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Abstract
Recent years have witnessed the active development of scanning systems and reconstruction
algorithms for ultrasound computed tomography (USCT) with applications to breast imaging
for early cancer detection. Despite these advances in hardware and software development,
we encounter the need for reference data to develop, test and compare different imaging
methods. With the goals of encouraging scientific exchange and collaborations, providing
benchmarks of reconstruction algorithms, and standardizing USCT data formats, we have
released open-source data sets of simulated waveforms that mimic measurements of a USCT
scanning aperture using numerical breast phantoms. This is part of ongoing efforts centered
around the USCT platform for data exchange and collaboration [1, 2].
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1 Introduction

Within the past decade, substantial progress in the development and design of USCT sys-
tems has been made, and several systems have readily provided first clinical results [3, 4, 5].
Simultaneously, a wide range of image reconstruction methods using both transmission and
reflection data has been developed. Overviews of different modelling and inversion tech-
niques can be found in [6] and [7]. One of the main challenges is to find good trade-offs
between the quality of the image, on the one hand, and the time-to-solution, on the other
hand. Popular reconstruction methods include ray-based time-of-flight inversion [8, 9, 10],
reflection imaging using synthetic aperture focusing techniques [11] and reverse time mi-
gration [12], Born modelling [13, 14], as well as waveform tomography and full-waveform
inversion in time and frequency domain [15, 16, 17, 18, 19, 20, 21, 22].

While this list is far from being complete, the variety of imaging and reconstruction algo-
rithms readily stresses the need for suitable reference data to benchmark and compare dif-
ferent methods. To meet the demand for freely available data sets within the USCT research
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Figure 1: Sound speed map of the analytical (left) and the segmented breast phantom (right) used in the simulations.

community, a digital platform hosting several data sets has been initiated. In the initial phase
this included raw data donated by three different USCT systems [1, 2]. In the course of
this new data challenge, we added simulated A-scans using numerical phantoms that enable
researchers to compare and benchmark different reconstruction algorithms with a ground
truth.

The long term goals of this initiative are (1) to build up an open-source reference USCT data
base that is freely available for the entire community, (2) to enable reproducible compar-
isons of image reconstruction algorithms and USCT systems, (3) to establish user friendly
interfaces, standards and data formats between different USCT apertures, reconstruction al-
gorithms, software and data formats, and (4) to identify properties of systems, experimental
setups, data, and algorithms towards optimal images.

In the rest of the paper we briefly summarize the specification of the numerical phantoms
used in this data challenge, comment on the scanning aperture and simulation setup, and
propose a flexible data format for USCT scans.

2 Numerical phantoms

This data challenge comprises waveform data for two different numerical phantoms. Figure
1 shows the sound speed map of both phantoms. In addition, data generated in a homoge-
neous medium mimicking an empty water tank with a constant sound speed of 1500 m/s and
a density of 1000 kg / m3 is provided for calibration purposes.
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Ellipse Center (x, y) [mm] Axes (x, y) [mm] q [�] c [m/s] r [kg / m3]
a (0, 0) (47, 47) 0 1650 1150
b (0, 0) (46, 46) 0 1510 1040
c (0, -25) (10, 10) 0 1560 1070
d (0, 25) (15, 15) 0 1500 990
e (20, -10) (5, 7.5) 45 1570 1080
f (30, 5) (2.5, 2.5) 0 1580 1090
g (20, 25) (0.625, 0.625) 0 1600 1150
h (-20, 10) (5, 5) 0 1470 980
i (-30, -5) (2.5, 2.5) 0 1490 1000
j (-25, -15) (1.25, 1.25) 0 1490 1100
j (-20, -25) (0.625, 0.625) 0 1450 960

Table 1: The geometric parameters used for creating the analytic phantom as well as the values for sound speed c
and density r . The order is important and later added shapes overwrite the previous values.

Tissue c [m/s] r [kg / m3]
water 1500 1000

fat 1450 980
glandular tissue 1480 1020

skin 1600 1060
muscle 1580 1080

irregular cancer 1550 1070
lobular cancer 1560 1010

cyst 1500 1000
fibroadenoma 1530 1080

Table 2: Values of sound speed c and density r for different tissues labelled in the segmented phantom.
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2.1 Analytic shapes

The first breast phantom is a superposition of spheres and ellipses with different sizes and
constant material properties, and has a diameter of 94 mm. Table 1 provides the full descrip-
tion of all shapes.

2.2 Segmented MRI data

The second phantom is a 2D coronal slice of segmented MRI data of a human breast. The
discrete values assigned to the different tissue labels are given in Table 2. As exact tissue
parameters are still controversially discussed, we empirically selected values which are in
the range of the values reported across the literature [23]. The resolution of the original MRI
is fairly coarse with a voxel size of 0.68359 mm and 311 ⇥ 316 pixels in the coronal plane.
This yields an irregular pattern, which is primarily visible in the skin. At high frequencies,
this stair-casing effect can lead to significant distortion and spurious reflections as shown in
Figure 2. To mitigate this effect, we smooth the skin layer in a preprocessing step.

