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Abstract

Word embedding models have great value in a wide variety of problems in Computer

Science, especially in Natural Language Processing. By focusing on the semantic contexts

of words, they allow to understand relationships between text segments in more accurate,

less biased ways. The motivation of this work is the fact that several aspects of word

embedding models, such as how those ’relationships’ should be interpreted and how

far di�erent embedding models and approaches are comparable, are still not su�ciently

clear. We group these aspects into three categories: algorithmic, theoretic and application

questions. In this work, we present a three-way analysis of word embedding models

based on these categories. These analyses are built on top of each other. Without �rst

understanding the algorithmic questions, we are not able to answer the theoretical ones.

Similarly, to answer the questions regarding word embedding model applications, we need

to understand their theoretical aspects better.

The �rst part of the three-way analysis investigates the training algorithm of embedding

models. Previous literature used word embedding models without taking into consideration

the fact that their similarity value distributions can be signi�cantly di�erent. Our �rst

contribution is to show that models trained with di�erent parameter settings can be

signi�cantly di�erent in the sizes of their similarity values, but at the same time, the shape

of their distribution is indeed fundamentally similar.

One big advantage of embedding models is that they can be trained on arbitrary text

corpora. While the quality of word embedding models trained on full-text corpora is

fairly well known, an assessment of models built on fragmented corpora is missing. To

�ll this void, in the second part of the algorithmic analysis, we describe experiments to

examine how model quality changes when the training corpus is not full-text, but n-grams.

The experiments quantify how much fragmentation (i.e., values of n) reduce the average

quality of the corresponding word embedding models, on common word similarity and

analogical reasoning test sets.

The second part of our analysis is regarding the similarity values of word embedding

models from a theoretical point of view. We investigate questions such as: What do

similarity values of those models actually mean? For example, if word A is more than

0.5-similar to word B, then are A and B always semantically similar?

We answer these and other equally important questions regarding similarity values. We

identify meaningful similarity thresholds, i.e., similarity values and similarity list indices

that separate relevant word pairs from irrelevant ones. Based on these thresholds, we
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Abstract

propose a similarity threshold aware evaluation method of word embedding models, one

that does not compare the word pairs which fall below the calculated threshold. This

ensures a more reliable comparison of word embedding models in the future.

Our �nal analysis addresses the applicability of word embedding models in down-stream

applications. Because of their understanding of words one of the most intuitive use case

for word embedding models is text classi�cation, i.e., to assign prede�ned categories to

text documents. Usually, the more labeled samples a text classi�er is presented with, the

better it will be able to predict categories of unknown samples. However, in most cases

the majority of data is unlabeled and labeling it is a costly and time consuming process.

In this work, we explore the possibility to improve the quality of text classi�cation despite

the scarcity of labeled data. We present a lexical substitution approach for preprocessing

that compensates the scarcity of labeled data. It is an orthogonal extension to virtually

any existing text classi�cation approach, to improve classi�cation accuracy. Our approach

replaces words unknown to the classi�er with known ones for statistical robustness,

based on the main contribution of this part: a novel semantic-distributional word distance

measure that includes both semantic information extracted from word embedding models

and distributional information extracted from the training data. This is the �rst time to

use the combination of these two information for text classi�cation.
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Zusammenfassung

Word Embedding Models sind für eine Vielzahl von Problemen in der Informatik von

großem Wert, insbesondere für die natürliche Sprachverarbeitung. Sie ermöglichen, indem

sie sich auf die semantischen Kontexte von Wörtern konzentrieren, Beziehungen zwischen

Textsegmenten genauer und mit weniger Verzerrung zu verstehen. Die Motivation dieser

Arbeit ist die Tatsache, dass einige Aspekte von Word Embedding Models, zum Beispiel wie

diese ’Beziehungen’ interpretiert werden sollten und wie weit verschiedene embedding

models vergleichbar sind, noch nicht klar genug erfasst worden sind. Wir gruppieren

diese Aspekte in drei Kategorien: in algorithmische Fragen, theoretische Fragen und

Anwendungsfragen. Auf diesen drei Kategorien basierend präsenieren wir in dieser Arbeit

eine Drei-Wege-Bewertung von Word Embedding Models.

Der erste Bewertungssatz untersucht den Trainingsalgorithmus von Word Embedding

Models. In der bisherigen Literatur wurden Word Embedding Models verwendet, ohne

die Tatsache zu berücksichtigen, dass ihre Ähnlichkeitswertverteilungen erheblich unter-

schiedlich sein können. Unser erster Beitrag besteht darin, zu zeigen, dass Modelle, die

mit unterschiedlichen Parametereinstellungen trainiert wurden, sich in der Größe ihrer

Ähnlichkeitswerte erheblich unterscheiden können, obwohl gleichzeitig die Form ihrer

Verteilung tatsächlich grundlegend ähnlich ist.

Ein großer Vorteil der Embedding Models besteht darin, dass sie auf beliebigen Textkorpora

trainiert werden können. Während die Qualität von Word Embedding Models, die auf

Volltextkorpora trainiert wurden, ziemlich bekannt ist, fehlt eine Bewertung von Model-

len, die auf fragmentierten Korpora basieren. Um diese Lücke zu schließen, beschreiben

wir im zweiten Teil des Abschnitts zur algorithmischen Bewertung Experimente, deren

Ziel es ist zu untersuchen, wie sich die Modellqualität dann ändert, wenn der Trainings-

korpus nicht Volltext, sondern n-Gramm ist. Die Experimente quanti�zieren, um wie

viel Fragmentierung (d. h. Werte von n) die durchschnittliche Qualität der entsprechen-

den Word Embedding Models auf der Basis gemeinsamer Wortähnlichkeit und analoger

Argumentationstestsätze verringert.

Der zweite Bewertungssatz betri�t die Ähnlichkeitswerte von Word Embedding Models

aus theoretischer Sicht. Wir untersuchen Fragen wie: Was bedeuten Ähnlichkeitswerte

dieser Modelle tatsächlich? Wenn beispielsweise Wort A Wort B mehr als 0,5 ähnlich ist,

sind A und B dann immer semantisch ähnlich?

Wir beantworten diese und andere ebenso wichtige Fragen zu Ähnlichkeitswerten. Wir

identi�zieren sinnvolle Ähnlichkeitsschwellen, d. h. Ähnlichkeitswerte und Ähnlichkeits-
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Zusammenfassung

listenindizes, die relevante Wortpaare von irrelevanten trennen. Basierend auf diesen

Schwellenwerten schlagen wir eine Bewertungsmethode für Word Embedding Models

vor, bei der die Wortpaare, die unter den berechneten Schwellenwert fallen, nicht vergli-

chen werden. Dies gewährleistet in Zukunft einen zuverlässigeren Vergleich von Word

Embedding Models.

Unsere abschließende Bewertung befasst sich mit der Anwendbarkeit von Word Em-

bedding Models in nachgeschalteten Anwendungen. Aufgrund ihres Verständnisses von

Wörtern ist die Textklassi�zierung, d. h. das Zuweisen vorde�nierter Kategorien zu Text-

dokumenten, einer der intuitivsten Anwendungsfälle für Word Embedding Models. Je

mehr beschriftete Stichproben einem Textklassi�zierer präsentiert werden, desto besser

können normalerweise Kategorien unbekannter Stichproben vorhergesagt werden. In den

meisten Fällen ist der Großteil der Daten jedoch unbeschriftet, und die Kennzeichnung

ein kostspieliger und zeitaufwändiger Prozess.

In dieser Arbeit untersuchen wir die Möglichkeit, die Qualität der Textklassi�zierung

trotz des Mangels an gekennzeichneten Daten zu verbessern. Wir präsentieren einen

lexikalischen Substitutionsansatz für die Vorverarbeitung, der die Knappheit markierter

Daten kompensiert. Es ist eine orthogonale Erweiterung für praktisch jeden vorhande-

nen Textklassi�zierungsansatz, um die Klassi�zierungsgenauigkeit zu verbessern. Unser

Ansatz ersetzt Wörter, die dem Klassi�zierer unbekannt sind, durch bekannte Wörter

für statistische Robustheit, basierend auf dem Hauptbeitrag dieses Teils: einem neuar-

tigen semantisch verteilten Wortabstandsmaß, das sowohl semantische Informationen

aus Word Embedding Models als auch Verteilungsinformationen aus den Trainingsdaten

enthält . Dies ist das erste Mal, dass die Kombination dieser beiden Informationen für die

Textklassi�zierung verwendet wird.
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1. Introduction

1.1. Motivation

Natural Language Processing (NLP) is a highly important �eld both in Computer Science

(CS) and Arti�cial Intelligence (AI). Subtopics of NLP ranges from parsing natural language

inputs, such as speech or optical characters, through understanding language semantics

and syntax, to down-stream applications, such as machine translation or automatic sum-

marization. NLP solutions have found their way into our everyday lives with applications,

such as Google’s search engine or translation service, or recently even more visibly with

gadgets, such as Amazon’s Alexa. Also, more important than ever, state-of-the-art applica-

tions, which track global pandemics or natural disasters are mostly NLP-based [36, 95].

These applications leverage the vast amount of textual data generated by billions of users

on various platforms to predict, for example the spread of the Ebola virus or the epicenter

of locust invasions, based on social media posts or Google search patterns.

Similarly, as images and acoustic waves are modeled in computer systems, we need to

�nd a way to represent text data in order to process it automatically. For example, the

sentence "The cat sat on the mat." cannot be understood directly by the computer. However,

there are several methods to make it processable. The easiest way to represent a text

document, i.e., sentence, paragraph or larger text segments, is through a sparse discrete

vector (icat , 1), (ithe , 2), ..., where iv denotes the index of word v in the vocabulary, and

the number next to it is its frequency. This is called one-hot encoding. However, there

are several disadvantages in the case of this simple model. For instance, it generates

high dimensional vectors whose length depends on the size of the vocabulary, hence it

changes when using di�erent training data. The dimensionality is also usually very large.

Because of the complexity of natural language, even for very small datasets the size of the

vocabulary may be several thousand words. Nevertheless, one-hot encoding can be used

to compare documents by similarity based on their word frequency distributions and it is

a good baseline method to compare more advanced models to [1, 12, 21, 24].

For the computer to understand natural language the next step in granularity is to grasp

the semantics not only of documents but distinct words. This means, we want to capture

and quantitatively measure the similarity of words. Based on the idea of one-hot encoding

of documents we intend to represent the words in a vector space. This is called the problem

of word embedding, which concept was �rst introduced by Hinton in 1986 [44]. Word

embedding models, sometimes named as word representation, is a collective name for a
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1. Introduction

set of language models and feature selection methods. Its main goal is to map ("embed")

textual words or phrases into a �xed-size low-dimensional continuous space.

The main objective of such word embeddings is to encode the semantic and syntactic

information of words, where semantic information mainly correlates with the meaning of

words, while syntactic information refers to their structural roles in language [55, 108]. If

one is able to quantify their similarity, there will be a good understanding of the actual

meaning of a word, by knowing which words are similar to it.

In word embedding models, each word in the corpus is mapped to a d-dimensional vector.

Using the example above, "cat" could be denoted as [0.17, 0.72, 0.35, ...] ∈ Rd and "mat"

can be expressed as [0.4, 0.05, 0.93, ...] ∈ Rd , where d is a pre-selected hyper-parameter.

These vectors feature the similarity property, and for some models other properties as

well, explained in the following. Similarity means that representations of similar words

are close to each other in the vector space, based on a distance function, such as the cosine

distance. For example, close to "apple" there are words related to the company, but also

words related to the fruit. This attribute of an embedding model makes it useful in more

complex tasks as well, since many word meaning phenomena, such as synonymy, priming

or categorization, can be described in terms of semantic similarity.

Modern embedding models can do more than just predict semantic similarity. For example,

some models feature analogy properties. This can be described by the following example:

"man" is to "woman" is like "king" is to "queen". In the embedding space of these models,

subtracting the vector representing "man" from the one representing "king" and adding

the one representing "woman" results in a vector being close to the vector of "queen" [55,

85, 83, 51].

The question is how to obtain these embedding vectors? It is not straightforward as in the

one-hot encoding case since there is nothing to count. The solution is based on one of the

fundamental assumptions of NLP, namely the distributional hypothesis. It states that two

words that occur in similar contexts in large corpora tend to have similar meanings [40].

In other words, formulated by linguist J.R. Firth in 1957 [31]:

"You shall know a word by the company it keeps."

Models based on this assumption are named distributional models. Distributional models

represent a word through the contexts in which it has been observed. Adopting the

taxonomy of Baroni et al. [8], one can discern between count-based [25, 13, 93] and

prediction-based distributional models [10, 23, 22, 49, 84, 85]. All of these models have

in common that two words are semantically similar if the vectors representing them are

close according to some distance function.

The idea of count-based models is to count how many times a word appears in a particular

context. Count based models represent a word as a point in high-dimensional space, where

each dimension stands for a word, and a word’s coordinates represent its context counts,
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i.e., how many times the word appeared in another word’s context. We can see that this

basic count-based model is very similar to the one-hot encoding of documents. It has the

same fundamental problems presented earlier as well, i.e., the number of dimensions is

not �xed and grows very fast. This makes using these vectors without further processing

for word similarity virtually impossible in practice. Nevertheless, these frequency count

vectors are the base of count-based models. Count-based models use various processing

methods, such as matrix factorization [93], to simplify the count matrix and make the word

representations �t into a low dimensional vector space with pre-selected dimensionality.

Prediction-based models have recently received renewed popularity after Mikolov et al.

presented new neural network-based models [84, 85]. Models from this family compute

word vectors that are optimized in a prediction task, such as predicting the next word based

on previous words or predicting a word given its context. In general, most prediction-based

models try to optimize a loss function that aims at minimizing the discrepancy between

prediction values and target values. In comparison to count-based models, which have to

keep a large dictionary of the frequencies in memory, the training of such models scales

very well even to huge corpora, while learning high-quality word vector representations.

It is still an open question whether embedding models in general are superior to traditional

count-based models. Various researchers suggest that they are indeed better in various

similarity and analogy detection tasks [8, 85]. But others have argued that this superiority

is only a result of better parameter selection [68, 65, 42, 101]. Moreover, it has been shown

that the most famous novel models in each category (the GloVe [93] and Word2Vec [84]

models, respectively) are fundamentally very similar in their training algorithm, in contrast

to their intuitive di�erences [67].

Despite the limited linguistic information distributional models contain, word embedding

models have proven to be successful not only in elementary NLP tasks, such as similarity

detection [84], word sense disambiguation [50], sentiment analysis [114], part-of-speech

tagging [23], named entity recognition [92] or dependency parsing [59], but also complex

down-stream NLP tasks can be implemented based on these real-valued vectors, such

as social media sentiment analysis [120], irony detection [99], out-of-vocabulary word

classi�cation [75], or semantic shift detection [38, 76]and machine translation [27, 112, 72].

Apart from the linguistic applications, embedding models have been used successfully

in various other �elds of computer science, such as bioinformatics, most notably ge-

nomics [3, 37], image annotation [58], recommendation systems [41], or automated ontol-

ogy enrichment [111].

Although, word embedding models have become instrumental tools in computer science,

especially in NLP, several aspects of them are still not su�ciently clear. The ultimate

motivation of this work is to understand these aspects better. We group these aspects in

three categories: algorithmic, theoretic and application questions. Based on these groups

in this work we present a three-way analysis of word embedding models. These analyses

are built on top of each other, i.e., the algorithmic part serves as a foundation for the
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theoretical analysis, while in the application part we use the results from both previous

parts. In the following, we present each group separately.

Algorithmic analysis. The �rst part of our analysis is regarding the training algorithms of

embedding models. It is known how these algorithms work in theory, but to fully under-

stand them we have to evaluate their �nal product, the models themselves. For example, it

is currently not known, and we need to evaluate the created models to understand, how

the similarity values of the models change when trained with di�erent parameter settings

or using di�erent training corpora.

There are existing works that evaluate how the quality of the models change on baseline

NLP tasks using di�erent training parameter settings [84, 85, 8]. However, not only they do

not consider the size of the similarity values, which we deem highly important, but these

evaluations are missing something else as well. Although it is one of the most important

prerequisites when creating high-quality embedding models, the e�ect that the quality of

the training corpora has on the quality of the models is not su�ciently clear.

One big advantage of embedding models is that they can be trained on arbitrary text

corpora and hence they can be very useful in a wide range of specialized �elds. Diverse

corpora, such as Wikipedia, Google Books, or the ACM Digital Library o�er great potential

for linguistic analysis. For instance, one may be able to discover how language evolves

over time based on the Google Books historical corpora, or reveal how language is used in

di�erent �elds of sciences based on the ACM Digital Library. Such analyses ultimately

strive for understanding our society by means of comprehensive empirical results.

One of the above mentioned corpus that many approaches use is the Google Books n-gram

corpus [76, 87, 57, 76, 61, 60, 39]. This is mainly because of its size and its historic contexts.

It is much larger than any other corpus openly available. It is also the largest currently

available corpus with historic data and it is available in several languages. It incorporates

over 5 million books from the previous centuries split into n-grams and their occurrence

frequencies over time [81]. n-grams are text segments separated into pieces consisting

of n words each. For example, "you are" is a 2-gram, "you are beautiful" is a 3-gram. The

fragmentation of a corpus is the size of its n-grams. To illustrate, a corpus of 2-grams is

highly fragmented, but for instance, one of 5-grams is moderately fragmented.

There are several advantages of storing textual data in n-grams. First of all, n-gram

counts over time can be published even if the underlying full-text is subjected to copyright

protection. Next, this format reduces the data volume signi�cantly. The Google n-gram

data set for each language is about 1 Terabyte, already an impressive size. However, the

underlying full-text is much larger. This makes certain analyses impossible on full-text

corpora. Therefore, it is important to know how good models built on n-gram corpora are.

While the quality of word embedding models trained on full-text corpora is fairly well-

known [65, 8], an assessment of models built on fragmented corpora is missing [42]. The

question that we evaluate in this work is, whether using n-gram corpora is suitable for
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word embedding model training or not. We evaluate, whether n-gram representations are

su�cient to extract word semantics, and which quality di�erences compared to full-text

corpora one should expect.

Theoretical analysis. The second part of our analysis is regarding the most fundamental

property of word embedding models, namely their similarity values. We have already seen

that word embedding models are very good at various down-stream tasks, which make

use of these values. However, these papers are only using the similarity attribute of the

models, while the following questions remain open: What do similarity values from those

models actually mean? For instance, are low values of similarity comparable to each other?

To illustrate, if Word A is 0.2-similar to Word B and 0.1-similar to Word C on a [-1, 1] scale,

should we say that A is more similar to B than to C, or does it not make any di�erence

at these low levels of similarity? Are there ’natural’ thresholds for similarity, such that

values above (beneath) it represents a de�nite similarity (dissimilarity) of two words? For

example, if A is more than 0.5-similar to B, then are A and B always semantically similar?

How about the same questions with similarity lists, i.e., lists of words most similar to

certain words, sorted by similarity? For instance, can we say that the 100 words most

similar to an arbitrary word are always similar to this one, or words not in the top 500 are

always dissimilar? When exactly is it meaningful to stick to the natural idea of taking the

top N most similar words for a certain word and deem them similar?

In order to study and answer all these questions, we have to evaluate how di�erent

parameter settings (e.g.: the size of the corpus they are trained on, vocabulary size)

in�uence the similarity values of the models. This is exactly what we do in the algorithmic

analysis section, and we use the results here for better theoretical understanding of

embedding models.

These questions are not just academic in nature; any study relying on comparisons of

similarity values might lack validity if these questions remain open. As we will see, giving

an answer to these questions have implications in the qualitative evaluation of word

embedding models as well.

Application analysis. After understanding the algorithmic and theoretical questions re-

garding word embedding models better, we want to use them for down-stream applications.

As we have previously listed, there are many applications in and even outside of the NLP

domain where word embedding models are useful. Since they interpret words in one of

the most straightforward and intuitive way, the utilization of word embedding models

occupy a highly relevant �eld of NLP, namely text classi�cation.

Text classi�cation, i.e., to assign prede�ned categories to text documents [77] is an e�ective

way to organize enormous number of documents [121, 4, 119, 66, 102]. It has other

important applications, like spam �ltering [80], sentiment analysis [91, 90], word sense

disambiguation [110] or health prediction [97].
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Nowadays text classi�cation is mainly done by machine learning algorithms [102]. In

general, machine learning-based classi�ers build a model based on the pre-classi�ed

(labeled) documents they are presented with. Based on this model they are able to predict

the categories of unknown samples. Usually, the more training data the classi�er learns

from, the better it will be in predicting the categories of previously unseen documents.

This means that the success of text classi�cation applications come not only from the

goodness of the underlying model, but from the quantity and quality of the training data as

well. However, since labeling is costly, in the majority of real world scenarios the number

of pre-classi�ed documents are relatively small. One way to overcome the scarcity of

labeled data is to improve its quality.

It is the purpose of the application analysis part of this work to explore the possibility

of improving the accuracy of text classi�cation despite the scarcity of labeled data, by

increasing the quality of the training data. We present a text preprocessing approach,

which is based on how humans categorize text without �rst reading thousands of example

documents, by taking knowledge on semantic relationships between words extracted from

word embedding models into account. We show that our proposed preprocessing approach

compensates the scarcity of labeled data by increasing its quality, and ultimately increases

text classi�cation accuracy.

8
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1.2. Challenges

The complexity and variability of human language makes natural language processing

a non-trivial task. As we have mentioned earlier even for a small dataset the one-hot

encoding reaches thousands of dimensions. This phenomenon is one of the biggest

fundamental challenges in NLP.

For example, assuming a language has 10,000 vocabulary terms and a sentence would have

10 words, then the solution space will be as large as 10, 00010, a number which is too big

to be processed by any computer. This is an intrinsic di�culty of language modeling: a

word sequence that is used to test the model is likely to be di�erent from all the sequences

in the training set [10]. One might argue that with grammar tricks, such as stemming,

lemmatization or using n-gram data, the solution space can be reduced signi�cantly. It is

true, that these ideas help, but even with the aid of them, we will run into combinatorial

explosion every now and then when processing language. Natural language is just so

dynamic and �exible that the grammars or n-grams bring too many exceptions and �nally

we have to make a trade-o� between accuracy and scalability.

So far, we have talked about dimensionality problems, but there are several other language

speci�c challenges, such as the grammar of di�erent languages or synonyms. The �rst

problem calls for algorithms tweaked for every speci�c language and using di�erent

corpora for di�erent languages in order to build good models. The second issue has

become a whole research sub-topic in NLP called word sense disambiguation. This means,

that due to the subjectivity of languages, the meaning of words varies in di�erent contexts.

As we have already mentioned, it is also not straightforward to �nd good training corpora

for NLP models. Not only it should be grammatically correct, without containing many

misspellings or missing parts, but it needs to be large as well due to complexity issues.

To overcome all these di�culties of handling such complex training data as natural lan-

guage modern NLP systems, such as word embedding models, usually use neural networks

for training. With all the obvious bene�ts, using neural networks bring along its own set

of fundamental challenges. First of all, although they work very well in practice, neural

networks are hard to profoundly understand. This means, since they usually contain

millions of parameters, it is hard to look inside of them and see what really happens. They

are more like a black box or oracle that produce good results, but we do not know how.

Second, to train neural networks, it is very important to have su�ciently large training

data, because of the huge number of trainable parameters in them. If this is not the case

neural networks are very prone to over�tting the training data. This may be an issue for

infrequent words even when the training corpus is large enough. Third, neural networks

are hard to intuitively parameterize, meaning to set how deep it should be, i.e., how many

many layers are optimal, and what kind of layer each one should be. Finally, training

neural networks requires strong hardware, ideally GPU, which is expensive.
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Apart from the general challenges of NLP and neural network approaches, there are

speci�c challenges regarding our analysis objectives. We group them into algorithmic,

theoretical and application challenges, explained in the following.

Algorithmic challenges. When it comes to algorithmic analysis an obvious challenge is

the huge runtime necessary to build the word embedding models. It took more than three

months on a modern machine to create the 424 models, which we used to evaluate the

e�ects of the di�erent parameters and corpora.

The evaluation of the similarity value distributions of models trained with di�erent param-

eter settings is pretty straightforward, however, when it comes to qualitatively evaluating

the models for the n-gram corpus experiments it is challenging for various reasons.

