science and Systems, 2013.

[90] J. Schulz, K. Hirsenkorn, J. Lochner, M. Werling, and D. Burschka,
“Estimation of collective maneuvers through cooperative multi-agent

141



Bibliography

[91]

[92]

[93]

[94]

[95]

[96]

[97]

(98]

[99]

[100]

142

planning,” in IEEE Intelligent Vehicles Symposium, pp. 624—631, 2017.

P. Schorner, L. Trottel, J. Doll, and M. Zollner, “Predictive Trajec-
tory Planning in Situations with Hidden Road Users Using Partially
Observable Markov Decision Processes,” in IEEE Intelligent Vehicles
Symposium, pp. 2299-2306, 2019.

V. Sezer, T. Bandyopadhyay, D. Rus, E. Frazzoli, and D. Hsu, “Towards
autonomous navigation of unsignalized intersections under uncertainty
of human driver intent,” in IEEE/RSJ International Conference on In-
telligent Robots and Systems, pp. 3578-3585, 2015.

G. Shani, J. Pineau, and R. Kaplow, “A survey of point-based POMDP
solvers,” Autonomous Agents and Multi-Agent Systems, vol. 27, no. 1,
pp- 1-51, 2013.

Z. Shiller, “Off-Line and On-Line Trajectory Planning,” Motion and
Operation Planning of Robotic Systems, vol. 29, pp. 29-62, 2015.

D. Silver, A. Huang, C. J. Maddison, A. Guez et al., “Mastering the
game of Go with deep neural networks and tree search,” Nature, vol.
529, no. 7587, pp. 484-489, 2016.

D. Silver and J. Veness, “Monte-Carlo planning in large POMDPs,” in
Advances in Neural Information Processing Systems, pp. 2164-2172,
2010.

S. Singh, “Critical Reasons for Crashes Investigated in the National
Motor Vehicle Crash Causation Survey,” NHTSA Traffic Safety Facts,
2015.

T. Smith and R. Simmons, “Heuristic search value iteration for
POMDPs,” in AUAI Conference on Uncertainty in artificial intelligence,
pp- 520-527, 2004.

A. Somani, N. Ye, D. Hsu, and W. S. Lee, “DESPOT: Online POMDP
planning with regularization,” in Advances in Neural Information Pro-
cessing Systems, pp. 1772-1780, 2013.

E. J. Sondik, “The optimal control of partially observable markov pro-
cesses,” PhD thesis, Stanford University, 1971.



Bibliography

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

S. Sontges and M. Althoft, “Computing possible driving corridors
for automated vehicles,” in IEEE Intelligent Vehicles Symposium, pp.
160-166, 2017.

C. Stiller, G. Firber, and S. Kammel, “Cooperative cognitive automo-
biles,” in IEEE Intelligent Vehicles Symposium, pp. 215-220, 2007.

P. Trautman and A. Krause, “Unfreezing the robot: Navigation in dense,
interacting crowds,” in IEEE/RSJ International Conference on Intelli-
gent Robots and Systems, pp. 797-803, 2010.

M. Treiber, A. Hennecke, and D. Helbing, “Congested Traffic States
in Empirical observations and Microscopic Simulations,” in Physical
Revue E Interdisciplinary Topics, vol. 62, no. 2, pp. 1805-1824, 2000.

S. Ulbrich and M. Maurer, “Probabilistic online POMDP decision mak-
ing for lane changes in fully automated driving,” in IEEE International
Conference on Intelligent Transportation Systems, pp. 2063-2067,2013.

C. Urmson. Ted: How a driverless car sees the road. https://www.yo
utube.com/watch?v=tiwVMrTLUWg [Online. Accessed: 2019-04-01]
2015.

C. Urmson, J. Anhalt, D. Bagnell, C. Baker et al., “Autonomous driving
in urban environments: Boss and the Urban Challenge,” Journal of
Field Robotics, vol. 25, no. 8, pp. 425466, 2008.

P. Vack. Self-drive cars and you: A history longer than you
think. https://www.velocetoday.com/self-drive-cars-and-you-a-history
-longer-than-you-think/ [Online. Accessed: 2019-08-23] 2014.