Figure 2: Snapshots of the pressure field. Using the raw MRI data to obtain the speed map leads to signifcant
distortion at the water-skin interface (left). This unphysical effect can be mitigated by smoothing the
sound speed model in a preprocessing step (right).

3 Aperture and simulated data

We simulate the time-domain acoustic wave equation parameterized by a heterogeneous
density r and sound speed c:

1
r(x)c(x)2 ∂ttf(x, t)�— · 1

r(x)
—f(x, t) = s(t)d (x�xs), (1)
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Figure 3: Source wavelet in time domain and its power spectral density.

Figure 4: Signal gathers for synthetic waveforms computed in water (left), the analyitc phantom (middle), and
the segmented phantom (right). The colorscale is centered around zero and clips large amplitudes to
highlight reflected and refracted waveforms after the first arrival.

with homogenuous initial conditions

f(x,0) = ∂tf(x,0) = 0, (2)

where f denotes the time- and space-dependent wavefield and s is the source-time function
of an omni-directional point source emitting at location xs. The source time function is
a Ricker wavelet, centered around time zero. The dominant frequency for the 2D data is
2.5 MHz, and the frequency cutoff of 5% of the power spectrum is close to 5 MHz, cf.
Fig. 3. The 2D simulations use an aperture with 249 transducers aligned on a ring with a
radius of 99 mm. The simulation domain uses a box extended along both coordinate axis
and with absorbing boundary conditions imposed on all side walls. The duration of the
simulation spans 0.150635 ms, and the data are sampled with a time increment of 9.4 ns.
Fig. 4 shows collected A-scans for a single emitter in a homogenuous medium and both
numerical phantoms. Reflections from the skin and the stronger sounds speed anomalies can
be distinguished in the data of the analytical phantom. This is not the case for the segmented
phantom All simulations were carried out using the spectral-element method [24].
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HDF5 “usct_data.h5” {
GROUP "/" {

GROUP "scans" {
GROUP "scan_0000" {

GROUP "emitter" {
DATASET "location" {

DATATYPE H5T_IEEE_F64LE
DATASPACE SIMPLE { ( dim ) / ( dim ) }

}
}
GROUP "receiver" {

DATASET "locations" {
DATATYPE H5T_IEEE_F64LE
DATASPACE SIMPLE { ( n_tdx, dim ) / ( n_tdx, dim ) }

}
DATASET "waveforms" {

DATATYPE H5T_IEEE_F32LE
DATASPACE SIMPLE { ( n_t, n_tdx ) / ( n_t, n_tdx ) }
ATTRIBUTE "sampling_rate_in_hertz" {

DATATYPE H5T_IEEE_F64LE
DATASPACE SCALAR

}
ATTRIBUTE "start_time_in_seconds" {

DATATYPE H5T_IEEE_F64LE
DATASPACE SCALAR

}
}

}
}

}
}
}

Figure 5: Sketch of the container structure within (left) and how this translates into groups and datasets in the hdf5
file (right). Note that additional meta data can easily be stored as attributes or auxiliary datasets. Data
types and data set dimensions are dynamic.

4 Data format

To the best of our knowledge, no standardized file format to easily store, process and transfer
USCT raw data has emerged from the community yet. As part of releasing data for this
challenge, we propose a flexible data format based on HDF5 [25], a widespread, open-source
library for storing scientific data. HDF5 has built-in support for compression, chunking,
check summing and variable floating point precision. Internally, the file is organized in a
container-like structure similar to a filesystem tree. This permits storing waveform data and
meta information together in a single file. Furthermore, data from multiple scans can easily
be combined or split into several files.

Figure 5 provides a high-level view on the proposed container structure. All information can
be accessed individually, which permits lazy loading and batch-wise operations if memory
is scarce. Wrappers for reading and writing file contents are currently available for Python,
Matlab, C++. We also provide a validation tool to ensure compliance with the file format
definition.

5 Conclusions

The aim of this work is to provide freely available simulated USCT data to test and bench-
mark different imaging algorithms. These simulated data of numerical phantoms follow the
previous USCT data challenge that provided measurements from different scanning systems.
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The data and a small collection of software tools are available open-source, and we hope to
also include inversion and imaging algorithms in the future. We will continue to maintain and
extend this platform, and we welcome active participation and feedback. This will contribute
to the overarching goals of this initiative, which are to facilitate research on early breast
cancer detection, improve imaging algorithms and scanning apertures, and to foster scientific
collaborations.
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