First, drawing general conclusions on the quality of embedding models only based on

the performance of speci�c approaches, i.e., examining the extrinsic suitability of mod-

els, is error-prone [34, 101]. Consequently, to come to general conclusions one needs to

investigate general properties of the embedding models itself, i.e., examine their intrinsic

suitability. Properties of this kind are semantic similarity and analogy. For both properties,

one can use well-known test sets that serve as comprehensive baselines, such as Word-

Sim353 [30] or MEN [16] test sets for similarity and MSR [84] or Google [85] test sets for

analogy.

Second, there are various parameters that in�uence how the model is trained. Using n-

grams as training corpus leads the way to two new parameters, fragmentation, as discussed

earlier, and minimum count, i.e., the minimum occurrence count of an n-gram in order

to be considered when building the model. The latter is often used to �lter error-prone

n-grams from a corpus, e.g., spelling errors. While the e�ect of the other parameters on the

models is known [65, 8], the e�ect of these new parameters is not. But this is important for

scientists using the n-gram corpora, as more and more word embedding models are trained

on such data. However, as word embedding models mostly rely on neural networks, it is

hard to explain the e�ect of these parameters based on the training algorithms themselves,

as we have explained earlier. We have to de�ne meaningful experiments to quantify and

compare the e�ects.

Third, the full-text, such as the Google Books corpus, is not openly available as reference.

Hence, we need to examine how to compare results from other corpora, where the full-text

is available, referring e.g., to well-known baselines as the Wikipedia corpus.

Theoretic challenges. The main question of our theoretic analysis is what the similarity

values actually mean in word embedding models? In this section we take a closer look at

the challenges of evaluating this question.

We have presented a list of questions regarding similarity values in the respective part of

the motivation. These questions are easy to formulate, but much harder to systematically

evaluate. Creating a pipeline for the evaluation is the main issue to handle. We have to
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answer questions, such as: How to create good baseline test sets, how do they measure

similarity, and how to evaluate a model on them?

To show the di�culty of how to create such test sets, think of the following linguistic

challenge pointed out by Hill et al. [43] in this context: What is the de�nition of similarity?

Are cup and co�ee similar words or only associated, i.e., dissimilar? In general, does

relatedness or associatedness imply similarity or not? They argue that word pairs that are

only associated should only have moderately high similarity scores. This is in opposition

to test sets such as WordSim353 or MEN where this is not the case, i.e., associated pairs

have very high scores. Batchkarov et al. [9] also address the problem of creating good

baseline test sets. They show that it is challenging even for human annotators to assign

similarity scores to certain word pairs. For example, they show that the similarity scores

for the tiger-cat pair range from 5 to 9 on a scale of ten in the WordSim353 test set. They

also provide example word pairs where the similarity scores di�er signi�cantly when the

pairs are contained in di�erent test sets. They argue that this is the result of the di�erent

notions of similarity these test sets use.

Next, Avraham et al. [5] identi�ed problems regarding the evaluation of the models.

They argue that the use of the same rating scale for di�erent types of relations and for

unassociated pairs of words makes the evaluation biased. For example, they say that it is

meaningless to compare the similarity value of cat-pet to winter-season, because they are

unassociated, and models that rank the wrong word pair higher should not be punished.

If cat-pet has a score of 0.7, and winter-season has one of 0.8 in a similarity test set, then

an evaluation should not punish a model that ranks cat-pet higher. They also �nd it

problematic how the conventional evaluation method measures the quality of a model [5].

It calculates the Spearman correlation of the ranking by the annotator and the model

ranking, without considering the similarity values further. To illustrate, such an evaluation

penalizes a model that misranks two low-similarity, unassociated pairs (e.g.: cat-door,
smart-tree) just as much as one that misranks two objectively distinguishable pairs (e.g.:

singer-performer, singer-person).

Having said this, the concept of similarity remains ambiguous in word embedding models,

and understanding similarity values remains di�cult as well, a�ecting several NLP tasks,

especially when it comes to evaluate embedding models on these tasks.

Application challenges. As we have already mentioned, the lack of training data in NLP

is generally considered a big problem. This is especially true when working on text

classi�cation problems. Classi�ers trained with small data samples lack robust statistical

information and tend to over�t the training data. Also, unknown documents very likely

contain words not covered by the classi�cation model, i.e., out-of-vocabulary (OOV) words.

Generating labeled training data for machine learning solutions in general are often signif-

icant and rarely discussed. E.g., the recent AI breakthroughs such as autonomous driving

are based on enormous human tagging e�ort [15]. In the �eld of text classi�cation, aca-

demic research focuses on improving the classi�cation accuracy on annotated benchmark
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datasets for comparability reasons. But, in practice, the generation of such a data set and

the necessary size are important cost factors. Hence, the costs of generating large bodies of

labeled data for all potentially relevant classes are a severe issue in many text classi�cation

use cases.

Next, the semantic relationships of word embedding models need to be considered with

care in text classi�cation. Namely, not only words with a similar meaning are semantically

related, but also antonyms: Words like ’good’ and ’bad’, which obviously are not inter-

changeable, tend to be very similar in word embedding models. Thus, approaches such

as [75] that simply replace OOV words with the most similar labeled one, have little or

even negative e�ect on classi�cation accuracy.
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1.3. Contribution

Now, we list the contributions of this work. Again, it is grouped in algorithmic, theoretical

and application contributions.

AlgorithmicContribution. Our �rst contribution is that we evaluate how di�erent parame-

ter settings (for example, the size of the corpus they are trained on) in�uence the similarity

values of word embedding models. We do so by systematically training various models

with di�erent settings and comparing the similarity-value distributions. In addition, we

consider two other embedding model types that are not based on words, but rather on

syllables and sentences respectively, to generalize our �ndings. We show that, except

for a few marginal cases, all distributions have a very similar bell shape. We prove with

statistical tests that most of the normalized distributions are almost identical even with the

most extreme parameter settings, such as very large dictionaries or small dimensionality.

These evaluations show how parameters a�ect the similarity values, but not how they

in�uence the quality of the models. Our next contribution is that we describe experiments

to examine how model quality changes when the training corpus is not full-text, but

n-grams. The experiments quantify how much fragmentation and di�erent minimum

count settings changes the average quality of the corresponding word embedding models,

on common word similarity and analogical reasoning test sets. One can repeat these

experiments using any corpus we used in this work (full-text or n-gram) or extend the

experiments with any arbitrary training corpus or test set and utilize our results for

comparison.

To show the usefulness and signi�cance of the experiments and to give general recom-

mendations on which n-gram corpus to use as well as creating a baseline for comparison,

we conduct the experiments on two large full-text corpora.

To make our results more intuitive we answer the following explicit research questions

during our analysis.

1. What is the smallest number n for which an n-gram corpus is good training data for

word embedding models?

2. How sensitive is the quality of the models to the fragmentation and the minimum

count parameter?

3. What is the actual reason for any quality loss of models trained with high fragmen-

tation or a high minimum count parameter?

Our results for the baseline test sets indicate that minimum count values exceeding a corpus-

size-dependent threshold drastically reduce the quality of the models. Fragmentation in

turn brings down the quality only if the fragments are very small. Based on this, one
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can conclude that n-gram corpora such as Google Books are valid training data for word

embedding models.

Theoretical Contribution. Our next set of contribution is an examination on what simi-

larity values in embedding models mean. One intention behind these experiments is to

con�rm that the meaning of similarity values of two terms is not su�ciently clear.

Our core contribution is the discovery that meaningful similarity threshold values exist, and

we show that they can be found. We do so by calculating similarity-value and similarity-list

aggregates based on WordNet [33] similarity as the baseline and evaluate the resulting

similarity distributions of the models with statistical tests. It turns out that these thresholds

are not general and should be calculated for every individual model using the method we

present in this work. At this point, our analysis connects with the parameter evaluation

of the models mentioned in the algorithmic analysis part: The evaluation shows that

although altering the parameters changes the similarity value distributions, it does not

change our method, since all distributions are fundamentally similar.

Based on these results, our next contribution is that we propose a similarity threshold

aware evaluation method of word embedding models on similarity tasks, which does

not compare the word pairs during evaluation that fall below the calculated threshold.

Using well-known benchmark test sets, we arrive at two insights. First, there are pairs

in these sets that fall below the threshold, i.e., that should not be part of the evaluation.

Second, excluding these pairs from the benchmark does change the benchmark results to

a noticeable extent. This ensures a more reliable comparison. This is an important step

regarding the design of future word embedding models as well as for the improvement of

existing evaluation methods.

Application Contribution. Our last set of contributions is regarding applications of word

embedding models.

We present a lexical substitution approach for preprocessing training data, in order to

compensate the scarcity of labeled documents. Our approach mimics how human anno-

tators preprocess texts. Since it is a preprocessing method, it is generally applicable in

combination with any text classi�cation algorithm. It replaces words unknown to the

classi�er with known ones and substitutes semantically similar words for statistical ro-

bustness, based on the main contribution of this part: A novel semantic-distributional word
distance measure. This is the �rst time when both semantic and distributional information

is used in term substitution.

Our results show that even if there is plenty of labeled data for learning, classi�cation

accuracy increases using the preprocessed training data to train the classi�ers. Neverthe-

less, the improvement in classi�cation accuracy with our method is most signi�cant when

labeled data is scarce.
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1.4. Structure

1.4. Structure

In the following parts of this work we present all the necessary prerequisites and our

three-way analysis of word embedding models. We detail the structure of the work in the

following.

In Chapter 2, we present the fundamentals and notation that we use throughout this

work. First, in Section 2.1 we introduce word embedding models in general. We present

their brief history, their variants, and most importantly the two most relevant word

embedding models for this work, namely the Word2Vec and the Glove models. Second, in

Section 2.2 we explain the fundamentals of text classi�cation. This includes the notation

in text classi�cation, the basics of the dimensionality reduction techniques we use for

our preprocessing method, and the introduction of the classi�ers that we use later on in

this work. Third, we introduce n-grams, and we explain how to train word embedding

models on n-gram data. Finally, we present all the datasets we use in this work, including

the training corpora that we use for training as well as the similarity, analogy and text

classi�cation test sets that we use for evaluation.

Next, in Chapters 3, 4 and 5 we present our three-way analysis of word embedding models.

These are algorithmic, theoretical and application analysis, respectively.

In the algorithmic analysis chapter in Section 3.1 we investigate how various parameters

of word embedding models in�uence their similarity values. We dedicate a subsection for

each parameter. Next, in Section 3.2 we investigate how training corpus fragmentation

a�ects the quality of the word embedding models. We show that n-gram corpora, such as

the Google Books, is a valid training data for word embedding models.

In the theoretical analysis chapter, �rst, in Section 4.1, we present experiments that let us

�nd similarity value thresholds in word embedding models. We show that these thresholds

exist, however they are not general, but model speci�c. Second, in Section 4.2, we propose

a similarity threshold aware evaluation method to quantify the quality of word embedding

models. We argue that our method gives a fairer score for the models than the baseline

evaluation method used in previous literature.

The �nal part of our three-way analysis is the application part in Chapter 5. In this

chapter we present our novel preprocessing method, which combines both semantic and

distributional information of words. We show that using our method helps increasing the

classi�cation accuracy in every tested text classi�cation test set.

Finally, we conclude our work in Chapter 6. We also give an overlook on future research

possibilities in this chapter.
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2. Fundamentals and Notation

In this section we establish a framework of terminology and notations that will be used in

later explanations and throughout the course of the entire work. First, we introduce the

main subject of this work: word embedding models. Then, we give a general introduction

to text classi�cation, which is the use case scenario we focus on in the application analysis

part. Finally, we introduce n-grams and the datasets we use throughout this work.

2.1. Word Embedding Models

Word embedding models represent words as vectors in a continuous low dimensional

vector space. A particular property of this approach is that the angle between two word

vectors is a measure of how similar the respective words are from a semantic point of view.

Moreover, it is possible to answer analogy questions with word embedding models as well.

In the following, we �rst de�ne word embedding models and their parameters in general.

We then introduce the two most relevant models which we rely on in this work, namely

the Word2vec and Glove models. Then, we discuss other types of embedding models and

the software framework we have used to create the models in this work.

2.1.1. Background onWord Embedding Models

Formally, a word embedding model is a function F which takes a corpus C as input,

such as a dump of the Wikipedia, generates a dictionary D based on the corpus and

associates any word in the dictionary v ∈ D with a d-dimensional vector vec(v) ∈ Rd .

F is not deterministic, as it may use random values when initializing the word vectors.

The dimension size parameter (d) sets the dimensionality of the vectors. It usually ranges

between 50 and 1000 for word embedding models. The training, i.e., iteratively associating

vectors with words in the dictionary, is based on word-context pairs v × c ∈ D × D2×win

extracted from the corpus. There is a further parameter epoch_nr that states how many

times the training algorithm passes through the corpus. If not stated otherwise, we will

train models with �ve iterations. win is the window size parameter, which determines the

context of a word. For example, a window size of 5 means that the context of a word is

any other word in its sentence, and their distance is at most 5 words.
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2. Fundamentals and Notation

There are further parameters that a�ect the generation of the dictionary. One is the

minimum count parameter (min_cnt). When creating the dictionary from the corpus, the

model adds only words to the dictionary which appear at least min_cnt times in the corpus.

An alternative is to set the dictionary size directly as a parameter (dict_size). This means

that the model adds only words to the dictionary which are in the dict_size most frequent

words of the corpus. In this work, we rely on the dict_size parameter, because we �nd it

easier to handle in our experiments. With this variant, the corpus does not in�uence the

size of the dictionary. Note, dict_size is not necessarily equal to the size of the dictionary

|D |. For example, it is unequal when the number of distinct words in the corpus is smaller

than dict_size. Additionally, there are model speci�c parameters (θ ) which change minor

details in the embedding algorithms.

The result of the training is a word embeddingW, with vocabulary

voc(W) =
{
v1

W, . . . ,v
dict_size
W

}
,

and corresponding word vectors{
vec(v1

W), . . . ,vec(v
dict_size
W )

}
.

Each vector represents a word v ∈ voc(W) in a d-dimensional real-valued vector space.

Semantic Similarity. The most important property of word embedding models is that

vectors close to each other according to a distance function represent words that are

semantically similar.

Figure 2.1.: A 2-dimensional projection of the vectors corresponding to word ’apple’ and

its 15 most similar words.
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2.1. Word Embedding Models

Figure 2.1 illustrates the similarity property of word embedding models. It is a two

dimensional projection of the embedding space of a word embedding model. We can see,

that the most similar words to ’apple’ are words related to the Apple company as well as

apple as a fruit
1
.

Analogical Reasoning. Another property of word embedding models that we use in this

work is called analogy, which is the process by which knowledge is transferred from one

concept to another. For example, ’man is to king as woman is to queen’ is an analogy.

Besides the semantic similarity property, word embedding models are able to capture such

analogies as well.

Figure 2.2.: A 2-dimensional projection of the vectors corresponding to words of countries

and their capitals

Figure 2.2 is an illustration of this property. It shows, that the direction of the vectors

between countries and their capitals are very similar. This allows us to solve analogical

reasoning tasks with word embedding models using vector operations. For example,

“Chicago is to Illinois as Denver is to ?” can be solved by simply computing Illinois −
Chicago + Denver in the embedding vector space and �nding the closest word vector to

the resulting vector (≈ Colorado).

1
Every example in this section is an actual 2-dimensional projection of the embedding space of one of the

models we have trained for this work.
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2. Fundamentals and Notation

Figure 2.3.: A 2-dimensional projection of the vectors corresponding to adjectives and

their comparative and superlative forms

Word embedding models able to capture not only semantic but syntatic analogy as well.

Figure 2.3 illustrates how the comparative and superlative forms of di�erent adjectives are

captured in the embedding space.

Similarity Measure. As it is generally recommended in word embedding model literature,

throughout this work, we use the cosine similarity of two word vectors as the similarity

score of the respective words. The cosine similarity ranges from -1 (unrelated words) to 1

(identical words). Formally, the cosine similarity of the vectors corresponding to words v1
and v2 is the following.

cos-sim (vec(v1),vec(v2)) =
vec(v1) · vec(v2)
‖vec(v1)‖ · ‖vec(v2)‖

∈ [−1, 1] .

Just as the cosine similarity expresses the relatedness between two words, the cosine
distance can be employed to produce values for dissimilarity. The cosine distance is

de�ned as follows:

cos-dist = 1 − cos-sim ∈ [0, 2].

Note that the cosine distance is not a metric since it does not satisfy the triangle inequality,

i.e.,

∃x, y, z ∈ Rd : cos-dist(x, z) > cos-dist(x, y) + cos-dist(y, z).
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2.1. Word Embedding Models

Whenever in this work we refer to a distance with respect to words or word vectors, we

refer to the following measure that expresses their dissimilarity:

distW(v1,v2) =
{

cos-dist(vec(v1),vec(v2))
2

, if v1,v2 ∈ voc(W)
∞, if v1 < voc(W) ∨v2 < voc(W).

In the de�nition above, we normalized the cosine distance to [0, 1], which will be useful

later in this work.

2.1.2. Variants of Word Embedding Models

There are two main types of word embedding models: count-based and prediction-based

models. On one hand Baroni et al. [8] claim that the prediction-based methods are

generally better when comparing the quality of the produced embeddings. On the other

hand, work by Levy et al. [68] suggests that the performance of both families is on-par if

the hyperparameters are correctly chosen. It is not the aim of this work to compare the

goodness of di�erent word embedding models, but to understand their general properties

better, hence we will work with both groups of models.

In the following we give a brief overlook on their history, then we describe the most

important model from each group in detail, namely the Word2Vec and Glove models.

Although, the fundamental ideas of Word2Vec and Glove are di�erent, Levy et al. [67]

have shown that the Word2Vec model implicitly factorizes a word-context pointwise

mutual information matrix, which is a count-based approach to obtain the embeddings.

This means that the objectives of the two models and sources of information are used

quite similarly and, more importantly, they share the same parameter space. We refer to

Shi and Liu’s work for a further comparison [104].

2.1.2.1. Count-Based Models.

Count-based word embedding models use global statistics on the contexts of words (i.e.,

word-context counts) to derive the word vectors. This means they store the frequency of

every word-context pair in a huge sparse matrix and use di�erent matrix factorization

techniques to extract word vectors from this matrix. A classic example of a word embedding

model from the count-based family is the Singular Value Decomposition (SVD) of a word-

context matrix, which has already been introduced back in 1990 [25]. Recently, Pennington

et al. have presented a novel count-based model, the GloVe model [93], which has become

highly popular. We introduce Glove in the following.
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2. Fundamentals and Notation

The Glove Model. Pennington et al.’s GloVe model [93] trains the word vectors by explic-

itly factorizing the log-count matrix of the underlying corpus, regarding the word-context

pairs.

The advantage of GloVe is that, unlike Word2vec, GloVe does not rely just on local statistics

(local context information of words), but incorporates global statistics (word co-occurrence

counts) to obtain word vectors. Instead of looking at bare word-word co-occurrence counts,

GloVe compares the probability ratios of co-occurrences, i.e., how much more probable it

is for word v1 than another word v2 to appear in the context of word v3. The intuition is

the observation that ratios of word-word co-occurrence probabilities have the potential

for encoding some form of meaning and the word meanings are captured by the ratios of

co-occurrence probabilities rather than the probabilities themselves.

Figure 2.4 shows actual probabilities from a real worlds corpus
2
.

Figure 2.4.: Glove probability examples

As we can see, the ratio is large if the target word is correlated with the word corresponding

the numerator, but not with the denominator (for example, ’solid’ is correlated to ’ice’,

but not with ’steam’). It is small the other way around (’gas’ is correlated to ’steam’ but

not with ’ice’), and it is around 1 if it is correlated to neither or both words (’water’ is

correlated to both, while ’fashion’ is correlated to neither of the words ’ice’ and ’steam’).

In this way, the ratio of probabilities encodes some form of meaning associated with the

abstract concept of thermodynamic phase.

Formally, let X be the co-occurrence matrix. Xij is the number of times word vj appears in

the context of word vi . Let Xi =
∑

k Xik be the total number of words that appeared in the

context of vi . The probability of word vj appearing in the context of word vj is

Pij =
Xij

Xi
.

2
The �gure and example are from the Glove project website: https://nlp.stanford.edu/projects/glove/
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2.1. Word Embedding Models

Our goal is to express the probability ratios with a function F 3
:

F (vi ,vj ,vk) ≈
Pik
Pjk

There are two requirements for F to consider. First, we know Pik/Pjk is a scalar. Second,

we should be able to perform arithmetic operations in the embedding space, such as the

analogy calculations. Based on this, we can reformulate the equation:

F ((vi −vj)ᵀvk) ≈
Pik
Pjk
.

Now, to make the fraction on the right side disappear we take the logarithm of both sides.

To be able to do this we assume that F is an exponential function.

(vi −vj)ᵀvk = vᵀ
i vk −v

ᵀ
j vk ≈ loд(Pik) − loд(Pjk).

Because of symmetry, this means:

vᵀ
i vk ≈ loд(Pik) = loд(Xik) − loд(Xi).

We also want to capture the fact that some words occur more or less often than others.

We do this by adding bias bi for each word vi , and expressing Xi with the biases.

vᵀ
i vk + bi + bk ≈ loд(Xik),

or,

vᵀ
i vk + bi + bk − loд(Xik) ≈ 0.

The goal of the training is to create word vectors to minimize the squared error of the

above equation, summarized over every word pair.

∑
i,j

(vᵀ
i vk + bi + bk − loд(Xik))2.

However, there is a problem with this summarization: it weights all word pairs equally.

This is not ideal, since not all word pairs are equally important. For example, infrequent

3
Note, in the following equations we use the notation vi instead of vec(vi ) as the vector of word vi for

readability reasons.
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2. Fundamentals and Notation

word pairs tend to be error-prone, so we want to weight frequent word pairs more heavily.

In contrast, very frequent word pairs, such as "I am" or "it is" should not be dominating

the loss function neither. The authors of Glove propose the following weight function:

f (x) =
{
(x/xmax )α , if x < xmax

1, otherwise.

In the original publication xmax is set to 100 and α = 0.75. Figure 2.5 shows the weight

function f (x)4.

Figure 2.5.: Glove weight function

Finally, the loss function in Glove is as follows.

∑
i,j

f (Xij)(vᵀ
i vk + bi + bk − loд(Xik))2.

For more details on the Glove model we refer to the original publication [93].

2.1.2.2. Prediction-Based Models.

Prediction-based models compute word vectors which are optimal in a prediction task, such

as predicting a word given its context. They usually use neural networks for prediction.

Neural networks in general are inspired from biological neural networks, hence the basic

processing unit is called a neuron. Neural networks can be viewed as weighted graphs of

interconnected neural units. Computations are performed by propagating data from the

input units throughout the whole net. The result is returned at the output units. Learning

is performed by iteratively adapting the weights between neural units while minimizing

the output error with respect to a target function. This method is called back-propagation.

4
The �gure is from the original publication.
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2.1. Word Embedding Models

This means, the weights of the neural network are changed in a backwards order, such

that the error between the actual output and the expected one decreases according to a

loss function.

It has been shown that neural networks can be used as universal function approximators

and therefore are appropriate for language prediction tasks [47].

The �rst prediction-based word embedding model was introduced by Bengio et al. [10]. It

learns embeddings with a neural network for language modeling, i.e., predicting the next

word of the text, knowing the previous several words. Prediction-based word embedding

models gained a lot of popularity after the introduction of the Continous-Bag-of-Words

(CBOW) and Skip-gram (SG) models by Mikolov et al., also called Word2Vec models [84].

These models try to predict the word given its context (CBOW) or the word context from

a word (SG).

Peters et al. [94] introduced Embeddings from Language Models (ELMo). In ELMo each

embedding represent not only a word, but a word in its context. To obtain an embedding

for a word, the previous and the following part of the sentence are fed into a forward and

backward neural language model, respectively. By making embeddings context-speci�c,

ELMo deals better with synonyms.

In this work we work with the Word2Vec model from the prediction-based family. In the

following we introduce this model in detail.

TheWord2VecModel. Mikolov et al.’s Word2Vec model [84, 85] uses a learning algorithm

based on a shallow neural network. Word2Vec generates word vectors estimating the

probability of a context given an input word (SG) or the other way around estimates the

probability of a word given an input context (CBOW). The context words are the words

surrounding the target word within a symmetrical window of a pre-de�ned size. The

network is trained in an unsupervised fashion by using a possibly large and topically

heterogeneous text corpus, such as the �rst billion words of Wikipedia (see Section 2.4.1).