E. Velenis, “Analysis and control of high-speed wheeled vehicles,” PhD
thesis, Georgia Institute of Technology, 2006.

M. Werling, “Ein neues Konzept fiir die Trajektoriengenerierung und
-stabilisierung in zeitkritischen Verkehrsszenarien,” PhD thesis, Karl-
sruher Institute fiir Technologie, 2010.

M. Werling and L. Groll, “Low-level controllers realizing high-level
decisions in an autonomous vehicle,” in IEEE Intelligent Vehicles Sym-
posium, pp. 1113-1118, 2008.

143


https://www.youtube.com/watch?v=tiwVMrTLUWg
https://www.youtube.com/watch?v=tiwVMrTLUWg
https://www.velocetoday.com/self-drive-cars-and-you-a-history-longer-than-you-think/
https://www.velocetoday.com/self-drive-cars-and-you-a-history-longer-than-you-think/

Bibliography

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

144

M. Werling, J. Ziegler, S. Kammel, and S. Thrun, “Optimal trajec-
tory generation for dynamic street scenarios in a Frenet Frame,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems,
pp- 987-993, 2010.

W. Zhan, J. Chen, C.-Y. Chan, C. Liu, and M. Tomizuka, “Spatially-
Partitioned Environmental Representation and Planning Architecture
for On-Road Autonomous Driving,” in IEEE Intelligent Vehicles Sym-
posium, pp. 632-639, 2017.

D. Zhao, “Supervised adaptive dynamic programming based adaptive
cruise control,” in IEEE Symposium on Adaptive Dynamic Programming
and Reinforcement Learning, pp. 318-323, 2011.

J. Ziegler, P. Bender, T. Dang, and C. Stiller, “Trajectory planning
for bertha - a local, continuous method,” in IEEE Intelligent Vehicles
Symposium, pp. 450-457, 2014.

J. Ziegler and C. Stiller, “Spatiotemporal state lattices for fast trajectory
planning in dynamic on-road driving scenarios,” in IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, pp. 1879-1884,
2009.

J. Ziegler, P. Bender et al., “Making Bertha Drive - An Autonomous
Journey on a Historic Route,” IEEE Intelligent Transportation Systems
Magazine, vol. 6, no. 2, pp. 8-20, 2014.

J. R. Ziehn, M. Ruf, D. Willersinn, B. Rosenhahn er al., “A tractable
interaction model for trajectory planning in automated driving,” in
IEEE International Conference on Intelligent Transportation Systems,
pp. 1410-1417, 2016.

M. Zucker, N. Ratliff, A. D. Dragan, M. Pivtoraiko et al., “CHOMP:
Covariant Hamiltonian optimization for motion planning,” The Interna-
tional Journal of Robotics Research, vol. 32, no. 9-10, pp. 1164-1193,
2013.



Bibliography

Publications of the Author

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

M. Bahram, C. Hubmann, A. Lawitzky, M. Aeberhard, and D. Wollherr,
“A Combined Model- and Learning-Based Framework for Interaction-
Aware Maneuver Prediction,” IEEE Transactions on Intelligent Trans-
portation Systems, vol. 17, no. 6, pp. 1538-1550, 2016.

C. Hubmann, M. Aeberhard, and C. Stiller, “A generic driving strategy
for urban environments,” in /IEEE International Conference on Intelli-
gent Transportation Systems, pp. 1010-1016, 2016.

C. Hubmann, M. Becker, D. Althoff, D. Lenz, and C. Stiller, “Decision
making for autonomous driving considering interaction and uncertain
prediction of surrounding vehicles,” in IEEE Intelligent Vehicles Sym-
posium, pp. 1671-1678, 2017.

C. Hubmann, N. Quetschlich, J. Schulz, J. Bernhard et al., “A POMDP
Maneuver Planner For Occlusions in Urban Scenarios,” in IEEE Intel-
ligent Vehicles Symposium, pp. 2172-2179, 2019.

C. Hubmann, J. Schulz, M. Becker, D. Althoff, and C. Stiller, “Auto-
mated Driving in Uncertain Environments: Planning with Interaction
and Uncertain Maneuver Prediction,” IEEE Transactions on Intelligent
Vehicles, vol. 3, no. 1, pp. 5-17, 2018.

