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Abstract: This manuscript presents a new method for fitting ellipses to two-dimensional data using the confocal 

hyperbola approximation to the geometric distance of points to ellipses. The proposed method was evaluated and 

compared to established methods on simulated and real-world datasets. First, it was revealed that the confocal 

hyperbola distance considerably outperforms other distance approximations such as algebraic and Sampson. Next, the 

proposed ellipse fitting method was compared with five reliable and established methods proposed by Halir, Taubin, 

Kanatani, Ahn and Szpak. The performance of each method as a function of rotation, aspect ratio, noise, and arc-

length were examined. It was observed that the proposed ellipse fitting method achieved almost identical results (and 

in some cases better) than the gold standard geometric method of Ahn and outperformed the remaining methods in all 

simulation experiments. Finally, the proposed method outperformed the considered ellipse fitting methods in 

estimating the geometric parameters of cylindrical mechanical pipes from point clouds. The results of the experiments 

show that the confocal hyperbola is an excellent approximation to the true geometric distance and produces reliable 

and accurate ellipse fitting in practical settings. 

1. Introduction: applications of ellipse fitting 

Points following elliptic patterns commonly and naturally occur in many real-world datasets. In digital images, 

the edge points of spheres and circles form ellipses due to projective transformation. In three-dimensional point clouds, 

the intersection of spheres, cones, and cylinders with a plane also delivers points following an elliptic pattern. Reliable 

and accurate ellipse fitting to data is, hence, commonly an important step towards solving various real-world 

applications pertaining to shapes such as circles, cylinders and spheres, including, galaxy classification [1], traffic sign 

detection [2], phase estimation in interferograms [3], cell segmentation in fluorescence microscopy images [4], 
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demodulation of interferometer signals [5], terrestrial laser scanner (TLS) registration [6], optical instrument 

calibration [7], geometric as-built building information modeling (BIM) of pipes [8], cylinder fitting of industrial 

shapes [9], and cylindrical point cloud classification [10]. 

To fit an ellipse to a set of points, the ellipse parameters minimizing the sum of the squared distances between 

the points and an ellipse are estimated (least squares method). Ideally, it is desirable to minimize the function 

representing the orthogonal distances of points to an ellipse (commonly referred to as the geometric distance). Finding 

the orthogonal contact point to an ellipse is, however, not an easy task, and most available analytical methods are 

either numerically unstable, or iterative without guarantee of convergence [11], and consequentially time consuming 

[12]. The numerically stable methods, such as that proposed by Chernov [11] are not analytically closed-form, and 

hence, cannot be used as a minimization cost function. As a result, researchers have sought to minimize alternative 

and less complicated distance functions, such as algebraic [13–16], and Sampson [12,17–20]. The methods minimizing 

algebraic and Sampson distances, however, share some undesirable properties. Algebraic methods are biased at 

locations of high curvature (see Section 2). The Sampson distance is not continuous in ℛ2 (see Sections 2 and 5.1.1 

Figure 4) and the methods are only suited for data with “moderate” noise levels [12]. The methods minimizing the 

algebraic and Sampson distances also require either additional constraints [15] or barrier terms [12] during the 

minimization of the objective function to guarantee an ellipse. Furthermore, Sampson and algebraic distances do not 

effectively predict the geometric distance and as will be revealed in our experiments (see Section 5.1.1 and Figure 4), 

diverge from the true geometric distance as the point moves farther from the ellipse. This is most likely the reason 

they are only suited for “moderate” noise levels. 

To overcome the discussed limitations associated with current ellipse fitting methods, this manuscript presents a 

new ellipse fitting method that minimizes the sum of the squared confocal hyperbola distances of points to an ellipse. 

Even though the confocal hyperbola distance approximation was introduced in Rosin [21] with promising geometric 

properties, its effectiveness as an ellipse fitting method has not yet been examined in the literature. The goals of this 

manuscript are to: (i) provide a closed-form solution to the confocal hyperbola distance function; (ii) introduce a new 

algorithm to minimize the sum of the squared confocal hyperbola distances; and (iii) thoroughly investigate its 

effectiveness in fitting ellipses to two-dimensional (2D) data, acquired from simulated image edge points as well as 

point clouds of cylindrical mechanical pipes. 
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The remainder of the manuscript is structured as follows. In Section 2, an introduction to current ellipse fitting 

methods, along with their advantages and limitations is provided. Section 3 includes the detailed explanation of the 

proposed ellipse fitting algorithm. Section 4 outlines the metrics for validation of the proposed method along with the 

design and configurations of the various simulation-based and real-world experiments, carried out to assess the 

applicability of the proposed method compared to state-of-the-art ellipse fitting methods. Sections 5 and 6 detail the 

results obtained by the simulated, and real-world data in the designed configurations presented in Section 4, 

respectively. Section 7 discusses the summary of the major findings of this study. 

2. Background: introduction to ellipse fitting 

The equation of an ellipse in general form is represented as: 

((𝑥𝑥−𝑥𝑥𝑐𝑐) cos𝜃𝜃+(𝑦𝑦−𝑦𝑦𝑐𝑐) sin𝜃𝜃
𝑎𝑎

)2 + (−(𝑥𝑥−𝑥𝑥𝑐𝑐) sin𝜃𝜃+(𝑦𝑦−𝑦𝑦𝑐𝑐) cos𝜃𝜃
𝑏𝑏

)2 = 1       (1) 

where (𝑥𝑥,𝑦𝑦) are the point coordinates,  𝜌𝜌 = (𝑥𝑥𝑐𝑐 ,𝑦𝑦𝑐𝑐 ,𝑎𝑎,𝑏𝑏,𝜃𝜃) is the geometric parameter vector of an ellipse, which 

includes the coordinates of the center, semi major length, semi minor length and rotation angle of the ellipse, 

respectively. Equation (1) can be reduced to general algebraic form as proposed by Paton [13], which is commonly 

referred to as the algebraic distance: 

𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎(𝑥𝑥,𝑦𝑦) = 𝐴𝐴𝑥𝑥2 + 𝐵𝐵𝑥𝑥𝑦𝑦 + 𝐶𝐶𝑦𝑦2 + 𝐷𝐷𝑥𝑥 + 𝐸𝐸𝑦𝑦 + 𝐹𝐹 = 𝜏𝜏 𝑃𝑃𝑇𝑇 = 0       (2) 

where 𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎(𝑥𝑥,𝑦𝑦) is the algebraic distance of point (𝑥𝑥,𝑦𝑦) to the conic, 𝜏𝜏 = (𝐴𝐴,𝐵𝐵,𝐶𝐶,𝐷𝐷,𝐸𝐸,𝐹𝐹) is the vector of algebraic 

parameters, 𝑃𝑃 = (𝑥𝑥2, 𝑥𝑥𝑦𝑦,𝑦𝑦2, 𝑥𝑥,𝑦𝑦, 1) is the 6-dimensional coordinate set (commonly referred to as the design vector, 

or for more than one point, design matrix), and (. )𝑇𝑇 denotes the transpose function. To find a best fit conic to 𝑁𝑁 data 

points, the parameters providing the minimum sum of the squared algebraic distances are required, i.e.: 

min
𝜏𝜏
∑ �𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖)�

2
𝑁𝑁
𝑖𝑖=1 = min

𝜏𝜏
𝜏𝜏(𝑃𝑃𝑇𝑇𝑃𝑃)𝜏𝜏𝑇𝑇 = min

𝜏𝜏
𝜏𝜏𝑆𝑆𝜏𝜏𝑇𝑇      (3) 

where 𝑆𝑆 = 𝑃𝑃𝑇𝑇𝑃𝑃 is referred to as the scatter matrix. The problem imposed by equation 3 is a linear least squares problem 

subject to some parameter constraint to prevent the trivial solution, 𝜏𝜏 = 0. For instance, Paton [13] proposed to 

minimize equation 3, subject to ‖𝜏𝜏‖ = 1, where ‖. ‖ denotes the L2-norm. This problem is now reduced to fitting a 

hyper plane to a six-dimensional point coordinate set 𝑃𝑃𝑖𝑖 = (𝑥𝑥𝑖𝑖2, 𝑥𝑥𝑖𝑖𝑦𝑦𝑖𝑖 ,𝑦𝑦𝑖𝑖2, 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 , 1), which is the eigenvector 

corresponding to the smallest eigenvalue of the 6×6 scatter matrix, 𝑆𝑆. Since this algebraic minimization ignores the 

correlations between the algebraic parameters, it cannot guarantee an ellipse. In fact, the algebraic parameters must 

satisfy both of the following conditions to produce an ellipse: 
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 , 𝐷𝐷 ≠ 0

∆= 𝐵𝐵2 − 4𝐴𝐴𝐶𝐶                   , ∆< 0

       (4) 

where det (. ) denotes the determinant function. To guarantee an ellipse fit, Fitzgibbon [15] proposed to solve equation 

3 subject to ∆= −1. By introducing a constraint matrix (𝑀𝑀) for this condition, the problem was reduced to a 

generalized eigenvalue problem (𝑆𝑆𝜏𝜏𝑇𝑇 = 𝜆𝜆𝑀𝑀𝜏𝜏𝑇𝑇). Halir [16] observed that the constraint matrix of Fitzgibbon can 

provide numerically unstable results, especially when the points are exactly on the ellipse. Hence, they proposed a 

numerically stable method to solve Fitzgibbon’s constraint. 