Figure 2.6 shows the neural network used for training. The input and output layers have

dict_size number of nodes, while the hidden layer has d , where d is the dimensionality of

the embedding space. The output layer is a softmax layer.

Every input and output node represents a speci�c word in the vocabulary. During training

the words are represented with one-hot encoding. For example, during CBOW training

the input is 1 on the nodes which correspond to words which are in the context and 0

otherwise. On the output layer the expected output is 1 on the node corresponding to the

target word and 0 otherwise.
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2. Fundamentals and Notation

Figure 2.6.: The neural network used to train the Word2Vec models

The vector representation of a word is the weights on the edges of the neural network

connecting the corresponding node to the hidden layer. There are d edges connecting each

node to the hidden layer, hence the vectors are d-dimensional vectors. However, there are

two sets of weights in the neural network, one that connects the input layer to the hidden

layer (input weights), and the other which connects the hidden layer to the output layer

(output weights). This means, there are two representation for each word. The �nal word

vector is the average of the two vector representations.

To obtain word vectors with the required properties, i.e., similarity and analogy, we have

to train the neural network. In general, the aim of the training is to optimize the weights

of the neural network in a way that the prediction is as close to the expected outcome as

possible. Formally, the loss function of the CBOW model is:

1

T

T∑
t=1

log P(vt | vtc) =
1

T

T∑
t=1

log P(vt | vt−n, · · · ,vt−1,vt+1, · · · ,vt+n) =

=
1

T

T∑
t=1

∑
−n≤j≤n,j,0

log P(vt | vt+j),

where vtc is the context of word vt .

Similarly, for the SG model the loss function is

1

T

T∑
t=1

log P(vtc | vt ) =
1

T

T∑
t=1

∑
−n≤j≤n,j,0

log P(vt+j | vt ).
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2.1. Word Embedding Models

To calculate the probabilities (e.g., for the SG model) we use the softmax de�nition
5
:

P(vt+j | vt ) =
exp(v>t v′t+j)∑
vi∈V exp(v>t v′i )

, (2.1)

where vi refers to the vector on the input weights and v′i refers to the vector on the output

weights of the neural network corresponding to word vi .

Since, it is computationally very expensive to calculate these probabilities for each word

in every iteration several softmax approximation methods have been developed. The two

used in the original Word2Vec publications and in this work are the Hierarchical Softmax

(hs) and the Negative Sampling (ns) methods.

Hierarchical So�max. The hierarchical softmax method makes the calculation of the sum

in Equation 2.1 faster with the help of a binary tree. It encodes the output softmax layer

into a hierarchical tree structure. Each word is represented as a leaf and the inner nodes

represent relative probabilities of their children nodes.

Figure 2.7.: Illustration of the hierarchical softmax binary tree

Figure 2.7 is an illustration of a hierarchical softmax tree. The idea is that each word has a

unique path from the root of the tree to the leaf corresponding to the word. The probability

of choosing the word equals to the probability of taking this unique path, which is the

product of the relative probabilities in each inner node of the path. The relative probability

at an inner node n can be calculated

P(turn right|vi ,n) = σ (v′n
>vi) =

ev
′
n
>vi

ev
′
n
>vi + 1

,

P(turn left|vi ,n) = 1 − P(turn right|vi ,n),
5

Note, we use the same notation vi for the word and its corresponding vector in the following equations

for readability reasons.
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2. Fundamentals and Notation

where σ is the sigmoid function. Such a binary tree structure reduces the of the estimation

of the sum in the denominator of the probability equation 2.1 from O(|V |) to O(log |V |)
during training. However, a good tree structure is needed for the speed-up. For example,

similar words should be close to each other in the tree structure.

Negative Sampling. The idea behind the negative sampling method is that during training

we provide wrong inputs for which no outputs can be determined. Practically, negative

examples are not context words, in contrast to positive examples which are context words.

This means, negative examples should produce all zeros as output. The intuition is that a

good model should be able to di�erentiate between real and fake input signals. Another

idea in negative sampling, is that we sample the observations and do not use all of them

when changing the weights of the neural network. This speeds up the computations

dramatically.

For more details on the approximation methods we refer to the original publications

[84, 85].

2.1.2.3. Alternative Embedding Models

Recently, alternative approaches based on the idea of word embeddings have been pre-

sented to model semantics. Bojanowski et al. have re�ned the Word2Vec models by

additionally learning embeddings of subwords, instead of only full word embeddings [14].

A subword in this context is a chain of characters, for example, default 3 to 6 characters.

In this way, the model uni�es di�erent grammatical forms or spelling mistakes and is

expected to learn good embeddings for rare words. Additionally, it is also able to infer

embeddings for words that have not been present during training. The model accom-

plishes this by averaging the vectors of the subwords in the target word. The approach

has been published together with an e�cient implementation fastText6. Since it is based

on Word2Vec, both Skip-gram and Continuous-Bag-of-Words are available. The fastText

models have been used in a variety of tasks, e.g., location prediction based on tweets [86]

or review rating prediction from a text [103].

While fastText works on the character level, the other direction of granularity has been

investigated as well: An approach called Paragraph Vector (Doc2vec) learns an embedding

for a sequence of words [63]. Doc2vec is able to learn low-dimensional representations

for arbitrary lengths of text, ranging from phrases up to multiple paragraphs. Doc2vec

is widely used for text classi�cation [6, 53] or to compute document similarities [62].

During training, each sentence/paragraph is annotated with a unique ID. The �rst type of

model is called Distributed Memory model (DM). It is based on the idea of CBOW [63].

Given the sentence or paragraph ID and a few words in the current window, the model

predicts the subsequent word. The second method is called Distributed-Bag-of-Words

6
https://github.com/facebookresearch/fastText
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2.1. Word Embedding Models

(DBoW) [63]. The idea is similar to SG: given the paragraph ID the model tries to predict

the words in a window.

Novel universal language models such as BERT [26] or ULMFiT [48] are not considered

to be word embedding models, since strictly speaking they do not embed words into a

vector space, hence they are not in the scope of this work.

2.1.3. Realization of Word Embedding Models

To build the models, we use the gensim software package [98] for the Word2Vec models

and the GloVe toolkit
7

for the GloVe models. More speci�cally, we use these toolkits in

Python. They allow querying any word in the model dictionary for its similarity with any

other word. This means that for any word there is an indexed list containing every other

word in the dictionary, sorted by similarity. For special models such as fasttext or Doc2Vec

we have used their respective Python packages to build models.

In this work we use the terms list index and position in the list as synonyms. We di�erentiate

between the similarity values of models and similarity lists. In the �rst case, we are only

concerned with the similarity value of a word pair and not its position in those lists. In

the second case, our interest is the opposite one. In our software settings similarity values

are �oating point numbers between -1 and 1, with 1 being the highest similarity, while

similarity list indices are integers.

7
http://nlp.stanford.edu/projects/glove/
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2.2. Text Classification

In this section we introduce the notation and baseline algorithms of Text Classi�cation.

First, we give a general introduction to text classi�cation, with the fundamental notation.

Then, we introduce a preprocessing method called term substitution, which is the funda-

mental idea behind our method introduced in the application analysis section (see Section

5.2). Finally, we present the text classi�cation algorithms that we use in this work.

2.2.1. Background on Text Classification

The goal of text classi�cation is to assign categories to textual data, also called documents,
according to their contents.

A document d , is a tuple of |d | words such that d = (v1, . . . ,v |d |), where vj refers to the

jth word of the document. We de�ne a set of documents D = {d1, . . . ,d |D |}. Unknown

documents are
˜d = (ṽ1, . . . , ṽ | ˜d |). The term “word” can also refer to a sequence of numbers

or symbols, or a syntactically or semantically tagged word. The domain of documents D
and the domain of wordsV de�ne the sets of all possible documents and all possible words,

respectively.

For a set of documents D we de�ne the vocabulary of D as follows:

voc(D) =
{
vj | d ∈ D, j = 1, . . . , |d |

}
.

An important issue to handle in text classi�cation is Out-Of-Vocabulary (OOV) words.

OOV words are words that are not part of the classi�er’s known vocabulary. Formally,

these are the words:

Ṽ B V \V .

As a consequence, OOV words cannot be used for prediction, since they do not have any

representation in the classi�er’s feature space.

Labels. A document set D is called a labeled dataset if there is a functionω : D → Ω, that

assigns a label to each document d ∈ D, where Ω =
{
ω1,ω2, . . . ,ω |Ω |

}
is the set of classes

de�ned for the current classi�cation problem. The function ω is called a labeling over D.

In this work, a dataset identi�ed with D is a labeled dataset with labeling ω. Unlabeled
documents or unknown documents are the documents

˜d ∈ D \D. The subset of documents

in a class ω ∈ Ω is denoted as:
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Dω B {d | ω(d) = ω}.

In this work, each document has exactly one class associated to it and we will only consider

the case of binary classi�cation. This means, the label of a document is either “+” (positive)

or “−” (negative), i.e., Ω = {−,+}. 8

WordFrequencies. Nv,d refers to the amount of occurrences of wordv ∈ V in a document

d . Formally,

Nv,d =

|d |∑
j=1

1{vj = v},

where 1{·} denotes the characteristic function.

Also, ND
v,ω refers to the number of occurrences of word v in documents d ∈ D with label

ω(d) = ω. Formally,

ND
v,ω =

∑
d∈Dω

Nv,d .

Similarly, the total amount of occurrences of v in a dataset D is denoted as:

ND
v =

∑
d∈D

Nv,d .

2.2.1.1. Bag-of-Words Model

One of the most used document representations method in text classi�cation is the Bag-
of-Words (BoW) representation [77, 52]. Two of the most successful classi�ers in text

classi�cation are based on the BoW model, namely the Multinomial Naive Bayes and the

linear Support Vector Machine with Naive Bayes classi�ers. We will introduce these models

in Section 2.2.3. The idea of the BoW representation is to use the statistical information

yielded by words frequencies to predict the classes of unknown documents. In order to do

this, one needs to transform the training textual data into a numerical representation. A

document d can be represented as a BoW as follows:

8
Multi-class problems — i.e., the scenarios in which there are multiple labels for a document or more than

two classes — can be handled by solving several binary classi�cation problems.
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bowV : D → N|V | C BV ,

bowV (d) B
(
Nd,v1, . . . ,Nd,v |V | )

)ᵀ
,

where V =
{
v1, . . . ,v |V |

}
⊂ V . In other words, a BoW is a vector of the size of the

vocabulary V . The vector contains non-negative integers, such that the j-th element of

the BoW vector indicates the frequency of word vj ∈ V in document d . BV denotes the

feature space de�ned by a BoW over a vocabulary V .

Next, we de�ne the binary Bag-of-Words (bBow), as follows:

bbowV : D → {0, 1} |V | B Bb
V ,

bbowV (d) B (1{b1 > 0}, . . . ,1{b |V | > 0}).

In this case, the j-th element of a bBoW vector is 1 if vj is present in the corresponding

document and 0 otherwise. The bBoW feature space is denoted as Bb
V .

Generally, in a BoW model the order of the words in a document is neglected and only

the presence and the frequency of word occurrences is relevant. (In contrast, in n-gram

representations the order is maintained as well. See Section 2.3.)

2.2.2. Dimensionality Reduction in Text Classification

One of the biggest issues in text classi�cation is that because of the complexity of human

language the dimensionality of the feature space quickly becomes very big. This means,

even for relatively small datasets, the number of unique terms is usually large. Having a

high dimensional feature space in text classi�cation introduce three main issues, which

are detrimental to classi�cation accuracy. First, low frequency words, which are hard

to train, because of their limited context. Second, OOV words, which are not in the

vocabulary, hence cannot be used to prediction. Third, over�tting — i.e., when the classi�er

is falsely optimized to explain the training data instead of generalizing the classi�cation

problem [102]. In order to overcome these problems, various techniques, including the

preprocessing method proposed in this work, have been developed.

One family of approaches is called dimensionality reduction techniques. The goal of

dimensionality reductions is to reduce the feature space without losing information that

is relevant to the underlying classi�cation task. The dimensionality reduction technique

that is used in this work, is called Term substitution. Term substitution is a preprocessing

method, which aims at reducing feature dimensionality by transforming the set of terms

V in the training data to a synthetic set of terms V ′ with |V ′| < |V | [102], i.e., it reduces

the number of unique terms in the training data. In the following we explain how term

substitution works in detail.
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2.2.2.1. Term Substitution

We now introduce term substitution through an example, while addressing the question

of how the preprocessing done by term substitution implies an alleviation of the above-

mentioned challenges.

Increasing Statistical Robustness. In order to show how substitution works for text clas-

si�cation, we show an exemplary polarity task that we solve using the Multinomial Naive

Bayes model (see Section 2.2.3). Table 2.1 show the distributions of some of the words

from the dataset.

v N (v,+) N (v,−) P̂(v |+) P̂(v |−)
she 19 21 2.6 · 10−3 2.9 · 10−3
is 42 43 5.7 · 10−3 5.9 · 10−3

smart 9 3 1.2 · 10−3 4.1 · 10−4
intelligent 1 1 1.4 · 10−4 1.4 · 10−4

Table 2.1.: The distribution of words in an exemplary dataset

N (v,+) and N (v,−) are the number of occurrences of the word in the positive and negative

classes, respectively. P̂(v |+) and P̂(v |−) are the probabilities of the word occurring in the

positive and negative classes, respectively.

The task is to predict the polarity of the sentences “she is smart” and “she is intelligent”.

Their true labels are positive. The sentences are represented by the following tuples:

d1 = (’she’, ’is’, ’smart’),
d2 = (’she’, ’is’, ’intelligent’).

With the assumption of prior class probabilities P̂(+) = P̂(−) = 0.5, the estimated posteriori

probabilities of d1 are :

P̂(d1 |+) = P̂(’she’|+) · P̂(’is’|+) · P̂(’smart’|+) = 17.8 · 10−6%,
P̂(d1 |−) = P̂(’she’|−) · P̂(’is’|−) · P̂(’smart’|−) = 6.9 · 10−6%,

P̂(+|d1) =
P̂(d1 |+) · P̂(+)∑
ω ′∈{+,−}

P̂(d1 |ω′)
= 72.1%,

P̂(−|d1) =
P̂(d1 |−) · P̂(−)∑
ω ′∈{+,−}

P̂(d1 |ω′)
= 27.9%.
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Analogously, for d2 the posterior probabilities are:

P̂(d1 |+) = P̂(’she’|+) · P̂(’is’|+) · P̂(’intelligent’|+) = 20.8 · 10−7%,
P̂(d1 |−) = P̂(’she’|−) · P̂(’is’|−) · P̂(’intelligent’|−) = 23.9 · 10−7%,

P̂(+|d2) =
P̂(d2 |+) · P̂(+)∑
ω ′∈{+,−}

P̂(d2 |ω′)
= 46.5%,

P̂(−|d2) =
P̂(d2 |−) · P̂(−)∑
ω ′∈{+,−}

P̂(d2 |ω′)
= 53.5%.

Since P̂(+|d1) > P̂(−|d1), the naive bayes classi�er correctly assigns d1 to the positive class,

however in the meantime incorrectly assigns d2 to the negative class, since P̂(−|d2) >
P̂(+|d2). This happens because the words ‘she’ and ‘is’ occur slightly more often in the

negative class. These general words are obviously not decisive for the classi�cation

task. The more important word ‘intelligent’, which indicates a positive polarity, is very

infrequent and by chance it is evenly distributed over the classes, hence does not provide

any discriminatory information. Consequently, the model’s prediction for d2 tends towards

the negative class.

At this point term substitution comes in the picture. Formally, it can be described as

follows. For a labeled dataset D with vocabulary V = voc(D), for each v ∈ V a set of

wordsTv ⊂ V that are semantically similar to v is created. Both the documents d ∈ D and

unknown samples
˜d ∈ D \ D can then be preprocessed as follows:

π : D → D,
π (d) = (π (v1), . . . ,π (v |d |)),

π (vj) =
{
v, if vj ∈ Tv
vj , otherwise

, for j = 1, . . . , |d |.

We now recompute the probabilities of the dataset, after preprocessing it using the substi-

tutions given by the following dictionary:

Tsmart = {‘intelligent’, ‘bright’, ‘knowledgeable’, ‘clever’, . . . }.

During preprocessing the training data π substitutes the occurrences of ‘intelligent’ with

‘smart’. After the substitutions, the word frequencies in the dataset become:
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v N (v,+) N (v,−) P̂(v |+) P̂(v |−)
she 19 21 2.6 · 10−3 2.9 · 10−3
is 42 43 5.7 · 10−3 5.9 · 10−3

smart = intelligent 10 4 1.3 · 10−3 5.5 · 10−4

After the frequencies of the words ‘smart’ and ‘intelligent’ are merged, we compute the

posteriors the same as we did for the �rst model:

d P̂(+|d) P̂(−|d)
π (d1) 71.2% 28.8%
π (d2) 71.2% 28.8%

We can see that using the preprocessed dataset, both documents are correctly classi�ed.

This simpli�ed example demonstrates how text classi�cation can be improved using

semantic knowledge: substituting the word ‘intelligent’ with ‘smart’ is equivalent to

utilizing the knowledge that these terms are semantically related. In the text classi�cation

algorithm, the statistical information provided by the more frequent term ‘smart’ inferred

a more robust estimate of the statistics of the infrequent term ‘intelligent’. Using the

combined word frequencies, the second model classi�ed d2 correctly.

Substitution of OOV Words. The smaller the training data is, the more probable it is

to encounter words in the unknown documents that are not in the vocabulary of the

classi�cation model, i.e., OOV words. To show the negative e�ects that OOV words can

have on classi�cation accuracy, we continue the example presented previously.

Let us assume that the goal is to classify the unknown document “she is knowledgeable”

(d3). Again, we assume that the true label is positive (ω(d3) = +). Similarly, as for d2 the

posterior probability for the negative class is larger than for the positive class. This is

because the word ‘knowledgeable’ is not in the vocabulary of the classi�cation model,

hence it cannot be incorporated in the probability estimation. This means, the posteriors

only depend on the words ‘she’ and ‘is’:

P̂(d3 |+) = P(′she′|+) · P(′is′|+) = 14.8 · 10−4%,
P̂(d3 |−) = P(′she′|−) · P(′is′|−) = 17.1 · 10−4%,
P̂(ω |d3) = 46.4%,

P̂(ω |d3) = 53.6%.

Again, if we use the list of semantically similar words ofTsmart to preprocess the document

we obtain the same sentence:
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π (d3) = (‘she’, ‘is’, ‘smart’).

Replacing the OOV word ‘knowledgeable’ with the known ‘smart’, the posterior probabili-

ties will be the same as for d1 and d3, hence d3 is correctly classi�ed after preprocessing.

2.2.2.2. Equivalence of Lexical Substitution and Bag-of-Clusters

In this section, we show that the problem of word substitution is equivalent to �nding

clusters of similar words and employing the discovered clusters as the new features.

Let V = voc(D) be the vocabulary of a document set D. A clustering algorithm yield K
pairwise disjoint clusters of semantically similar words C = {C1, . . . ,CK } with Ck ⊂ V ,

for k = 1, . . . ,K , by using a dissimilarity measure over pairs of words v,v′ ∈ V . We de�ne

the Bag-of-Clusters for document d over a clustering C as follows:

bocC : D → N|C|,
bocC(d) = (c1(d), c2(d), . . . , cK (d)),

ck(d) B
∑
v∈Ck

Nv,d .

The k-th element of the feature vector in a BoC representation contains the combined

counts of the words in cluster Ck . We can obtain the the same features by representing

the document as a BoW, if in every document the occurrences of a term v ∈ Ck is replaced

by a �xed cluster member v∗
k
∈ Ck .

v∗k ∈ Ck ,k = 1, . . . ,K ,

V ∗ B {v∗k | k = 1, . . . ,K},
d B (v1, . . . ,v |d |) ∈ D,

π (v) B v∗k , if v ∈ Ck ,

π (d) B (π (v1),π (v2), . . . ,π (v |d |)),
⇒bowV ∗(π (d)) = bocC(d).

This means, if the clusters Ck ∈ C consist of semantically similar words, representing a

document as a Bag-of-Clusters over C is equivalent to performing lexical substitution.

2.2.2.3. Term Clustering

As we have just seen Term Clustering is equivalent to term substitution. It also aims at

reducing the dimensionality and the statistical noise introduced by infrequent and OOV
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terms. The goal is to �nd clusters of similar terms and use them, instead of single words,

to represent documents as a Bag-of-Clusters (BoC). There are two main approaches how

to cluster similar terms, which we explain in the following.

Semantic Clustering. Semantic clustering has been widely researched, especially since

word embedding models gained much popularity. Ma et al. [75] used the cosine similarity

between word vectors to cluster terms using K-Means. Their results suggest that certain

values of K might yield a slightly better classi�cation accuracy over the unprocessed

training data. Wang et al. [117] uses word embedding-based clustering in combination

with neural networks. They use the Euclidean distance in the embedding vector space to

map similar phrases (n-grams) to the same neural units. They have evaluated their approach

on short text classi�cation tasks and reported slight improvements in classi�cation accuracy

over other approaches.

In numerous cases, text classi�cation accuracy often has been worse after preprocessing

the training data based on semantic clustering than using the original datasets. We see two

reasons for this. The �rst one is the inability of word embedding models to distinguish

antonyms and synonyms. For example, the words ’hot’ and ’cold’ are close to each other

in the embedding space, because their context tends to be similar. Second, there is the

problem of task-speci�c synonyms. Task-speci�c synonyms are words that are used

synonymously with respect to the classi�cation task. For example, the words ’manager’

and ’CEO’ should be in the same cluster for a general text classi�cation task, but not

when we want to distinguish changes in the upper-management of speci�c companies.

The �rst problem could be addressed using more sophisticated methods to generate word

embeddings [115] or to detect antonyms [88]. As for the second one, recently it has

become common to use pre-trained word embeddings and to �ne-tune them to integrate

task-speci�c information [48, 26]. However, this does not work at all for smaller data sets.

This is because �ne-tuning changes only the embeddings of words seen in the training

data. Hence it distorts the word structure of the pre-trained model when using small

training data sets. This ultimately hurts its generalization performance [35, 127].

Distributional Clustering. In numerous cases, the decision of whether or not to substitute

a word with another semantically similar word depends on the underlying classi�cation

task. For example, assume a text classi�cation task in which the goal is to make a distinction

between good and enthusiastic movie reviews. The word frequencies for a sample dataset

are as follows:

Word Positive Class Negative Class
excellent 10 3

good 1 10

In this case, in spite of the semantic similarity of the two words they should not be

substituted. This is because the terms are distributed di�erently among the classes, i.e.,
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the distributional information strongly suggests that these two words are not task speci�c

synonyms. Substituting ‘smart’ with ‘excellent’ would result in a loss of information
9
.

This phenomenon can be observed in many classi�cation tasks and should be handled

with care.

In previous literature, Baker et al. [7] propose clustering terms using a distributional

metric based on a variant of the Kullback-Leibler divergence. The suggested metric

expresses the discriminative information loss given by clustering two terms together. The

proposed clustering algorithm greedily clusters (see Section 2.2.2.4) terms with minimal

information loss. The results of their experiment showed that feature dimensionality

can be heavily reduced without losing much classi�cation accuracy. Nonetheless, no

improvement in comparison to unprocessed datasets were reported. Based on Baker et

al.’s work, Slonim and Tishby [105] propose an improved clustering algorithm using the

Information Bottleneck Method. The algorithm maximizes the mutual information of a

word and its cluster with respect to their relative distribution over the categories. They

also develop a clustering algorithm, in which the pairwise cluster-distances are updated

as the clusters change. They show that their method can improve classi�cation accuracy,

however only when datasets are very small. For large datasets, the quality of classi�cation

decays.

Semantic-Distributional Clustering. Any existing term clustering approach refers to one

of the previous groups. In other words, either they do not integrate language semantics,

or they do not consider the distributional properties of the classi�cation task. In Section

5.2 we present our preprocessing method which includes both kinds of information. As

our experiments show, using semantic-distributional clustering is very suitable for text

classi�cation and is crucial for consistent improvements in text classi�cation accuracy. It

also complements the novel �ne-tuning approaches well: In contrast to them, our method

is most e�ective with small training data.