C. Hubmann, J. Schulz, G. Xu, D. Althoff, and C. Stiller, “A belief
state planner for interactive merge maneuvers in congested traffic,” in
IEEE International Conference on Intelligent Transportation Systems,
pp. 1617-1624, 2018.

J. Schulz, C. Hubmann, J. Lochner, and D. Burschka, “Interaction-
aware probabilistic behavior prediction in urban environments,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems,
pp- 3999-4006, 2018.

J. Schulz, C. Hubmann, J. Lochner, and D. Burschka, “Multiple Model
Unscented Kalman Filtering in Dynamic Bayesian Networks for Inten-
tion Estimation and Trajectory Prediction,” in IEEE International Con-
ference on Intelligent Transportation Systems, pp. 1467-1474, 2018.

145



Bibliography

[128] J. Schulz, C. Hubmann, N. Morin, and J. Loechner, “Learning
Interaction-Aware Probabilistic Driver Behavior Models from Urban
Scenarios,” in IEEE Intelligent Vehicles Symposium, pp. 1326—1333,
2019.

Supervised Theses

[129] M. Becker, “Decision making for autonomous driving at urban inter-
sections under intention-uncertainty of other vehicles,” Master’s thesis,
fortiss GmbH and Robotics and Embedded Systems Group, Technische
Universitat Miinchen, 2016.

[130] N. Quetschlich, “Handling occlusions in urban scenarios: A belief
state planner for autonomous driving,” Master’s thesis, fortiss GmbH
and Robotics and Embedded Systems Group, Technische Universitit
Miinchen, 2018.

146









Schriftenreihe

Institut fliir Mess- und Regelungstechnik
Karlsruher Institut fiir Technologie
(1613-4214)

Band 001 Hans, Annegret
Entwicklung eines Inline-Viskosimeters
auf Basis eines magnetisch-induktiven
Durchflussmessers.
ISBN 3-937300-02-3

Band 002 Heizmann, Michael
Auswertung von forensischen Riefenspuren
mittels automatischer Sichtprifung.
ISBN 3-937300-05-8

Band 003  Herbst, Jirgen
Zerstorungsfreie Prifung von Abwasserkanalen
mit Klopfschall.
ISBN 3-937300-23-6

Band 004 Kammel, Soren
Deflektometrische Untersuchung spiegelnd
reflektierender Freiformflachen.
ISBN 3-937300-28-7

Band 005 Geistler, Alexander
Bordautonome Ortung von Schienenfahrzeugen
mit Wirbelstrom-Sensoren.
ISBN 978-3-86644-123-1

Band 006 Horn, Jan
Zweidimensionale Geschwindigkeitsmessung
texturierter Oberflachen mit flachenhaften
bildgebenden Sensoren.
ISBN 978-3-86644-076-0

Die Bande sind unter www.ksp.kit.edu als PDF frei verfigbar oder als Druckausgabe bestellbar.



Band 007 Hoffmann, Christian
Fahrzeugdetektion durch Fusion monoskopischer
Videomerkmale.
ISBN 978-3-86644-139-2

Band 008 Dang, Thao
Kontinuierliche Selbstkalibrierung von
Stereokameras.
ISBN 978-3-86644-164-4

Band 009 Kapp, Andreas
Ein Beitrag zur Verbesserung und Erweiterung
der Lidar-Signalverarbeitung flr Fahrzeuge.
ISBN 978-3-86644-174-3

Band 010 Horbach, Jan
Verfahren zur optischen 3D-Vermessung
spiegelnder Oberflachen.
ISBN 978-3-86644-202-3

Band 011  Bohringer, Frank
Gleisselektive Ortung von Schienenfahrzeugen
mit bordautonomer Sensorik.
ISBN 978-3-86644-196-5

Band 012  Xin, Binjian
Auswertung und Charakterisierung
dreidimensionaler Messdaten technischer
Oberflachen mit Riefentexturen.
ISBN 978-3-86644-326-6

Band 013  Cech, Markus
Fahrspurschatzung aus monokularen Bildfolgen fur
innerstadtische Fahrerassistenzanwendungen.
ISBN 978-3-86644-351-8

Band 014  Speck, Christoph
Automatisierte Auswertung forensischer Spuren
auf Patronenhlsen.
ISBN 978-3-86644-365-5

Die Bande sind unter www.ksp.kit.edu als PDF frei verfugbar oder als Druckausgabe bestellbar.