To provide some perspective on the meaning of the algebraic distance, Bookstein [14] showed that the algebraic 

distance is proportional to: 

𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖) ∝
𝑑𝑑𝑖𝑖
2−𝑐𝑐𝑖𝑖

2

𝑐𝑐𝑖𝑖
2 = 𝑎𝑎𝑖𝑖

𝑐𝑐𝑖𝑖
(𝑎𝑎𝑖𝑖
𝑐𝑐𝑖𝑖

+ 2)         (5) 

where 𝑑𝑑𝑖𝑖 is the distance from the point to the center, and 𝑐𝑐𝑖𝑖 and 𝐸𝐸𝑖𝑖 are shown in Figure 1a. The formulation of Bookstein 

shows that for the same 𝐸𝐸𝑖𝑖 across all data points (e.g. same noise level), the algebraic distance of the point to the curve 

is smaller when 𝑐𝑐𝑖𝑖 is larger (i.e. around the major axis). In other words, at locations of high curvature, the algebraic 

distance under-estimates the distance of the point to the curve. This is referred to as a high curvature bias problem 

imposed by equation 3 [22]. To solve the curvature bias problem, Agin [17] proposed the minimization of the 

following distance function: 

𝑑𝑑𝑆𝑆𝑎𝑎𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖) =
𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎(𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖)

�∇𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎(𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖)�
         (6) 

where ∇ denotes the gradient function, and 𝑑𝑑𝑆𝑆𝑎𝑎𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑥𝑥,𝑦𝑦) is commonly referred to as the Sampson distance of points 

(𝑥𝑥,𝑦𝑦) to the ellipse (Sampson 1982). Minimization of the sum of the squared Sampson distances is, however, a non-

linear problem. As a result, Agin [17] proposed to approximate equation 6 subject to ∑ �∇𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖)�𝑁𝑁
𝑖𝑖=1

2 = 1, which 

reduces to a linear generalized eigenvalue problem. Later, Taubin [19] independently derived this exact formulation, 

which is now commonly referred to as the Taubin’s method in the literature. Instead of solving the actual non-linear 

minimization problem of equation 6, Sampson [18] proposed to adopt a reweighting strategy (referred to as the 

gradient weighted method) using the distance of equation 6 to iteratively improve Bookstein’s algebraic conic fitting 

method. The approximate solution to equation 6 proposed by Taubin and Agin provides a curvature bias correction of 
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the algebraic distance up to the first order. Kanatani [23] went one step further and corrected the algebraic distance 

approximation up to the second order of the algebraic distance. Their method also reduces to a generalized eigenvalue 

minimization problem similar to that of Taubin and Agin. The approximate solutions to equation 6 using Taubin’s and 

Kanatani’s methods, however, do not necessarily satisfy the conditions of equation 4, and hence, cannot guarantee an 

ellipse. To this end, Szpak [12] proposed to incorporate a barrier term in the minimization of the Sampson distance, 

which helps limit the solution space to guarantee an ellipse. Their formulation, however, cannot be reduced to a linear 

least squares problem, and hence it was solved using the Levenberg–Marquardt algorithm. 

 

Figure 1: Schematic representation of distance function for one point to an ellipse with geometric parameter vector 

𝜌𝜌 = (0,0,5,3,0): a) algebraic and geometric distances; b) confocal hyperbola 

The Sampson distance, although providing a good approximation to reduce the impact of curvature biases 

imposed by the algebraic distance function, is undetermined when the point coordinate is on the center of the ellipse 

(i.e. equation 6 goes to infinity as the point approaches the center of the ellipse). In addition, it bears no direct 

relationship to the true geometric distance, especially as the point moves farther from the ellipse (see visual analysis 

of Section 5.1.1). Harker and O’Leary [24] pointed out that the Sampson distance is merely the geometric distance of 

a point to the first order approximation of the algebraic distance function and should not be mistaken with the first 

order approximation of the geometric distance from the point to the conic. They provided a closed-form solution to 

the first order approximation of the geometric distance, which was, in fact, also found to be a weighted algebraic 

distance. However, as pointed out by Uteshev and Goncharova [25], Harker and O’Leary’s solution can display 

singularities in elongated ellipses for points around the major axis. In addition, as will be revealed later (see Figure 

4), Haker and O’Leary’s distance is undetermined (approaches infinity) for points at the focal points of an ellipse. 

The ideal geometric minimization cost function is to minimize the sum of the squared distances represented by 

the orthogonal projections of the points onto the ellipse (i.e. the geometric distance; Figure 1a; red solid line). 

Focal points 

Ellipse center 
𝑐𝑐𝑖𝑖 

𝐸𝐸𝑖𝑖 

Confocal hyperbola 

Geometric distance 
(a) (b) 

X-axis (pixels) 

Y-axis (pixels) 

X-axis (pixels) 

Y-axis (pixels) 
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Achieving a numerically stable, closed-form analytical solution to the geometric distance is, however, not an easy task 

[11]. For instance, Safaee-Rad [26] proposed an exact solution to the geometric distance that reduces to finding the 

roots of a quartic equation. However, analytical methods for finding the roots of a quartic equation are known to be 

numerically unstable. To this end, Ahn [27] proposed to divide the solution provided by Safaee-Rad into two functions 

that were iteratively solved using the generalized Gauss-Newton method. However, as pointed by Chernov [11], the 

method does not guarantee convergence and numerically failed about 3% of the time. Currently, the most accurate 

and numerically stable process for finding the orthogonal projection of points onto conics is proposed by Chernov 

[11]. The method converts the orthogonal projection problem to finding one real generalized eigenvalue between the 

ellipse and its auxiliary conic (which turns out to be a hyperbola; see Figure 1 of [11]). Using one real eigenvalue root, 

a degenerative conic, comprised of two lines, is produced. The closest orthogonal projection of a point to the ellipse 

is the point of intersection between the two lines and the ellipse (up to four points), whose distance to the point of 

interest is the least. However, this elegant method is still not analytically closed-form and, hence, cannot be used as a 

minimization cost function to estimate the parameters of the best fit ellipse. 

Another approximation to the geometric distance is the confocal hyperbola method used in Rosin [21], see Figure 

1b. This distance approximation relies on the fact that confocal ellipses and hyperbolas are mutually orthogonal at the 

intersecting point. Since the confocal hyperbola passing through a given point is nearly linear at the point of 

intersection, it is a good approximation to the geometric distance of a point to the ellipse. It is worth mentioning that 

the auxiliary conic to an ellipse at a specific point, as shown by Chernov [11], is also a hyperbola. Hence, the confocal 

hyperbola distance is speculated to possess similar geometric properties to the true geometric distance of a point to 

the ellipse. In fact, Rosin had compared 16 different geometric distance approximation methods, including algebraic, 

Sampson, Harker and O’Leary, and the confocal hyperbola, in terms of properties such as linearity, curvature bias, 

asymmetry and general goodness [21,28,29]. Overall, the confocal hyperbola was the best in every category, especially 

for larger noise levels (see Table 3 of [21,28,29]). In Section 5.1, we will demonstrate that the confocal hyperbola 

method provides almost identical results to that of Chernov [11], which is the current state-of the-art. Although Rosin 

provided a process to derive the confocal hyperbola distance, it was not presented in general closed-form, imposed 

singularities for circles, and required the examination of four solutions. As a result, up until now, the confocal 

hyperbola distance had not been used to fit ellipses to data. In Section 3, we will expand on the formulation provided 
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by Rosin and present an analytically closed-form solution to this geometric distance approximation, which can then 

be minimized to obtain the best fit ellipse parameters. 

3. Ellipse fitting using confocal hyperbola distance 

Various ellipse fitting methods along with their limitations were introduced in Section 2. Here, we will formulate 

a new ellipse fitting method based on the minimization of the confocal hyperbola distance. To produce a minimization 

objective function, we shall first derive a closed-form solution to the confocal hyperbola distance by determining the 

point of intersection between the ellipse and the confocal hyperbola passing through a given point (𝑥𝑥,𝑦𝑦). Using a 

translation and rotation, equation 1 can be rewritten as follows: 

𝑋𝑋2

𝑎𝑎𝑒𝑒2
+ 𝑌𝑌2

𝑏𝑏𝑒𝑒2
= 1  with 𝑋𝑋 = (𝑥𝑥 − 𝑥𝑥𝑐𝑐) cos𝜃𝜃 + (𝑦𝑦 − 𝑦𝑦𝑐𝑐) sin𝜃𝜃   and  𝑌𝑌 = −(𝑥𝑥 − 𝑥𝑥𝑐𝑐) sin𝜃𝜃 + (𝑦𝑦 − 𝑦𝑦𝑐𝑐) cos𝜃𝜃 (7)  

where 𝑎𝑎𝑒𝑒 and 𝑏𝑏𝑒𝑒 are the semi-major and semi-minor lengths of the ellipse, respectively. In this new coordinate system, 

the problem is now reduced to finding the point of intersection between the ellipse of equation (7) and the confocal 

hyperbola passing through point (𝑋𝑋,𝑌𝑌) with equation: 

𝑋𝑋2

𝑎𝑎ℎ2
− 𝑌𝑌2

𝑏𝑏ℎ
2 = 1           (8) 

where 𝑎𝑎ℎ and 𝑏𝑏ℎ are the semi-major and semi-minor lengths of the hyperbola, respectively. Since the ellipse and 

hyperbola are confocal, the following relationships are valid: 

𝑓𝑓2 = 𝑎𝑎𝑒𝑒2 − 𝑏𝑏𝑒𝑒2 = 𝑎𝑎ℎ2 + 𝑏𝑏ℎ2          (9) 

where 𝑓𝑓 is the distance of one of the foci to the center. By substituting equation 9 into 8, the following quadratic 

function is derived: 

𝐴𝐴2 − (𝑋𝑋2 + 𝑌𝑌2 + 𝑓𝑓2)𝐴𝐴 + 𝑋𝑋2𝑓𝑓2 = 0  with  𝐴𝐴 = 𝑎𝑎ℎ2       (10) 

Solving equation 10 for 𝐴𝐴 provides two solutions; however, only the following can ensure both 𝐴𝐴 and 𝑓𝑓2 − 𝐴𝐴 are 

positive (this is of course a necessary condition to produce real values for 𝑎𝑎ℎ and 𝑏𝑏ℎ):  

�
𝐴𝐴 = 𝑎𝑎ℎ2 = 𝑋𝑋2+𝑌𝑌2+𝑓𝑓2−�(𝑋𝑋2+𝑌𝑌2+𝑓𝑓2)2−4𝑋𝑋2𝑓𝑓2 

2
                  

𝑓𝑓2 − 𝐴𝐴 = 𝑏𝑏ℎ
2 = �(𝑋𝑋2+𝑌𝑌2−𝑓𝑓2)2+4𝑌𝑌2𝑓𝑓2−(𝑋𝑋2+𝑌𝑌2−𝑓𝑓2) 

2
      

       (11) 

Substituting equation (11) into (8) and solving simultaneously with (7) will provide the following simplified solutions 

to the orthogonal intersecting point (𝑋𝑋𝐼𝐼 ,𝑌𝑌𝐼𝐼): 

|𝑋𝑋𝐼𝐼| = 𝑎𝑎𝑒𝑒𝑎𝑎ℎ
𝑓𝑓

  , |𝑌𝑌𝐼𝐼| = 𝑏𝑏𝑒𝑒𝑏𝑏ℎ
𝑓𝑓

          (12) 
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Since four solutions exists (±𝑋𝑋𝐼𝐼 , ±𝑌𝑌𝐼𝐼), Rosin [21] proposed to calculate the distances between the point and the four 

solutions of equation 12 and select the solution with the minimum distance. However, it can be observed that the 

minimum distance must belong to the solution that is in the same quadrant as the point. Since  𝑎𝑎𝑒𝑒 ,𝑎𝑎ℎ,𝑏𝑏𝑒𝑒 ,𝑏𝑏ℎ and 𝑓𝑓 are 

all positive, the correct solution can be formulated by simply restricting the point coordinate (𝑋𝑋,𝑌𝑌) to the first quadrant 

using an absolute value function. The confocal hyperbola distance can now be defined in closed form as follows: 

