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ABSTRACT

In order to approximate Gibbs energy functions, a semi-automated framework

is introduced for binary and ternary material systems, using CALPHAD databases.

To generate Gibbs energy formulations by means of second-order polynomials,

the framework includes a precise approach. Furthermore, an optional exten-

sional step enables the modeling of systems in which a direct generation leads to

the unsatisfactory results in the representation of the thermodynamics. Fur-

thermore, an optional extensional step enables the modeling of systems, in

which a direct generation leads to the unsatisfactory results, when representing

the thermodynamics. Within this extension, the commonly generated functions

are modified to satisfy the equilibrium conditions in the observed material

systems, leading to a better correlation with thermodynamic databases. The

generated Gibbs energy formulations are verified by recalculating the equilib-

rium concentrations of the phases and rebuilding the phase diagrams in the

considered concentration and temperature ranges, prior to the simulation

studies. For all comparisons, a close match is achieved between the results and

the CALPHAD databases. As practical examples of the method, phase-field sim-

ulation studies for the directional solidification of the binary Ni–35Mo and the

ternary NiAl–10Mo eutectic systems are performed. Good agreements between

the simulation results and the reported theoretical and experimental studies

from literature are found, which indicates the applicability of the presented

approaches.

Handling Editor: P. Nash.

Address correspondence to E-mail: kaveh.noubary@kit.edu

https://doi.org/10.1007/s10853-021-06033-7

J Mater Sci (2021) 56:11932–11952

Metals & corrosion

http://orcid.org/0000-0003-2861-4170
http://crossmark.crossref.org/dialog/?doi=10.1007/s10853-021-06033-7&amp;domain=pdf


GRAPHICAL ABSTRACT

Calphad
database

Phase-field
simulation

liqfcc+liq

fcc+δ

liq+δ

fcc δ fcc δ

Introduction

The phase-field method is widely used to investigate

the microstructure evolution during the solidification

processes in multicomponent material systems. To

calibrate this method with physical data, thermody-

namic information needs to be incorporated. The

information required to describe the driving forces

for the phase transition is mostly derived from CAL-

PHAD databases [1]. In these databases, the Gibbs

energy for each contained phase is stored as a func-

tion of pressure, temperature and concentrations.

To incorporate this thermodynamic information

into the different phase-field models, based on the

Allen-Cahn or Cahn-Hilliard model, several approa-

ches have been established [2–12]. During the simu-

lations, an obvious approach is the direct access to

the information from the databases. This approach,

for example, is used by Steinbach et al. [8], in their

coupling study from 2007. To reduce the computa-

tional effort for the simulations in this work, the

calculations of the thermodynamic information are

only performed at certain time intervals. Based on

these calculations, the quasi-equilibrium stages in

between are extrapolated. A further approach, used

by Qin and Wallach [9], is to precompute the

thermodynamic information before the simulation,

using MTDATA [13], and store the results in a data

file. This allows a reduction in the computational

effort, during the simulation. However, if not all

required information is sufficiently precalculated, the

data need to be approximated by means of interpo-

lation, which can result in a loss of accuracy.

Another approach is to directly incorporate the

Gibbs energy functions from the CALPHAD databases

into the model, without calling external libraries. This

approach was used by Böttger et al. [10] and Zhu

et al. [11]. Their procedures allow the exact determi-

nation of thermodynamic information from the CAL-

PHAD databases. As the functions in the CALPHAD

databases are often stored in computationally inten-

sive formulations, iterative methods are required to

solve them. Therefore, further approaches, which use

more simply approximated functions of the Gibbs

energies, have been established to efficiently compute

the thermodynamic conditions during the simula-

tions. A commonly used procedure is the approxi-

mation of the Gibbs energies, using parabolic

functions. The accuracy of this approach depends on

the considered temperature and concentration ran-

ges. With increasing ranges, the ability of the para-

bolic functions, to reproduce the thermodynamic

information, becomes limited. Hence, it is
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challenging to represent a broad range of tempera-

ture-composition space with a high accuracy. In [3],

Welland et al. compare their parabolically approxi-

mated functions with functions composed of an

approximated minimizer approach. For both

approximation approaches, the authors show a good

accordance with the original data, in the vicinity of

the equilibrium states. With a growing distance to the

equilibrium, the parabolically approximated func-

tions show a stronger deviation from the original

data, whereas the approximated minimizer functions

are still in good accordance. However, for most pro-

cesses investigated with phase-field simulations, a

limited range is sufficient to reproduce the phase

transitions of the particular interest to a specific

problem.

The advantages of the parabolically approximated

functions are their lightweight computations and the

proper representation of the thermodynamic infor-

mation. In recent years, different binary [3, 5, 14–16]

and ternary [5, 17–21] alloys have therefore been

modeled with parabolically approximated functions.

A further advantage of this approach is that these

functions are suitable for the application in free-en-

ergy-based [8, 22] as well as in grand-potential-based

phase-field models [23, 24]. For the grand potential

models, all required parameters, such as the con-

centrations, the chemical potentials and the grand

potentials, can be calculated directly and uniquely

from the approximated functions.

In most of the above-mentioned publications, the

focuses of the works are on the microstructure evo-

lution, which is highly affected by the system and the

process parameters. In these works, the challenges

included in the modeling of the Gibbs energy func-

tions and the modeling process itself are rarely dis-

cussed in great detail. These challenges can be

summarized as the accuracy of the modeled func-

tions, in representing the thermodynamics and their

suitability for the utilization in phase-field models.

Therefore, an efficient and semi-automated frame-

work is presented in this paper, so as to generate

Gibbs energy formulations for the application in

binary and ternary material systems, which is

exploited in the introduced phase-field model of

[17, 23]. The functions in this framework are derived

on the basis of a numerical least squares method,

using near-equilibrium concentrations, so as to pre-

vent their validity from being solely confined to the

equilibrium conditions. To reduce the models’

sensitivity to external influences, further thermody-

namic information is therefore taken into account, in

the vicinity of the equilibrium conditions. In order to

generate formulations for the Gibbs energy, the pre-

sented framework primarily follows a common

approach. For the case of a more complex material

system, however, it additionally includes an optional

extension of the general approach, for which the

common approach leads to unsatisfactory results. To

demonstrate the applicability of the framework, the

derivation of parabolic Gibbs energy formulations is

performed for the simulations of the directional

solidifications in binary Ni–35Mo and ternary NiAl–

10Mo eutectic systems, which are two practical

examples of non-trivial material systems. In the lit-

erature, phase field simulations have not yet been

carried out for these systems. The obtained

microstructures are verified by the reported theoret-

ical and experimental results of the individual

systems.