Band 015 Bachmann, Alexander
Dichte Objektsegmentierung in
Stereobildfolgen.
ISBN 978-3-86644-541-3

Band 016  Duchow, Christian
Videobasierte Wahrnehmung markierter
Kreuzungen mit lokalem Markierungstest
und Bayes'scher Modellierung.
ISBN 978-3-86644-630-4

Band 017  Pink, Oliver
Bildbasierte Selbstlokalisierung von
StraBBenfahrzeugen.
ISBN 978-3-86644-708-0

Band 018 Hensel, Stefan
Wirbelstromsensorbasierte Lokalisierung von
Schienenfahrzeugen in topologischen Karten.
ISBN 978-3-86644-749-3

Band 019  Carsten Hasberg
Simultane Lokalisierung und Kartierung
spurgefthrter Systeme.
ISBN 978-3-86644-831-5

Band 020  Pitzer, Benjamin
Automatic Reconstruction of Textured
3D Models.
ISBN 978-3-86644-805-6

Band 021  Roser, Martin
Modellbasierte und positionsgenaue Erkennung
von Regentropfen in Bildfolgen zur Verbesserung
von videobasierten Fahrerassistenzfunktionen.
ISBN 978-3-86644-926-8

Die Bande sind unter www.ksp.kit.edu als PDF frei verfigbar oder als Druckausgabe bestellbar.



Band 022

Band 023

Band 024

Band 025

Band 026

Band 027

Band 028

Loose, Heidi

Dreidimensionale StraBenmodelle fir
Fahrerassistenzsysteme auf LandstraBen.
ISBN 978-3-86644-942-8

Rapp, Holger

Reconstruction of Specular Reflective Surfaces using
Auto-Calibrating Deflectometry.

ISBN 978-3-86644-966-4

Moosmann, Frank

Interlacing Self-Localization, Moving Object Tracking
and Mapping for 3D Range Sensors.

ISBN 978-3-86644-977-0

Geiger, Andreas

Probabilistic Models for 3D Urban Scene
Understanding from Movable Platforms.
ISBN 978-3-7315-0081-0

Horter, Marko

Entwicklung und vergleichende Bewertung
einer bildbasierten Markierungslichtsteuerung
far Kraftfahrzeuge.

ISBN 978-3-7315-0091-9

Kitt, Bernd

Effiziente Schatzung dichter Bewegungsvektorfelder
unter Berlcksichtigung der Epipolargeometrie zwischen
unterschiedlichen Ansichten einer Szene.

ISBN 978-3-7315-0105-3

Lategahn, Henning

Mapping and Localization in Urban
Environments Using Cameras.

ISBN 978-3-7315-0135-0

Die Bande sind unter www.ksp.kit.edu als PDF frei verfugbar oder als Druckausgabe bestellbar.



Band 029  Tischler, Karin
Informationsfusion fur die kooperative
Umfeldwahrnehmung vernetzter Fahrzeuge.
ISBN 978-3-7315-0166-4

Band 030  Schmidt, Christian
Fahrstrategien zur Unfallvermeidung im
StraBenverkehr fur Einzel- und
Mehrobjektszenarien.
ISBN 978-3-7315-0198-5

Band 031 Firl, Jonas
Probabilistic Maneuver Recognition
in Traffic Scenarios.
ISBN 978-3-7315-0287-6

Band 032 Schoénbein, Miriam
Omnidirectional Stereo Vision
for Autonomous Vehicles.
ISBN 978-3-7315-0357-6

Band 033 Nicht erschienen

Band 034 Liebner, Martin
Fahrerabsichtserkennung und Risikobewertung
fr warnende Fahrerassistenzsysteme.
ISBN 978-3-7315-0508-2

Band 035  Ziegler, Julius
Optimale Trajektorienplanung fir Automobile.
ISBN 978-3-7315-0553-2

Band 036 Harms, Hannes
Genauigkeitsuntersuchung von
binokularen Normalenvektoren fir
die Umfeldwahrnehmung.