𝐷𝐷ℎ(𝑋𝑋,𝑌𝑌) = ��𝐷𝐷ℎ𝑋𝑋
(𝑋𝑋,𝑌𝑌)

𝐷𝐷ℎ𝑌𝑌(𝑋𝑋,𝑌𝑌)�� = � �
|X| − |𝑋𝑋𝐼𝐼|
|𝑌𝑌| − |𝑌𝑌𝐼𝐼|

� �       (13)  

where |. | is the absolute value function, �𝐷𝐷ℎ𝑋𝑋
(𝑋𝑋,𝑌𝑌)

𝐷𝐷ℎ𝑌𝑌(𝑋𝑋,𝑌𝑌) � is a 2D vector of distances in the translated and rotated 𝑋𝑋 − 𝑌𝑌 

coordinate plane (see equation 7), and ‖ . ‖ denotes the L2-norm. In its current form, equation 12 is numerically 

singular when 𝑎𝑎𝑒𝑒 = 𝑏𝑏𝑒𝑒 (i.e. 𝑓𝑓 = 0, when the data follow a circular pattern). However, if the formulations of 𝑎𝑎ℎ and 

𝑏𝑏ℎ in equation 11 are rearranged, we will have: 

�
𝑎𝑎ℎ2 = 𝑋𝑋2+𝑌𝑌2+𝑓𝑓2−�(𝑋𝑋2+𝑌𝑌2+𝑓𝑓2)2−4𝑋𝑋2𝑓𝑓2 

2
. 𝑋𝑋

2+𝑌𝑌2+𝑓𝑓2+�(𝑋𝑋2+𝑌𝑌2+𝑓𝑓2)2−4𝑋𝑋2𝑓𝑓2

𝑋𝑋2+𝑌𝑌2+𝑓𝑓2+�(𝑋𝑋2+𝑌𝑌2+𝑓𝑓2)2−4𝑋𝑋2𝑓𝑓2
= 2𝑋𝑋2𝑓𝑓2

𝑋𝑋2+𝑌𝑌2+𝑓𝑓2+�(𝑋𝑋2+𝑌𝑌2+𝑓𝑓2)2−4𝑋𝑋2𝑓𝑓2

𝑏𝑏ℎ
2 = 𝑓𝑓2 − 𝑎𝑎ℎ2 = 𝑓𝑓2 − 2𝑋𝑋2𝑓𝑓2

𝑋𝑋2+𝑌𝑌2+𝑓𝑓2+�(𝑋𝑋2+𝑌𝑌2+𝑓𝑓2)2−4𝑋𝑋2𝑓𝑓2
                                                                                   

 (14) 

therefore, the closed formula for the orthogonal intersecting point of equation 12 will now become: 

⎩
⎪
⎨

⎪
⎧|𝑋𝑋𝐼𝐼| = 𝑎𝑎𝑒𝑒𝑎𝑎ℎ

𝑓𝑓
= 𝑎𝑎𝑒𝑒.|𝑋𝑋|

�𝑋𝑋2+𝑌𝑌2+𝑓𝑓2+��𝑋𝑋2+𝑌𝑌2+𝑓𝑓2�
2
−4𝑋𝑋2𝑓𝑓2

2

|𝑌𝑌𝐼𝐼| = 𝑏𝑏𝑒𝑒𝑏𝑏ℎ
𝑓𝑓

= 𝑏𝑏𝑒𝑒
𝑎𝑎𝑒𝑒
�𝑎𝑎𝑒𝑒2 − 𝑋𝑋𝐼𝐼2                             

  ∶
if 𝑓𝑓=0
�⎯⎯� �

|𝑋𝑋𝐼𝐼| = 𝑎𝑎𝑒𝑒.|𝑋𝑋|
�𝑋𝑋2+𝑌𝑌2

|𝑌𝑌𝐼𝐼| = 𝑏𝑏𝑒𝑒.|𝑌𝑌|
�𝑋𝑋2+𝑌𝑌2

     (15) 

This new formulation shows that when 𝑓𝑓 = 0 (i.e. 𝑎𝑎𝑒𝑒 = 𝑏𝑏𝑒𝑒), the orthogonal contacting point exists, and hence, does 

not impose any numerical singularities for circles. Moreover, if equation 15 at 𝑓𝑓 = 0 and radius, 𝑅𝑅 = 𝑎𝑎𝑒𝑒 = 𝑏𝑏𝑒𝑒 is 

employed, equation 13 simplifies to: 𝐷𝐷ℎ(𝑋𝑋,𝑌𝑌) = √𝑋𝑋2 + 𝑌𝑌2 − 𝑅𝑅, which is the true geometric distance of a point to a 

circle. Another interesting observation from equation 15 is that when 𝑋𝑋 = 0 (points on the minor axis), or when 𝑌𝑌 =

0 and |𝑋𝑋| ≥ 𝑓𝑓 (points on the major axis beyond the focal points), even though a confocal hyperbola does not 

technically exist, the equations of the intersecting point are still deterministic, and the distance functions reduce to the 

true geometric distance through the following simplified formulas: 

�
 

𝐷𝐷ℎ𝑋𝑋(𝑋𝑋,𝑌𝑌) = 0                  𝐷𝐷ℎ𝑌𝑌(𝑋𝑋,𝑌𝑌) = |𝑌𝑌| − 𝑏𝑏𝑒𝑒   for   𝑋𝑋 = 0                         
𝐷𝐷ℎ𝑋𝑋(𝑋𝑋,𝑌𝑌) = |𝑋𝑋| − 𝑎𝑎𝑒𝑒     𝐷𝐷ℎ𝑌𝑌(𝑋𝑋,𝑌𝑌) = 0                for  𝑌𝑌 = 0  and  |𝑋𝑋| ≥ 𝑓𝑓

    (16) 

Considering the presented formulations, equations 13, 15 and 16 can now be employed to find the geometric 

parameter vector 𝜌𝜌 = (𝑥𝑥𝑐𝑐 ,𝑦𝑦𝑐𝑐 ,𝑎𝑎𝑒𝑒 , 𝑏𝑏𝑒𝑒 ,𝜃𝜃) by minimizing: 
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min
𝜌𝜌
∑ �𝐷𝐷ℎ(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖)�

2 = ∑ (𝐷𝐷ℎ𝑋𝑋(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖)2 + 𝐷𝐷ℎ𝑌𝑌(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖)2𝑁𝑁
𝑖𝑖=1

𝑁𝑁
𝑖𝑖=1 )      (17) 

where equation 17 is a non-linear problem, which must be solved using an iterative heuristic method such as 

Levenberg- Marquardt. To this end, Algorithm 1: Ellipse Fitting using Confocal Hyperbola is developed as follows: 

1- Find an initial estimate of the geometric parameters 𝜌𝜌 = (𝑥𝑥𝑐𝑐 ,𝑦𝑦𝑐𝑐 ,𝑎𝑎𝑒𝑒 , 𝑏𝑏𝑒𝑒 ,𝜃𝜃)𝑇𝑇 of the ellipse using one of the methods 

presented in Section 2. Here, we will use Halir’s numerically stable method, which is fast and guarantees an 

ellipse, as the initial parameter approximation. 

2- Perform the Levenberg-Marquardt algorithm with maximum number of iterations, 𝑁𝑁𝑇𝑇, and damping parameter, 

𝜆𝜆, its decrement, 𝛾𝛾, and increment, 𝑣𝑣 = 𝑣𝑣0, as follows: 

a) For each point, calculate the distance function, 𝐷𝐷ℎ (equations 15 and 16), and Jacobian, 𝐽𝐽𝐷𝐷ℎ (equations A6 

and A7 of Appendix I), along with the sum of the squared distances, 𝑆𝑆𝐷𝐷 = ∑ 𝐷𝐷ℎ𝑖𝑖
2𝑁𝑁

𝑖𝑖=1 , using the geometric 

parameters, 𝜌𝜌; 

b) Estimate the new geometric parameters using the following equation: 

𝜌𝜌𝑁𝑁 = 𝜌𝜌 − (𝐽𝐽𝐷𝐷ℎ𝑇𝑇𝐽𝐽𝐷𝐷ℎ + 𝜆𝜆. 𝐼𝐼5×5)−1𝐽𝐽𝐷𝐷ℎ𝑇𝑇𝐷𝐷ℎ        (18) 

c) Calculate the sum of the squared distances, 𝑆𝑆𝐷𝐷𝑁𝑁, using the new geometric parameters, 𝜌𝜌𝑁𝑁:  

• If 𝑆𝑆𝐷𝐷𝑁𝑁 = 𝑆𝑆𝐷𝐷: retain the solution as the optimal and exit the algorithm; else 

• If 𝑆𝑆𝐷𝐷𝑁𝑁 > 𝑆𝑆𝐷𝐷: 𝜆𝜆 = 𝑣𝑣𝜆𝜆  and  𝑣𝑣 = 𝑣𝑣2; else 

• If 𝑆𝑆𝐷𝐷𝑁𝑁 < 𝑆𝑆𝐷𝐷: 𝜆𝜆 = 𝜆𝜆
𝛾𝛾
 , 𝑣𝑣 = 𝑣𝑣0 and 𝜌𝜌 = 𝜌𝜌𝑁𝑁; 

d) If the number of iterations equals 𝑁𝑁𝑇𝑇 + 1 exit the algorithm and retain the solution with the lowest 𝑆𝑆𝐷𝐷; else 

return to step 2-a. 

It is worth mentioning that there are many variations of the Levenberg- Marquardt algorithm, some include 

strategies such as parameter-wise re-weighting of the damping parameter 𝜆𝜆 [30] as well as geodetic acceleration [31], 

which may also be used to solve equation 17. The proposed implementation of the Levenberg-Marquardt algorithm 

was, however, sufficient to achieve the results presented in Sections 5 and 6 in all cases. Another important note is 

that equation 17 can also be used to derive the best fit hyperbola to a given set of points using Algorithm 1 subject to 

the parameter vector 𝜌𝜌ℎ = (𝑥𝑥𝑐𝑐 ,𝑦𝑦𝑐𝑐 ,𝑎𝑎ℎ, 𝑏𝑏ℎ,𝜃𝜃). Fitting a hyperbola to a set of points will, however, not be considered in 

this manuscript. The closed formulation for the Jacobian, 𝐽𝐽𝐷𝐷ℎ, of the distance function is provided in Appendix I. 
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3.1. Time Complexity Analysis of Algorithm 1 

Given 𝑁𝑁 input data points, the time complexity of Algorithm 1 can be determined from the following steps: 

1- Halir’s initial ellipse parameter estimation is solved in ~𝑂𝑂(𝑁𝑁) time. 