Moreover, there is another advantage of combining the two clustering methods, described

in the following. Embedding models contain neural networks with millions of parameters.

This makes understanding their clustering decisions just by evaluating the underlying

model virtually impossible. In contrast, this is not the case for distributional methods

where we can clearly interpret why two words are clustered together or not based on the

distributional statistics. Such with the combination of the two approaches we are able

to employ the robustness of embedding models while retaining the explainability of the

method to the user.

9
Note that this is only due to this speci�c classi�cation task. In most other scenarios in turn, it would make

sense to merge these words, i.e., consider them as task-speci�c synonyms.
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2.2.2.4. Greedy Agglomarative Hierarchical Clustering

To cluster terms we need an algorithm which creates the actual clusters based on the dis-

tance measure between the words. In this work we use Greedy Agglomarative Hierarchical
Clustering to �nd the word clusters. One advantage of using agglomerative clustering,

is that it we can use any distance function to create the dissimilarity matrix. It works as

follows.

For a set of documents D and vocabulary V = {v1, . . . ,v |V |} we de�ne a symmetrical

dissimilarity matrixW ∈ R|V |×|V | . The elements of the matrixwij represent the dissimilarity

between the term vi and vj according to a distance function ΛW . Since W is symmetrical

wij = ΛW(vi ,vj) = ΛW(vj ,vi) = wji .

The greedy agglomerative hierarchical clustering is a bottom-up clustering algorithm.

At the �rst (step i = 0) every word v ∈ V forms its own cluster. At each step i the

clusters are merged into bigger clusters. When the number of clusters equals a pre-de�ned

number K , the algorithm stops. To merge two clusters or not in an iteration is based on

the dissimilarity matrix W and a linkage criterion λ. At every step i > 0 the two closest

clusters C,C′ are merged:

C′′ = min

C,C ′∈Ci−1
λ(C,C′),

where Ci−1 denotes the clustering yielded at step i − 1.

There are various linkage functions, such as the minimum, the maximum or the average

distance between words in the di�erent clusters. In this work, we choose λ to be the

maximum, also known as complete-linkage clustering. In contrast to the single-linkage,

where two clusters are merged together based on their closest members, complete-linkage

clustering avoids the so called chaining phenomenon. This means, using another linkage

criterion, clusters that have many elements may contain elements that are very distant

to each other, but because of successive elements that are close to each other they are

merged. This may be useful in other applications, but in our case we make sure that every

word �ts in its cluster. Formally,

λ(C,C′) = max

vi∈C,vj∈C ′
wij .

The output of the algorithm is a clustering C = {C1, . . . ,CK } over V , where Ck ⊂ V and

Ck ∩Ck ′ = ∅, for every k , k′.

39



2. Fundamentals and Notation

2.2.3. Text Classification Algorithms

In this section we give a brief overview on their history and introduce the most important

models used in TC, namely the Multinomial Naive Bayes, the Support Vector Machine and

the Neural Network-based models.

2.2.3.1. Naive Bayes Classifiers

Naive Bayes (NB) classi�ers belong to the family of probabilistic classi�ers. Various NB

models have been used for text classi�cation [29, 69]. These classi�ers estimate the

probability of a class ω given a document d (P(ω |d)) and assign the document to the

class with the highest probability [77]. All these models are characterised by the “naive”

assumption that word occurrences are conditionally independent. Despite being based on

such a vague assumption, classi�cation performance of NB models show great performance

[118].

In general, NB is usually outperformed by other statistical classi�ers, such as SVM on most

classi�cation tasks, however, optimization techniques can make NB models competitive

[56, 78]. Also, it has been shown that NB models often perform better on short text

classi�cation tasks than SVMs [118]. Moreover, NB models are fast both in terms of im-

plementation and computation time, which makes them popular in practical applications.

In this work we use the Multinomial Naive Bayes (MNB) model, since it has been shown

that it outperforms the other NB variants in almost all classi�cation tasks [29].

The Multinomial Naive Bayes Classifier. Naive Bayes classi�ers, such as the Multinomial

Naive Bayes classi�er, perform classi�cation by estimating the probability of a class given

a document. In MNB we assume that the frequencies of words have been generated by a

multinomial distribution. We calculate these probabilities based on the Bayesian rule:

P(ω |d) = P(d |ω)P(ω)
P(d) =

P(d |ω)P(ω)∑
ω ′∈Ω

P(d |ω′)P(ω′) . (2.2)

In Bayesian terminology P(ω |d) is called the posterior, while P(ω) is called the prior proba-

bility. The likelihood P(d |ω) is calculated using the probabilities of the words occurring in

d :

P(d |ω) = P(v1, . . . ,v |d | |ω).

The “naive” assumption in NB models is that word occurrences are conditionally indepen-

dent. Formally, we assume that:
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P(v1, . . . ,v |d | |ω) =
|d |∏
i=1

P(vi |ω). (2.3)

To be able to predict the label of d we estimate the probabilities in equation 2.2.

First, we estimate the prior P(ω). It is the relative frequency of positive/negative samples

in the labeled dataset:

P̂(ω) = |Dω |
|D | . (2.4)

The likelihood of the model is approximated as follows:

P̂(d |ω) B
∏
v∈d

1 + ND
v,ω

|V | + ∑
v ′∈V

ND
v ′,ω

. (2.5)

The estimate of the probability of word v appearing in class ω (P̂(v |ω)) is calculated by the

total count of the word in class ω divided by the counts of all words in that class. There

are additional smoothing constants 1 in the numerator and |V | in the denominator. These

constants are used to avoid the product probability to be zero just because a word doesn’t

appear in ω. The rationale behind this smoothing, called Laplacian Smoothing, is that even

if a word do not appear in a class ω, its true probability P(v |ω) is greater than 0 [77].

Finally, using equations 2.3, 2.4 and 2.5 we are able to estimate the posterior probability

P(d |ω). Since P(d) in Equation 2.2 does not depend on the class ω, it is enough to estimate

the following term to later establish which posterior probability is larger.

P̂(ω |d) ∝ P̂(ω)P̂(d |ω) = P(ω)
|d |∏
i=1

P(vi |ω) C `(d,ω).

Since we only work with binary classi�cation tasks in this work, we de�ne the binary

Multinomial Naive Bayes classi�er in the following. The MNB classi�er is a function cmnb

that assigns a document to the class for which the term `(d,ω) is greater. Formally,

cmnb : D → {+,−},

cmnb(d) =


+, if `(d,+) > `(d,−)
−, if `(d,−) > `(d,+)
rand({+,−}), if `(d,+) = `(d,−).
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In the third case, when both classes are equally probable a class is randomly chosen by the

classi�er.

2.2.3.2. Support Vector Machine Classifiers

In general, Support Vector Machine (SVM) classi�ers try to �nd hyperplanes that separate

the samples of the di�erent classes the best. In most text classi�cation approaches the

linear SVM version is used, i.e., there is no kernel function. Since, SVM models tend to be

more robust than NB models, they have been generally preferred over NB classi�ers in

text classi�cation, especially when dealing with long documents or with small numbers of

training samples per class [118, 122, 28, 116].

In this work, we use the linear SVM with Naive Bayes features (NBSVM) classi�er intro-

duced by Wang et al. [118]. As opposed to traditional linear SVMs, the trained weights are

processed after training, which makes NBSVM perform better than NB and SVM models

in almost all classi�cation tasks [118].

The Support Vector Machine with Naive Bayes Classifier. The NBSVM classi�er uses the

log-ratios of word frequencies as features in contrast to the baseline linear SVM approach,

which uses the feature space of BoW to classify documents [77]. For dataset D, vocabulary

V = voc(D) = {v1, . . . ,v |V |}, classes Ω = {+,−} and a document d , we de�ne:

p(d) B
(
1{Nv1,+ > 0} + α , . . . ,1{Nv |V | ,+ > 1} + α

)ᵀ
,

q(d) B
(
1{Nv1,− > 0} + α , . . . ,1{Nv |V | ,− > 0} + α

)ᵀ
,

r(d) B log

(
p(d)/‖p(d)‖1
q(d)/‖q(d)‖1

)
,

f(d) B r(d) ◦ bbow(d ;V ),

where ◦ denotes the elmentwise vector multiplication and α is the Laplacian Smoothing

parameter. The vector representation f(d) of a document de�ned above is used to train the

weights w and the bias b of each feature. To calculate the weights the NBSVM algorithm

minimizes the following expression, based on the Euclidean distance:

wᵀw +C
∑
d∈D

max (0, 1 − y(d)(wᵀf(d) + b))2 ,

y(d) B
{
+1, if ω(d) = +
−1, if ω(d) = −
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After the regularization of the weights using parameter β ∈ [0, 1], the classi�er based on

this model is a function cnbsvm de�ned as follows:

ŷ : D → {+1,−1},
ŷ(d) = (w′ᵀf(d) + b),

cnbsvm : D → {+,−},

cnbsvm(d) =


+ if ŷ(d) = +1
− if ŷ(d) = −1
rand({+,−}) if ŷ = 0.

Intuitively, the classi�er decides based on whether a vector of a unknown document f(d)
is on the left (ŷ(d) = −1) or on the right (ŷ(d) = +1) side of the hyperplane de�ned by the

normal vector w′ and the bias b.

2.2.3.3. Neural Networks

Neural network-based training algorithms appropriate for multilabel classi�cation have

been �rst applied by Zhang et al. in 2006 [125]. The authors reported improvements in

classi�cation accuracy on the Reuters dataset. Since then, the ever-increasing computa-

tional power and memory resources allowed methods using neural networks to become

highly popular in text classi�cation applications. Nowadays, almost every state-of-the-art

approach uses neural networks for model building or prediction. However, in general, to

train a neural network-based model capable of generalizing the underlying classi�cation

task, because of the large numbers of parameters, large scale datasets are required [126].

The neural network-based classi�er which we use in this work is presented in [107].

At the time it was introduced it has produced state-of-the-art classi�cation accuracy on

various datasets. It is based on Recursive Autoencoders (RAEs).

Autoencoders are special types of neural networks that compress the input into a lower

dimensional representation (encoding), then reconstruct the output from this representa-

tion (decoding). The output should be as similar as possible to the input, ideally identical.

In this sense autoencoders are data compression methods. Figure 2.8 shows the general

architecture of an autoencoder.
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2. Fundamentals and Notation

Figure 2.8.: General autoencoder architecture

The idea in Socher et al.’s work is that given a pre-trained word embedding model (in

the original publication one based on the papers from Bengio et al. and Collobert et al.

[10, 22]) it can be used as a representation of phrases and sentences as well. Figure 2.9

show the basic structure of a recursive autoencoder used in the publication
10

.

Figure 2.9.: Recursive autoencoder-based sentence embedding

10
The �gure is from the original publication.
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2.2. Text Classi�cation

As the �gure shows the word representations in a sentence are recursively merged using

the same autoencoder, until the full sentence has its own vector. In the meantime at every

phase, the vectors are used as features to predict sentiment labels for the classi�cation

task. In general, the tree structure we can see in the �gure is not given in advance. In

Socher et al.’s work the tree is built in an unsupervised fashion with a greedy hierarchical

algorithm, based on the autoencoders error. This means, at every step it merges the two

vectors where the current reconstruction error is the smallest. Finally, each sentence has

its own embedding vector, which can be used in di�erent classi�cation tasks.

For details we refer to the original publication [106].
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2.3. N-grams

We have previously introduced BoW representations in Section 2.2.1.1. As we have already

explained, in BoW representation the order in which words occur in a document is ne-

glected. However, this order can often contain important information that are relevant to

the classi�cation task. For example, the sentences “no, it’s good" and “it’s no good" express

the opposite sentiment, while their BoW representation is identical. Hence, a classi�er

operating on the BoW model would be unable to distinguish between the two sentences.

In spite of this, representing documents as BoW works well for many text classi�cation

tasks [77]. For example, the Multinomial Naive Bayes classi�er estimates the posterior

probability Pr(ω |d) of a class ω given a document d by counting the occurrences of each

word for each class (see Section 2.2.3), hence the statistics of word occurrences is every

information it needs. In contrast to BoW, n-grams represent the local order of words as

well.

2.3.1. Definition

Formally, an n-gram is a contiguous sequence of n words from a given document. Consider

the following sentence:

I have three cats

The 1-grams are:

I have three cats

The 2-grams are:

<s> I I have have three three cats cats </s>

The tokens “<s>” and “</s>” denote the start and the end of the sentence, respectively.

To include n-grams representation of a dataset we concatenate each document with its

n-grams as follows:

I have three cats <s> I I have have three three cats cats </s>

Formally we de�ne the n-gram representation of a document as follows [118, 32]:
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2.3. N-grams

дn : D → D,n ≥ 2,

d = (v1,v2, . . . ,v |d |) ∈ D,
дn(d) = ( (< s >,v1, . . . ,vn)︸                 ︷︷                 ︸

Tuple of n contiguous words

, . . . , (v |d |−n+2, . . . ,v |d |, < /s >)),

2.3.2. Building Word Embedding Models on N-grams

Distributional models conventionally are trained on full-text corpora by creating word-

context pairs. The training corpus does not need to be a coherent text; it is su�cient

if the sentences are meaningful. This means we can train word embedding models on

n-gram corpora. When creating the context of a word, we treat each n-gram as if it was a

sentence.
11

Creating Fragmented Corpora. To create fragmented n-gram corpora from raw text, we

use a simple method described in the following. With a sliding window of size n passing

through the whole raw text, we collect all the n-grams which appear in the corpus and store

them in a dictionary, together with their match count, i.e., how many times the n-gram

occurs in the full-text corpus. This means that we create datasets similar to the Google

Books dataset (see Section 2.4.1), but from other raw text such as the Wikipedia dump. For

every fragmented corpus, we create di�erent versions of it, by trimming n-grams from the

corpora with regard to di�erent minimum match count thresholds.

We store the n-gram training corpora in the Google n-gram format. This format comprises

4 values: the n-gram, the year, the book count (i.e., in how many books the n-gram has

appeared in) and the match count. Figure 2.10 shows an example of a 5-grams from the

Google Books dataset.

Figure 2.10.: Google Books n-gram example

11
If there is a punctuation mark in the n-gram ending a sentence, it splits the n-gram into several sentences.
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2. Fundamentals and Notation

For our purpose, only the �rst and last values are relevant. When building a model with

the n-gram versions, we deem every n-gram a sentence and use it as many times as it

occurs in the raw text. We explain the impact of the window size and of the match count

parameter in the following.

Window Size Parameter. The window size parameter (win) a�ect how the word embed-

ding model is trained using di�erently fragmented corpus. For example, win = 4 is

not meaningful when we work with 3-grams, because the maximum distance between

two words in a 3-gram corpus is 2. The following examples illustrate how exactly the

word-context pairs are generated on n-gram corpora depending on the size of the window.

Example 1. Let us look at the context of a speci�c word in a 5-gram corpus with win = 4.

Let A B C D E F G H I be a segment of the raw text consisting of 9 words. In the raw text,

the context of word E are words A, B, C, D, F, G, H, I. Now we create the 5-gram version

of this segment and identify 5-grams which include word E. These are

(A B C D E); (B C D E F); (C D E F G); (D E F G H) and (E F G H I).

For word E on the 5-gram corpus, the contexts are words A, B, C, D; ...; words F, G, H, I.

We can see that we have not lost any context words. But we also do not have all raw-text

context words in one context, only fragmented into several ones.

Example 2. As extreme case, we consider a window size which is bigger than the size

of the n-grams. In this setting, we naturally lose a lot of information. This is because

distant words will not be in any n-gram at the same time. For example, look at the same

text segment as in Example 1 with win = 4, but with a 3-gram variant of it. The raw-text

context is the same as before for word E, but the fragmented contexts are words C, D;

words D, F and words F, G.

Example 3. Another extreme case is when win is less than or equal to bn−1
2
c. In this case

at least one n-gram context will be the same as the full-text context. This means that no

information is lost. However, there also are fragmented contexts in the n-gram variant

which can in�uence the training and, hence, model quality.

We point out that bigger window sizes do not necessarily induce higher accuracy on

various test sets, as explained by Levy et al. [68].

Match Count Parameter. Another parameter to consider when building the models on

the n-gram corpora is the match count of the n-grams. The intuition behind including

only higher match-count n-grams in the training data is that they may be more valid

segments of the raw text, as they appear several times in the same order. For example,

we exclude typos and meaningless combination of words. However, we naturally lose

relevant information as well by pruning low match-count n-grams.
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2.4. Datasets

2.4. Datasets

In this section we introduce the di�erent datasets that we use in this work. First, we present

the corpora on which we train our word embedding models on. Then, we introduce the

similarity and analogy as well as the text classi�cation test sets.

All datasets were tokenized using NLTK’s TwitterTokenizer, since it has a good recogni-

tion of tokens in written colloquial language. We did not exclude special characters or

punctuation symbols and also didn’t remove any stop-words in our datasets.

2.4.1. Training Corpus

Throughout this work we use three corpora to train word embedding models on.

• 1 BillionWord [19]: This is one of the largest publicly available language-modeling

benchmarks. The dataset is around 4 GB in size and contains almost 1 billion words

in approximately 30 million English sentences. The sentences are shu�ed, and the

data is split into 100 disjoint partitions. This means that one such partition is 1% of

the overall data [19].

• Wikipedia12: Another large publicly available corpus containing more than 3 billion

words. Before training we shu�ed the articles. For some parts of this work for

comparability reasons we sampled the dump to contain approximately 1 billion

words. We use a version of the dump downloaded on 01.11.2016.

• Google Books [81]: This is the largest currently available corpus with historic

data which exists for several languages. The English version incorporates over 3

million books from the previous centuries split into n-grams with a size larger than 2

Terabytes. Figure 2.11 shows a screenshot of the Google n-gram viewer, a graphical

interface that allows querying n-grams from the Google Books corpus.

All three corpora are good benchmark datasets for language modeling, with their huge

size, large vocabulary and topical diversity [19, 124].

12
https://dumps.wikimedia.org/enwiki/
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Figure 2.11.: The Google n-gram viewer

2.4.2. Similarity and Analogy Test Sets

In this section we present the similarity and analogical reasoning test sets that we use in

this work.

Word Similarity. We use six test sets to evaluate word similarity. Every test set has the

same three column format, which is a word pair and a corresponding similarity score.

• WordSim353 [30]: 353 similar or related word pairs with average similarity scores

given by human annotators.

• MEN [16]: 3000 pairs of words scored on a [0, 1] normalized semantic relatedness

scale via ratings obtained by crowd sourcing on the Amazon’s Mechanical Turk.

• SimLex-999 [43]: 999 pairs of words that quanti�es similarity, such that pairs

related by association or relatedness have a low rating.

• RG-65 [100]: 65 pairs of words, in a range from highly synonymous to totally

unrelated words.

• RareWords [74]: 2034 word pairs which are selected in a way to re�ect words with

low occurrence frequency.

• Mechanical Turk [96]: 771 word pairs obtained with Amazon’s Mechanical Turk.
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In general, we evaluate the models with the conventional baseline evaluation method

[68, 8]: We rank the word pairs of an evaluation test set by their similarity scores, based

on cosine distance of the word vectors. Then we measure Spearman’s correlation between

this ranking and the one based on human annotators. This number is the score of the

model on the test set.

In Section 5.2, we present a similarity value threshold-based evaluation method to com-

pensate the fundamental �aws of the baseline method.

Analogical Reasoning. We use two analogical reasoning test sets.

• MSR [84]: 8000 syntactic analogy questions, such as "big is to biggest as good is to

best".

• Google [85]: 19544 questions, both syntactic and semantic question, such as "Paris

is to France as Rome is to Italy".

The models answer the questions with the following formula:

argmaxd∈D\{a,b,c}cos(d,b − a + c).

Here a,b, c,d ∈ D are the vectors of the corresponding word. The score of a model is the

percentage of questions for which the result of the formula is the correct answer (d).

2.4.3. Text Classification Test Sets

In this section we describe the Text Classi�cation datasets used for evaluation
13

.

• Customer Reviews (CR): Short product reviews in colloquial English. The task is

to discriminate good and bad reviews.

• MPQA: A collection of short 2-3 word phrases. The task is to classify them based

on their polarity (positive, negative).

• Subjectivity (Subj.): Positive/negative subjective reviews and plot summaries.

• Short Movie Reviews (RT): Short movie reviews with one sentence per review.

13
The datasets evaluated in this work were downloaded at https://github.com/sidaw/nbsvm
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In Table 2.2 we show detailed statistics of the datasets. |D | stands for the size of dataset, |V1 |
is number of words. |O1 | stands for the overlap of the words with the word2vec vocabulary.

` is the average document length. |D+ | and |D− | stands for the number of positive and

negative samples, respectively.

Dataset |D| |V1 | ` |D+ | |D− |
MPQA 10,603 6,298 3 3,311 7,292

CR 3,772 6,596 20 2,406 1,366

RT 10,662 20,621 21 5,331 5,331

Subj. 10,000 23,187 24 5,000 5,000

Table 2.2.: Statistics of the text classi�cation datasets
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Part II.

Three-Way Analysis
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3. Algorithmic Analysis of Word
Embedding Models

In this �rst part of our three-way analysis of word embedding models we aim at un-

derstanding word embedding model algorithms better. We have introduced the word

embedding models we employ throughout this work in Section 2.1. These models have

been widely studied, however key elements of their behavior regarding their training

algorithms are not su�ciently clear.

First, it is not known how the models trained with di�erent parameter settings di�er in

their similarity values. This is highly important, since if their distribution signi�cantly

changes when using di�erent parameter settings, we cannot utilize di�erent models the

same in down-stream scenarios.

Second, although it is known that in order to create high-quality embedding models a good

training corpus is needed, it is not clear what can we consider a good quality corpus. For

example, by the de�nition of the training algorithms, it is not needed for the corpus to be

coherent text. This means, we can train word embedding models on n-grams. Hence, we

can use the Google Books corpus, which is by far the biggest text corpus publicly available.

However, it is not known yet whether such fragmented corpora is suitable for training

word embedding models.

Our contribution in this chapter is to answer both questions presented above. First, we

systematically evaluate how di�erent parameter settings in�uence the similarity value

distributions of the models. We show that, with the exception of few marginal cases, the

shape of the distributions are very similar, i.e., they only di�er in their mean and standard

deviation values.

Second, we answer the question whether using n-gram corpora is suitable for word

embedding model training, by quantifying the quality di�erences of models trained on

fragmented and full-text corpora. We conduct the experiments on both the Wikipedia

dump and Chelba et al.’s 1-Billion word datasets and their respective fragmented versions.

We conclude that n-gram corpora such as Google Books are valid training data for word

embedding models.

To be able to answer the algorithmic questions of this work, we trained over 400 word

embedding models. We have also created di�erent versions of full text training corpora to

train the models on. All this took more than three months of computing time on a modern

computer.
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3.1. An Investigation of the Influence of the Various
Parameters

As the �rst part of the algorithmic analysis, in this section, we investigate how the di�erent

parameters a�ect the similarity values of word embedding models. These insights are

relevant to understand word embedding models in general. We also require these insights

in the next Chapter 4 for our theoretic analysis.

At the end of the section, we investigate the similarity value distributions produced by the

alternative models introduced in Section 2.1.2.3 as well. We show that their distributions

tend to be very similar to the ones of the word models, but not in every case.

3.1.1. Investigation Objectives

In previous literature every word embedding model have been treated the same, without

taking into consideration that their similarity value distributions, and hence their down-

stream applicability, may be considerably di�erent. For example, if a text classi�cation

application scenario only merges word pairs which are at least 0.7 similar to each other,

it may merge a big amount of word pairs in one model, but only a few pairs for another.

To this end, we need to evaluate how di�erent training algorithms and their parameters

a�ect the similarity value distributions of word embedding models. This has not been

done before in previous literature. We will show that similarities in embedding models can

di�er signi�cantly when trained with di�erent parameters. To be more precise, we show

that their similarity value distributions have statistical characteristics such as di�erent

mean values or di�erent highest similarity values which can be signi�cantly di�erent.

Although the similarity value distributions of the models can signi�cantly di�er in certain

characteristics, we hypothesize that they are all similar in shape, with only their means

and standard deviations depending on the parameters.

Hypothesis 1. While the learning algorithms and parameters in�uence the similarity

value distributions of the models, these distributions are very similar in shape.