In the upcoming sections, the utilized phase-field

method is initially introduced in more detail. In the

next section, both the framework for the generation of

Gibbs energy formulations and its extension are

presented in general. Afterward, the workflow of the

framework is exploited in detail, in order to obtain

the Gibbs energy information for the mentioned

binary and ternary material systems. Finally, two-

dimensional simulation studies are conducted, in

order to verify the procedure and the resulting Gibbs

energy formulations.

Methods

Phase-field model

The used phase-field model is based on the grand

potential functional [23, 24]. A detailed description of

its implementation is given in the literature

[17, 25, 26], and further examples for its application to

the directional solidification of eutectic systems are

reported in [17, 19, 20, 27–30]. The local phase frac-

tions of the phases are represented by the N order

parameters /â, which are stored in the vector /.

Similar to the works [20, 31, 32], the phases a; b; . . .

differ from their indices â and b̂ by a different

labeling. The K chemical potentials li are derived

from the mass balance of the concentrations and are

collected in the vector l. The time evolution

11934 J Mater Sci (2021) 56:11932–11952



equations o
ot

� �
of the coupled phase fields (based on

an Allen-Cahn approach), the chemical potentials

(based on Fick’s law) and the temperature T read as:
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�r � oað/;r/Þ
or/â
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Equation (1) describes the phase transition, taking

place during the simulations, with a diffuse interface.

The shape of this interface is modeled by the gradient

energy density að/;r/Þ and by the potential energy

density xð/Þ. While the gradient energy density is a

function of the phase fields and their gradients, the

potential energy density is only a function of the

phase fields. Both further depend on the interfacial

energies câb̂ between the evolved phases [17]. The

interface thickness is related to the parameter e, and
the movement of the interface is controlled by the

kinetics of the interface and by the driving forces

from the investigated system. The kinetics of the

interface, which is a function of the diffusion coeffi-

cients, and the concentrations are described by the

parameter s, based on [23], and the driving forces are

described by the differences between the phase-de-

pendent grand potentials wð/; l;TÞ. The term
1
N

PN
b̂¼1ðrhs1;b̂ þ rhs2;b̂Þ is the Lagrange multiplier K,

which is introduced to fulfill the constraint
PN

â¼1
o/â
ot ¼ 0.

By calculating the evolution of the chemical

potentials l, Eq. (2) describes the diffusion processes

in the investigated system. The function Mð/; l;TÞ is
the mobility of the interface and includes the infor-

mation of the diffusion coefficients D of the involved

phases [23]. In Eq. (2), the function hâ [33] interpolates

between the different phases, and the anti-trapping

current Jat [23, 34, 35] balances the effects of the

artificially enlarged interface. For the investigated

phase â, the parameter câðl;TÞ represents the con-

centration vector of the K components. Equation (3)

describes the evolution of the temperature T, in the

growth direction x, using the initial base temperature

T0, the applied gradient G and its velocity vG.

To ensure the thermodynamic consistency of the

derived phase-field model, the thermodynamic

properties, required to calculate the phase transitions,

are derived from thermodynamic databases. These

properties mainly consist of the grand potentials wa,

the concentrations caðl;TÞ and the chemical poten-

tials l. Following Kellner et al. [19], and by assuming

a constant pressure and volume, the grand potentials

can be defined as:

waðl;TÞ ¼ gaðcaðl;TÞ;TÞ � l � caðl;TÞ : ð4Þ

As the concentrations caðl;TÞ and the chemical

potentials l can be derived from the Gibbs energy

gaðc;TÞ, both the grand potentials and the driving

force can be expressed as a function of the Gibbs

energies and their derivatives, with respect to the

element concentrations [19]. Formulations for the

Gibbs energies of different material systems can be

found in thermodynamic CALPHAD databases. In the

databases, the Gibbs energies are stored in the form:

g ¼ g0 þ idgmix þ xsgmix: ð5Þ

The term g0 of Eq. (5) describes the Gibbs energy, due

to the mechanical mixing of the contained phases.

The second term idgmix represents the Gibbs energies,

due to the ideal mixing contribution, and describes a

statistic distribution of the concentrations in the

phase. During the calculations with CALPHAD soft-

ware packages like FactSage [36], OpenCalphad [37],

Pandat [38], Pycalphad [39] and Thermo-Calc [40],

this part is automatically added to the calculated

Gibbs energies. The last term of Eq. (5), xsgmix, is the

excess Gibbs energy of mixing and describes all

nonideal mixing contributions. The different terms

can refer to either a single or multiple sublattice

model [1, 41]. As mentioned before, these formula-

tions are often computationally intensive, especially
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the calculation with multiple sublattices. Further-

more, the required derivation of the chemical

potentials l and the concentrations caðl;TÞ from the

CALPHAD formulations can lead to solutions that are

not unique. Therefore, a simpler approximation of

these formulations, which leads to unique solutions

of the derivations, is required for the used grand

potential model. To generate these approximations, a

framework has been developed, which transfers the

computationally intensive CALPHAD formulations into

simpler terms, with respect to the original data and

the equilibrium conditions of the phases. A compar-

ison between the required computational effort for

Gibbs energy calculations, based on the CALPHAD

formalism, and the later used parabolic approach is

performed in A. Based on the result, and depending

on the number of components in the system, the

parabolic approach can reduce the number of neces-

sary cycles in the simulation studies by up to 7 times,

for a single sublattice. In case of multiple sublattices,

this amount can increase several times.

Generation of Gibbs energy functions

For binary and ternary material systems, the semi-

automated framework for the generation of the

approximated Gibbs energy functions is schemati-

cally illustrated in Fig. 1 and is explained in this

section. The tool is implemented to be utilized prior

to the simulation studies.

Before starting the calculations, the procedure

requires a detailed definition of the material systems

and the investigated phase transformation reaction.

Apart from the CALPHAD database, the considered

components and the reaction type have to be speci-

fied. Depending on the chosen numbers of compo-

nents, an automated distinction between binary and

ternary systems is realized. For a further definition of

the phase transformations, the considered tempera-

ture range and the concentration of the melt, nor-

mally the eutectic composition of the melt, must be

known. To ensure a solidification of the solid phases

in the subsequently performed phase-field simula-

tions, the temperatures should be chosen in such a

way that they are below the melting temperatures of

the individual phases. It has to be mentioned that the

choice of the temperatures can have a critical impact

on the accuracy of the generated Gibbs energy for-

mulations and hence on the stability of the resulting

phase-field simulations. In order to obtain a satis-

factory formulation of the Gibbs energies for all

involved phases, multiple calculation runs with dif-

ferent temperature ranges can be required.

The generation process of the approximated tem-

perature-dependent Gibbs energies can be divided

Figure 1 Flowchart of the

framework for approximating

Gibbs energy functions.
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into five steps, with an optional modification loop

between the third and the fifth step.

STEP 1 The equilibrium concentrations for each

phase ceqa , evolved in the examined reaction,

are calculated based on the considered

temperatures and concentrations of the melt,

by a software that can handle Calphad

databases. In this work, the Thermo-Calc

software package [40] is used.