2- For each data point, the confocal hyperbola distance, 𝐷𝐷ℎ, requires 14 multiplications, 2 divisions, 7 subtractions, 

6 summations, 4 square roots, and two absolute values, where each operation has constant time complexity 

~𝑂𝑂(1). Therefore, the complexity for all data points is ~𝑂𝑂(𝑁𝑁). 

3- For each data point, the Jacobian matrix, 𝐽𝐽𝐷𝐷ℎ, requires 60 multiplications, 15 divisions, 14 subtractions, 12 

summations, 4 square roots, and two absolute values, where each operation has constant time complexity ~𝑂𝑂(1). 

Therefore, the complexity for all data points is ~𝑂𝑂(𝑁𝑁). 

4- 𝜌𝜌𝑁𝑁 consists of the following computations is eventually in the order of ~𝑂𝑂(𝑁𝑁): 

a) 𝑃𝑃5×5 = 𝐽𝐽𝐷𝐷ℎ𝑇𝑇5×𝑁𝑁 𝐽𝐽𝐷𝐷ℎ𝑁𝑁×5 is solved in 𝑂𝑂(25𝑁𝑁); 

b) 𝑄𝑄5×5 = 𝑃𝑃5×5 + 𝜆𝜆. 𝐼𝐼5×5 has 25 summations 𝑂𝑂(25); 

c) The inverse 𝑄𝑄5×5
−1 is 𝑂𝑂(53); 

d) 𝑆𝑆5×1 = 𝐽𝐽𝐷𝐷ℎ𝑇𝑇5×𝑁𝑁 𝐷𝐷ℎ𝑁𝑁×1 is 𝑂𝑂(5𝑁𝑁); 

e) The multiplication 𝐿𝐿5×1 = 𝑄𝑄5×5
−1. 𝑆𝑆5×1 is 𝑂𝑂(25); 

f) 𝜌𝜌𝑁𝑁 = 𝜌𝜌 − 𝐿𝐿5×1 is five subtractions 𝑂𝑂(5). 

Therefore, every iteration can be solved in linear ~𝑂𝑂(𝑁𝑁) time. Given the maximum number of iterations, 𝑁𝑁𝑇𝑇, the 

maximum time complexity will be in the order of ~𝑂𝑂(𝑁𝑁𝑇𝑇 .𝑁𝑁). Empirically, the expected number of iterations to 

convergence was shown to be around 9 iterations (see Figure 10b). Furthermore, the computation time (not 

complexity) of the confocal hyperbola distance, 𝐷𝐷ℎ, as well as the Jacobian matrix, 𝐽𝐽𝐷𝐷ℎ, i.e. steps 2 and 3 above, can 

be significantly reduced, if computer code vectorization [32] is used instead of a “for loop”. 

4. Experimental Design 

In this manuscript, two main categories of experiments are designed, namely, simulation, and real-world. 

Simulation-based experiments were designed to validate the results of the ellipse fitting compared to other state-of-

the-art and established methods in data resembling edge points in images. The real-world experiments were designed 

to evaluate the ability of different ellipse fitting methods in recovering the geometric parameters of cylinders in 3-

dimensional point clouds. The two classes are explained in more detail in the following. All computations were carried 
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out using a computer with AMD Ryzen 5-2600X CPU, 64GB RAM, and 1TB SSD NVME storage. The summary 

description of the designed experiments is provided in Table 1. 

Table 1: Summary of the designed experiments 

Experiment Description Purpose 

Simulation-based 
experiments 

Point to ellipse distance 
measure 

Comparing the confocal hyperbola distance to 
Algebraic, Sampson , Harker [24], and Geometric [11] 

Overall ellipse fitting 
evaluation 

Comparing overall RMSE and P-Error achieved by 
Algorithm 1 to the methods of Halir [16], Taubin [19], 
Kanatani [20], Szpak [12] and Ahn [27] 

Parameter specific ellipse 
fitting evaluation 

Comparing the P-Error achieved by Algorithm 1 to the 
methods of Halir [16], Taubin [19], Kanatani [20], 
Szpak [12] and Ahn [27] as a function of:  
(i) rotation angle;  
(ii) aspect ratio; 
(iii) noise; and  
(iv) spanning arc angle 

Real-world experiments 
Evaluating the ability of ellipse fitting using algorithm 
1, compared to the methods of Halir [16], Szpak [12] 
and Ahn [27] in recovering geometric parameters of 
cylinders from point clouds 

 

4.1. Metrics for validation of results 

For the simulation-based experiments, two metrics are used: (i) the root mean squared error (RMSE) of the best 

fit ellipse; and (ii) the L2-norm of the estimated best fit parameter vector from the ground truth divided by the L2-

norm of the ground truth parameter vector (abbreviated here as P-Error and reported in percentages). The RMSE of 

the best fit will be calculated using the method of Chernov [11], which is currently the most reliable method for 

projecting points onto ellipses, and consequentially determining the actual geometric distance from points to the 

ellipse. For the real-world experiments, the L2-norm of the estimated cylinder parameters from the ground truth 

parameters, namely center, radius, and axis angle, are used. The ground truth geometric parameters of the cylinders 

from point clouds are determined using the robust cylinder extraction method proposed by Maalek [8]. 

4.2. Simulation-based experiments 

In this section, the method in which elliptic points are generated along with the various simulated configurations 

used to evaluate different ellipse fitting methods are explained. 

4.2.1. Simulating elliptic points 

An important consideration for the simulated experiments is the method in which simulated ellipses are generated. 

Here, our focus for simulation experiments is producing elliptic points resembling edge points in images (three-
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dimensional (3D) point clouds will be considered in the real-world experiments). The edge points in images contain 

two important characteristics. First, the larger the ellipse (or any shape for that matter), the higher the number of ellipse 

edge points will be. In other words, an un-occluded circle with radius of 3 pixels cannot comprise of say 100-pixel 

points. Second, the discrete pixelated nature of digital images ensures that an extracted edge point will always fall on 

an image pixel. In other words, even if no random measurement error exists, the edge points representing an ellipse in 

an image will fall on the closest pixel and not necessarily exactly on the ellipse. The effects of digitization along with 

those induced by the number of points with respect to the scale of an ellipse must be considered when simulating 

ellipses. A process is, hence, formulated to automatically determine the pixel points representing the ellipse in images 

using only the geometric parameters of the ellipse. To this end, Algorithm 2: Simulating Elliptical Edge Points, 

given the geometric parameter vector 𝜌𝜌 = (𝑥𝑥𝑐𝑐 ,𝑦𝑦𝑐𝑐 ,𝑎𝑎, 𝑏𝑏,𝜃𝜃)𝑇𝑇, and the polar arc angles for the beginning, 𝛼𝛼𝑆𝑆, and the end, 

𝛼𝛼𝐹𝐹, of the ellipse, subjected to random measurement error, 𝒩𝒩(0,𝜎𝜎2), is developed as follows: 

1- Find the orthogonal circumscribed rectangle to the ellipse in digital coordinates using the following: 

�
𝑥𝑥𝑟𝑟𝑆𝑆 = �𝑥𝑥𝑐𝑐 − √𝑎𝑎2 cos𝜃𝜃 + 𝑏𝑏2 sin𝜃𝜃  �, 𝑥𝑥𝑟𝑟𝑟𝑟 = �𝑥𝑥𝑐𝑐 + √𝑎𝑎2 cos𝜃𝜃 + 𝑏𝑏2 sin𝜃𝜃  �
𝑦𝑦𝑟𝑟𝑆𝑆 = �𝑦𝑦𝑐𝑐 − √𝑏𝑏2 cos𝜃𝜃 + 𝑎𝑎2 sin𝜃𝜃  �, 𝑦𝑦𝑟𝑟𝑟𝑟 = �𝑦𝑦𝑐𝑐 + √𝑏𝑏2 cos𝜃𝜃 + 𝑎𝑎2 sin𝜃𝜃  �

   (19) 

Where (𝑥𝑥𝑟𝑟𝑆𝑆, 𝑥𝑥𝑟𝑟𝑟𝑟) and (𝑦𝑦𝑟𝑟𝑆𝑆,𝑦𝑦𝑟𝑟𝑟𝑟) are the minimum and maximum of the limits of the orthogonal circumscribed 

rectangle in 𝑥𝑥 and 𝑦𝑦, respectively, and ⌊. ⌋ and ⌈. ⌉ denote the floor and ceiling functions, respectively. 

2- Generate a grid of 𝑘𝑘 = 𝑥𝑥𝑟𝑟𝑟𝑟 − 𝑥𝑥𝑟𝑟𝑆𝑆 + 1 by 𝐸𝐸 = 𝑦𝑦𝑟𝑟𝑟𝑟 − 𝑦𝑦𝑟𝑟𝑆𝑆 + 1 points between the rectangular limits of (𝑥𝑥𝑟𝑟𝑆𝑆, 𝑥𝑥𝑟𝑟𝑟𝑟) 

and (𝑦𝑦𝑟𝑟𝑆𝑆,𝑦𝑦𝑟𝑟𝑟𝑟) with one pixel spacing in the 𝑥𝑥 and 𝑦𝑦 direction, respectively. 

3- Determine the orthogonal contacting point (𝑥𝑥𝑃𝑃𝐼𝐼 ,𝑦𝑦𝑃𝑃𝐼𝐼) of each pixel point (𝑥𝑥𝑃𝑃 ,𝑦𝑦𝑃𝑃) within the generated grid from 

the ellipse using the method of Chernov [11]. 

4- Find the pixels satisfying the following conditions: 

�
|𝑥𝑥𝑃𝑃𝐼𝐼 − 𝑥𝑥𝑃𝑃| ≤ 0.5
|𝑦𝑦𝑃𝑃𝐼𝐼 − 𝑦𝑦𝑃𝑃| ≤ 0.5          (20) 

5- Find the orthogonal contacting points (𝑥𝑥𝑃𝑃𝐼𝐼,𝑦𝑦𝑃𝑃𝐼𝐼) of step 4 whose polar angles are between 𝛼𝛼𝑆𝑆 and 𝛼𝛼𝐹𝐹. 

6- Subject the (𝑥𝑥𝑃𝑃𝐼𝐼 ,𝑦𝑦𝑃𝑃𝐼𝐼) coordinates satisfying steps 4 and 5 to additive random measurement error 𝒩𝒩(0,𝜎𝜎2). 𝜎𝜎 is 

in pixel coordinates, and 𝑥𝑥𝑃𝑃𝐼𝐼 and 𝑦𝑦𝑃𝑃𝐼𝐼 are considered independent and identically distributed (i.i.d). 