We plan to con�rm this hypothesis as follows. First we normalize all distributions, so

that they have 0 mean and 1 standard deviation. We then randomly draw 1000 values

from all distributions and pairwise compare the samples by means of the two-sample

Kolmogorov-Smirnov (K-S) test [54] with 99% con�dence. This test checks if two samples

are drawn from the same distribution.

For the overall understanding of the similarity values and lists in word embedding models,

it is important to know how the model selection and the parameters a�ect the similarities.

Our main contribution in this section is that we conduct the evaluation systematically for

all the parameters and models introduced in Section 2.1.
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3.1.2. Evaluation Setup

In this section, we work with Chelba et al.’s 1 Billion word dataset as training corpus (see

Section 2.4.1). We train all our models using this corpus.

In the following sections, for every parameter, we present our results in the same way. In

particular, we graph results in two �gures. First there are similarity value distributions of

the models. For these plots, we randomly select 10,000 words from the model dictionary

and calculate the similarity values of every other word to them. Then we group the values

in 0.01 intervals and count the number of values in each group. Thus, the x-axis represents

the similarity values from [-1,1], the y-axis the share of the values per group.

The second �gures contain the results from the similarity lists experiments. In these

experiments, we randomly select 10,000 words (v1,v2, . . . ,v10000) from the dictionary of

the model . Their respective word vectors are (vec(v1), . . . ,vec(v10000)).

For each of these words, we compute the most similar one thousand words

(vi,1,vi,2, . . . ,vi,1000) for i ∈ {1, . . . , 10000},

together with their respective similarity values, ti,1 , ti,2 , . . . , ti,1000 , where

ti,j = cos − sim
(
vec(vi),vec(vi,j)

)
,

i.e., ti,j is the similarity value of words vi and vi,j . The list vi,1,vi,2, . . . ,vi,1000 is sorted by

the similarity values in descending order. Because of this sorting for every i , it holds that

ti,j1 ≥ ti,j2 , for any j1 < j2 . We then calculate the average similarity value for every list

index

avд_sim (j) =mean
(
t·,j

)
.

Finally, we plot the results with the x-axis being the list indices j and the y-axis the average

similarities (avд_sim (j)) . Although the avд_sim () function is only de�ned for arguments

that are natural numbers, the plots connect the points to arrive at a smooth curve, for

better visibility.

At this point we are not trying to answer why di�erent parameters a�ect the similarity

values as they do; we are investigating how they a�ect the values. This means that we are

not making qualitative statements, i.e., we are not concerned how parameters a�ect the

quality of the models on di�erent semantic tasks. We are not making any statement that

any model is better or worse than the other one, but only how and to which extent they

are di�erent. In other words, we focus on the hypothesis from Section 3.1.1.
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3.1.3. Model Selection

The �rst parameter whose e�ect we investigate is the model itself. We consider the three

models already introduced, namely Word2Vec SG, Word2Vec CBOW and GloVe. We build

all three models on the full 1 billion words dataset with the same parameter settings. As

we have noted in Section 2.1, these models share the same parameter space. This means

that we can use the exact same parameter setting for the models. The parameters we use

are d = 100, win = 5,dict_size = 100, 000, the default settings for the Word2Vec models

in the gensim package. These values have shown to be a good baseline setting for di�erent

semantic tasks [20, 43].

Figure 3.1.: Learning algorithms similarity value distributions

Figure 3.2.: Learning algorithms similarity values by list indices

Similarity Values . Figure 3.1 shows that the approaches visually di�er much in their

similarity values. The CBOW and GloVe models are almost identical, although GloVe has

slightly higher values. But the SG algorithm generally yields higher values than the other
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two, and only few pairs of words have negative similarities. This implies that, while words

in the CBOW and GloVe model �ll almost the entire space, the SG model learns word

vectors positioned at a high-density area of the space, leaving the remainder of the space

sparse. We test Hypothesis 1. by comparing the normalized distributions pairwise:

K_S_p_value
(
sim_disti , sim_distj

)
> 0.01 for every i, j ∈ {cbow, sд,дlove}.

We conclude that the models are similar in their distributions.

Regarding Figure 3.2, although the GloVe model generally produces higher similarity values

than CBOW, the values by list position are smaller than with both Word2Vec models. At

the end of the top 1000 list, the values of the SG model are the highest ones.

Result Interpretation. Both results indicate that our hypothesis hold. That is, the distri-

butions of the similarity values are indeed very similar, although at the same time they

are visibly di�erent in certain characteristics. This is important: It indicates a certain

robustness of embedding models and generalizability of empirical results.

3.1.4. Dimensionality

When measuring similarity with the cosine distance, the dimensionality of the embedding

model is a parameter that strongly a�ects its similarity values. In this section, we train

every model with the Word2Vec CBOW algorithm with di�erent dimensionalities on the

full corpus, with win = 5, dict_size = 100, 000 .

Figure 3.3.: Dimension size similarity value distributions
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Figure 3.4.: Dimension size similarity values by list indices

Similarity Values. Figure 3.3 shows that the higher the dimensionalities of the model are,

the narrower are the similarity distributions. We have expected this, as vector spaces with

lower dimensionality are denser when �lled with 100,000 words than those with higher

dimensionality. This leads to closer words and higher similarity values. In contrast to the

visibly di�erent distributions, we again see that the distributions are similar, as the K-S

test does not distinguish the normalized distributions, with 99% con�dence.

Figure 3.4 is even more straightforward - the higher the dimensionality, the lower the

similarity values in the similarity lists are.

Result Interpretation. The dimensionality parameter con�rms our hypothesis in a man-

ner that we deem clearer than the previous experiments. Namely, the models are funda-

mentally very similar and at the same time di�erent. The average and highest similarity

values are very di�erent, but the distributions only di�er in their standard deviations. This

means that they are fundamentally very similar.

3.1.5. Dictionary Size

In this section, we evaluate how the dictionary size of the models a�ects their similarity

values and lists. We train �ve models with di�erent dictionary sizes with the Word2Vec

CBOW algorithm on the full corpus, with d = 100, win = 5 .

Similarity Values. Figure 3.5 shows that the dictionary size does not a�ect the similarity

value distribution of the models up to a certain size. With very large dictionaries however,

the numerous noise words (typos, unmeaningful words, contraction, etc.) have a very

strong e�ect on the distribution. The same e�ect is visible in the dimensionality experiment,

i.e., when considering many words in the dictionary, the 100 dimensional space is not
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large enough for the models to distribute them su�ciently. This leads to wider similarity

value distributions and even to an asymmetric distribution with the largest dictionary.

Figure 3.5.: Dictionary size similarity value distributions

Figure 3.6.: Dictionary size similarity values by list indices

The K-S test con�rms the similarity distribution of the 2 million word dictionary model to

signi�cantly di�er from the others, as

K_S_p_value (sim_dist2M , sim_disti) < 0.01 for every i ∈ {5k, 25k, 100k, 500k}.

Let us now look at the similarities of items with the same position in the di�erent similar-

ity lists in Figure 3.6. The smaller dictionary models naturally have consistently lower

similarity values. This is because there are fewer words which are close to each other.
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Result Interpretation. This is the only evaluation where one distribution does not have the

bell shape observable in all other experiments. This is a consequence of an unreasonably

large dictionary. The models are not able to successfully embed the words in the limited

space. Apart from this, even in a 500 thousand word dictionary the hypothesis hold, as the

distributions are similar.

3.1.6. Corpus

Now we investigate how the size of the corpus a�ects similarity values and lists. We

compare �ve di�erent models which are trained on di�erently sized parts of the 1 billion

word benchmark dataset. Sampling is performed by retaining di�erent percentages of the

1 billion words data used for the training. Every other parameter of the models is identical.

We train them with the Word2Vec CBOW model, with d = 100, win = 5,dict_size =
100, 000.

Figure 3.7.: Corpus size similarity value distributions

Similarity Values. According to Figure 3.7, the bigger the corpus, the narrower the dis-

tribution is. We can see that using 25% of the corpus is almost identical to using 50% ,

and very close to using the entire corpus for training. We test the normalized similarity

distributions pairwise with the K-S test. Every p-value again is above 0.01. This means

that the models are very similar.

Figure 3.8 shows that at the top 10 similar words there almost is no di�erence between

the models. For higher indices, models trained on smaller corpora generally have higher

similarity values, but the three models trained on bigger corpora are almost identical.
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Figure 3.8.: Corpus size similarity values by list indices

Result Interpretation. We conclude that models trained on more than 1 GB (which is 25%

of the full corpus in this case) of text data or approximately 250 million words have almost

identical similarity value distributions. All distributions are similar, but visibly di�erent at

the same time, for smaller corpus sizes in particular. This con�rms our hypothesis.

3.1.7. Window Size

In this section, we train every model with the Word2Vec CBOW algorithm on the full 1

billion word corpus, with d = 100, dict_size = 100, 000 and �ve di�erent window sizes.

Figure 3.9.: Window size similarity value distributions

Similarity Values. Figure 3.9 shows that there is only a slight di�erence of similarity

values between models trained with di�erent window sizes. It is noteworthy that, when

the window size is 1, the distribution has a higher mean. This implies that the model has an
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area of higher density in the word vector space. The distributions are very similar without

even normalizing them. The pairwise K-S test con�rms this, as again every p-value is

above 0.01. Consequently, the normalized distributions are almost identical.

The similarities corresponding to di�erent positions in the similarity lists in Figure 3.10

tell us that the di�erences between the models are very small. Still we can see that the

smaller the window, the higher the similarity values are.

Figure 3.10.: Window size similarity values by list indices

Result Interpretation. These results are very similar to the ones for dimensionality, with

both �gures consistently changing with the parameters, only at a smaller scale in this

current case. Only the smallest window size parameter, i.e., win = 1 , interferes with

the similarity distribution in an inconsistent manner, but it also changes the mean of the

distribution.

3.1.8. Optimization Function

When training any model with neural networks, one has to choose an optimization

function which approximates the gradient. In our case, for word embedding models, more

precisely for Word2Vec models, as they are the ones using neural networks, there are two

optimization functions used during training. First, there is Negative Sampling (ns), which

we have used in this algorithmic analysis section so far, and, second, Hierarchical Softmax

(hs) [84, 85]. We have explained the details on the di�erences between the functions in

Section 2.1.2.2. So far we have used Negative Sampling, because it is the one which is

closely related to matrix factorization, as we have mentioned earlier, and therefore to the

GloVe model [67]. Next, even though the margin is small, it constantly outperforms the

Hierarchical Softmax function on word similarity tasks [8]. However, in this section we are

not concerned with the quality of the models, but their similarity values. Hence we train

models di�ering only in their optimization functions and evaluate the similarity value

distributions of the resulting models. We train every model with the Word2Vec CBOW

algorithm on the full 1 billion word corpus, with d = 100,win = 5,dict_size = 100, 000 .
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Similarity Values. Figures 3.11 and 3.12 show that there are visible di�erences in the

similarity value distributions between models trained with di�erent optimization functions.

Although the K-S test con�rms that the distributions are very similar when normalized, it

is noteworthy that the resulting p-value is only slightly higher than 0.01. This indicates a

certain di�erence between the two distributions. Figure 3.12 shows that with Negative

Sampling the model generally has higher similarity values at the top of the similarity lists.

Figure 3.11.: Optimization function similarity value distributions

Figure 3.12.: Optimization function similarity values by list indices

Result Interpretation. The results show that changing the optimization function a�ects

the similarity value distributions of the models. Although the distributions are quite similar,

we can deduce a more signi�cant structural di�erence from the low K-S test score than the

visible di�erences would suggest. The similarity of the two distributions explains the small

di�erence in the evaluation test set scores of models trained with di�erent optimization

functions, which we have referred to above.

65



3. Algorithmic Analysis of Word Embedding Models

3.1.9. Iteration Number

The training of a word embedding model has several iterations. In one iteration, the

learning algorithm passes through the entire training corpus. For every word in the corpus,

the algorithm updates the respective word vectors. So far in this algorithmic analysis

chapter, we have trained the word embedding models with �ve iterations, which is the

default value in our model building toolkit. In this section, we are interested in whether and

how the iteration number a�ects the similarity value distributions of the word embedding

models. We train every model with the Word2Vec CBOW algorithm on the full 1 billion

word corpus, with d = 100, win = 5,dict_size = 100, 000 , with �ve di�erent iteration

numbers.

Figure 3.13.: Iteration number similarity value distributions

Figure 3.14.: Iteration number similarity values by list indices

Similarity Values. We can see in Figures 3.13 and 3.14 that the more we iterate through

the corpus, the narrower the similarity value distributions and the lower the similarity
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values at the top of the similarity lists become. However, the di�erences are quite small.

For example, between seven and ten iterations there is almost no visible di�erence. The

distributions are very similar without even normalizing them, and the K-S test con�rms

that the normalized distributions are almost identical.

Result Interpretation. These results are almost identical to the ones for the corpus

size, with both �gures consistently changing with the parameters. We conclude that the

similarity value distributions change only slightly with more than �ve iterations. This

con�rms our original choice of the iteration number.

3.1.10. Generalization with Additional Embedding Models

Now we turn to the alternative models. We evaluate the similarity distributions produced

by the fastText and Doc2Vec models. To do so in this section, we train the word embeddings

as well as the fastText embeddings (charvec) on the Wikipedia dump. The Wikipedia articles

are shu�ed and trimmed to contain approximately 1 billion words. We then aggregate

these charvec vectors to word vectors (wordvec). For Doc2Vec we learn two representations:

First, for each sentence in the Wikipedia corpus, and second, for each Wikipedia article.
We group the models by their learning algorithms, i.e., CBOW-like models and SG-like

models. All models are trained with d = 100, win = 5 . The distributions are calculated

using the full dictionary of the models.

Figure 3.15.: CBOW models similarity value distributions

CBOWSimilarity Values. Figure 3.15 shows the similarity value distributions of the CBOW

models. We can see that their visual appearances are very di�erent. It is interesting that
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this is not the case in the next section for the SG models. Hence, we argue that the CBOW-

like algorithms cause the distortion in the additional models, not the models themselves.

Compared to the Word2Vec CBOW model, only the charvec model distribution is similar

according to the K-S test, with 99% con�dence, when normalized. In contrast, the other

three models are very di�erent - all three of their K-S test p-values are smaller than 10
-4

.

It is also noteworthy that the average similarity values are very di�erent for the models.

They are 0.0 for the charvec model, 0.19 for the wordvec model, 0.37 for the article and

0.53 for the sentence model. As explained before, the higher this average value is, the

more concentrated the vectors are in one part of the space.

Figure 3.16.: CBOW models similarity values by list indices

At the top of the similarity lists, as seen in Figure 3.16, every model is very similar, except

for the charvec model. The charvec models top similarity values are decreasing right away

from the start. This is a pattern we have not seen in our evaluations yet.

Result Interpretation. The results show that di�erent models have di�erent similarity

value distributions. Only the charvec model is visually similar to the original Word2Vec

CBOW model. Even after normalization, all other models are signi�cantly di�erent, even

though with a di�erent margin.

SG Similarity Values. Figures 3.17 and 3.18 show the results for the SG models. We can

see that, again, the distributions are visibly di�erent, and, except for the charvec model,

they also are not like their respective CBOW model distributions. According to the K-S

test, the charvec and wordvec models are almost identical to the original SG model when

normalized. Both the article and sentence models also are similar to the original SG model

to some extent. Hence, their respective K-S test p-values are only slightly lower than 0.01.

This means that, although we have found signi�cant evidence that the distributions are

di�erent, there are certain similarities between these distributions and the original SG

distribution. It is interesting to note that these model distributions are not distorted as

they previously were in the CBOW versions. We can also see similarity value averages for
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these models di�erent from the ones for the respective CBOW models except, again, for

the charvec model. The similarity values at the top of the similarity lists are very similar

to the respective values of the CBOW models.

Figure 3.17.: SG models similarity value distributions

Figure 3.18.: SG models similarity values by list indices

Result Interpretation. The results show that the similarity value distributions of the

models highly depend on the learning algorithm used, i.e., CBOW or SG. Only the charvec

model is similar to the respective CBOW model. However, in contrast to the CBOW

models, SG models are very similar to the original Word2Vec SG model. We conclude

that the hypothesis also hold for the SG models, as their similarity value distributions are

visibly di�erent, but at the same time very similar when normalized.
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3.1.11. Summarizing Parameter E�ects

Our evaluations in this section have con�rmed our hypothesis. We have shown that di�er-

ent algorithms and parameter settings indeed a�ect the value distributions of embedding

models signi�cantly, but at the same time they have the same abstract shape. All value

distributions of the models are bell-shaped, except for one unrealistic setup of the original

model and for several models not based on words.

To our knowledge, such systematic experiments have not been done for embedding models

before. For systematic evaluations of the e�ect of parameters on the quality of word

embedding models see Hill et al. [42], Altszyler et al. [2], Chiu et al. [20] and Lin et

al. [71]. These studies evaluate how the corpus size, window size and dimensionality a�ect

the results of the models on similarity and analogy tasks. We will show in Section 4.2 that

all these evaluations su�er from one thread of validity: They do not take the size of the

similarity values into consideration when comparing the similarity of two word pairs.
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3.2. An Investigation of the Influence of Fragmented Corpora

As the second part of the algorithmic analysis in this section, we investigate how the

training of word embedding models on fragmented corpora a�ects the quality of the models.

First, we present our investigation objectives. These are intuitive research questions

regarding the fragmentation and minimum count parameters of the training corpora.

Then, we present our evaluation setup, where we describe experiments to measure how

much fragmentation and minimum count settings reduce the quality of the corresponding

word embedding models. Finally, we conduct these experiments on word embedding

models trained on systematically di�erent training corpora, and evaluate the results.

3.2.1. Investigation Objectives

In order to make our evaluation results more intuitive we present three research questions.

Our objective in this section is to answer these questions by evaluating word embedding

models trained on di�erently fragmented corpora.

Question 1. What is the smallest number n for which an n-gram corpus is good for the

training of embedding models?

Rationale behind Question 1. The size of any n-gram corpus highly increases with large

n. Hence, it is important to know the smallest value that is expected to still yield good

results.

Question 2. How does the minimum count parameter a�ect the quality of the models?

How does this result compare to the e�ect caused by the fragmentation?

Rationale behind Question 2. Having answered the �rst question, we will be able to

quantify the e�ect of the fragmentation. However, it is necessary to study the e�ect of the

second parameter as well, in order to quantify the applicability of n-grams for embedding

comprehensively. In other words, we want to compare the e�ects of both parameters; we

will be able to give recommendations for both parameters.

Question 3. How does the quality loss of models trained on fragmented corpora of size n
or with high minimum count parameter manifest itself in the embedding models?

Rationale behind Question 3. By answering Questions 1 and 2, we are able to quantify the

e�ect of both parameters. We hypothesize that the parameters a�ect the quality of the

models di�erently, and that we are able to observe this in the word vectors themselves.
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The rationale behind our hypothesis is that large minimum count values might eliminate

various meaningful words from the vector space. Fragmentation in isolation however does

not have the e�ect that a word is lost. Hence, a quality loss must manifest itself di�erently,

which might be observable.

3.2.2. Evaluation Setup

In this section we present the setup of our experiments. First, we introduce the training

corpora and evaluation test sets used to train and evaluate word embedding models. Then,

we validate the goodness of our fragmentation method.

Full-Text Corpus Selection. We work with two full-text corpora: the 1 Billion word dataset

and the Wikipedia dump sampled to contain approximately 1 billion words (see Section

2.4.1). For both corpora we create their respective n-gram versions in the Google Books

format, with n=2,3,5,8, cf. Section 2.3. The fact that we use two of the largest available

raw-text corpora reduces the possibility that di�erent qualities of embedding models are

due to the underlying corpus and not the fragmentation itself.

Baseline Test Sets. In this chapter we work with the similarity and analogical reasoning

baseline test sets introduced in Section 2.4.2. We evaluate every model on each one of the

datasets.

Validation of the Fragmentation Method. Intuitively we assume that the more often the

training algorithm uses a word to establish its context in one iteration, the better the

model becomes. Namely, the algorithm �nds the �nal position of every word faster, i.e.,

convergence is faster. It follows from the de�nition of the fragmentation method that an

n-gram corpus is n-times the size of the raw text it is created from. In other words, every

word of the raw text appears n times as often in the fragmented one. When training the

embedding models, every word is processed n times more often in every iteration when

the fragmented corpus is the training data. The question is whether this characteristic of

the corpus makes a comparison between models trained on them biased or not.

To answer this question, we train several models on the full-text corpora, with di�erent

numbers of iterations, and evaluate if they become better when the training algorithm uses

more iterations. If this was the case, it would mean that fragmented corpora may have an

advantage over the full-text. Figure 3.19 shows that this is not the case: With more than 5

iterations the model does not get better. This means that, with the same iteration number

for any training, and with both the full-text and the fragmented versions as training data,

the quality of the models trained on fragmented corpora is not higher. Therefore, in this

chapter we train every model in 5 iterations.
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Figure 3.19.: The average score on all the evaluation test sets of the models trained with

di�erent numbers of iteration

3.2.3. Evaluation Results

In this section we evaluate and answer the questions we presented previously in Section

3.2.1. We dedicate a subsection to each question. In the �rst two sections, we give an

overview of the results using the Wikipedia corpus. The results for the 1-Billion word

corpus are almost identical. For brevity, we do not show all results for this corpus in this

section, but it can be found in the supplementary material.

3.2.3.1. Answering Question 1: Minimal Meaningful N-gram Size

Question 1. What is the smallest number n for which an n-gram corpus is good for the

training of word embedding models?

In order to answer Question 1. we quantify the in�uence of the training corpus fragmenta-

tion on the quality of the word embedding models. We use the full n-grammed versions of

the corpora to train the models, i.e., we do not use a minimum count parameter in this

section.

Results for the Wikipedia Corpus. Figure 3.20 shows the result for the models trained on

the Wikipedia corpus.
1

The interpretation of the plots is as follows: We evaluate a speci�c

model on every test set introduced in Section 2.4.2. We calculate the average scores for

this model for both the similarity and analogy test sets. We do this for every trained model.

We group the results by the window-size parameter of the models and plot the average

values. So every plot shows the calculated average scores of such models which only di�er

1
Note that we use di�erent scales for the �rst and the second two subplots.
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in the fragmentation of their training corpus. As explained in Section 2.3, it is meaningless

to train models on n-grammed corpora with window-size parameter win > n.

Figure 3.20.: The average score of models trained on di�erently fragmented Wikipedia

corpora

The detailed results can be found in Tables 3.1 - 3.4. The numbers are the scores, de�ned in

Section 2.4.2, of the models on di�erent tasks. We use a naming convention for the models.

A model wiki_n_win is trained on the n-grammed Wikipedia corpus, with win being the

window size. f stands for the full corpus. If there is a third parameter in the name, it is

the minimum count threshold (if there is no third parameter, it means the minimum count

is 0, i.e., we use all the n-grams).

model google msr rg-65 ws353 rare simlex mturk men

wiki_2_1 0.311 0.449 0.640 0.485 0.224 0.289 0.645 0.608

wiki_3_1 0.422 0.533 0.657 0.557 0.305 0.318 0.595 0.635

wiki_5_1 0.483 0.533 0.652 0.566 0.341 0.293 0.639 0.651

wiki_8_1 0.485 0.510 0.648 0.544 0.320 0.297 0.633 0.640

wiki_f_1 0.475 0.545 0.676 0.612 0.340 0.350 0.638 0.675

Table 3.1.: Models trained on di�erently fragmented Wikipedia corpora with win = 1

model google msr rg-65 ws353 rare simlex mturk men

wiki_3_2 0.413 0.545 0.668 0.554 0.316 0.308 0.605 0.625

wiki_5_2 0.518 0.547 0.668 0.585 0.351 0.300 0.643 0.656
wiki_8_2 0.540 0.551 0.680 0.583 0.352 0.307 0.654 0.653

wiki_f_2 0.509 0.534 0.694 0.613 0.355 0.316 0.619 0.653

Table 3.2.: Models trained on di�erently fragmented Wikipedia corpora with win = 2
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model google msr rg-65 ws353 rare simlex mturk men

wiki_5_4 0.544 0.569 0.663 0.589 0.367 0.304 0.638 0.658

wiki_8_4 0.579 0.570 0.697 0.609 0.371 0.307 0.657 0.669

wiki_f_4 0.554 0.525 0.731 0.620 0.377 0.315 0.645 0.674

Table 3.3.: Models trained on di�erently fragmented Wikipedia corpora with win = 4

model google msr rg-65 ws353 rare simlex mturk men

wiki_8_7 0.573 0.564 0.686 0.609 0.347 0.315 0.648 0.672

wiki_f_7 0.588 0.518 0.746 0.651 0.366 0.317 0.656 0.697

Table 3.4.: Models trained on di�erently fragmented Wikipedia corpora with win = 7

The �gure and the tables reveal that fragmentation does in�uence the quality of the models

signi�cantly. For �ve out of the six the similarity test sets, (WordSim353, MEN, Simlex999,

Rare Words, RG-65), fragmentation reduces the quality of the models for any value of

the window-size parameter win almost linearly. However, the models trained on 5-gram

versions are generally only slightly worse than the ones trained on the 8-gram corpora.