STEP 2 For the defined temperatures, the Gibbs

energies of each phase are calculated

separately, in a predefined concentration

range around their equilibrium

concentrations. The results are stored in

separate files.

STEP 3 Based on these files, the Gibbs energy

functions for each phase and temperature are

approximated independently, by means of a

numerical least squares method.

STEP 4 For each phase, all corresponding functions

are combined by an interpolation, so as to

create temperature-dependent Gibbs energy

formulations.

STEP 5 At the utilized temperatures, the chemical

potentials are calculated from the fitted

Gibbs energy functions, and the

thermodynamic equilibrium conditions are

checked.

MODI (Optional) In case of deviations from the

expected thermodynamic equilibrium, the

fitted Gibbs energy functions are modified by

parameter variations.

The presented workflow within the Pace3D

framework [42] consists of several C-based tools,

used to generate macrofiles for the employed CAL-

PHAD software package Thermo-Calc and to subse-

quently verify the calculation results from the

database. By using a numerical least squares method,

the exact equilibrium conditions are usually not fully

reproduced. However, by adjusting both the con-

centration range and the number of calculation points

around the equilibrium condition in STEP 2, the

accuracy of the calculations can be increased. Thus, a

close match between the original and the derived

thermodynamic data can be achieved in a certain

range around the equilibrium conditions. Further-

more, different binary (B) and ternary (T) approaches

can be chosen for the approximated formulations.

Apart from the mentioned parabolic approaches,

further approximation function approaches are

implemented into the Gibbs energy framework. For

binary and ternary systems, a summary of the

implemented approaches is given in Table 1. For the

required derivations, all implemented functions lead

to unique solutions.

In STEP 5, the approximated Gibbs energy functions

are checked to verify the accordance with the CAL-

PHAD data and the satisfaction of the thermodynamic

equilibrium, at the desired temperatures and con-

centrations of the elements. Therefore, the original

and the derived data of the Gibbs energies are com-

pared visually, as exemplified later in Figs. 2 and 4.

For a quantitative comparison, the maximum and

average deviations between both are calculated, and

the chemical potentials at the equilibrium concen-

trations are checked for equality, so as to ensure a

correct representation of the equilibrium conditions.

For nonvariant reactions, a phase diagram is addi-

tionally derived from the fitted Gibbs energy for-

mulations and compared with the phase diagram

from CALPHAD, as shown later in Figs. 3 and 5. If the

functions do not satisfactorily reproduce the original

data, the mathematically obtained Gibbs energy for-

mulations of STEP 3 are modified by including more

thermodynamic criteria. These criteria can be stated

as:

1. Equality of the resultant chemical potentials, at

the equilibrium concentrations, for all involving

phases.

2. Existence of a common tangent between the

equilibrium concentrations of the solid phases,

at the regarded temperature.

Considering a total number of N phases (including

liquid as the last phase) and a chemical potential of

phase i as li ¼
ogi
ox for binary and lij ¼

ogi
oxj

, j ¼ 1; 2 for

ternary systems, the following equations are obtained

to ensure equal chemical potentials:

l1 ¼ l2 ¼ � � � ¼ lN binary systems

l10 ¼ l20 ¼ � � � ¼ lN0 ; l11 ¼ l21 ¼ � � � ¼ lN1 ternary systems

ð6Þ

and a common tangent:
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After the modifications, steps 4 and 5 are repeated to

validate the newly generated Gibbs energy formula-

tions. As the conditions for the validation are already

considered in the modeling of the new Gibbs energy

formulations, an accordance between the modeled

and the original CALPHAD material system can be

ensured.

The modification of the fitted Gibbs energy func-

tions should not be considered as the adjustment of

the CALPHAD data. In fact, the approximation process

enables a simplified and computationally efficient

reproduction of the original data, which can be used

in the simulation studies. The additionally performed

modifications in this process increase the accordance

with the expected physical properties of the systems.

It has to be mentioned that with the presented

approach, a thermodynamic modeling of the Gibbs

energies cannot be realized for all material systems.

The tool chain is limited to binary and ternary

material systems and, in addition, cannot handle

stoichiometric phases. However, as discussed in the

following, the approach for systems with well-de-

fined equilibrium conditions, without stoichiometric

phases, directly leads to a satisfying result, for the

approximated Gibbs energy formulations, even

without a modification of the originally derived

functions. In order to generate Gibbs energy func-

tions for the eutectic systems Ni–35Mo and NiAl–

10Mo, respectively, exemplary calculation chains are

presented in the following sections. Ni–35Mo

Table 1 Implemented approaches for approximated functions

Label Type Equation

Bp Parabolic fðxÞ ¼ a0 x2 þ a1 xþ a2
Bi Ideal solution fðx;TÞ ¼ a0 xþ a1 þ RT ðx lnðxÞ þ ð1� xÞ lnð1� xÞÞ
Bl Logarithmic fðxÞ ¼ a0 lnðxÞ
Tp Parabolic fðx0; x1Þ ¼ a0 x20 þ a1 x21 þ a2 x0 x1 þ a3 x0 þ a4 x1 þ a5
Ti Ideal solution fðx0; x1;TÞ ¼ a0 x0 þ a1 x1 þ a2 þ RT ðx0 lnðx0Þ þ x1 lnðx1Þ þ ð1� x0 � x1Þ lnð1� x0 � x1ÞÞ

Figure 2 Comparison of the CALPHAD data points [43] and the

fitted functions in the representation of the Gibbs energies, at 1590

K. Points: CALPHAD data, solid lines: fitted curves, dashed line:

common tangent of the solid phases.

Figure 3 Comparison of the phase diagram, based on the

CALPHAD database [43], and the fitted Gibbs energy functions

used in this work, for the binary Ni–35Mo system.
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describes a eutectic reaction in the binary Ni--Mo

system and NiAl–10Mo describes a eutectic reaction in

an isopleth section of the ternary system Ni--Al--Mo.

In addition to the validations of the generated Gibbs

energy formulations, performed in STEP 5 of the tool

chain, the suitability of the generated functions is

investigated for the conduction of directional solidi-

fication processes in phase-field simulations. There-

fore, the results of the phase-field simulations are

subsequently presented in the mentioned systems.

Generation of Gibbs energy functions
for the binary Ni–35Mo system

In this section, all relevant steps of the framework,

required to derive the Gibbs energy functions for the

binary eutectic Ni–35Mo system, are explained to

demonstrate the applicability of the presented

method for a eutectic reaction. The thermodynamic

database, utilized for the binary Ni–Mo system, is

developed by Yaqoob et al. [43]. Starting from STEP 1

of the tool chain (see Fig. 1), Ni and Mo are defined,

while the mole fraction of the molybdenum is set to

the eutectic point, i.e., xMoð Þeut¼ 35:3 mol-%. The

pressure of the system is expressed by the atmo-

spheric pressure (101325 Pa), while for the existing

components, a total number of 1 mol is defined in the

computations. In order to reproduce the phase dia-

gram of the upcoming calculations, the temperatures

1580, 1585 and 1590 are chosen to define a tempera-

ture range beneath the eutectic point. Using a

macrofile, this information is transferred to the soft-

ware package Thermo-Calc [40], so as to calculate the

thermodynamic properties. In Table 2, the results of

the equilibrium calculation from STEP 1 are listed for

the middle temperature T ¼ 1585K.