ISBN 978-3-7315-0628-7

Die Bande sind unter www.ksp.kit.edu als PDF frei verfigbar oder als Druckausgabe bestellbar.



Band 037 Ruhhammer, Christian
Inferenz von Kreuzungsinformationen
aus Flottendaten.
ISBN 978-3-7315-0721-5

Band 038  Stein, Denis
Mobile laser scanning based determination
of railway network topology and branching
direction on turnouts.
ISBN 978-3-7315-0743-7

Band 039 i, Boliang
Integrated Planning and Control for
Collision Avoidance Systems.
ISBN 978-3-7315-0785-7

Band 040 Schwarze, Tobias
Compact Environment Modelling from
Unconstrained Camera Platforms.
ISBN 978-3-7315-0801-4

Band 041  Knorr, Moritz
Self-Calibration of Multi-Camera Systems
for Vehicle Surround Sensing.
ISBN 978-3-7315-0765-9

Band 042 Rabe, Johannes
Lane-Precise Localization with Production
Vehicle Sensors and Application to
Augmented Reality Navigation.
ISBN 978-3-7315-0854-0

Band 043 Weiser, Andreas
Probabilistische Vorhersage von Fahrstreifen-
wechseln fur hochautomatisiertes Fahren auf
Autobahnen.
ISBN 978-3-7315-0794-9

Die Bande sind unter www.ksp.kit.edu als PDF frei verfugbar oder als Druckausgabe bestellbar.



Band 044

Band 045

Band 046

Band 047

Band 048

Tian, Wei

Novel Aggregated Solutions for Robust Visual
Tracking in Traffic Scenarios.

ISBN 978-3-7315-0915-8

Grater, Johannes

Monokulare Visuelle Odometrie auf Multisensor-
plattformen flr autonome Fahrzeuge.

ISBN 978-3-7315-0935-6

Spindler, Max

Ferromagnetische Inhomogenitaten
zur berthrungslosen Bestimmung der
Geschwindigkeit und gleisselektiven
Position von Schienenfahrzeugen.
ISBN 978-3-7315-1000-0

Sons, Marc

Automatische Erzeugung langzeitverfugbarer
Punktmerkmalskarten zur robusten Lokalisierung
mit Multi-Kamera-Systemen fir automatisierte
Fahrzeuge.

ISBN 978-3-7315-1029-1

Hubmann, Constantin

Belief State Planning for Autonomous Driving:
Planning with Interaction, Uncertain Prediction
and Uncertain Perception.

ISBN 978-3-7315-1039-0

Die Bande sind unter www.ksp.kit.edu als PDF frei verfigbar oder als Druckausgabe bestellbar.



Schriftenreihe

INSTITUT FUR MESS- UND REGELUNGSTECHNIK mrt
KARLSRUHER INSTITUT FUR TECHNOLOGIE (KIT) A

048

This work presents a behavior planning algorithm for automated driv-
ing in urban environments with an uncertain and dynamic nature. The
uncertainty exists for two main reasons: First of all, the perception of the
surrounding objects is based on noisy sensor measurements and impeded
by occlusions. Secondly, the future behavior of the surrounding traffic
cannot be measured directly but only estimated in a probabilistic fashion
and is also dependent on the action of the autonomous car. Robust and
non-conservative decision making in such environments is only possible
by taking these uncertainties and interdependencies explicitly into account.
Solving this problem exactly is considered intractable why it is avoided in
favor of simpler approaches that result in non-optimal behavior.

This work presents how this planning problem can be modeled in a generic
way as a Partially Observable Markov Decision Process (POMDP) and how
a sufficiently good approximation of the solution can be found online
via sampling of the most likely trajectories of all agents. The solution to
the POMDP is a policy over belief states, that provides the optimal action
given the current uncertainty and all resulting possible future scenarios.
The global formulation allows the planning algorithm to make the decision
for certain high-level maneuvers implicitly. The explicit consideration of
uncertainties allows for intelligent behavior such as postponing decisions
by hedging against future possible events. Also, actions are selected to
gain more information in the future by reducing occlusions or testing the
cooperation of other drivers.