For the Mechanical Turk test set, models do not necessarily get worse with fragmentation.

The best results for di�erent values of win come from the full-text corpora and the 8-gram

variants, except for win = 1, where the best model is trained on 2-grams.

For the analogy test sets, the results are not as straightforward. Generally, the same

observation holds as for the similarity test sets, namely that fragmentation reduces the

quality of the models, however there are a few exceptions. As one already knows from

earlier comparisons [68], models trained on full-text corpora have better/worse results

on the Google/MSR test sets, with an increased window size parameter. This does not

hold for the fragmented corpora. For the MSR analogy test set, the models get better when

increasing the window size, until win = 4, and get worse only slightly with win = 7. It is

true that the best models are trained on the 5 and 8-gram variants and the full-text corpora

for any window size. For models with smaller win however, the results do not always get

better when the corpus is less fragmented. For example, the very best model for the MSR

test set is trained on 8-grams, not the full-text.

Generalization of Results. To generalize the results, we measure the overall average qual-

ity of the models trained on the di�erently fragmented corpora. Then we compare the

results to ones computed on the full-text. To this end, we calculate the averages of the

previous results, grouped by training corpus fragmentation. With this, we can see how

much worse the fragmentation itself makes the models in general, not just for di�erent

window sizes separately. Table 3.5 shows the results. The total column is the average of

the similarity and analogy columns. To make the resulting numbers more intuitive, we do

this in relative terms, compared to the results with the full-text corpus. For example, on
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analogical reasoning tasks, the models trained on 3-grams are 7.5% worse than the models

trained on full-text with the same window size.

Formally, let WS_k_(i, j),k ∈ {1, . . . , 6} and AR_l_(i, j), l ∈ {1, 2} be the scores of the

model on the kth word similarity and lth analogical reasoning task trained on the i-gram

Wikipedia corpus with window size j. f refers to the full-text corpus. For a speci�c task,

WS_2 for example, we calculate the average decrease in quality caused by the fragmentation

as follows. For every i we calculate Di� _WS_2(i):

Di� _WS_2(i) = 1 − Averagej
(
WS_2i,j

WS_2f ,j

)
.

These numbers show how much worse the fragmented corpora are on the speci�c task

on average. To reach our �nal results, shown in Table 3.5, we average these numbers for

every i by the nature of the task (similarity, analogy) and for every task overall.

It is interesting that, on the analogy tasks, the models trained on 5 or 8-grams perform

only slightly worse than the ones trained on full-text corpora. This can be a result of

the greater number of word-context pairs these models consider during evaluation, as

explained in the examples in Section 2.3.

Wikipedia total similarity analogy

2-gram -20.2% -14.4% -26.0%

3-gram -6.9% -6.4% -7.5%

5-gram -2.8% -3.6% -1.9%

8-gram -2.5% -3.4% -1.6%

Table 3.5.: Average quality loss due to fragmentation compared to the full-text on the

Wikipedia corpus

Result Interpretation. We conclude that word embedding models built on fragmented

corpora are worse than models based on full-text, but the di�erence is not much. Word

embedding models trained on 2-gram corpora are 20.2% worse overall than models trained

on full-text, a signi�cant drop. However, the 3-gram version is only 6.9% worse. The

5-gram version and the 8-gram version are almost tha same, they are only 2.8% and 2.5%
worse, respectively. This answers Question 1., i.e., a 5-gram corpus is the most fragmented

corpus which is almost as good as models trained on full-text, and the 3-gram version is

also not much worse. This insight is of practical relevance as in the English version of the

Google n-gram data, the 3-gram dataset is the largest one. This is due to the minimum

count parameter of 40 used by Google, making the 4-gram and the 5-gram dataset sparse.

This motivates studying the minimum count parameter further. A general takeaway for

other researchers when training word embedding models on n-grams is that using at

least 3-grams for training leads to good models and using at least 5-grams leads to almost

identical models as training on full-text.
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Insight Confirmation Using a Di�erent Text Corpus. So far, our results only rely on one

corpus. Even as Wikipedia is one of the largest and most frequently used corpora, it might

be biased. To generalize, we verify our insights using another large corpus. Our procedure

is the same as before. We only list aggregated results here, the full list of tables can be

found in the supplementary material. We have calculated the numbers for all models

trained on the 1-Billion word dataset and its fragmented versions. Table 3.6 shows that the

numbers are generally very similar to the previous ones with Wikipedia. So the decline in

quality does not depend on the underlying text corpus, but on the fragmentation.

1-Billion total similarity analogy

2-gram -19.3% -15.0% -23.6%

3-gram -5.4% -6.5% -4.3%

5-gram -1.8% -2.9% -0.8%

8-gram -1.3% -2.2% -0.4%

Table 3.6.: Average quality loss due to fragmentation compared to the full-text on the

1-Billion word corpus

3.2.3.2. Answering Question 2: E�ect of the Minimum Count Parameter

Question 2. How does the minimum count parameter a�ect the quality of the models?

How does this result compare to the e�ect caused by the fragmentation?

In the following, we aim at quantifying the in�uence of the minimum count parameter

and investigate whether there is an interaction with the fragmentation. Our procedure

is the same as in the prior section. First, we aggregate the raw results obtained from the

Wikipedia corpus and all models built on it. Then we draw �rst conclusions and �nally

verify the insights using the second corpus.

Results for theWikipedia Corpus. Figure 3.21 shows the average quality of models trained

on the same n-gram corpus with di�erent minimum count parameter. The results indicate

that an increase of this parameter usually leads to signi�cantly worse models. However,

there is one exception, where the minimum count parameter is 2 and the corpus is the

2-grammed version of Wikipedia. For this case the models actually gets slightly better on

the analogy task using the minimum count threshold. The reason is that we do not lose

too many 2-grams with the thresholding in this case, and those which we do lose may bias

the model on the analogy tasks. However, on the similarity tasks the models get slightly

worse, which means we lose meaningful training data as well. The reduction in quality is

even more severe with n-gram corpora with a big value of n, such as 5 or 8-grams. We can

see this in exemplary Tables 3.7 and 3.8. This is because these corpora have fewer high

match count n-grams than the more fragmented 2 or 3-gram corpora.
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Figure 3.21.: The average scores of models trained with di�erent minimum count parameter

on di�erently fragmented Wikipedia corpora

We see that for the n-gram corpora with a large n, even the smallest minimum count

threshold 2 brings down the quality of the models by much, which is not the case for

smaller n values (especially for the analogy task). For higher minimum count parameter

values, models have signi�cantly lower quality. Detailed evaluation results can be found

in the supplementary material.

model google msr rg-65 ws353 rare simlex mturk men

wiki_5_2_0 0.518 0.547 0.668 0.585 0.351 0.300 0.643 0.656
wiki_5_2_2 0.358 0.426 0.581 0.537 0.154 0.237 0.544 0.558

wiki_5_2_5 0.155 0.236 0.331 0.398 0.053 0.148 0.476 0.382

wiki_5_2_10 0.087 0.138 0.337 0.284 0.045 0.087 0.427 0.290

Table 3.7.: Models trained on the 5-gram Wikipedia corpora, win = 2, with di�erent

minimum count parameter

model google msr rg-65 ws353 rare simlex mturk men

wiki_2_1_0 0.311 0.449 0.640 0.485 0.224 0.289 0.645 0.608
wiki_2_1_2 0.307 0.431 0.624 0.490 0.196 0.274 0.625 0.596

wiki_2_1_5 0.203 0.370 0.489 0.415 0.128 0.266 0.571 0.537

wiki_2_1_10 0.113 0.213 0.404 0.254 0.090 0.235 0.414 0.422

Table 3.8.: Models trained on the 2-gram Wikipedia corpora, win = 1, with di�erent

minimum count parameter

Summing up, for corpora of a size such as the Wikipedia dump, any threshold for the

minimum count of the n-grams signi�cantly reduces the quality of the word embedding

models. One exception is when the corpus is highly fragmented with the smallest minimum

count parameter.
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Generalization of the Results. We generalize the aforementioned observations by com-

puting the average quality loss for the models, just as in Section 3.2.3.1. The numbers

in Table 3.9 are for the Wikipedia dataset. With the smallest minimum count threshold

already, the models get signi�cantly worse. On average, even for the smallest parameter

value of 2, model quality decreases by 23.6%. For the 1-Billion word dataset, the results

again di�er only slightly. This again con�rms our hypothesis that the quality di�erences

are not corpus-dependent.

Min. count total similarity analogy

2 -23.6% -19.2% -28.0%

5 -56.5% -47.9% -65.1%

10 -72.3% -64.0% -78.6%

Table 3.9.: Average quality loss caused by the minimum count parameter parameter on

Wikipedia

Implications for theGoogleN-gramCorpus. So far, the question how to transfer the results

from the Wikipedia and the 1-Billion corpus to the Google n-gram corpus remains open.

We aim to answer whether we lose any meaningful information in the Google 5-gram

corpus, because of the, at �rst sight, large threshold value of 40. We assume that even

for such comprehensive text corpora, including the Wikipedia or the 1-Billion corpus, all

the extracted n-grams are contained in the Google n-gram data as well, despite its large

threshold value. We verify this hypothesis by comparing the number of existing 5-grams

in the Google n-gram corpus (1.4 Billion) with those in the full Wikipedia (1.25 Billion).

A systematic analysis of the data reveals that more than 99% of the 5-grams included in

the Wikipedia corpus is included in the Google corpus as well. The ones which are not

usually are typos or contain words which have not been present in the language until

2008 (the last year in the Google dataset). This holds for all n-gram corpora. This means

that we do not lose any relevant information if we train our models on the Google n-gram

dataset, despite its high minimum count threshold value. So it is a suitable training corpus

for word embedding models.

Result Interpretation. To conclude, we can now answer Question 2. We see that the

minimum count parameter reduces model quality. This conclusion depends on the size of

the corpus . For smaller corpora, the e�ect will be even more pronounced. For such sizes

of the training data we do not recommend to use any minimum count threshold when

training word embedding models. In combination with the results from Section 3.2.3.1, we

conclude that the Google Books dataset is valid training data for word embedding models.

In general, one can expect good results using the 5-grams as training data, but anything

above 2-grams could be used.
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3.2.3.3. Answering Question 3: The Reason for the Quality Loss

Question 3. How does the quality loss of models trained on fragmented corpora of size n
or with high minimum count parameter manifest itself in the embedding models?

Regarding Question 3, we start with an explanation why the increase of the minimum

count parameter decreases the quality of the word embedding models. We have observed

that in almost every case this has been a consequence of certain infrequent words of the

evaluation test sets not occurring in su�ciently many n-grams. When analyzing the task

speci�c results, we have seen that result quality on the rare words test set drops instantly

even with the smallest threshold value. For other test sets on the other hand (WordSim353,

RG-65 for instance) which include highly frequent words almost exclusively, results are

not much worse. Low-frequency words, such as clergyman or incommensurable, are not

even included in the dictionary of models with any minimum count parameter. Other

more frequent words, such as submariner or uncompetitive, are included in some models,

but not in those trained using 5 or 10 as minimum count. In summary, the reduced model

quality generally is a consequence of the less frequent words not being trained su�ciently

or even not at all. Therefore, they do not appear in the dictionaries of the model.

Corpus 2-gram 3-gram 5-gram 8-gram Full-text

Avg. movement 0.018 0.016 0.011 0.010 0.006

Table 3.10.: Average movement in cosine distance of the word vectors with one extra

iteration

The fragmentation of the corpora causes a quality loss for a di�erent reason. Every word

of the evaluation test sets is included in the dictionary of every model, but fragmentation

causes a mix-up of the word vectors, cf. Section 2.3. As explained, each word is trained

several times when fragmented corpora are used, and most of the time the context of the

word, as considered by the algorithm during training, is not the full context. One can

perceive this as changing every word vector several times in every iteration, but never

to the exactly right direction (as the full context would do), but to suboptimal directions

corresponding to the restricted contexts. To quantify this e�ect, we have measured the

average movement of a word vector when we iterate through the training data one extra

time, after training the models. See Table 3.10; the numbers are average cosine distances.

The lower the corpus quality is, the more the vectors move in the additional iteration.

As expected, the numbers are small compared to the average word vector distances: The

average distance of a word and its closest neighbor is around 0.2 in a 100-dimensional

model, see Section 3.1. The results seem to con�rm our intuition that, with bad corpora,

vectors move in suboptimal directions to a higher extent, ultimately resulting in worse

models.
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As the second part of our three-way analysis of word embedding models, in this chapter

we aim at understanding word embedding models better from a theoretical point of view.

Our �rst evaluation in this chapter is regarding the most fundamental property of word

embedding models: their similarity values. The main question of our theoretic analysis is

what the similarity values actually mean in word embedding models? Previous works have

used the similarity values, but never answered questions such as: ’Are word-pairs with

low values of similarity comparable to each other?’ or ’When is it meaningful intuitively

taking the top N most similar words for a certain word and deem them similar?’ Without

fully understanding such question any study relying on comparisons of similarity values

might miss important observations and may lack validity.

To answer such questions, we need to evaluate how similarity values behave in di�erent

word embedding models, trained with di�erent parameter settings. This is exactly what

we did in the previous chapter in Section 3.1. Based on the results, in this chapter we

identify meaningful similarity thresholds for both similarity values and similarity lists.

These thresholds are not general, but they should be calculated for every individual model.

As we have seen previously, all models are fundamentally very similar in their similarity

value distributions. Hence, we are able to use the same threshold identifying method we

present in the following sections for every individual model.

The fact that it is not always meaningful to compare two word pairs by their similarity

values may cause implications in the qualitative evaluation of word embedding models as

well. As our second contribution in this chapter, we propose a similarity threshold aware

evaluation method of word embedding models. We evaluate the di�erences between our

and the baseline method used in previous literature. We show that excluding incomparable

word pairs from the benchmark test sets does change the results to a visible extent.
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4.1. Similarity Value Thresholds of Word Embedding Models

The core contribution of this section is to �nd meaningful thresholds both for similarity

values and for similarity lists for a given word embedding model. This means, we intend

to be able to make statements such as "In this model above 0.4 similarity every word pair

should be considered similar." or "In this model the top 25 most similar word for a given

word are always similar to it."

The results of the algorithmic analysis chapter clearly indicates, that it is not possible to

�nd general value and list thresholds that are reasonable for all embedding models, only

for individual ones. We present two intuitive examples as well to a�rm this statement in

the following.

Example 1. Think of two models, Model A with an average similarity between two words

of 0.0, and Model B with an average of 0.1. This means that the similarity value is negative

for roughly half of the pairs in Model A and for roughly 1% of the pairs in Model B. If one

now assumed that a negative similarity value implied dissimilarity between the words of

the pair, this assumption would have a highly di�erent meaning for the two models.

Example 2. Again think of two models. The highest similarity score of a word pair is 0.9 in

Model A and 0.6 in B. Saying that a pair with a similarity above 0.7 is de�nitively similar

could be meaningful in Model A, but makes less sense in B. This is because there is no

word pair with such a similarity value in this model.

These examples show that general similarity thresholds do not exist. Instead, in this

section, we propose a method to �nd meaningful similarity value thresholds for a given

model and baseline (e.g., WordNet). Then, we examine the validity of this method using

various models.

4.1.1. Investigation Objectives

Reviewing various approaches [30, 16] has revealed that their evaluations compare sim-

ilarity values and list indices without taking their size into account. This means that

they deem, say, two word pairs with similarity values 0.8 and 0.7 just as di�erent as ones

with values -0.2 and -0.1. But there is no examination of the distribution of the similarity

values of word vectors indicating that this is reasonable. In fact, it turns out that a more

di�erentiated perspective is required. From Section 3.1, we already know the distribution

characteristics of the similarity values of the word vectors, for example their average and

highest similarities. But we do not yet know how vector similarity corresponds to word

similarity, such as similarity values in WordNet[33].
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WordNet is a large lexical database of English. Words are grouped into synonym groups

that are connected using well de�ned semantic or lexical relations, such as word A is "type

of" word B. The whole database contains more than 117,000 synonym groups.

In this section, we examine experimentally whether meaningful thresholds for similarity

values exist. To make our investigation intuitive we present explicit research questions in

the following. We answer these questions in the later parts of this section.

Question 1. Are low values of similarity comparable to each other?

Question 2. If Words A and B have a higher similarity value than A and C (say 0.2 for A

and B, 0.1 for A and C), is A more similar to B than to C?

Question 3. Does being in the top 100 list of most similar words always imply similarity,

or does not being in the top 500 list always imply dissimilarity?

Question 4. What are meaningful threshold values, and how to �nd them?

4.1.2. Evaluation Setup

Our procedure is similar to the one in Section 3.1. The main di�erence is that we compare

the results to a baseline, WordNet in this case. We conduct two series of experiments, one

for similarity values and one for lists. In both cases, we calculate word pair similarity

aggregates, one grouped by values, the other one grouped by list indices, based on WordNet

similarity scores. We do so in order to understand to what extent similarity values are

meaningful in embedding models. We use the Leacock and Chodorow (LCH) [64] similarity

measure in WordNet for the evaluation. We have chosen this measure because, according

to the taxonomy of [82], it is not corpus-based, but knowledge-based. This means that it

does not use any external resource or corpus, but only the WordNet ontology itself[82].

It also is a popular, highly researched measure and has proven to be a useful baseline

for semantic similarity[18, 82, 17]. The LCH measure scores are on a [0, 3.64] scale, with

a score of 3.64 corresponding to identical words. For more information on similarity

measures in WordNet see Meng et al. [79].

We have calculated the similarity value distribution of the LCH measure just as we did in

Section 3.1 for the embedding models. Figure 4.1 shows the distribution. For the sake of

completeness, we compare the normalized LCH distribution to the CBOW and SG model

distributions with the K-S test, as we have done in Section 3.1. We �nd that the LCH

distribution can be distinguished from the distributions of the word embedding models

with 99% con�dence, i.e., they are not very similar.
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Figure 4.1.: LCH score distribution

We have implemented our experiments with WordNet using the NLTK python toolkit

[109]. In all our experiments in this section, the baseline similarity measure (LCH) is

replaceable. This means that one simply can rerun any experiment with a more speci�c,

say, corpus-based similarity measure, as well as with another model.

The model we use in this section is trained with the CBOW algorithm on the full 1 billion

word corpus, withd = 100, win = 5,dict_size = 100, 000 , the default model and parameter

settings in the gensim Word2Vec toolkit.

Similarity Value and List Experiments. For the �rst experiment, we compute the similarity

values of every word to any other word in the dictionary: pi,j is a word pair containing

words vi and vj for i, j ∈ {1, . . . , 100000} , ti,j is their similarity. We now group these word

pairs by their similarity value in 0.01 intervals: G−1.0,G−0.99, . . . ,G0.0,G0.01, . . . ,G1.0 are

these groups. To illustrate, G0.05 contains all word pairs pi,j for which 0.04 < ti,j ≤ 0.05
holds. Then we calculate the average similarity with the LCH measure in each group:

avд_sim (Gk) = averaдe
(
LCH_dist

(
pi,j

) )
, where pi,j ∈ Gk .

In the second experiment, we create the full similarity lists for every word in the dictionary,

vi,1,vi,2, . . . ,vi,100000 , i.e., for every i ∈ {1, . . . , 100000} . We create groups of word pairs

(G1, . . . ,G100000). Gk contains the pair

(
vi ,vi,k

)
for every i ∈ {1, . . . , 100000} . We then

calculate the average similarity for every group with the LCH measure with the same

formula as above for the similarity value groups.

For both experiments, if a word is not in the WordNet dictionary, we remove all word pairs

including it from the groups, in order to make the aggregation unbiased. We observe that

the standard deviations are relatively high in the groups: In the similarity value groups, it

is between 0.25 and 0.55, in the similarity-list groups between 0.25 and 0.6. We will return

to this observation when discussing the outcomes of the experiments.
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Figures 4.2 and 4.3 show the similarity averages on di�erent scales for the similarity value

and list groups, respectively. In the similarity value-distribution experiments, we evaluate

the results only for values between -0.4 and 0.8. This is because the small number of word

pairs with similarity values outside of this interval makes the data in these ranges noisy.

This is in line with our parameter evaluation results. Namely, we can see from the graphs

in Section 3.1 that the vast majority of word pairs has similarity values in this range for

the model used in this section.

Figure 4.2.: LCH score aggregates by similarity values

Figure 4.3.: LCH score aggregates by list indices

To �nd meaningful threshold values, we check the �gures of the averages of the similarity

value distributions for patterns that could imply meaningful values. We do so in two steps.

Our �rst step is an intuitive naive inspection of the �gures; the second step is a statistical

analysis of the graphs. We now discuss these steps.

4.1.3. A Naive Approach to Find Similarity Thresholds

In this section, we describe a naive visual approach to inspect the similarity value and list

�gures. The naive inspection is important, because the statistics-based approaches to �nd

similarity thresholds described later follow the same intuition as described in this section.
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When analyzing the results visually, we hope to �nd horizontal segments in the result

graph or other phenomena such as breaks, i.e., �at segments of the graph followed by

a steep incline or decline, which might stand for certain properties of the models. A

horizontal segment, for example, would mean that there is no di�erence in similarity

between the values forming this line. To illustrate further, imagine that in Figure 4.3b there

would be horizontal between list indices 800 and 1000. Then, we could interpret this as

follows: There is no general di�erence in similarity between a word being the 800th or the

1000th most similar word to a given word. Thus, it is meaningless to di�erentiate between

words at these similarities. The same would follow for the similarity value distribution

if there was a horizontal segment there. Other phenomena such as a break in the �gure

would imply a general change in similarity. For example, if there was a break, we could

interpret it as a threshold between relevant and irrelevant similarity values at �rst sight.

However, as is observable in Figures 4.2 and 4.3, such a naive approach does not yield

any useful result in our case. This is because there are no obvious horizontal segments or

breaks in the graphs.

4.1.4. Towards Meaningful Threshold Values

The previous step has not identi�ed any obvious patterns pointing to intuitive threshold

values for similarity. Hence, we now strive for a statistically sound derivation of meaningful

threshold values, in contrast to a mere visual inspection.

4.1.4.1. Confidence-based Threshold Identification.

The general idea is examining the results of our experiments with statistical tests. We test

the hypothesis that two populations have equal means, without assuming that they have

equal variance. Here, these populations are the LCH scores of two groups of word pairs.

Formally, such a group (LCH_Gk) is as follows: LCH_Gk = {LCH_dist
(
pi,j

)
: pi,j ∈ Gk} ,

where Gk is either a similarity value or a similarity list group, as introduced in Section

3.1. We use Welch’s unequal variances t-test [11] for our experiments, a widely used

two-sample statistical test for this problem. So the answers to the research questions

from the introduction are statistical in nature, i.e., we will give answers with a certain

con�dence, such as 99% , based on Welch tests.

Our tests are as follows: We compare two groups (LCH_Gk , LCH_Gl ), as introduced above,

with the Welch test. The groups are obtained by similarity values (Experiment 1) or by

similarity list indices (Experiment 2). The null hypothesis in a Welch test is that the two

groups have equal means. One either rejects the null hypothesis at a con�dence level

chosen apriori (99% in our case), or there is not enough evidence to do so. In case of a

rejection, we conclude that there is a signi�cant di�erence between the two groups in

terms of similarity. I.e., the group with the higher LCH mean contains signi�cantly more

similar word pairs.
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4.1.4.2. Experimental Results for Similarity Values.

For the similarity value group evaluation, we �rst test the exemplary questions asked in

the introduction. We then investigate generally to what extent similarity value groups are

di�erent.