In order to calculate the Gibbs energies at the

temperatures 1580 and 1590, in STEP 2, a user-speci-

fied number of points, surrounding the equilibrium

concentrations, are selected for the involving phases,

so as to obtain the amounts of the Gibbs energies.

These points are specified in regular steps, in the

vicinity of the equilibrium points. In this case, two

hundred data points are selected for each phase, in a

radius of 20mol-%Mo and a step width of

0:1mol-%Mo. The Gibbs energy values calculated at

these points are the basis of the approximation of the

Gibbs energy functions in STEP 3. In this case, binary

second-order polynomials (Bp), as given in Table 1,

are used to approximate the data points. The

approximated functions are numerically calculated,

by using a least squares method for the individual

temperatures. Through a linear interpolation, carried

out in STEP 4, the obtained coefficients of the

approximated functions have become temperature-

dependent. The resultant temperature-dependent

functions are listed in Table 5, which can be found in

the appendix.

In order to test the accuracy of the fitted functions,

with regard to the reproduction of the thermody-

namics, different procedures are carried out in STEP 5.

In the vicinity of the equilibrium concentrations, the

original amounts of the Gibbs energies from the

CALPHAD database are first visually compared with

the fitted amounts. This comparison is illustrated

in Fig. 2. The average and maximum deviations

between the original CALPHAD data gcal and the

approximated Gibbs energies gapp are reported

in Table 5, showing a deviation of less than \0:04%,

for all three phases. For each phase, the exact

amounts of the Gibbs energies of the modeled func-

tions and of the CALPHAD databases, at the equilib-

rium concentrations, are also summarized in Table 5,

for a temperature of 1590 K. Next, the resultant

chemical potentials for the involving phases are

compared and checked for their equality (Eq. (6)). It

can be noted that a maximum deviation does exist

between the chemical potentials of 6%, which is

negligible in the authors’ opinion. The checking

procedure is repeated for different temperatures

below the melting point, which leads to similar cor-

relations between the CALPHAD data and the approx-

imated functions. Therefore, it can be concluded that

the fitted functions behave well at the desired tem-

perature, in terms of the representation of the Gibbs

energies and the corresponding chemical potentials.

As a final accuracy test, the phase diagram, based on

Table 2 Equilibrium concentrations of the Ni–35Mo system, at a

temperature of 1585 K

Phase xMo in mol-% xNi in mol-%

fcc 27.3 72.7

d 47.6 52.4

Liquid 35.3 64.7

J Mater Sci (2021) 56:11932–11952 11939



the fitted functions, is rebuilt and compared with the

CALPHAD data, by means of the common tangent rule.

In the system, the common tangents between the

Gibbs energy curves are constructed for any possible

two-phase combinations, i.e., d-fcc, fcc-liquid and d-
liquid. The points where the tangent lines and the

Gibbs energy curves meet describe the equilibrium

concentrations of the corresponding phases. This

procedure is exemplarily illustrated in Fig. 1 of [3]

and in Fig. 8 of [44]. By repeating the procedure for

different temperatures in the considered temperature

range, the touch points referring to the lowest energy

levels are transferred to the temperature-concentra-

tion plot of the original phase diagram. By connecting

these points, the transition lines of the rebuilt phase

diagram are constructed and can subsequently be

compared with the original phase diagram. For Ni–

35Mo, the result of this reconstruction is given

in Fig. 3, together with the original phase diagram of

[43].

In the top diagram of Fig. 3, a good accordance is

observed between the original and the reconstructed

phase diagram. For the single areas around the

equilibrium points, a closer look at the enlargements I

to III, taken below, shows that the reproduced phase

transition lines of the solids deviate slightly from the

original lines. With this, the concentration of the

eutectic reaction is slightly changed from 35.3 to

35:4 mol-% Mo. However, for all reproduced transi-

tion lines in the diagram, a maximum deviation of

0:4mol-% Mo is found, which results in a maximum

percentage deviation of 1%. This good correlation

indicates the accuracy of the fitted Gibbs energy

functions, concerning the representation of the ther-

modynamics for the binary Ni–35Mo system. This can

also be seen in an enlarged temperature range ,

compared with the predefined temperature range.

As all validations show a good accordance between

the modeled and the original system, a modification

of the Gibbs energy functions, as described in Fig. 1,

can be omitted. The subsequently performed study of

the directional solidification process of the modeled

system Ni–35Mo, taking place within phase-field

simulations, is presented in section 5.

Generation of Gibbs energy functions,
for the ternary NiAl–10Mo system

The thermodynamic properties for the NiAl–10Mo

system are calculated on the basis of the database of

Peng et al. [45], which describes the quaternary Ni-Al-

Cr-Mo system and contains the ternary Ni-Al-Mo

subsystem. NiAl–10Mo describes a nontrivial eutectic

reaction in an isopleth section of the ternary system

Ni-Al-Mo. To obtain different solidification velocities

for this system, experimental investigations of the

directional solidification process are performed by

Zhang et al. [46]. In this experimental work, Mo-rich

fibers are observed, embedded in NiAl-rich matrices.

Starting from STEP 1 of the tool chain, the system

components Al, Mo and Ni are defined and the mole

fractions of the components at the eutectic point are

set to 43:9mol-% Al, 9:4mol-% Mo and 46:7mol-% Ni.

Based on the database, the eutectic temperature is

1875:47 K. For the calculations, the atmospheric

pressure and a total component number of 1 mol are

used again. In a procedure similar to the binary Ni–

35Mo system, several temperatures below the eutec-

tic point are selected for the calculation of the equi-

libria, which later results in a reproduction of the

considered phase diagram section. In Table 3, the

results of the equilibrium calculation from STEP 1 are

exemplarily listed for the temperature T ¼ 1871 K. To

calculate the Gibbs energies in STEP 2, a user-specified

number of points, surrounding the equilibrium con-

centrations, is selected. Despite the binary case, the

composition of a ternary system is defined by the

concentrations of two components. Therefore, a reg-

ular mesh of data points, with a step width of

Dx ¼ 0:1mol-%Mo, Dy ¼ 0:1mol-%Al, in a radius of

0:5mol-%, around the equilibrium concentration, is

used to determine the required concentration values

for the involving phases. It has to be mentioned that

only points in the simplex are selected.