7- Find the closest pixel grid to the coordinate points of step 6. 

Figure 2a and 2b illustrate the simulated pixels of an ellipse with the geometric parameter vector,  

(1,3,15,10, 30°)𝑇𝑇, with no measurement error, and subjected to random measurement error, 𝒩𝒩(0,1), respectively. 
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Figure 2: Simulated ellipse with parameter vector (1,3,15,10, 30°)𝑇𝑇: a) ellipse with no random measurement errors 

(only the pixel rounding effect); b) ellipse with random measurement error 𝒩𝒩(0,1);  

4.2.2. Ellipse simulation configurations 

Predicated on the proposed methods, two main categories of simulation-based experiments are carried out, 

namely, point to ellipse distance measure, and ellipse fitting evaluation (each with two sub-categories), as follows: 

1- Point to ellipse distance measure: is designed to numerically identify the best method amongst various point to 

ellipse distance measures to accurately predict the ground truth geometric distance, obtained by Chernov [11]. To 

this end, 10,000 ellipses were randomly generated using Algorithm 2, subject to the following conditions: 

a) rotation angle, randomly chosen between 0 and 𝜋𝜋; 

b) aspect ratio, randomly chosen between 1.5 and 4; 

c) measurement standard deviation, randomly chosen between 0.5 and 15 pixels; 

d) semi-minor, was chosen as 50 pixels; and 

e) ellipse spanning arc (𝜶𝜶𝑭𝑭 − 𝜶𝜶𝑺𝑺), was chosen as 𝜋𝜋
2
 (i.e. quarter ellipse). 

The ellipse spanning arc was selected as a quarter of an ellipse (rather than say a full ellipse) since the point to 

ellipse measurements are not expected to drastically change between different quadrants of the same simulated 

ellipse. For each measurement, the distance of point to ellipse is calculated using the confocal hyperbola, 

algebraic, Sampson (see Section 2), and Harker and O’Leary [24] . The absolute deviation of the distances for 

each method from that obtained by Chernov is reported. 

2- Overall ellipse fitting evaluation: this experiment is designed to evaluate the effectiveness of the proposed 

ellipse fitting method using confocal hyperbola (Section 3) compared to the ellipse fitting methods of Ahn [27], 

Szpak [12], Kanatani [23], Taubin [19], and Halir [16]. Similar to experiment 1, 10,000 randomly generated 

(a) (b) 
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ellipses were used to determine which ellipse fitting method produces the fit with the lowest RMSE along with 

P-Error (see Section 4.1). The ellipse parameter configurations were as follows: 

a) rotation angle, randomly chosen between 0 and 𝜋𝜋; 

b) aspect ratio, randomly chosen between 1.5 and 4; 

c) measurement standard deviation, randomly chosen between 0.5 and 5 pixels; 

d) semi-minor, randomly chosen between 10 and 100 pixels; and 

e) ellipse spanning arc, randomly chosen from either full (2𝜋𝜋), 3𝜋𝜋
2

, or half (𝜋𝜋).  

For each randomly-selected configuration, 500 different simulations were carried out to capture the behavior of 

random measurement errors. The results of the mean, median and 95th percentile for the 500 simulations in each 

configuration, achieved by each method, were reported. In addition, the methods of Ahn, Szpak and ours are 

iterative, whereas the rest are direct. To provide a fair comparison between the different iterative methods, similar 

iteration-termination criteria are used. For all methods, Halir’s ellipse fitting is used to estimate the initial ellipse 

parameters. The damping parameter (step size for Ahn’s method), damping increment, damping decrement, and 

maximum number of iterations were set as 𝜆𝜆 = 0.5, 𝑣𝑣 = 10, 𝛾𝛾 = 3, and 50, respectively. 

3- Parameter specific ellipse fitting evaluation: The last set of simulated experiments involves the assessment of 

the impact of variables, namely, rotation angle, aspect ratio, measurement standard deviation, and spanning 

elliptic arc, on the accuracy of the estimated parameters of the best fit ellipse (P-Error) using the methods of Ahn 

[27], Szpak [12], Kanatani [23], Taubin [19], and Halir [16], and Prasad [33]. To this end, a base parameter setup 

is used, and only one parameter is changed at a time with the configurations, shown in Table 2. Similar to the 

previous experiment, to correctly capture the behavior of random measurement errors on the performance of each 

ellipse fitting method, each parameter configuration was simulated 500 times and the mean of the P-Error was 

recorded. 

Table 2: Configurations for the parameter specific ellipse fitting evaluation   

Parameter Type Base Configuration Parameter Change 
From To Increments 

Rotation angle 𝜋𝜋
4
  0 𝜋𝜋 

𝜋𝜋
20

  

Aspect ratio 2 1 4 3
20

  

Noise 2 0 5 0.25 

Spanning arc angle 2𝜋𝜋 𝜋𝜋
2
  2𝜋𝜋 3𝜋𝜋

40
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4.3. Real-world experiments 

In the early 1800, Dandelin showed that the intersection between a plane and a cylinder produces an ellipse. The 

geometric parameters of the cylinder can be retrieved as a function of the ellipse parameters as follows [34]: 

⎩
⎪
⎨

⎪
⎧ 𝑅𝑅 = 𝑏𝑏𝑒𝑒          
𝛿𝛿 = cos−1 𝑏𝑏𝑒𝑒

𝑎𝑎𝑒𝑒

                       

𝐶𝐶𝑒𝑒 = 𝑅𝑅𝑅𝑅𝑅𝑅. �𝐶𝐶𝑐𝑐 + 〈𝑃𝑃0−𝐶𝐶𝑐𝑐,𝑆𝑆�⃗ 〉
〈𝑎𝑎�⃗ ,𝑆𝑆�⃗ 〉

�⃗�𝑎�
          (21) 

where 𝑅𝑅, 𝐶𝐶𝑐𝑐 and �⃗�𝑎 are the radius, a point on the axis (center), and vector of cylinder’s axis, respectively, 𝑛𝑛�⃗  and 𝑃𝑃0 =

(𝑥𝑥0,𝑦𝑦0, 𝑧𝑧0) are the normal vector to and a point on the intersecting plane, respectively, 𝐶𝐶𝑒𝑒 = (𝑥𝑥𝑒𝑒 ,𝑦𝑦𝑒𝑒 , 𝑧𝑧0)𝑇𝑇, 𝑎𝑎𝑒𝑒 and 𝑏𝑏𝑒𝑒 

are the center, semi-major length and semi-minor length of the ellipse in the coordinate system of the intersecting 

plane, respectively, 𝑅𝑅𝑅𝑅𝑅𝑅 is the rotation matrix that takes the plane’s normal vector to vector (0,0,1)𝑇𝑇, and 𝛿𝛿 is the 

angle between the plane’s normal vector and the cylinder’s axis. From this formulation, it is possible to approximate 

the parameters of a cylinder using the parameters of an ellipse created through an intersecting plane. To this end, this 

experiment is designed to evaluate the ability of different ellipse fitting methods in recovering the geometric 

parameters in three separate real-world cylindrical point clouds. The selected point clouds are half cylinders of 

mechanical pipes, acquired using a Leica HDS6100 terrestrial laser scanner (Figures 3a and 3b), as well as 3D 

reconstructed point cloud using twenty iPhone 11 4K images (Figure 3c). The point clouds represent three noise levels 

and point densities with a normalized RMSE of approximately 0.010, 0.015 and 0.020 (for the point clouds of Figures 

3a, 3b and 3c, respectively). The normalized RMSE is defined, here, as the RMSE divided by the square root of the 

area of the circle (or ellipse). The outlier removal, and the ground truth cylinder parameter estimation were carried out 

using the robust cylinder extraction and fitting proposed in [8]. For each point cloud, 10,000 random planes passing 

through a randomly selected point on the cylinder were generated (Figure 3d-top). The closest 50 points on the cylinder 

to each plane -within 1mm distance from the plane- were identified (Figure 3d-bottom). The points are then rotated 

such that the normal to the plane is parallel to (0,0,1)𝑇𝑇. The best fit ellipse using the methods of Halir [16], Szpak 

[12], Ahn [27], and ours is applied on the 𝑥𝑥 − 𝑦𝑦 coordinates of the rotated points (only methods guaranteeing an ellipse 

were considered). From the best-fit ellipse parameters estimated by each method, the geometric parameters of the 

original cylinder were computed using equation 21, and the errors between the estimated parameters and the ground 

truth were calculated. Here for clarity, Figure 3d-bottom shows the ground truth ellipse in randomly generated plane 

(Figure 3d-top), computed from back calculating equation 21 using the ground truth geometric cylinder parameters. 
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Figure 3: Sample point clouds of cylindrical pipes extracted using [8], oriented such that the cylinders’ axis is 

parallel to (0,0,1)𝑇𝑇: a) TLS with low noise and medium point density; b) TLS with medium noise and low point 

density; and c) 3D reconstruction of images with high noise and high point density. d) Example of a generated plane 

with random orientation (green-top) passing through the cylindrical point cloud of Figure 3c, and the consequential 

elliptical points in the vicinity of the intersecting plane (bottom). 

5. Simulated experiment results 

5.1. Point to ellipse distance measure 

In Section 3, a new ellipse fitting method using the confocal hyperbola distance was introduced. Here, we 

schematically and empirically show the agreement of the confocal hyperbola distance to the ground truth geometric 

distance, acquired using Chernov’s method [11]. The behavior of the confocal hyperbola distance function is also 

compared to the algebraic, Sampson, and Harker and O’Leary distance approximations. 

5.1.1. Visual behavior of distance approximations  

 Before the numerical results are presented, it is important to also study the behavior of the point to ellipse distance 

measurements using the confocal hyperbola, algebraic, Sampson, Harker and O’Leary [24], and Chernov [11] (the 

ground truth), particularly in ill-positioned points relative to the ellipse (i.e. points on the major or minor axes). To 

this end, consider an ellipse with geometric parameter vector of (0,0,5,3,0)𝑇𝑇. Figure 4 shows the behavior of the 

distance functions of points in three different arrangements, namely, points on the major axis (Figure 4a: {𝑥𝑥 ∈

[−10,10],𝑦𝑦 = 0}), points on the minor axis (Figure 4b: {𝑦𝑦 ∈ [−10,10], 𝑥𝑥 = 0}), and points on the line 𝑥𝑥 = 𝑦𝑦 (Figure 

4c: {𝑥𝑥,𝑦𝑦 ∈ [−10,10]}). Figures 4a, 4b and 4c all show that the Sampson distance tends to infinity as the point 

(b) (a) (c) (d) 
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coordinates approach the center of the ellipse. Figure 4a shows that the Harker and O’Leary’s distance also tends to 

infinity as the point coordinate approaches the focal points of the ellipse (in our case points 𝑥𝑥 = ±4 and 𝑦𝑦 = 0).  