The work demonstrates how this approach outperforms simpler approaches
in simulated scenarios such as unprotected turns, lane changes and rea-
soning under occlusions.

ISBN 978-3-7315-1039-0

ISSN 1613-4214
ISBN 978-3-7315-1039-0
91783 >

7317510390

Gedruckt auf FSC-zertifiziertem Papier



	Foreword
	Abstract
	Kurzfassung
	Notation and Symbols
	1 Introduction
	1.1 Motivation: Motion Planning Under Uncertainty
	1.2 Related Work: Motion Planning
	1.2.1 Properties of Planning Algorithms
	1.2.2 Consideration of Constraints
	1.2.3 Graph Search for Trajectory Planning
	1.2.4 Probabilistic Search for Trajectory Planning
	1.2.5 Variational Trajectory Planning
	1.2.6 Trajectory Planning for Autonomous Vehicles

	1.3 Related Work: Motion Planning Architectures
	1.3.1 Non-Interactive Planning with Given Prediction
	1.3.2 (Interactive) Planning with Given Maneuvers
	1.3.3 Optimizing Interactive Maneuvers

	1.4 Motion Planning with Policies
	1.4.1 Open-Loop Planning
	1.4.2 Closed-Loop Planning
	1.4.3 Definition of Policy Optimization

	1.5 Closed-Loop Behavior Planning Under Uncertainty
	1.6 Contributions and Outline

	2 Background
	2.1 Planning with Deterministic Models
	2.2 Planning with Probabilistic Models
	2.3 Planning with State Uncertainty
	2.3.1 Complexity of Solving POMDPs
	2.3.2 Solving POMDPs
	2.3.3 The Simplified QMDP Formulation
	2.3.4 Policy Optimization: Online vs Offline

	2.4 Solving POMDPs in this Thesis
	2.4.1 Monte Carlo Tree Search
	2.4.2 MCTS for POMDPs
	2.4.3 UCT Action Selection
	2.4.4 Belief State Tracking and Observation Clustering
	2.4.5 Calculating Optimized Roll-Outs
	2.4.6 Creating Consistent Plans
	2.4.7 Batch Sampling of Episodes

	2.5 Reducing the Dimensionality of the Action Space

	3 Planning for Combinatorial Decision Making
	3.1 Related Work
	3.2 Problem Formulation
	3.3 Approach
	3.3.1 Transition Model
	3.3.2 Cost Function
	3.3.3 Domain Specific Heuristics
	3.3.4 Goal State Formulation
	3.3.5 Implementation

	3.4 Results
	3.4.1 Performance
	3.4.2 Qualitative Simulation Scenario

	3.5 Summary

	4 Planning with Uncertain Intentions of Crossing Traffic
	4.1 Related Work
	4.2 Problem Formulation
	4.3 Approach
	4.3.1 State Space
	4.3.2 Action and Transition Model
	4.3.3 Reward Model
	4.3.4 Observation Model
	4.3.5 Implementation

	4.4 Results
	4.4.1 Convergence
	4.4.2 Policy Behavior Planning

	4.5 Summary

	5 Coupled 2D Planning for Interactive Merging
	5.1 Related Work
	5.1.1 Gap Assessment Algorithms
	5.1.2 Planning-Based Algorithms

	5.2 Approach
	5.2.1 State Space
	5.2.2 Action and Transition Model
	5.2.3 Motion Model of Surrounding Agents
	5.2.4 Observation Model
	5.2.5 Reward Model
	5.2.6 Learned Yielding Model
	5.2.7 Implementation

	5.3 Results
	5.3.1 Analysis of Belief State Policy
	5.3.2 Online Simulation

	5.4 Summary

	6 Planning under Sensor Occlusions
	6.1 Related Work
	6.2 Approach
	6.2.1 State Space
	6.2.2 Observation Model
	6.2.3 Representation of Phantom Vehicles
	6.2.4 Action and Transition Model
	6.2.5 Reward Model
	6.2.6 Implementation

	6.3 Results
	6.3.1 Static Occlusion
	6.3.2 Dynamic Occlusion
	6.3.3 2D Motion Primitives

	6.4 Summary

	7 Conclusion
	7.1 Future Research Directions

	Bibliography