Table 3 Equilibrium concentrations of the Ni-Al-Mo system, at a

temperature of 1871K

Phase xAl in mol-% xMo in mol-% xNi in mol-%

Matrix (NiAl-rich) 49.444 0.092 50.464

Fiber (Mo-rich) 8.64 91.2 0.16

Liquid 43.9 9.4 46.7
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In STEP 3, ternary second-order polynomials (Tp), as

given in Table 1, are used for the approximation with

the least squares method. In STEP 4, the temperature

fitting is done by considering the approximation

results of the different temperatures. The obtained

functions are depicted in Table 7 and are referred to

as the initial fitting functions for the Gibbs energies.

Based on the results, a maximum deviation of 0:01%

is found between the approximated Gibbs energies

gapp and the original data gcal from CALPHAD. This

deviation is found for the fiber phase at the exem-

plarily listed temperature of T ¼ 1871 K. At the

equilibrium concentrations, however, comparisons of

the chemical potentials lead to deviations of up to

18% and 13%, for l0 and l1, respectively. To analyze

the impact of these deviations, the equilibrium con-

centrations, which are based on the approximated

Gibbs energy functions gapp, are recalculated, leading

to an unphysical negative amount for the concentra-

tion of Mo, in the matrix phase. Hence, the Gibbs

energy functions gapp do not reproduce the accurate

material system.

Therefore, the optional modification procedure is

used to adjust the fitting coefficients (a0; :::; a5) for all

phases, as described in Fig. 1. In this procedure, as

mentioned before, the coefficients are modified as

variables, in order to satisfy the Eqs. (6) and (7).

Consequently, the chemical potentials, obtained by

the modified functions, are similar for all phases,

with minimum deviations of the resultant Gibbs

energies from the original CALPHAD data. To establish

the equilibrium conditions, the existence of a com-

mon tangent plane is furthermore ensured for the

solid phases. The outcome of this procedure is com-

piled in Table 8 and is labeled as the modified fitting

functions of the Gibbs energies gmod. Based on these

functions, the maximum deviation between the

modified Gibbs energies and the original CALPHAD

data at the equilibrium concentrations has increased

to 0:02%, for the previously shown exemplary tem-

perature of 1871K. However, for the mentioned

temperature, the chemical potentials are almost

equal, showing a maximum deviation of 0.18%. This

indicates a good representation of the thermody-

namics, by the approximated functions.

For a visual comparison of the modified fitted

curves with the CALPHAD database [45], the obtained

results are illustrated in Fig. 4. In this figure, iso-

concentration lines (xMo=cte), based on the fitted

(a)

(b)

(c)

Figure 4 Comparison between the modified Gibbs energy fitting

curves, for the matrix phase in (a), the fiber phase in (b), the liquid

phase in (c) and the CALPHAD database [45] of the NiAl–10Mo

system. The temperature is 1871 K, and the concentration of Mo

is shown next to each curve.
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functions, are plotted and the amounts of Mo con-

centrations are shown beside each line. According to

the CALPHAD data, the Gibbs energies are sketched

with single squares. For the involved phases, the

comparison shows a good correlation between the

Gibbs energies, in the vicinity of the equilibrium

points. The maximum deviation with 0.02% is found

in the comparison of the Gibbs energies from the NiAl

matrix phase, shown in Fig. 4a.

By using the common tangent rule, the phase dia-

gram around the equilibrium concentrations is

reconstructed in a similar procedure as the binary Ni–

35Mo system. For the isopleth section NiAl–10Mo, the

reconstructed phase diagram in Fig. 5 is compared

with the originally derived phase diagram from the

CALPHAD database. The enlargements I to III, depicted

below the diagram, indicate a good correlation

between the phase diagram of the CALPHAD data

(black lines) and the reconstructed diagram of the

fitted Gibbs energy functions (red marks).

Based on the generated Gibbs energy functions,

two-dimensional phase-field simulation studies are

performed in the next section, for the previously

presented binary Ni–35Mo system and the ternary

NiAl–10Mo system, to show that the generated

material systems are suitable for the application in

phase-field simulations.

Simulation results

To proof the suitability of the generated thermody-

namic models, in order to investigate the directional

solidification process with the phase-field model,

simulation studies for the material systems Ni–35Mo

and NiAl–10Mo are conducted. As the simulation

results have a high dependency on the used material

properties (like interfacial energies, diffusion coeffi-

cients, etc.), simple simulation settings are used, in

terms of domain and phase fillings, so as to reduce

the impact of these values on the microstructure

adjustments. To demonstrate the capability of the

Gibbs energy fitting method in the current work, all

phase-field simulations are performed in two-di-

mensional rectangular domains, with defined set-

tings of the two solid phases next to each other,

beneath the liquid phases. During the solidification,

the solid phases grow into the liquid domain. To

ensure an independent growth of the solid phases, an

infinite liquid domain is ensured, by using a moving

window technique [47]. In the domains, periodic

boundary conditions are applied in the directions

perpendicular to the growth direction. On the solid-

ified side of the domain, a Neumann zero boundary

condition is imposed, while on the opposite side, a

Dirichlet boundary condition is set. The utilized

parameters of the simulations are listed in Tables 6

and 9. In Fig. 6a, b, the exemplary results of two-

Figure 5 Top: Two-dimensional cut of the (matrix-fiber)

connection line in the phase diagram, based on the CALPHAD

database [45], (NiAl–10Mo isopleth cut). The areas I–III are

rebuilt by means of the fitted Gibbs functions (red lines). Bottom:

Enlargements of the rebuilt areas.

(a)

(b)

Figure 6 2D simulations of a binary eutectic Ni–35Mo and b

ternary eutectic NiAl–10Mo systems, with a growth velocity of

30lm s�1. For both cases, a stable growth of the solid phases is

achieved in the liquid.
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dimensional phase-field simulations are, respec-

tively, presented for the systems Ni–35Mo and NiAl–

10Mo. Both simulations show the directional solidi-

fication process for a growth velocity of 30 lm s�1.

Considering Fig. 6a, a stable growth of the d phase

(red color ffi 47 mol-% Mo) is observed next to the fcc

phase (dark blue ffi 27 mol-% Mo). In Fig. 6b, which

indicates the ternary system, the same color style

represents ffi 90 mol-% Mo for the Mo-rich fiber phase

and ffi 0.08 mol-% Mo for the NiAl-rich matrix phase.

For both simulated material systems, similar

stable growth patterns are also obtained at the

velocities 15 lm s�1 and 25 lm s�1. In both cases, the

simulation results are in good agreement with the

CALPHAD databases, regarding the reproduction of the

concentration of the elements in the involving phases.