 

Figure 4: Behavior of the distance functions of algebraic (cyan), Sampson (magenta), Harker and O’Leary (green), 

confocal hyperbola (red), and Chernov (blue) presented on the right for the distance of the red points to the ellipse 

(with geometric parameters (0,0,5,3,0)) for the arrangements shown on the left: a) points on the major axis; b) 

points on the minor axis; and c) points on the line 𝑥𝑥 = 𝑦𝑦. 

Another interesting observation from Figure 4 is that none of the distances obtained using algebraic, Harker and 

O’Leary, and Sampson, correctly predicts the pattern of the true geometric distance (i.e. Chernov’s method shown in 

blue). In fact, the distances of Harker and O’Leary, Sampson, and algebraic appear to move even farther away from 

Chernov Harker and 
O’Leary Sampson Confocal 

hyperbola Algebraic 

(b) 

(a) 

(c) 

𝑥𝑥-axis (pixels) 

𝑦𝑦-axis (pixels) 

𝑥𝑥-axis (pixels) 𝑥𝑥-axis (pixels) 

𝑥𝑥-axis (pixels) 

𝑥𝑥-axis (pixels) 

𝑦𝑦-axis (pixels) Estimated distance (pixels) 
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the actual geometric distance as the point moves farther from the ellipse. Especially for the case of Sampson-based 

methods, the visual observations corroborate that Sampson distance may only be appropriate for data with smaller 

noise levels as was mentioned in [12]. Therefore, careful attention must be given when integrating the Sampson 

distance into ellipse fitting cost functions, especially at larger noise levels (see Figure 3 of [35] as an example). The 

confocal hyperbola method on the other hand, is almost indistinguishable from the true geometric distance in the 

presented three arrangements (the confocal hyperbola, shown in red lies almost exactly underneath Chernov’s distance 

shown in blue dashed line). From Figure 4, it can also be observed that the confocal hyperbola, Chernov and the 

algebraic distances do not impose any singularities at these ill-positioned point arrangements, unlike the distance 

functions of Sampson, and Harker and O’Leary. 

5.1.2. Numerical comparison 

As observed, the visual assessment of the distance functions shows the advantages of using the confocal hyperbola 

method compared to other methods in predicting the behavior of the geometric distance. The results of the simulation 

presented in the following are, hence, used to numerically quantify the extent of this advantageous performance. To 

this end, 10,000 different ellipse configurations were simulated as per the properties presented in Section 4.2.2. For 

each measurement, the absolute difference of the point to ellipse distances using the algebraic, Sampson, Harker and 

O’Leary and confocal hyperbola, from that of the ground truth geometric distance was calculated. Figure 5a shows 

the results of the simulated measurements. The horizontal axis represents the absolute difference of each method from 

the ground truth in pixels, and the vertical axis represents the cumulative probability. It can be clearly observed that 

the confocal hyperbola achieved significantly better results compared to the remaining methods. To provide some 

numerical perspective, the mean, median, and 95th percentile of the absolute distances obtained by each method from 

the ground truth are presented in Table 3. It can be observed that the 95th percentile of all measurements using the 

confocal hyperbola fall within ±0.05 pixels from the ground truth. The confocal hyperbola is, in fact, approximately 

34, 73, and 358 times more accurate than the distance approximations of Harker and O’Leary, Sampson, and algebraic 

(on average). It can also be observed that 50% of the distances using the confocal hyperbola are less than 10−4 pixels 

from the ground truth, which is 99, 1136, and 26792 times better than those achieved by the best 50% of Harker and 

O’Leary, Sampson, and algebraic distances. In fact, the Sampson distance, which has been known as an excellent 

approximation to the geometric distance [12], is inferior to even Harker and O’Leary, which is also considerably 

inferior to the confocal hyperbola method. 
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Table 3: Mean, median and 95th percentile of the absolute difference of each method from the ground truth (pixels) 

Method Algebraic Sampson Harker and O'Leary Confocal Hyperbola 
Mean 5.81 0.77 0.31 0.01 
Median 3.91 0.16 0.01 0.00 
95th Percentile 17.98 3.66 1.72 0.05 

 

Figure 5b shows the computation times for each method w.r.t the number of points in the dataset (from 50 to 

10,000 points). It was observed that the ground truth method of Chernov was on average approximately 900, 150, 

4700, and 12700 times slower than confocal hyperbola, Harker and O’Leary, Sampson, and algebraic methods, 

respectively. Even though the confocal hyperbola achieved about 5 times slower computation compared to Sampson, 

it still computed the distance of 10,000 points in around 0.7 milliseconds, while providing highly accurate geometric 

distance approximations. 

 

Figure 5: a) Absolute difference of the estimated distances using algebraic (cyan), Sampson (magenta), Harker and 

O’Leary (green), and confocal hyperbola (red) from the Chernov’s method for all simulated measurements; b) 

computation time (in logarithmic scale) vs. number of points for different methods  

5.2. Ellipse fitting evaluation 

In this section, first, the performance (RMSE and P-Error) of the proposed ellipse fitting using confocal hyperbola 

in comparison to the methods of Halir [16], Taubin [19], Kanatani [20], Szpak [12], and Ahn [27] was empirically 

evaluated. To this end, 10,000 random ellipses were simulated using the configurations presented in Section 4.2.2. 

The mean, median and 95th percentile of the RMSE and P-Error are provided in Table 4. The bolded numbers represent 

the best (lowest number) between all methods in each row. As shown, our ellipse fitting provides almost identical (and 

in some cases slightly better) RMSE and P-Error compared to the gold standard method of Ahn, and outperformed the 

(b) 

Chernov Harker and 
O’Leary Sampson Confocal 

Hyperbola Algebraic 

(a) 
Absolute Difference from Chernov (pixels) 

Cumulative Probability (%) 
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remaining methods, particularly in the parameter estimation errors. Even though our method outperformed the rest, 

the difference in the RMSE between our method and the third best performing method, Szpak is still only in the order 

of 10−2 pixels, which may be negligible in practical settings. On the other hand, the P-Error, which represents the 

agreement between the estimated and original parameters, showed around 0.1%, 5.5%, 23.7%, 26.3%, and 107.3% 

relative improvement compared to Ahn, Szpak, Kanatani, Taubin and Halir, respectively (the average improvement 

amongst all measurements).  

The results, shown in Table 4, provide an overall indication of the expected performance of our method compared 

to established state-of-the-art methods. It is, however, also important to assess the performance (particularly the P-

Error) of all methods with respect to individual variables, such as, rotation angle, aspect ratio, noise level, and spanning 

arc. The results of these simulations are presented in the following subsections. 

Table 4: Mean, median and 95th percentile of the RMSE and P-Error for 10,000 simulated ellipses 

RMSE (pixels) 
Methods Halir Taubin Kanatani Szpak Ahn Our Method 

Mean 1.79 1.76 1.76 1.76 1.75 1.75 
Median 1.78 1.77 1.77 1.76 1.76 1.76 

95th Percentile 2.92 2.86 2.86 2.86 2.85 2.85 

P-Error (%) 
Methods Halir Taubin Kanatani Szpak Ahn Our Method 

Mean 1.048 0.665 0.637 0.608 0.570 0.569 
Median 0.473 0.364 0.353 0.321 0.307 0.307 

95th Percentile 3.837 2.290 2.231 2.081 1.873 1.868 
 Note: The bold numbers represent the best method for a given row 

5.2.1. Impact of rotation 

Here, the impact of change in ellipse rotation angle from zero to 𝜋𝜋, in 𝜋𝜋
20

 increments, on the P-Error for the methods 

of Halir, Taubin, Kanatani, Ahn, Szpak, Prasad, and confocal hyperbola was evaluated. The mean of the P-Error for 

all rotation angles using the different methods is provided in Table 5. As illustrated, our method achieved the best 

results followed very closely by Ahn’s method. Figure 6 shows the results of the mean of the P-Error for the 500 

separate simulations per ellipse configuration vs. the rotation angle. It can be observed that all methods, except for 

Prasad, remain almost constant with respect to the rotation angle. In other words, the rotation angle does not appear 

to impact the results of the ellipse fitting for Halir, Taubin, Kanatani, Ahn, Szpak and our method. The method of 

Prasad, on the other hand, is highly impacted (approximately 60% difference between the lowest and the highest 
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value), especially at rotation angle equal to 𝜋𝜋
2
 (i.e. vertical ellipse), which demonstrates that the parameters estimated 

using Prasad’s method are not invariant to affine transformation of the data. The reason for this lies in the heart of the 

objective function of Prasad (see equation 44 of [33]), where the objective function is multiplied by the 𝑦𝑦 axis 

coordinates to enhance numerical stability of their method. Due to the systematic trend imposed through affine 

transformation of the data, the method of Prasad will no longer be included in the remaining comparisons.  

 

Figure 6: The mean of the parameter estimation errors for 500 simulation vs. the rotation angle (in radians) 

5.2.2. Impact of aspect ratio 

The aspect ratio was changed in 20 evenly spaced increments between 1 and 4. The mean of the P-Error for 500 

simulations, obtained by the methods of Halir, Taubin, Kanatani, Ahn, Szpak, and confocal hyperbola are shown in 

Figure 7a. Three important observations were inferred from the provided chart. Firstly, all methods appear to behave 

similarly up until the aspect ratio of 1.5, where Halir’s method starts to produce comparatively biased estimates of the 

best fit ellipses. Secondly, at around the aspect ratio of 2, the methods of Kanatani and Taubin start to produce 

comparatively biased results and appear impacted by the elongation of the ellipse. The methods, of Ahn, Szpak and 

ours appear to perform similarly with ours and Ahn’s obtaining slightly better results on average compared to Szpak’s 

(see Table 5). The last important observation is that all methods at the aspect ratio of 1 (i.e. a circle) appear to produce 

biased estimates of the geometric parameters. In fact, a relatively steep decline can be observed between the aspect 

ratio of 1 and 1.15. This demonstrates that the available ellipse fitting method may not necessarily be suitable for 

purely circle fitting applications. It is, hence, desirable to determine whether aspect ratios exist, where a circle fitting 

method can predict the model parameters more effectively. To this end, the ellipse fitting methods are compared to 

the reliable hyper-accurate circle fitting of Chernov [36] for aspect ratios between 1 and 1.012 in 0.001 increments. 