Question 1. Are low values of similarity comparable to each other?

Question 2. If Words A and B have a higher similarity value than A and C (say 0.2 for A

and B, 0.1 for A and C), is A more similar to B than to C?

For Question 2., we test the following null hypothesis: The aggregated LCH scores have

the same mean values for the word pairs with a 0.10 and with a 0.20 similarity value. - The

number computed on our corpus is as follows:

welch_test_p_value (LCH_G0.10,LCH_G0.20) = 5.19e−9 < 0.01.

So we conclude with 99% con�dence that the hypothesis is false. We infer that the word

pairs with 0.20 similarity values tend to be more similar to each other than the pairs with

0.10 similarity values. In other words, to answer Question 1., even at these low levels of

similarity, di�erences in value have a meaning.

We now turn to the systematic experiment concerning this model and generalize the

�ndings in Section 4.1.5. For every group, we search for the next successive group, i.e.,

having a higher index, which signi�cantly di�ers in its LCH scores with 99% con�dence

(cf. Figure 4.4). We explain the interpretation of the values with the following example:

For the -0.30 similarity value group (x-axis), the next successive group which signi�cantly

di�ers in similarity is the -0.17 similarity value group (y-axis). Starting from the -0.18

(x-axis) group, every successive group has a signi�cantly higher LCH score mean than

the previous one. On the other hand, there is a bend in the plot at -0.18. It means that,

at low values of similarity, i.e., below -0.18, there is no signi�cant evidence that a higher

similarity value group implies a higher LCH score. Hence, we conclude that below the

-0.18 similarity value there is no signi�cant di�erence between the groups.

Another way to understand these values is as follows: Somewhat naturally, we assume

that the -0.40 similarity value group contains dissimilar word pairs. This is because it is

the group with the pairs with the smallest similarity values. For this group, we calculate

the next group having a signi�cantly higher LCH mean score, this is the -0.18 similarity

value group. This means that between -0.40 and -0.18 there is no signi�cant di�erence in

LCH scores between the groups. Based on our assumption that the -0.40 group contains

dissimilar word pairs, we conclude that the word pairs with similarity values between

-0.40 and -0.18 are dissimilar.
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Figure 4.4.: Groups with signi�cant di�erences in LCH mean scores by similarity values

Because of the relatively high standard deviation in the groups, we cannot conclude that

all word pairs in these groups are dissimilar, but we can say that the groups do not di�er

signi�cantly. For higher similarity values, i.e., above -0.18, every group is signi�cantly

di�erent, as we have seen. This means that any increase in similarity, even if it is only

0.01, implies a higher similarity of the word pairs. Again, we cannot say this for every

speci�c word pair, because of the high deviation, but only in general terms, for the groups

as a whole.

Overall, we conclude that the similarity value groups are signi�cantly di�erent from each

other above -0.18 and not di�erent below this value. This also can be seen visually, as

there is a speci�c bend in Figure 4.4 at -0.18 on the x-axis.

4.1.4.3. Experimental Results for Similarity Lists.

We now investigate the exemplary questions asked in the introduction with similarity

lists.

Question 3. Does being in the top 100 list of most similar words always imply similarity,

or does not being in the top 500 list always imply dissimilarity?

Question 4. What are meaningful threshold values, and how to �nd them?

We answer these questions with the following experiments. Our experiments with simi-

larity lists actually are the same as just before, but with the word pairs being grouped by
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list indices. Figure 4.3 shows that there is a long almost horizontal noisy stripe of LCH

averages. We are making the same tests for the index groups (Gk ,k ∈ {1, . . . , 100000})
as we have with the similarity value groups, again with 99% con�dence. For every index

group, we search the next group with higher index with a signi�cantly di�erent LCH

similarity mean using that test. The �gure shows the following: At the smallest indices,

even small di�erences in the indices imply signi�cantly di�erent mean score. But as the

indices increase, the bigger the di�erences have to be between groups to yield a signi�cant

di�erence in the mean.

Figure 4.5.: Groups with signi�cant di�erences in LCH mean scores by similarity indices

Figures 4.5a-b show that there are certain indices which generally identify the signi�cant

di�erences. These indices correspond to groups with particularly high LCH mean scores,

and because of this, they are signi�cantly di�erent from many lower index groups. The

horizontal lines in Figure 4.5a identify them.

Just as we have done with the similarity values, we assume that the last group of word

pairs, i.e., pairs consisting of a word and its least similar word, are dissimilar. We test two

items:

• Which is the last of these groups that is signi�cantly di�erent from the very last

group regarding LCH score? Formally, what is the highest index (i) so that, for every

j > i , welch_test_p_value
(
LCH_G100000,LCH_Gj

)
> 0.01 holds?

• What is the �rst group that is not signi�cantly di�erent from the last group? Formally,

what is the lowest index (i) so that welch_test_p_value
(
LCH_G100000,LCH_Gj

)
<

0.01 holds, for every j < i ?

The answers to these questions are the 31,584
th

group and the 6,094
th

group, respectively,

for the speci�c model we are working with in this section. Namely, the horizontal line

in Figure 26 is the one separating the groups whose LCH mean scores are signi�cantly

higher than the one of the last group from the rest. We conclude that indices higher than

31,584 are statistically not di�erent from the last group. Based on our assumption, our

interpretation is that they contain dissimilar word pairs. On the other side, all groups with

indices below 6,094 have a higher LCH mean than the last group. This means that they

all contain signi�cantly more similar word pairs. Again this does not mean that all the
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Figure 4.6.: Meaningful list indices

word pairs in these groups are dissimilar or similar, respectively, but that the groups di�er

signi�cantly.

Implications and External Validity. The experimental results indicate that a con�dence-

based comparison based on statistical tests identi�es large ranges of steady similarity values

as well as large ranges of list positions where the similarity of word pairs is meaningful.

However, the results so far are speci�c to the model and text corpus used. In the next

section we generalize our insights with further models trained on di�erent corpora to �nd

meaningful similarity values.

4.1.5. Generalization with Additional Corpora

The results from the prior subsubsection indicate that our approach to identify meaningful

similarity values with a statistical test is promising. The results in Sections 4.1.4.2 and

4.1.4.3 are already interesting for practitioners, as the corpus, embedding model (with

these parameters), and the baseline are widely used. We now show that our approach

yields meaningful results with other corpora as well.

Rationale Behind the Experiments. With the model algorithm (e.g., SG or GloVe) and the

parameters changing, the similarity values and lists change as well, cf. Section 3.1.3. This

means that one must adjust the speci�c numbers that identify ranges where similarity

is meaningful for any other model. To show that the procedure we propose is generally

relevant, we train two other models with di�erent underlying corpora, but with the same

model and parameter setting. To make the results of the experiments comparable, we

use corpora of the same size as before. If the results (i.e., the plots) will be highly similar
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to those from Section 3.1, we will claim that our method to �nd meaningful similarity

thresholds or list sizes is valid in general.

Experimental Results. The �rst dataset we train a model on is the full a Wikipedia dump.

The second model is trained on a 5-gram corpus extracted from the Google Books n-gram

dataset [81]. We have extracted the 5-grams, shu�ed them, and trimmed the data to have

the same size as our original 1 billion word dataset. We note that working with 5-grams as

the underlying corpus is slightly di�erent from working with full-text corpora. This is

because of the limited size of the 5-grams, i.e., all the sentences considered by the learning

algorithm only have a length of 5 (see Section 2.3). We conduct the same experiments with

the models trained on these corpora as in Section 4.1.4.2 to achieve comparable results.

Figure 4.7.: Signi�cantly di�erent groups by similarity value

Figure 4.7 shows that the results are almost identical to the ones in Section 4.1.4.3. The

structure of the �gures and even the values are very similar. For all three models, the

similarity values which are not meaningful are between -0.4 and approximately -0.2.

As for the similarity lists, Figure 4.8 shows that they are very similar, but they naturally

di�er in the actual values. We also test the two models regarding the same questions we

have asked earlier, namely: What is the last group which is signi�cantly di�erent in LCH

similarity score from the last group overall? What is the �rst group that is not signi�cantly

di�erent from the last group? The results are 28,570 and 5,889, respectively, for the model

trained on the Wikipedia corpus and 35,402 and 6,408, respectively, for the model trained

on the 5-grams. These numbers also are very much like the ones calculated before.

All this shows that our approach to derive those threshold values is independent of the

underlying corpus. The approach is applicable on any kind of corpus, and only the model

selection and its parameters in�uence the resulting numbers.
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Figure 4.8.: Signi�cantly di�erent groups by list indices for the models trained on 5-grams

(a), Wikipedia (b)
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4.2. Similarity Threshold Aware Evaluation Method

In this section, we introduce two evaluation methods for word embedding models. The

�rst one is the baseline method, which is also the commonly used approach in previous

literature. The second one is our new similarity threshold aware evaluation method. We

investigate how our method a�ects results on di�erent word similarity test sets with

various models. Generally, the objective of our method is not to achieve higher scores

than using the baseline method, but to allow for a more reliable evaluation of embedding

models on test sets.

4.2.1. Investigation Objectives

The results of Section 4.1 so far indicate that meaningful ranges of similarity values exist.

More speci�cally, for these values it is meaningful to compare two word pairs with di�erent

similarity values and to conclude that higher values imply greater semantic similarity. In

contrast, the values outside of these regions are either very noisy, because of the lack of

word pairs with the respective values, or indistinguishable in terms of similarity.

Existing evaluation methods compare word pair similarities on the full scale of similarity

values and lists. Based on our results so far, we propose that the comparison should

only be done at certain ranges of similarities. One can determine these ranges using the

experiments proposed in Section 4.1. In particular, we propose that only values should be

compared which signi�cantly di�er in mean similarity scores, cf. Figure 4.4. For example,

when evaluating the model in this section one should only compare word pair similarity

values when the values are above -0.18. It is also noteworthy that every 0.01 di�erence in

this range implies a signi�cantly di�erent similarity. For the list indices, similar conclusions

are feasible. For example, with the model of this section we recommend comparing only

indices below approximately 31,500.

With other models, these values and indices could be di�erent, but the method of calculating

them and the implications are the same. This means that for any embedding model we

propose to calculate these values �rst, to improve any evaluation. We call this method

similarity threshold aware evaluation.

Generally, we expect observable, but minor changes in the correlation scores. Nevertheless,

as this evaluation method optimization a�ects all embedding models, and improvements

reported are often only small, even minor di�erences are of practical relevance. To quantify

the e�ect of our method, we focus on the following research questions.

Question 5. Do word pairs exist in the evaluation test sets which fall below the calculated

threshold?
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The thresholds may be very low, as we have seen previously. Hence, it may even turn out

that the similarity test sets do not feature such word pairs at all, or only some of them are

a�ected. If this was the case, our similarity threshold aware evaluation method would not

increase the reliability of the evaluation results.

Question 6. Does our similarity threshold aware evaluation method observably change

the evaluation scores, compared to the baseline method?

It is not obvious whether the scores will change with our method. Therefore, we aim

at quantifying the e�ect as well its direction, i.e., whether the scores tend to increase or

decrease. We conduct systematic experiments to answer this question.

4.2.2. Evaluation Setup

In this subsection, we describe test sets, embedding models and evaluation methods we

use.

Evaluation Test Sets and Embedding Models. We use the six test sets that we have intro-

duced in Section 2.4.2 to evaluate word similarity. Each test set has the same format. They

contain word pairs with similarity scores, assigned by human annotators. The smallest

test set contains 65, the biggest 3000 word pairs. The test sets, again, are Finkelstein et al.’s

WordSim353 test set; Bruni et al.’s MEN test set; Hill et al.’s SimLex-999 test set; Rubinstein

et al.’s RG-65 test set, Radinsky et al.’s Mechanical Turk test set and Luong et al.’s Rare

Words test set.

We train three di�erent word embedding models (CBOW, SG, GloVe) with the same

parameter settings (dict_size = 100, 000, d = 100,win = 5) on the full 1 billion word

corpus. We evaluate the embedding models with two evaluation methods.

Baseline Method. To evaluate a model with the baseline method, we do the following for

each similarity test set:

1. We create two ranked lists of the word pairs both sorted by similarity value. Both

lists share the same word pairs.

a) The �rst list is sorted according to the scores provided in the similarity test set,

i.e., created by human annotators.

b) The second list is sorted according to the similarity values computed using the

embedding model.
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2. We calculate the Spearman’s correlation between both rankings. This indicates how

well the embedding model similarities re�ect the ground truth.

Using this method has two bene�ts. First, the values of the scores do not have to be the

same as we compare the ranks, not explicitly the values. Usually, human annotators use a

point system, e.g., from 0 to 10, where 10 indicates maximum similarity. By contrast, cosine

similarity values are distributed between [-1,1], and a value of 1 indicates the highest

similarity. Second, the embedding model re�ects the similarity test set well if the rank

of most word pairs in both lists is very similar, but it does not necessarily have to be the

same. Spearman’s correlation expresses this well. The score can interpreted as follows. A

correlation of 1 states that the ranked lists are identical. A value close to 1 means that the

embedding models re�ects the similarity test set very well. A value close to zero indicates

that there is no connection between the similarity values and the ground truth.

Similarity Threshold Aware Method. It is important to note that the objective of our simi-

larity threshold aware evaluation method is not to increase the value of the Spearman’s

correlation compared to the baseline method. The objective is to return a more reliable
correlation score. Therefore, the score might be higher, lower, or even remain the same.

The explanation why our method results in a more reliable score is justi�ed based on

statistics. The intuition is the following. The di�erence of our and the baseline method

is how we compute the similarity threshold. Our new method removes every word pair

from both lists where the cosine distance computed on the embedding models is below the

threshold. This is because di�erences in the similarity and the resulting ranks for these

word pairs are not reliable, as shown based on the statistical tests in the prior section
1
.

Hence, they might change the correlation in an unpredictable way. If the order of these

word pairs accidentally is similar to their order in the test set, the originally computed

correlation score, i.e., the one computed with the baseline method, is too high. In the

opposite case, the score is too low. Finally, in case the order is randomized, the score does

not change at all, but the new result still is more reliable. Consequently, we can perceive

such word pairs which fall below the threshold as noise, making the score less reliable.

This is why they have to be excluded from the evaluation.

4.2.3. Evaluation Results

In this section we present our evaluation results of the comparison between the baseline

and our similarity threshold aware evaluation methods.

Model Thresholds. First we calculate the similarity value thresholds for all three models.

The calculation itself is quite complicated, as described in Section 4.1, but the output has

a very simple structure, i.e., a �oating point number for every model. It represents the

similarity value threshold. The actual numbers are presented in Table 4.1.

1
Note, we �nd all these word pairs at the end of the model’s list as they have low similarity values.

95



4. Theoretical Analysis of Word Embedding Models

Model Threshold

CBOW -0.18

SG 0.20

GloVe -0.15

Table 4.1.: Similarity value thresholds for di�erent models

We see that the SG model has a signi�cantly higher threshold value than the other models.

This is expected, as the SG model generally has much higher similarity values on average,

cf. Figure 3.1.

Test Set Evaluation Results. For every model we create two tables. In the �rst tables, we

count for every test set how many word pairs fall below the similarity value threshold.

The �rst row shows how many word pairs exist in the full test set. The second row shows

how many are above the threshold, and the third one how many are below.

The second tables show the evaluation results for the models. In the �rst row the numbers

represent the results with the baseline method, i.e., with all word pairs in the test sets.

The second row shows the results only for the word pairs which are comparable, i.e., are

above the threshold.

rg-65 ws353 rare simlex mturk men

Total 65 353 2034 999 287 3000

Comparable 64 349 2028 997 287 2983

Not Comp. % 1.5 1.1 0.3 0.2 0 0.6

Table 4.2.: CBOW word pair counts

rg-65 ws353 rare simlex mturk men

Baseline 0.54 0.53 0.32 0.31 0.57 0.64

Ours 0.55 0.52 0.32 0.31 0.57 0.63

Table 4.3.: CBOW evaluation results

Tables 4.2 and 4.3 show that there are word pairs in the test sets for the CBOW model

which fall below the threshold. However, there are only a few of them. Consequently, the

new evaluation method changes the evaluation results only slightly.
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rg-65 ws353 rare simlex mturk men

Total 65 353 2034 999 287 3000

Comparable 59 318 1838 960 262 2672

Not Comp. % 9.2 9.9 9.6 3.9 8.7 10.7

Table 4.4.: SG word pair counts

rg-65 ws353 rare simlex mturk men

Baseline 0.59 0.6 0.37 0.33 0.6 0.7

Ours 0.59 0.55 0.33 0.28 0.63 0.64

Table 4.5.: SG evaluation results

The tables for the SG model, Tables 4.4 and 4.5, show that much more word pairs fall

below the threshold for this model, compared to the CBOW model. For most test sets, the

evaluation results change signi�cantly. We also see that the evaluation scores for di�erent

test sets are behaving rather inconsistently with the di�erent test sets. For instance, the

score is signi�cantly better on the ws353 or men test sets, it is worse on the mechanical

turk test set, and it is the same on the rg-65.

rg-65 ws353 rare simlex mturk men

Total 65 353 2034 999 287 3000

Comparable 62 350 2023 989 287 2991

Not Comp. % 4.5 0.8 0.5 1.0 0 0.3

Table 4.6.: Glove word pair counts

rg-65 ws353 rare simlex mturk men

Baseline 0.59 0.43 0.21 0.27 0.43 0.64

Ours 0.6 0.42 0.21 0.27 0.43 0.64

Table 4.7.: Glove evaluation results

The tables for the GloVe model, Tables 4.6 and 4.7, are very similar to the ones for the

CBOW model. Very few word pairs fall below the threshold. This leads to very small

changes in the evaluation scores.

Evaluation Results - Summary. Having all these results, we can answer the research ques-

tions presented previously.
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Question 5. Do word pairs exist in the evaluation test sets which fall below the calculated

threshold?

Our results con�rm that such word pairs exist in almost every model and test set combina-

tion. As expected, their number is model dependent and rather low. For the CBOW and

GloVe models, less than 1% of the word pairs usually fall below the respective thresholds.

For both models, the rg-65 test set yields a particularly high number (1.5% and 4.5% respec-

tively), most likely due to the small size of this test set. On the other hand, many word

pairs fall below the models threshold for the SG model, the percentage ranging between 4

and 11% .

Question 6. Does our similarity threshold aware evaluation method observably change

the evaluation scores, compared to the baseline method?

The answer to this question again is highly model dependent. As hypothesized earlier,

the change is observable, but not signi�cant, with the exception of the SG model. This is

mainly because of the sheer number of word pairs being incomparable for the di�erent

models. We do not see a consistent increase or decrease in the evaluation scores. This

further con�rms that our method correctly removes the noise introduced by word pairs

falling below the similarity threshold. We conclude that word pairs whose similarity is

below the model threshold should be excluded from the evaluation test sets.

98



5. Application Analysis of Word
Embedding Models

In the previous two parts of our three-way analysis of word embedding models we have

evaluated algorithmic and theoretical questions regarding word embedding models. Now,

we turn our attention to down-stream applications. The NLP problem we study in this

chapter is one of the most intuitive use case for word embedding models, namely text

classi�cation.

In general, text classi�cation accuracy heavily relies on the number of labeled samples

a classi�er is presented with. However, since labeling is usually done by humans, it is

costly and time consuming. For example, many highly researched AI solutions such as

autonomous driving are based on enormous human tagging e�ort. This means, in most

cases, labeled data is scarce. In this chapter, we present an approach that uses exogenous

information on both word semantics and distribution to compensate the scarcity of labeled

data.

Our approach is a preprocessing step that increases training data quality and ultimately

increases text classi�cation accuracy. It compensates all three general issues presented

by the shortage of labeled training data, namely task-speci�c synonyms, OOV words and

over�tting. Our approach uses term substitution based on the core idea of this chapter: A

novel semantic-distributional word distance measure. The novelty of the approach is using

a combination of both semantic and distributional information of words. Since, we only

preprocess the training data, our method is generally applicable to any text classi�cation

algorithm.

The results show that our preprocessing method helps improving text classi�cation accu-

racy for each classi�er we work with. The improvements are especially visible when the

training data is small.
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Figure 5.1.: General text classi�cation �owchart

5.1. Intuition

In general, a text classi�cation procedure follows the following scenario. There is a training

data set, which we use to train the classi�er. Next, we deploy the classi�er to predict

labels on a test data set, and evaluate the accuracy of the predictions, comparing the

predicted labels to the true labels. Figure 5.1 shows this simple �owchart. This, and all

other �owcharts in this chapter follows the Yourdon/DeMarco notation standard. Boxes

represent input/output data, ellipses represent functions and stripes represent databases.

Arrows represent the �ow between the states or data.

Our preprocessing approach, that we present in this chapter, a�ects both the training and

test data, but no other parts of the �owchart. This means, we are able to train any classi�er

after the preprocessing as well that we used to train the original training data.

As we have discussed before, because of the high complexity of natural language, classi�ers

trained with too few data samples, have several reoccurring issues. The lack of robust

statistical information makes the number of infrequent and OOV words high, which makes

the classi�cation error-prone. Also, because of the lack of training samples classi�ers tend

to over�t the data, which is detrimental to classi�cation accuracy.

The intuition behind our method is to improve the ability of text classi�cation algorithms

to generalize. We do so by transforming the input data so that task-speci�c similar words

are merged. All words in a group are mapped onto one representative word (see Section
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2.2). With this, unseen words can be handled, and random e�ects due to words with few

occurrences in the training data are reduced.

At real world companies, in a lot of cases, usually human domain experts create the clusters

of task speci�c synonyms. In the following, we illustrate this scenario with a simpli�ed

example to give the reader intuition of the procedure.

5.1.1. Manual Clustering by Human Domain Experts

In spite of their e�ectiveness, it is noteworthy that most text classi�cation algorithms

have no notion of the semantics behind the words contained in documents they classify: a

word is usually represented as a dimension in a vector space with hundreds of thousands

of other dimensions (see Section 2.2.1.1). For example, in probabilistic classi�ers, such

as Naive Bayes, it is the word statistics generated by the large number of pre-classi�ed

documents that provide the information relevant to the underlying classi�cation task.

By contrast, the way how humans categorize text is heavily based on the knowledge about

semantic relationships between words. It is this internal representation of language that

allows humans to classify text without �rst reading thousands of example documents.

During manual clustering, depending on the classi�cation task, the domain expert pre-

emptively creates various sets of task speci�c synonyms.

For example, consider a sentence-classi�cation task, namely that we want to detect changes

in company management. A classi�er might fail to classify “The corporation announced a

new CEO for 2017” as positive, even if it has seen the sentence “The company announced

a new executive for 2017” in the training data, because it is unaware of synonyms. For

the recognition of text snippets that are about change in management, the domain expert

creates the following dictionaries:

• Tmanager: CEO, CFO, leader, . . .

• Tcompany: corporation, enterprise, business, concern, venture, . . .

The words in the dictionaries might indicate that a sentence refers to change in manage-

ment personnel for a company. While an automated semantic similarity-based algorithm

might falsely include the word ”coach” in the ”manager” or ”team” in the ”company”

dictionary, a human annotator knows that in this scenario they should not be included,

since they most likely relate to football, not to the industry.

Whenever a document in the training dataset contains a word that appears in one of the

dictionaries, we substitute it with the word that represents it. To illustrate, consider the

following sentence: “The corporation announced a new CEO for 2017”. In this case,

the words in this sentence are substituted as follows: “The company announced a new

manager for 2017”.
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The dictionaries are also used to substitute OOV words with words that the classi�er

knows. If a test document contains an OOV word, we substitute it by looking up whether

it occurs in one of the dictionaries.

Figure 5.2 show the �owchart of the manual preprocessing method.

Figure 5.2.: Preprocessing method based on human semantic knowledge

In spite of its bene�cial e�ects, preprocessing the dataset manually is a time consuming and

costly process. In the following sections we show how to automate the lexical substitution

process otherwise done by a human domain expert, by �nding groups of semantically

similar words using our word distance measure.

5.1.2. Automating the Clustering

In this section we explain why a purely semantic clustering-based approach is not su�cient

by showing the importance of word frequencies. We also present how to automate the

dictionary-based preprocessing method using our novel distance measure.