For both material systems, simulation studies with

different growth velocities vgrowth are performed to

study the relationship between the adjusting under-

cooling DT and the spacing k. For this purpose, the

width of the simulation domain for Ni–35Mo is varied

between 36 and 76 cells (1:8 lm to 3:8 lm), whereas

the domain width for the simulations of NiAl–10Mo is

fixed to 150 cells. This configuration is required, due

to the adjusting phase fractions in NiAl–10Mo. To

resolve the fine Mo-rich fibers in 2D, a minimum

domain width of 100 cells is required. By choosing a

domain width of 150 cells, it can be ensured that the

initial oscillations of the domain width, taking place

during the establishment of a stable growth from the

start settings, are also sufficiently resolved. For each

simulation, however, a constant length scale would

require domain widths between 150 and 200 cells, for

NiAl–10Mo. To reduce the computational effort of this

study, the domain width is set constant and the

length scales of a simulation cell are varied instead, in

order to reproduce the physical lengths from 1.106 to

1:483 lm.

In Fig. 7a, b, the measured undercoolings for the

simulations with different domain widths are pre-

sented at the growth velocities of 15, 25 and

30 lm s�1. To distinguish the single investigations,

each study is uniquely named by the description of

the investigated system and by the applied growth

velocity. This leads to the study names SimNi�35Mo
v15 ,

SimNi�35Mo
v25 and SimNi�35Mo

v30 , for Ni–35Mo, and

SimNiAl�10Mo
v15 , SimNiAl�10Mo

v25 and SimNiAl�10Mo
v30 , for NiAl–

10Mo. In these plots, the profiles of the resulting

undercoolings show the typical Jackson-Hunt-type

shape for all six studies. The theory of Jackson and

Hunt explains the relationships between the under-

coolings, the rod spacings and the growth velocities

of the solidifying materials in the eutectic reactions

[48]. This theory is well known for its convenient

achievements in the explanation of the growth

dynamics in the mentioned processes [49, 50]. The

minima of the curves represent the spacing kext:, for
which the smallest undercooling has been measured.

Based on the experimental work of [46], the corre-

sponding experimental ranges for kext:, shown

in Fig. 7b, are additionally indicated by dashed lines,

for the observed velocities. While the left and right

lines indicate the minimum and maximum value of

kext:, the middle line represents its average value.

In Fig. 7b, the undercooling minima between the

simulations and the experiments show a good

accordance for all three velocities. The maximum

deviation of 13% is found for the study SimNiAl�10Mo
v15 ,

with the smallest growth velocity. For the system Ni–

35Mo, the authors could not find any corresponding

experimental results in the literature. Therefore, no

comparison with experimental results is shown for

the binary system.

In Fig. 7c, d, the spacings kext: are plotted against

the corresponding growth velocities v, in a double

logarithmic graph. In [19], a similar comparison is

performed for simulations and experiments of the

system NiAl–34Cr. The black curves correspond to the

analytical description k ¼
ffiffiffiffiffiffi
K2

K1v

q
, taken from [19]. The

parameters K1 and K2 are material-specific values and

can be calculated by following the descriptions in

[23]. For both material systems, good accordances are

found between the simulated and the analytically

calculated relationships of v and kext:. The largest

deviation with 3.3% can be observed for the simula-

tion series SimNiAl�10Mo
v25 . The additional comparison

with the average experimental values from [46]

shows a larger scattering of the data points around

the analytic curve. Here, the largest deviation with

12.5% is found for the experimental studies with the

growth velocity 15 lm s�1.

In Table 4, a concluding analysis of the phase

fractions, adjusting in the simulations, is shown. For

the system NiAl–10Mo, the evolving phase fractions

of the simulations are compared with the experi-

mental results from Zhang et al. [46]. As there are no

published experimental results for Ni–35Mo, the
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(a) (b)

(c) (d)

Figure 7 Resulting undercooling-spacing relationships for the

growth front velocities vgrowth ¼ 15, 25 and 30 lm s�1 of the

systems Ni–35Mo (a) and NiAl–10Mo (b). The dashed and dotted

lines in (b) indicate the experimental results for kext:, taken from

[46]. (c) and (d) show the comparison of the curve minima, with

their analytical description, following [19].

Table 4 Comparison of the

phase fractions from the

simulations (SIM.) with the

theoretical phase fractions

from the phase diagram (PD)

of [43], for Ni–35Mo, and

from the experimental results

(EXP.) of [46], for NiAl–10Mo

Study of Ni–35Mo Growth rate vgrowth in lm
s

Spacing kext: in lm Phase fraction of d (%)

SIM. PD [43] dev.

SimNi�35Mo
v15

15 2.90 37.4 39.4 5.1

SimNi�35Mo
v25

25 2.40 40.9 39.8 2.8

SimNi�35Mo
v30

30 2.20 42.0 40.0 5.0

Study of NiAl–10Mo Growth rate vgrowth in lm
s

Spacing kext: in lm Phase fraction of Mo-

rich fiber (%)

SIM. EXP. [46] dev.

SimNiAl�10Mo
v15

15 1.69 14.74 14.7 0.3

SimNiAl�10Mo
v25

25 1.36 14.7 14.8 0.7

SimNiAl�10Mo
v30

30 1.19 14.0 14.9 6.0

11944 J Mater Sci (2021) 56:11932–11952



phase fractions from the simulations are compared

with the theoretically calculated phase fractions from

the phase diagram of Yaqoob et al. [43]. The theo-

retical values are calculated by the lever rule.

Depending on the used simulation domains, the

phase fractions within one study, with a constant

growth velocity, differ from each other by less than

2%. In Table 4, the phase fractions of the simulation

with the smallest undercoolings thus are chosen for

each study, respectively. The spacings kext:, at which

these minima occur in the undercooling-spacing

curves, are additionally labeled in Table 4.

For all studies, it can be seen that the phase frac-

tions in the simulations are smaller, when compared

to their theoretical or experimental reference. For the

comparison of the binary system Ni–35Mo, a decrease

of the phase-fraction deviations is found with

increasing growth velocities. For the system NiAl–

10Mo, a contrary trend is observed. While for NiAl–

10Mo, a good accordance is found between the sim-

ulated and the experimentally observed phase frac-

tions, larger deviations are observed for the

comparison between the simulated and the theoreti-

cal phase fractions of Ni–35Mo. For the binary system,

the maximum deviation is found in the simulations

SimNi�35Mo
v15 , with 5.1%, and for the ternary system, it is

found in the simulations SimNiAl�10Mo
v30 , with 6.0%.

As can be observed, the spacing-undercooling

relationships of the simulations are found to be in

good accordance with the analytically expected

results, indicating that the generated Gibbs energy

functions are applicable for the phase-field simula-

tion of the directional solidification in both systems.

Discussion and conclusion

For the generation of Gibbs energy formulations,

which are to be used in grand-potential-based phase-

field models, an efficient and semi-automated

framework is introduced in this work. Thus, the focus

of this paper is rather on the generation of the Gibbs

energy formulations and on the challenges occurring

during this process than on the microstructure evo-

lution of the subsequently performed phase-field

simulations. First, using a least squares method and

second-order polynomials, a general approach to

modeling binary and ternary systems is presented.