The results are shown in Figure 7b. It can be observed that for very small aspect ratios, it is possible to utilize the 
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hyper accurate circle fitting method to predict the parameters of an ellipse. The circle fitting, however, starts to produce 

comparatively biased results at the aspect ratio of approximately above 1.005. This is since the semi-major and semi-

minor of the simulated ellipses start to differ and a single radius estimation can no longer account for the differences 

between the semi-minor and semi-major lengths. Therefore, given the configurations used in this section, circle fitting 

might produce more reliable results for aspect ratio of below 1.005. In such cases, we can set 𝑓𝑓 = 0, 𝜃𝜃 = 0 and 𝑎𝑎𝑒𝑒 =

𝑏𝑏𝑒𝑒 in our formulations (equations 13, 15, and A1-7) to treat equation 17 as a circle fitting problem by reducing the 

degrees of freedom from five parameters to three. 

 

Figure 7: The mean of the parameter estimation errors for 500 simulations in each configuration vs. the aspect ratio: 

a) ellipse fitting methods; b) comparison of ellipse fitting with circle fitting method for small aspect ratios 

5.2.3. Impact of standard deviation (noise) 

Here, the measurement standard deviation is changed from 0 to 5 pixels at 0.25-pixel intervals. The results of the 

mean parameter error for each method vs. the measurement noise level is shown in Figure 8. Three main observations 

were drawn from the chart. Firstly, all methods appear to behave similarly up until around 1.5 pixels standard 

(b) 

(a) 
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deviation, where Halir’s method starts producing biased estimates of the parameters. The second observation is that 

at around 2.5 pixels standard deviation, the methods of Szpak and Taubin start producing relatively biased results 

compared to the methods of Kanatani, Ahn and ours. The last observation is that the methods of Ahn, Kanatani and 

ours are almost identical, and act very close to linear with respect to the standard deviation, with our method achieving 

an 𝑅𝑅2 = 0.99 for the best fit line. The method of Kanatani was expected to behave favorably with respect to the 

standard deviation since the method was specifically designed to include bias corrections to the design and scatter 

matrices up to a second order error term. Ahn’s method and ours appear to behave as favorably as that of Kanatani 

with respect to changes in measurement noise levels, while also guaranteeing an ellipse, which is one of the main 

disadvantages of Kanatani’s method (see Section 2). 

 

Figure 8: The mean of the parameter estimation errors for 500 simulations vs. the measurement standard deviation 

5.2.4. Impact of spanning arc angle 

The spanning arc angle is changed from 𝜋𝜋
2
 to 2𝜋𝜋 in 3𝜋𝜋

40
 intervals, and the results of the mean of the parameter 

estimation errors for each method is presented in Figure 9. It was observed that for spanning angles of over about 1.1𝜋𝜋 

(~200°) all methods behaved similarly. At arc angles of approximately 200° and less, Halir’s method started producing 

visibly biased results compared to the remaining five methods. The method of Kanatani and Taubin behave very 

similarly but start producing relatively biased results compared to ours, Szpak’s and Ahn’s at arc angles of around 

0.65𝜋𝜋 (~120°). The method of Szpak and Ahn’s performed very similarly at all arc angles with Ahn’s method 

achieving a slightly better result on average in this category (Table 5). Our method started producing relatively better 

parameter estimation at arc angles of less than 120° compared to all other methods. Another interesting observation 

was that the relationship between the estimated parameter errors and arc angle closely followed a power function (e.g. 

𝑅𝑅2 = 0.95 for our method). In fact, using our method (the best performing method), the parameter estimation error 
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for a quarter ellipse and a half ellipse were around 9.0% and 0.7% of the ground truth geometric parameters, 

respectively. Therefore, careful attention must be given when fitting ellipses to points on elliptic arcs of smaller than 

half an ellipse, particularly for applications pertaining to high precision metrology. 

 

Figure 9: The mean of the parameter estimation errors for 500 simulations vs. the spanning arc polar angle (radians) 

5.2.5. Computation time and number of iterations 

In this section, the relative performance of our method is evaluated in terms of computation time along with the 

number of iterations to convergence. To this end, the base configuration of the ellipse simulation parameters of Section 

4.2.2 was used. The number of points were increased from 200 to 4,000 in 200-point intervals, and at each interval 

500 different simulations were performed. Figure 10a shows the mean of the computation time (for the 500 simulations 

at a given configuration) in logarithmic scale for each method vs. the number of points1. As observed, Ahn’s, Szpak’s 

and Kanatani’s methods achieved the highest computation times, which were approximately 140-, 21- and 1.2- times 

slower than our method (average over all measurements). Our method on average was around 30 times slower than 

that of Halir’s, which was also 1.4 times slower than Taubin’s on average.  To provide some perspective, ours, Szpak’s 

and Ahn’s took approximately 0.02, 0.66 and 3.91 seconds, respectively, to fitting an ellipse to 4,000 points. Not only 

did our method considerably outperform the other two iterative methods in terms of computation time, but it also 

outperformed Kanatani’s direct method, particularly for number of points larger than 1,000. 

The last comparison presented in this section is the number of iterations till convergence for the three iterative 

methods. Figure 10b shows the average number of iterations required for convergence vs. the number of points. As 

observed, Ahn’s, Szpak’s, and ours required on average approximately 19, 10 and 9 iterations, respectively to 

converge. An important observation is that Szpak’s and ours converged after roughly the same number of iterations, 

 
1 The computation times shown in Figure 10a for iterative methods are based on the maximum iteration of 50, according to the 
convergence criteria provided in Section 4.2.2.  
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yet our method achieved better computation times on average. This is since Szpak’s method requires the evaluation 

of two objective functions at each iteration (see algorithm 2 of [12]). Not only does Ahn’s method require more 

iterations (about twice as much as ours), which contributes to a higher computation time, but each iteration also takes 

longer to process. This is since in each iteration Ahn’s method requires a separate generalized Gauss-Newton method 

to acquire the orthogonal contacting point to a given ellipse, a process which our method estimates very effectively 

through the confocal hyperbola distance function (see equation 13). 

 

Figure 10: Simulation results for each method vs. number of points: a) computation time in seconds (logarithmic 

scale); and b) number of iterations to convergence 

5.2.6. Summary of best fit ellipse results 

The impact of four important variables, namely, rotation, aspect ratio, noise, and arc angle, on the parameter 

estimation using established ellipse fitting methods was evaluated. It was observed that the ellipse fitting methods of 

Halir, Taubin, Kanatani, Szpak, Ahn, and ours were not significantly impacted by the change on the rotation angle 

(see Figure 11a for reference in vertical ellipse). The methods of Szpak, Ahn and ours performed relatively more 

stable than the other methods with respect to the change in aspect ratio (see Figure 11b for behavior of the methods in 

aspect ratio of 4). It was also observed that the circle fitting of Chernov can provide more accurate parameter 

(b) 

(a) 



26 
 

estimation in small aspect ratios (e.g. for the configurations used in the experiments less than 1.005). The methods of 

Ahn, Kanatani and ours performed relatively more stable than the other methods as a function of the measurement 

noise with a close to linear relationship between the estimated parameter errors and measurement noise (see Figure 

11c for noise of 4 pixels). The methods of Ahn, Szpak and ours performed more stable than others, especially in arc 

angles of less than 𝜋𝜋, half ellipse (see Figure 11d for reference of half ellipses).  

 

Figure 11: Example of the behavior of ellipse fitting methods (black ellipse is ground truth) of Halir, Prasad, 

Taubin, Kanatani, Szpak, Ahn and ours with the base configuration of Table 2 and the variable change: a) rotation 

angle of 𝜋𝜋
2
 (vertical ellipse); b) aspect ratio of 4; c) noise of 4 pixels; and d) spanning arc angle of 𝜋𝜋 (half ellipse) 

To summarize the results, the mean of the parameter errors obtained by each method is presented in Table 5 with 

the rows representing the results obtained by the methods for each experiment. As observed, for all experiments, ours 

Halir Prasad Taubin Kanatani Szpak Ahn Ours 

Halir Taubin Kanatani Szpak Ahn Ours Prasad 

Halir Taubin Kanatani Szpak Ahn Ours Prasad 

Halir Taubin Kanatani Szpak Ahn Ours Prasad 
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and Ahn’s gold standard geometric fit achieved nearly identical parameter estimation results, and outperformed the 

methods of Halir, Taubin, Kanatani and Szpak.  It is worth noting that the spanning arc for the simulated ellipses in 

the first three experiments was 2𝜋𝜋 (full ellipse). When the arc angle was changed, however, our method even 

outperformed that of Ahn’s (Table 5; row 4). The results presented in Tables 3 and 4 show that our method achieved 

consistently reliable ellipse parameter estimation results, comparable to established geometric fits (Ahn’s method), 

and outperformed reliable algebraic (Halir) and Sampson-based methods (Taubin, Kanatani and Szpak). It was also 

observed that given the same initial ellipse estimate and convergence criteria, our method converged faster compared 

to the other two iterative methods (Ahn and Szpak), and consistently converged within 9-10 iterations on average. The 

results of the simulation experiments demonstrate that the confocal hyperbola distance is an excellent predictor of the 

true geometric distance and can also be used to produce reliable ellipse fitting results. 

Table 5: Summary of simulated results: the mean of the parameter errors (%) of different methods 

Experiment Halir Taubin Kanatani Szpak Ahn Our Method 
Rotation Angle 0.450 0.430 0.419 0.412 0.399 0.397 
Aspect Ratio 0.445 0.421 0.409 0.391 0.387 0.386 
Noise 0.642 0.572 0.528 0.569 0.521 0.519 
Arc Angle 7.170 1.917 1.881 1.739 1.736 1.589 

Note: The bold numbers represent the best method for a given row 

6. Real-world experiments 

In this section, the results of fitting ellipses using the methods of Halir [16], Szpak [12], Ahn [27], and ours on 

10,000 randomly oriented plane intersections with the cylinder point clouds of Figure 3 are reported. Table 6 shows 

the results of the mean of the parameter estimation errors for the center, radius, and axis angle of the cylinders of each 

case w.r.t. the ground truth. Four main observations are made from the results presented in Table 6. Firstly, the 

estimated center and radius of the cylinders appear to be directly impacted by the normalized RMSE ratio. In other 

words, the errors in the estimated center and radius (which represents the minor axis of the ellipses) appear to increase 

as the noise ratio increases. Second, the estimated center and radius using Halir’s method is impacted the most (around 