The usage of a fitting approach, instead of an

approximation, solely based on the thermodynamic

values at the equilibrium conditions, leads to a

stable and computationally efficient formulation of

the Gibbs energies. Furthermore, as the functions are

valid for a certain range around the equilibrium

conditions, they can be calculated prior to the simu-

lation studies, and no recalculations of the Gibbs

energy functions are required during the simulations.

This approach is known in the phase-field commu-

nity, but most publications lack a detailed description

of the process currently being used. In addition, these

general approaches often require a subsequent

adjustment and optimization, in order to meet the

conditions of the observed systems. For this purpose,

the framework also includes an optional extension for

material systems, in which the results of the common

approach turn out to be unsatisfactory. Within this

extension, the generated functions are modified to

satisfy the equilibrium conditions in the observed

material systems. By taking the equilibrium condi-

tions into account, the deviations resulting from the

fitting process of the general approach are reduced,

which leads to the generation of stable and robust

Gibbs energy formulations. In order to adjust the

Gibbs energy functions during this extended model-

ing process, the description of the criteria allows the

optimization and fitting procedure to be transferred

to other approximation methods.

By investigating the approximation process for the

two different material systems Ni–35Mo and NiAl–

10Mo, it is shown that the framework is suitable for

the reproduction of the commonly known approach,

which generates computationally efficient Gibbs

energy functions from thermodynamic CALPHAD

databases. For the ternary system NiAl–10Mo, the

generated Gibbs energy functions from the common

approach lead to unphysical results, whereas the

generated Gibbs energy formulations from the

extended approach are in good agreement with the

thermodynamic information from the CALPHAD data-

base. For the binary system Ni–35Mo, the common

approach already produces satisfying results; there-

fore, the extended approach has not been applied.

For both material systems, the subsequently per-

formed phase-field simulations of the directional

solidification process demonstrate the suitability of

the generated formulations. Despite the fact that the

approximated Gibbs energy formulations of Ni–35Mo

are in good agreement with the thermodynamic data,

the phase fractions in the simulations differ from the
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expected values. In contrast, it can be said that the

system NiAl–10Mo generally shows smaller devia-

tions in the phase fractions between the simulations

and the experiments. In the simulations of the system

Ni–35Mo, the larger deviations of the phase fractions

indicate that the calculated equilibria between the

Gibbs energy functions differ from the expected

equilibrium states of the phase diagram. While the

expected phase fractions from the phase diagram of

Ni–35Mo and from the experiments of NiAl–10Mo

only show a slight variation of the phase fractions,

due to the different growth velocities, the phase

fraction values of the simulations from Ni–35Mo dif-

fer by 4.6%. This can be attributed to the considered

equilibrium conditions, occurring during the model-

ing. During the modeling of Ni–35Mo, only the

equilibrium conditions of the middle temperature

T ¼ 1585K have been incorporated. For the simula-

tion SimNi�35Mo
v25 , with an undercooling temperature of

T ’ 1584K, the smallest deviation from the expected

phase fractions is measured with an amount of

� 2:8%. For the other two simulation studies

(SimNi�35Mo
v15 and SimNi�35Mo

v30 ), the undercooling tem-

perature differs significantly from the considered

middle temperature. Due to the data used for the

modeling, the equilibrium conditions for these tem-

peratures are not well represented by the generated

functions, which results in larger deviations of the

phase fractions. By using the extended approxima-

tion approach for the modeling of NiAl–10Mo, the

equilibrium conditions of other undercooling tem-

peratures are also taken into account, when generat-

ing the Gibbs energy functions. This leads to a

maximum difference of 0.7 %, between the values of

the phase fractions from the simulations of NiAl–

10Mo, and also to a better agreement with the mea-

sured values from the experiments.

On the one hand, this shows the importance of the

phase-field simulations, when validating the

approximation process, and on the other hand, this

also shows the benefits of the presented extension.

However, the deviations of the phase fractions of Ni–

35Mo are still in an acceptable range. Hence, the

generated Gibbs energy functions can be used for

further investigations, performed within phase-field

simulations.

Despite the fact that the framework is limited to

binary and ternary material systems without stoi-

chiometric phases, the validation results show that

the presented approaches can be used to generate

computationally efficient and accurate Gibbs energy

formulations, which then can be applied in direc-

tional solidification simulations, using the phase-field

method. By using these approximated functions, the

thermodynamic conditions, occurring during phase-

field simulations, can be reproduced in a certain

range around their equilibrium states. Thus, the

simulation with different off-eutectic melt composi-

tions or with other disturbances of the equilibrium

states are viable. Furthermore, by using these

approximated functions, the runtime of the simula-

tions can be reduced significantly, as shown in

‘‘Appendix.’’
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Appendix 1: Computational effort

In order to determine the computational effort for a

free energy calculation, Eq. (5) from section 2 needs

to be expanded. For the sake of simplicity, it is

assumed that only a single sublattice is present. If

there were multiple sublattices, the estimated com-

putational effort for the CALPHAD method would

rise substantially. The excess Gibbs energy of mixing

is expanded with a Redlich–Kister polynomial [51].

This yields the following expression for the Gibbs

free energy of a single phase:

g ¼
XK

i¼1

xig
0
i þ RT

XK

i¼1

xi lnðxiÞ

þ
XK

i¼1

XK

j[ i

xixj
X

k

Lki;jðxi � xjÞk:
ð8Þ

The grand potential formulation of the phase-field

method does not inherently require the Gibbs energy

of the entire system, but only the Gibbs energy of

each order parameter, corresponding to a phase. This

is due to the assumption of a local equilibrium

between the present phases. Hence, the analysis can

be restricted to the Gibbs energy of a single phase.

The mole fractions of the K individual components

are given by the variables xi.