3mm and 2.5mm, respectively) with the increase of the normalized RMSE, compared to say our method (which 

changed around 1.5mm and 0.7mm, respectively). Based on our observations in Section 5.2.3, Halir’s method started 

producing relatively biased results at noise levels above around 1.5 pixels noise (normalized RMSE of around 0.01); 

hence, it was expected that Halir’s method produces more biased results compared to the remaining methods at larger 

noise levels in cases of Figures 3b and 3c. Halir’s method also produced relatively more biased results compared to 
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the remaining methods in each case, which was also expected since the method was shown to be produce considerably 

biased results for arc angles of less than around ~200° (see Figure 9). The third observation is that the axis angle error, 

which represents the ratio between the semi-minor and semi-major lengths, does not follow the same trend as the 

center and radius w.r.t. the relative noise increase. In fact, the ratio between the semi-minor and semi-major lengths 

appears to improve from case 3b to case 3c with very little change between cases 3a and 3c. Upon further investigation, 

it was observed that due to the lower point density of case 3b, the average number of points within 1mm of the 

intersecting planes was 30 in opposed to 45 and 48 points for cases 3a and 3c, respectively, which impacts the 

estimated ellipse parameters, including the ratio of the estimated semi-minor to semi-major lengths. The fourth 

observation is that even though Ahn’s method provided more accurate radius estimations (corresponding to the semi-

minor length) compared to Szpak’s method, Szpak’s method achieved lower axis angle errors, particularly in cases 3a 

and 3b. The difference is small (in the order of 10−1 degrees) and, hence, not a concern in practical settings. However, 

this shows that in these configurations, Szpak’s method provides a slightly better estimation of the ratio between the 

semi-minor and semi-major lengths compared to Ahn’s. The final observation from the data was that our method 

outperformed all other methods in the parameter estimation of the center, radius, and axis angle errors on average. On 

average for all measurements, our method achieved 1.5%, 5.7% and 85.3% better center estimation results, 1.7%, 

6.0%, and 99.7% better radius estimation results, and 5.2%, 2.9% and 23.7% better cylinder axis estimation results, 

compared to the methods of Ahn, Szpak, and Halir, respectively. The average of the absolute difference in the 

estimation of the center, radius, and axis angle using our method were 0.2 mm, 0.2 mm and 0.1 degrees, respectively, 

compared to Szpak’s, and 0.1 mm, 0.1 mm and 0.2 degrees, respectively, compared to Ahn’s method, which are still 

notable in application pertaining to high precision metrology and reliability.  

From the results of the simulation experiments presented in Section 5, the methods of Szpak, Ahn and ours 

behaved similarly in most configurations, other than for noise levels above 2.5 pixels (normalized RMSE of around 

0.02 and above), where Szpak’s method started to produce relatively biased results. The configurations in the real-

world experiment were also in the normalized RMSE range, where Szpak’s method was expected to behave similarly 

to ours and Ahn’s. In larger noise levels, however, as shown in Figure 8, ours and Ahn’s are expected to perform 

better. In Szpak [12], it was mentioned that the Sampson based methods are a good approximation for “moderate” 

noise levels. From our experiments, the 0.02 normalized RMSE ratio might be a good quantification of the definition 

of “moderate” in this context. As a point of reference, Figure 12 is provided as an example of the behavior of each 
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ellipse fitting method with respect to the ground truth parameters for the projected points of Figure 3d-bottom. As 

illustrated from this example (Figure 12), our method appears to perform slightly better than Ahn, which is slightly 

better than Szpak, and considerably better than Halir. 

Table 6: Results of the mean of the parameter estimation errors for the cases presented in Figure 3 

Mean of Cylinder Parameter Errors (Case of Figure 3a) 
Cylinder Parameter Halir Szpak Ahn Ours 
Center (mm) 4.88 3.18 3.13 3.06 
Radius (mm) 4.53 3.02 2.78 2.74 
Axis Angle (°) 2.83 1.94 1.99 1.93 

Mean of Cylinder Parameter Errors (Case of Figure 3b) 
Cylinder Parameter Halir Szpak Ahn Ours 
Center (mm) 7.13 3.58 3.27 3.20 
Radius (mm) 7.03 3.15 3.08 3.01 
Axis Angle (°) 3.95 4.15 4.34 3.87 

Mean of Cylinder Parameter Errors (Case of Figure 3c) 
Cylinder Parameter Halir Szpak Ahn Ours 
Center (mm) 8.05 4.70 4.64 4.64 
Radius (mm) 6.89 3.55 3.49 3.44 
Axis Angle (°) 2.61 2.15 2.14 2.13 

 

 

Figure 12: Behavior of the ellipse fitting methods of Halir, Szpak, Ahn and Ours for the projected cylindrical points 

of Figure 3d-bottom 

7. Conclusions 

This manuscript provided a new method for fitting ellipses to 2D points using the confocal hyperbola point to 

ellipse geometric distance approximation. Ellipse fitting using confocal hyperbola had not been formulated in the 

literature and, hence, its performance was never investigated. To this end, two comprehensive sets of experiments, 

including simulation-based and real-world were designed. The effectiveness of the proposed method compared to 

established state-of-the-art ellipse fitting methods in various configurations was examined. The simulation-based 

experiments consisted of two main categories, namely, point to ellipse distance approximations, and best fit ellipse 

Halir Szpak Ahn Ours 
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evaluation. For point to ellipse geometric distance approximation methods, the confocal hyperbola method 

outperformed other established geometric distance approximations, namely, algebraic, Sampson, and Harker and 

O’Leary, and behaved almost identical (in the order of 10−2 pixels on average) to the ground truth geometric distance, 

proposed by Chernov [11] . To this end, a new ellipse fitting method using confocal hyperbola was proposed 

(Algorithm 1) and its effectiveness was evaluated compared to the ellipse fitting methods proposed by Halir [16], 

Taubin [19], Kanatani [20], Szpak [12], and Ahn [27]. The effects of change of variables, namely, rotation angle, 

aspect ratio, noise, and spanning arc on the estimated ellipse parameters using each method were thoroughly 

investigated. Overall, it was observed that the proposed confocal hyperbola-based ellipse fitting method achieved 

almost identical to (and in some cases outperformed) the gold standard geometric ellipse fit of Ahn, and outperformed 

the remaining methods in all categories. It was also shown that in all simulations, our method converged after around 

9-10 iterations and achieved an average computation speed of roughly 140, 21 and 1.2 times faster than those achieved 

using the methods of Ahn, Szpak, and Kanatani. 

The real-world experiment was designed to determine the ability of different ellipse fitting methods in predicting 

the parameters of cylindrical point clouds, acquired from mechanical pipes. To this end three cylindrical point clouds 

with different noise levels, and point densities were considered. The methods of Halir, Szpak, Ahn, and ours, which 

are all methods guaranteeing ellipses, were considered to estimate ellipse parameters of intersecting planes to these 

cylinders. The ellipse parameters were then used to recover the original cylinder parameter. The errors in estimating 

the original cylinder parameters were then recorded. It was observed that our method outperformed the remaining 

methods in estimating the cylinder’s parameters. The method of Halir was clearly less accurate than the remaining 

methods, which was expected due to the biased behavior of Hair’s ellipse parameter estimation in smaller arc angles 

(approximately less than a semi-ellipse) and at larger noise levels. 

Overall, the comprehensive evaluation in both simulation-based and real-world experiments showed the 

agreement between the ellipse parameters estimated using the proposed confocal hyperbola ellipse fitting method and 

the true geometric parameters of the ellipses. The method achieved the best parameter estimation results in all 

categories of simulation and real-world experiments. We conclude that the confocal hyperbola-based ellipse fitting 

method shows great promise for fitting ellipses to 2D data in practical settings. 
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Appendix I: Closed-form Jacobian matrix of the confocal hyperbola distance function 

This section describes the formulas to acquire the Jacobian of the distance function used to minimize equation 17 

w.r.t. the geometric parameter vector 𝜌𝜌 = (𝑥𝑥𝑐𝑐 ,𝑦𝑦𝑐𝑐 ,𝑎𝑎𝑒𝑒 , 𝑏𝑏𝑒𝑒 ,𝜃𝜃): 
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where 𝐶𝐶 = cos 𝜃𝜃, 𝑆𝑆 = sin𝜃𝜃, 𝑋𝑋 = (𝑥𝑥 − 𝑥𝑥𝑐𝑐).𝐶𝐶 + (𝑦𝑦 − 𝑦𝑦𝑐𝑐). 𝑆𝑆, and  𝑌𝑌 = −(𝑥𝑥 − 𝑥𝑥𝑐𝑐). 𝑆𝑆 + (𝑦𝑦 − 𝑦𝑦𝑐𝑐).𝐶𝐶. From the above 

formulations, three possible numerical singularities in the Jacobian, 𝐽𝐽𝐷𝐷ℎ, may appear when either: (i) 𝐿𝐿 = 1 (equation 

A3); (ii) ∆= 0 (equation A2); or (iii) when 𝐷𝐷ℎ = 0 (equation A1). The case of 𝐿𝐿 = 1 belongs to the situation when 

the intersecting point is on the semi-major length of the ellipse i.e. when |𝑋𝑋| ≥ 𝑓𝑓 and |𝑌𝑌| = 0. The second case ∆= 0 

occurs when |𝑋𝑋| = 𝑓𝑓 and |𝑌𝑌| = 0, which is a condition covered more broadly in the previous case. These cases occur 

when |𝑋𝑋𝐼𝐼| = 𝑎𝑎𝑒𝑒. For case 1 (and consequentially 2), equation 16 provided a simplified version of the confocal 

hyperbola distance function (see Section 3), which is recommended to be used here. The Jacobian matrix for the 

conditions of equation 16 (covering cases 1 and 2) is provided in equation A6 below. The final possible numerical 

singularity might occur when the points are exactly on the ellipse (i.e. 𝐷𝐷ℎ𝑋𝑋 = 𝐷𝐷ℎ𝑌𝑌 = 0). For this situation, equation 

A1 can be re-written and the Jacobian can be approximated by taking its limit as (𝐷𝐷ℎ𝑋𝑋,𝐷𝐷ℎ𝑌𝑌) → (0,0): 
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)
   (A5) 

Equation A5 is now numerically stable for points on the ellipse and can also be used for any other point whose 

distances in 𝑋𝑋 and 𝑌𝑌 are equal (i.e. 𝐷𝐷ℎ𝑋𝑋 = 𝐷𝐷ℎ𝑌𝑌). These formulations can be summarized as follows: 

�
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� =
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⎧�

0                    0       0  0            0 
sign(𝑌𝑌). 𝑆𝑆 −sign(𝑌𝑌).𝐶𝐶 0 −1 −sign(𝑌𝑌).𝑋𝑋� , |𝑌𝑌𝐼𝐼| = 𝑏𝑏𝑒𝑒            

�−sign(𝑋𝑋).𝐶𝐶 −sign(𝑋𝑋). 𝑆𝑆 −1 0 sign(𝑋𝑋).𝑌𝑌
0                    0             0  0       0 

� , |𝑋𝑋𝐼𝐼| = 𝑎𝑎𝑒𝑒           

Use equations 𝐴𝐴1 − 𝐴𝐴4                                                  , Anywhere else

   (A6) 
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