To evaluate a Gibbs energy value at a given tem-

perature and mole fraction, the calculation effort P

can be written as:

P ¼
XN

i¼1

Pini; ð9Þ

with Pi as the effort of one specific operation of N

operations and ni as the number of times this oper-

ation occurs in the Gibbs energy formulation. Equa-

tion (8) contains additions, subtractions,

multiplications and logarithms, which form the set of

considered operations with their efforts Pi. Counting

these operations for a regular solution (k ¼ 0) yields

2K þ ðK2 þ KÞ=2þ 1 multiplications, 2K þ ðK2 þ
KÞ=2þ 2 additions and K logarithms. Subregular

solutions (k ¼ 1) additionally require ðK2 þ KÞ mul-

tiplications, ðK2 þ KÞ=2 additions and ðK2 þ KÞ=2
subtractions. The term g0i is a temperature-dependent

expression, containing polynomial and logarithmic

terms. Its formulation is highly dependent on the

considered phase. As this paper studies the alloy

systems Ni-Al-Mo and Ni–35Mo, the contribution of

Mo to the Mo-rich phase with a BCC crystal structure,

taken from [45], is used as an example for a g0:

g0Mo ¼ þ7453:698þ 132:5497 � T
� 23:56414 � T � lnðTÞ � 0:003443396 � T2

þ 5:66283E� 07 � T3 þ 65812 � T�1

� 1:30927E� 10 � T4:

ð10Þ

In Eq. (10), six additions, seven multiplications, one

division, three powers and one logarithm have to be

calculated. The corresponding phase description

from [43] includes the same number of operations. As

the powers are known in advance, they can be

translated into multiplications, instead of using the

more expensive power function. Hence, the three

powers can be replaced by seven additional multi-

plications. Each of the K components has a contri-

bution to the mechanical mixing energy, and thus, its

evaluation requires 6K additions, 14Kmultiplications,

K divisions and K logarithms, assuming that the

calculation is similarly expensive in other

components.

Compared to this, a parabolic approach of the form

g ¼
XK

i¼1

XK

j[¼i

Ai;jðTÞxixj þ
XK

i¼1

BiðTÞxi þ CðTÞ ð11Þ

requires ðK þ 1Þ2 þ ðK þ 1Þ
� �

þ K multiplications

and ðK þ 1Þ2 þ ðK þ 1Þ
� �

=2þ K þ 2 additions. The

coefficients Ai;jðTÞ;BiðTÞ and C(T) are assumed to be

linear, as a compromise between accuracy and
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efficiency. Thus, their calculation involves ðK2 þ
KÞ=2þ K þ 1 additions and multiplications.

Determining the computational effort Pi requires

knowledge of the specific computer architecture. As

an estimate for the effort required for the calculation

time, we can use the reported latency as a specific

instruction, as this represents the time required for

doing the operation in series. Here, Agner Fog’s [52]

instruction table for the Haswell architecture is used

as a representation of a modern CPU. For additions

as well as subtractions, the Haswell architecture has a

latency of 3 cycles and 5 cycles for multiplications.

Division takes between 10 and 24 cycles. For a lower

limit, which is in favor of the CALPHAD approach, 10

cycles are used. The natural logarithm is calculated

indirectly and has a latency range of 58 to 630 cycles.

Again, the lowest number of cycles is used.

Based on these considerations, Fig. 8 shows the

number of cycles, required for the considered

approaches, as a function of the components in the

solution. For a ternary system, the parabolic

approximation takes about 10 times fewer cycles,

implying a possible speedup of 10. For the generation

of approximated Gibbs energy formulations, this

shows the benefit of the introduced framework. By

using parabolic approaches, the required computa-

tional effort of the presented phase-field simulations

could be reduced dramatically.

Appendix 2: Fitted Gibbs energy functions
and simulation parameters for Ni–35Mo

See Tables 5 and 6.

Figure 8 Number of cycles required for the CALPHAD approach

(regular and subregular solution models) as well as the parabolic

approximation, presented as a function of the components in the

solution.

Table 5 Results for the approximated Gibbs energy functions of the Ni–35Mo system

MoNi fcc Liquid

a0ðTÞ �5:3067T þ 63090:878 21:322T þ 29396:383 18:380T þ 20034:715

a1ðTÞ 24:556T � 77865:845 �10:939T � 4847:978 �14:559T þ 1168:302

a2ðTÞ �91:922T þ 62168:588 �83:419T þ 41297:132 �93:518T þ 58705:775

Max. Dev. btw. gcal and gapp 0:035% 0:032% 0:023%

Ave. Dev. btw. gcal and gapp 0:022% 0:013% 0:014%

geqcaljT¼1590K in J �90050:98 �92673:4 �91606:53

geqappjT¼1590K in J �90080:89 �92686:83 �91619:57

leqapp ¼
ogapp
ox jT¼1590K in J mol�1 13208.35 12446.03 12795.93

As an exemplary temperature below the melting point, the temperature at 1590 K is used to calculate and compare the amounts of the

Gibbs energies (g) and the chemical potentials (l) for different phases. app: approximated, cal: CALPHAD, eq: equilibrium
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Appendix 3: Fitted Gibbs energy functions
and simulation parameters for NiAl–10Mo

See Tables 7, 8 and 9.

Table 6 Summary of the dimensionless simulations and numerical parameters, as well as their amounts in physical units, for the

simulation of Ni–35Mo—F: fcc, D: d, L: liquid

Simulation parameter Simulation value Physical value Numerical parameter Simulation value Physical value

cDF 1:076 � 10�3 0:538 J m�2 [53] dx 1.0 0:05 lm

cFL 1:048 � 10�3 0:524 J m�2 [53] e 4.0 0:20 lm

cDL 1:104 � 10�3 0:552 J m�2 [53] dt 1.0 5:5 � 10�7 s

cDFL 15 � câb̂
rT 1:25 � 10�6 40 K mm�1 sDF,sFD 7.72 Calculated

Teut: 1.0 1593:83 K sFL,sLF 3.8 From

D 0.242 1:1 � 10�9 m2 s�1 [53] sDL,sDF 3.3 [23]

Table 7 Initially approximated Gibbs energy functions of the NiAl–10Mo system

Matrix Fiber Liquid

a0ðTÞ �369:357T þ 1165139:34 9734:081T � 15371378:8 �57:489T þ 281291:566

a1ðTÞ �7534:719T þ 16621024:7 623:056T þ 1570729:46 �18:487T þ 96784:103

a2ðTÞ 769:721T � 1002807:01 8906:432T � 11229403:9 �24:348T þ 179006:613

a3ðTÞ 391:801T � 1213214:43 �9715:107T þ 12721894:7 64:605T � 297000:385

a4ðTÞ �373:727T þ 534072:403 �1829:783T � 1984717:23 11:553T � 42453:014

a5ðTÞ �181:196T þ 300714:575 1134:614T þ 445115:066 �110:433T þ 91835:592

Max. Dev. btw. gcal and gapp 0:003% 0:01% 0:0002%

Ave. Dev. btw. gcal and gapp 0:00056% 0:0018% 0:000133%

geqcaljT¼1871K in J �159764:69 �110201:01 �154506:22

geqappjT¼1871K in J �159765:182 �110198:043 �154505:98

leqapp;0 ¼
ogapp
ox0

jT¼1871k in J mol�1 �10948:541913 �9321:194 �11004:706

leqapp;1 ¼
ogapp
ox1

jT¼1871k in J mol�1 55718.5782008 51125.910 49482.931

As an exemplary temperature below the melting point, the temperature at 1871 K is used to calculate and compare the amounts of the

Gibbs energies (g) and the chemical potentials (l) for different phases . app: approximated, cal: CALPHAD, eq: equilibrium
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