NaiveApproach: UsingonlySemanticDistances forClustering. An intuitive approach which

we have implemented �rst to �nd groups of similar words would be to use a clustering

algorithm based on the distance measure in a word embedding space [75]. However, text

classi�cation accuracy on many datasets became worse than using the original, unpro-

cessed datasets. This shows that semantics alone are not enough to reduce the feature

dimensionality while improving the text classi�cation accuracy.
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Hence, we investigated whether there is any important information about the terms

that is not taken into consideration when using clustering based on distances in word

embeddings only. Analyzing the resulting clusters, we have found that the word frequencies,
i.e., information on the distribution of words among the positive and negative classes, play

an important role in classi�cation e�ectiveness.

Importance of Word Frequencies. To show why the approach from the previous section,

i.e., where we only use semantic distances for clustering, often is not bene�cial for classi�-

cation accuracy, we computed actual clusters of words over the vocabulary of the MPQA
dataset using an agglomerative clustering algorithm (see Sections 2.4.3 and 2.2.2.4 for the

dataset and the clustering algorithm, respectively). The aim of the MPQA dataset is to

facilitate distinctions between negative and positive expressions. Every expression in the

MPQA training data is labeled either as negative or positive.

Table 5.1 shows several clusters found. The numbers in the tables represent the total

frequency of the words in the positive and negative classes, respectively. We can see that

the groups contain terms that are generally semantically similar, for example, Cluster 5
contains words about governmental forms.

Cluster 1 + - Cluster 2 + - Cluster 3 + -
clearly 4 8 absurdly 0 1 illegitimate 0 12

deeply 0 5 admittedly 1 0 legitimate 35 9

genuinely 2 0 amazingly 1 0 ruse 0 1

greatly 2 4 awfully 0 1 sham 0 2

massively 0 2 especially 3 4

undoubtedly 2 1 extremely 2 12

Cluster 4 + - Cluster 5 + - Cluster 6 + -
abhorrent 0 1 anarchical 0 1 anger 0 11

despicable 0 1 despotic 0 1 disapproval 0 6

disgraceful 0 1 dictatorial 0 5 discontent 0 7

inexcusable 0 1 hegemony 1 4 disgust 0 2

inhuman 0 7 imperialism 2 1 displeasure 0 3

inhumane 0 15 imperialist 0 4 disquiet 0 1

Table 5.1.: Clusters yielded by the naive approach

However, we can see that in Cluster 3, the words “illegitimate” and “legitimate” were

clustered together despite being antonyms and indicators of the negative and positive class,

respectively. Clustering antonyms together is intuitively detrimental for classi�cation

accuracy. Nevertheless, the similarity of words in the word embedding vector space

depends on how probable it is that they appear in the same context, hence word vectors

of antonyms are usually located close to each other [73].
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The naive approach neglects the word frequencies in the di�erent classes, i.e., negative and

positive expressions, which are a clear indicator, in this case, that these words should not be

assigned to the same cluster. It is obvious that illegitimate and legitimate are signi�cantly

di�erently distributed among the positive and negative samples – a strong indication that

they are not used synonymously in this task.

Cluster 1 + - Cluster 2 Cluster 3 + -
illegality 0 1 genuine 1 0 abhorrent 0 1

illegitimacy 0 1 legitimate 35 9 a�ront 0 3

illegitimate 0 12 logical 3 3 barbaric 0 2

rational 1 0 despicable 0 1

realistic 4 0 disgraceful 0 1

inhumane 0 15

Cluster 4 + - Cluster 5 + - Cluster 6 + -
anger 0 11 anarchical 0 1 absurdly 0 1

disapproval 0 6 capitalism 0 1 amazingly 1 0

displeasure 0 3 dictatorial 0 5 ridiculously 0 1

frustration 0 6 hegemony 1 4

impatience 0 2 imperialism 2 1

irritation 0 2 imperialist 0 4

Table 5.2.: Clusters yielded using our preprocessing method

In this work, we propose to integrate the information of the word frequencies into the

classi�cation algorithm. Table 5.2 shows the resulting clustering when using the distance

measure introduced in this work. Since our distance measure also utilizes the distributional

information of terms, “illegitimate” and “legitimate” now are in di�erent clusters.

In addition to separating words with highly di�erent word frequencies, our distance

metric considers the statistical robustness of words as well. This is important since the

distributional information tend to be unreliable for low frequency words. For example, if a

word appears only a few times in the positive and never in the negative class, it should

not be used as a strong indicator for positive documents.

For example, consider Cluster 5 in Table 5.2: The words “imperialism” and “imperialist” are

in the same cluster, but they are distributed di�erently among the classes: “imperialism”

appears more often in the positive class than in the negative class, while “imperialist” is

present only in the negative category. This is because their frequencies are very low and

thus unreliable estimates of the true word probabilities. In such cases our distance metric

is more tolerant and will not separate the words in question. This illustrates the strength

of our approach: Due to the low counts for both words, their distributional di�erence is

not signi�cant enough and does not outweigh the low semantic distance.
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5.2. The Semantic-Distributional Distance Measure

In this section we describe our novel semantic-distributional distance measure. The

derivation of our measure consists of the following steps.

1. Modeling of word occurrences as being generated by a Bernoulli process.

2. Interpretation of assigning words to the same cluster as a probabilistic hypothesis.

3. Using Bayesian Hypothesis Testing to assess the plausibility of the probabilistic

hypothesis.

4. Incorporating semantic information by using Bayesian priors.

5.2.1. Word occurrences as a Bernoulli Process

To derive the distributional dissimilarity between pairs of words, it is common to view

word occurrences as being generated by a probabilistic process. A probabilistic model

commonly used to describe word occurrences distributed over a dichotomy of classes is the

Bernoulli process [52]. Suppose that a word v ∈ V appears n times in a labeled dataset D.

X is a random variable representing the occurrences of v in the positive class. Assuming

an underlying Bernoulli process, the probability that, for n total occurrences, v appears k
times in the positive class is:

B(n,k,θ ) B Pr(X = k ; θ ) =
(
n

k

)
θk(1 − θ )n−k

where θ ∈ [0, 1] is the distribution parameter. For a random variable drawn from a

Bernoulli process with n trials, we use the notation:

X ∼ B(n,θ )

5.2.2. Merging Words as Probabilistic Events

We now perceive the decision when to assign two words to the same cluster as a prob-

abilistic event. Ultimately, this implies modeling the decision of how useful it is to the

underlying classi�cation task to substitute a word v1 with a word v2 or vice versa. From

now on, instead of speaking of “substituting words”, we speak of “merging words”, since

the substitution direction is irrelevant.

We now model the decision process (merging or not merging) probabilistically. To do so, we

associate either decision with the probabilities of two hypotheses H0,H1. They represent

the plausibility of merging or not merging respectively.
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HypothesisFormulation. LetXi ,X j be the random variables that represent the occurrences

of vi ,vj ∈ V . Let ni ,nj be the total number of occurrences observed for vi ,vj respectively.

HypothesisH0. (No Merge) In H0, we assume that the observed word occurrences Xi ,X j

are generated by two distinct latent, independent Bernoulli processes, i.e.,

H0 : Xi ∼ B(ni ,θ1),X j ∼ B(nj ,θ2),θ1 , θ2

In this scenario, we do not assume any relatedness of Xi ,X j , i.e., we do not merge v1 and

v2.

HypothesisH1. (Merge) The probability of the second hypothesis H1 should express how

well we can explain the observed data if we assume that a common, latent generative

process generates the occurrences of both words Xi , X j :

H1 : Xi ∼ B(ni ,θ1),X j ∼ B(nj ,θ2),θ1 = θ2

High probabilities indicate that vi and vj are generated by similar processes and can be

merged without losing any discriminatory information.

The goal now is to calculate the probabilities of the competing hypotheses H0,H1, given

the observed data. We do this in Section 5.2.3 using Bayesian Hypothesis Testing. But before

applying such methods, we establish estimates for the parameters (θ ) of the underlying

Bernoulli processes.

Maximum Likelihood Estimation. When there is no further knowledge about the gener-

ative process, a commonly used method to estimate the parameters of the underlying

distribution is Maximum Likelihood Estimation (MLE). As shown in [89], in case of a

Bernoulli process with n trials and k successes, the MLE is

ˆθMLE = argmax

θ ′
B(n,k,θ ′) = k

n

Let ki ,kj be the numbers of occurrences of vi ,vj in the positive class. For H0, the MLEs for

each Bernoulli process generating Xi are the following ones:

H0 :
ˆθH0,i =

ki
ni

For the second hypothesis, we assume that the independent observations Xi ,X j have the

same underlying distribution parameter. Assuming that this hypothesis is true, the MLE

for H1 is

H1 :
ˆθH1
= ˆθH1,1 =

ˆθH1,2 =
ki + kj

ni + nj
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In the next section we describe how to use Bayesian Hypothesis Testing to assess the

probability of either hypothesis.

5.2.3. Bayesian Hypothesis Testing

Bayesian Hypothesis Testing is a tool to estimate the probability of competing models. In our

context, we want to compare how well the occurrences of two words vi ,vj in a document

set D is explained before and after merging these, with decisions being represented by H0

and H1. We start with the proposition that either H0 or H1 are true, i.e.,

Pr(H0 ∨ H1 |D) = Pr(H0 |D) + Pr(H1 |D) = 1 (5.1)

The probability of H0, i.e., two di�erent Bernoulli processes generate the words, can be

expressed using the Bayesian Rule:

Pr(H0 |D) =
Pr(D |H0) Pr(H0)

Pr(H0) Pr(D |H0) + Pr(H1) Pr(D |H1)
(5.2)

Pr(H1 |D)
(5.1)
= 1 − Pr(H0 |D)

Note that, since Hypotheses H0 and H1 are complementary, computing the probability of

either one is su�cient. Without loss of generality, we now only use Pr(H0 |D) since it also is

a dissimilarity measure, i.e., higher probabilities mean higher distributional incompatibility.

We �rst simplify Pr(H0 |D) as follows:

Pr(H0 |D) =
Pr(D |H0) Pr(H0)

Pr(H0) Pr(D |H0) + Pr(H1) Pr(D |H1)

=
1

1 +
Pr(H1)
Pr(H0)

Pr(D |H1)
Pr(D |H0)︸               ︷︷               ︸
Cκ

= (1 + κ)−1

First we derive an estimate for κ and then we will insert it back in the estimate for

Pr(H0 |D) at the end of our argumentation. κ is called the Bayes Factor and is often used as

an alternative to the probability to express the plausibility of H0 over H1. From now on,

we will refer to Pr(H0 |D) as semantic-distributional dissimilarity or semantic-distributional
distance.
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5.2.4. Estimation of the Semantic-Distributional Distance Measure

In this section, we derive an estimate for each probability of the Bayesian model, i.e., each

probability on the right side of Equations 5.2. We will denote probability estimates with ˆ

as follows:

P̂(H0 |D) B (1 + κ̂)−1 ; κ̂ B
P̂(H1)P̂(D |H1)
P̂(H0)P̂(D |H0)

Moreover, ki ,ni ,kj ,nj denote the word frequencies in the positive class and in the whole

dataset of vi and vj respectively.

Estimation of model likelihoods. We proceed by using Bayesian Hypothesis Testing to

derive estimates for the probability Pr(H0 |D). To do so, we estimate the likelihoods

Pr(D |Hi), i = 0, 1. We make the following assumptions:

1. Word occurrences follow a Bernoulli distribution with the probability-density func-

tion B(n,k,θ )

2. For word co-occurrences we assume conditional independence (c. i.).

These are common, realistic assumption in NLP research [46] [45]. We parametrize the

Bernoulli distribution with the Maximum likelihood estimates from before. For Pr(D |H0),
the estimate is:

1

P̂
(
Xi = ki ,X j = kj | θ1 = ˆθH0,1,θ2 =

ˆθH0,2

)
c.i.

= B(ni ,ki ,θH0,1) · B(nj ,kj ,θH0,2)

=

(
ni
ki

)
ˆθkiH0,1

(
1 − ˆθH0,1

)ni−ki
·(

nj
kj

)
ˆθ
kj
H0,2

(
1 − ˆθH0,2

)nj−kj
Analogously, for Pr(D |H1) the estimate is

P̂(D |H1) =
(
ni
ki

) (
nj
kj

)
ˆθ
ki+kj
H1

(
1 − ˆθH1

)ni+nj−ki−kj
We then insert P̂(D |Hi), i = 0, 1, in the estimate κ̂ for κ

κ̂ =
P̂(H1)
P̂(H0)

·
ˆθ
ki+kj
H1

(
1 − ˆθH1

)ni+nj−ki−kj
ˆθkiH0,1

(
1 − ˆθH0,1

)ni−ki
ˆθ
kj
H0,2

(
1 − ˆθH0,2

)nj−kj
1

We consider only the probabilities for vi and vj , since all other word probabilities are equal for both

hypotheses and do not a�ect the calculation of κ̂
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Integration of semantic knowledge in the priors. The only probabilities left for estimation

are the priors Pr(H0), Pr(H1). In Bayesian models, the prior probabilities are often used

as an interface to incorporate prior, expert knowledge in the models. When there is no

further knowledge about the prior probabilities Pr(H0) and Pr(H1), a common assumption

is that every hypothesis is equally probable, i.e., P̂(H0) = P̂(H1) = 0.5 [123]. However, we

can use the information provided by word-embedding models to approximate the priors.

The calculation of word vectors implies predicting the probability of a word appearing

in a given context. The cosine similarity of two word vectors can be interpreted as an

approximation of the probability that two words vi , vj appear in similar contexts [85, 84].

It ranges from −1 (unrelated words) to 1 (identical words). If the cosine similarity expresses

the relatedness between two words, the cosine distance values can be used for dissimilarity.

For an embeddingW we de�ne the following distance measure:

distW(v,v′) =
1 − cos-sim(vecW(v),vecW(v′))

2

∈ [0, 1],

where vecW(v) represents the vector corresponding to v in embeddingW.

For words farther away in the embedding vector space we favor the �rst hypothesis, i.e.,

the words should not be merged. We therefore introduce a parameter α ∈ [0, 1] that

speci�es how much the cosine distance lets the priors deviate from 0.5.

P̂(H0;α) B α ·
(
1

2

− distW(vi ,vj)
)
+
1

2

P̂(H1;α) B 1 − P̂(H0;α)

With parameter α included in the equations, we can tune our preprocessing procedure.

For α = 0, the cosine distance is completely neglected, and the hypotheses are assumed to

be equally probable. For α > 0, the priors deviate from 0.5 proportionally to α · dist(vi ,vj).
In Section 5.4 we calculate the classi�cation accuracy with di�erent values of α to �nd the

best one for each dataset.

After inserting the above priors in κ̂ , we obtain:

κ̂ = κ(α) =
1

2
− α ·

(
1

2
− distW(vi ,vj)

)
α ·

(
1

2
− distW(vi ,vj)

)
+ 1

2

· P̂(D |H1)
P̂(D |H0)

Finally, we de�ne the semantic-distributional distance that incorporates both distributional

and semantic information on the words:

Λα ,W(vi ,vj) B P̂(H0 |D) = (1 + κ̂(α))−1

We note that Λα ,W(vi ,vj) is de�ned using the cosine distance of word vectors in an

embeddingW. Therefore, in order to produce valid distances, vi and vj must be part of

the vocabulary voc(W).
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5.2.4.1. Correction Term

Although the cosine similarity of two word vectors can be interpreted as an approximation

of the probability of both words appearing in similar contexts, the method could be

improved by learning a function that maps the cosine distance onto a more accurate

probability estimation for words being synonyms. However, since we found the cosine

similarity part to be too pessimistic, we add a correction term allowing for more weight in

the �nal measure. An additional parameter β ∈ [0, 1] controls the in�uence of this term:

Λα ,β ,W(vi ,vj) = βΛα ,W(vi ,vj) + (1 − β)distW(vi ,vj)
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5.3. Implementation

In this section we present the complete text classi�cation process. The �rst step is to

preprocess the training data. The preprocessing of a dataset involves �nding clusters

of words using our semantic-distributional distance measure and then represent each

document as a BoC. Subsequently a classi�cation model with the preprocessed training

dataset is built. Prior to prediction, unknown documents that contain OOV words are

preprocessed by substituting unknown words with vocabulary contained in the training

dataset. In the following, we provide descriptions, including pseudo-codes, for each part,

namely the training data preprocessing, the test data preprocessing and the classi�cation

building and prediction parts.

5.3.1. Preprocessing Training Data

Figure 5.3 shows the �owchart, while Algorithm 1 shows the algorithm how we preprocess

the training data prior building a classi�cation model.

Figure 5.3.: The training data preprocessing method

The training data preprocessing has two main inputs: the training data that we want to

preprocess and a word embedding model. The combination of the distributional informa-

tion extracted from the training data and the semantic information of the word embedding
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model let us construct our semantic-distributional distance measure, based on the three

additional parameters α , β and K . Our distance measure is de�ned for each word pair

that appears in the training data and the pretrained word embedding vocabulary. A small

value stands for a high probability of the two words being task-speci�c synonyms. Based

on this measure we cluster the words and substitute them in the training data with their

corresponding cluster resulting the preprocessed training data.

Algorithm 1 Algorithm structure for preprocessing training data

1: function PreprocessTrainingData(D,W, α , β , K )

2: V B voc(D)
3: C B ∅
4: W B pairwise − distances(V ,Λα ,β ,W)
5: C B complete − linkaдe − cluster (W,K)
6: F← baд − o f − clusters(D,C) . The �nal feature matrix used for training

7: return (C,V , F)
8: end function

In the pseudo-code, the preprocessing step accepts a dataset D, metric parameters α , β
and a clustering parameter K . As we have already explained, α , β regulate how much the

semantic information is weighed against the distributional information in the distance

measure. After obtaining the vocabulary we calculate the dissimilarity matrix based on

our distance measure. Using complete-linkage clustering and parameter K we obtain the

K word clusters from the dissimilarity matrix. All clustering are accumulated in C and

�nally used to represent the document as a bag-of-clusters. The matrix F is the resulting

feature matrix of the type N|D |×|C| (number documents × number of clusters) that is later

used for training the classi�er. Each row of the matrix represents a document and each

column the number of occurrences of the members of the corresponding cluster in C.

5.3.2. Preprocessing Test Data

Prior to prediction, unknown documents in the test data
˜d ∈ D \ D need to mapped to

feature vectors F̃ ∈ N|C| . Also, they might contain words not known by the classi�er

ṽ ∈ V \V . Hence, a mapping procedure to known vocabulary has to be performed. We

substitute every word ṽ ∈ V \V with the closest word v ∈ V with respect to distW . If

the closest word is further away than θd we discard it. This procedure can be formally

described as a preprocessing function τ as follows:
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˜d = (ṽ1, . . . , ṽ | ˜d |) ∈ D \ D,
τ ( ˜d) = (τ (ṽ1), . . . ,τ (ṽ | ˜d |)),

τ (ṽ) =


ṽ, if ṽ ∈ V
v′, if v′ = arg min

v ′′∈V
dist(ṽ,v′′) and dist(v′, ṽ) ≤ θd

ϵ, otherwise.

Where ϵ is the empty word and simply denotes that a word is removed from the document

in case there is no suitable substitute satisfying the constraint given by the distance

threshold.

Algorithm 2 illustrates the algorithm for preprocessing unknown documents as described.

Algorithm 2 Preprocessing of unknown documents

1: function PreprocessUnknownDocuments(D̃, V , θd , C)

2: Ṽ B voc(D̃)
3: Ṽ B Ṽ \V
4: NN B nearest − neiдhbor (Ṽ ,V ,W,dist) ⊂ Ṽ ×V × ([0, 1] ∪ {∞})
5: S B {(ṽ,v) | (ṽ,v,d) ∈ NN ∧ d ≤ θd}
6: R B {ṽ | (ṽ,v,d) ∈ NN ∧ d > θd}
7: D̃ ← substitute(D̃, S)
8: D̃ ← remove(D̃,R)
9: F̃ B baд − o f − clusters(D̃,C)

10: return F̃
11: end function

The algorithms input is a set of unknown documents D̃, distance threshold θd and a

clustering C. We then calculate the nearest neighbors of the OOV words Ṽ . Based on the

word embeddingsW and the distance measure distW , the function nearest − neiдhbor
returns triples of the form (OOV word ṽ , nearest known word v , cosine distance between

v and ṽ). From this set we �lter out the substitutions S that satisfy the threshold θd and the

ones which do not R. The string functions substitute and remove are used to substitute or

remove the words from the document set, respectively. Finally, the BoC representation of

the preprocessed unknown document set is computed and returned as feature matrix F̃.

5.3.3. Training and Prediction

After de�ning how to preprocess both the training and test data with the proposed method,

we show how the preprocessed data can be incorporated in a classi�cation process.

The feature matrix returned by PreprocessTrainingData is used for building a classi�-

cation model M . Then, each unknown document fetched from the test data D̃. First, an
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Algorithm 3 Build classi�cation model and predict class of unknown documents

1: function BuildModelAndPredict(D,W, α , β , K , θd )

2: (C,V , F) B PreprocessTrainingData(D,W,α , β,K)
3: M = build − classi f ication −model(F,L)
4: while Fetch unknown documents from test data D̃ do
5: F̃ = PreprocessUnknownDocuments(D̃,V ,θd ,C)
6: p = M .predict(F̃)
7: end while
8: end function

unknown document is preprocessed as described in the previous section, then the classi�er

predicts its label.
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5.4. Evaluation Setup

In this section we evaluate our method on di�erent classi�cation tasks. Accuracy is

measured for di�erent classi�ers trained on unprocessed and preprocessed training data.

We show that classi�ers trained on our preprocessed data consistently outperform the

ones trained on the original datasets.

Datasets. In order to evaluate the e�ectiveness of the proposed method, we conducted

experiments on 4 short text datasets that have been used in experiments of previous

research. The datasets are the Customer Reviews (CR), MPQA, Subjectivity (Subj.) and

Short Movie Reviews (RT). See Section 2.4.3 for more details.

We subdivide each dataset as follows: The test sets consist of 1000 samples held out from

each dataset for later testing. To show the e�ectiveness of our method on di�erent training-

set sizes, parameter tuning and classi�er training is performed with training sets of varying

sizes: 500, 1000, 1500, 8500 for MPQA, Rt10k and Subj and 500, 1000, 1500, 2600 for CR. For

each size, we sample �ve training sets randomly, using strati�ed sampling. For each of

these sets, a 10-fold cross-validation is performed to �nd the best parameter combination,

i.e., the combination that yields the highest average accuracy over all folds. The classi�er

is then trained on the same dataset that is used for the cross-validation and tested on the

held-out test set (�ve times for each sample size and classi�er combination).

Classifiers. We use three classi�ers for our evaluations. Our goal is to show that our

preprocessing method increases the accuracy with various classi�ers built on top of the

preprocessed training data. To show this, we deploy the same classi�ers used in previous

studies [118]. We only change the respective training data to our preprocessed version.

We use two baseline text classi�cation methods, the Multinomial Naive Bayes (MNB) and

the Naive Bayes Support Vector Machine (NBSVM) classi�ers. We parameterize them as

recommended in [118]. The third classi�er we evaluate is presented in [107]. See Section

2.2.3 for details regarding the classi�ers.

Word Embedding Model. We use Google’s pretrained Word2Vec model for the evaluation.

It was trained on a part of Google’s News dataset, which contains around 100 billion words.

The �nal model consists 3, 000, 000 word vectors of dimensionality 300.
2

Term Clustering. The term clusters are computed with the built-in agglomerative hierar-

chical clustering algorithm in Matlab
3
. Its advantage over, say, K-Means is that it allows

to operate on a dissimilarity matrix based on any distance function designed by the user.

2 https://code.google.com/archive/p/word2vec/
3

https://www.mathworks.com/help/stats/cluster.html
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In our case, this is the semantic-distributional distance. However, any other algorithm

that supports custom distance metrics could have been used (e.g., DBSCAN).

Parameter Search. During parameter tuning, we search on all combinations of the fol-

lowing parameter values,

K = {0, 0.25, 0.5, 0.75, 0.9} ,
α = {0, 0.25, 0.5, 0.75, 1} ,
β = {0, 0.1, 0.3, 0.5, 0.7, 1} ,
θ = {0, 0.5, 2} .

We exclude all combinations with β = 0 and α , 0 (see Section 5.2.4.1). Instead of the

absolute number of clusters, we use K as a fraction of terms the resulting preprocessed

dataset is reduced to. E.g., K = 0.25 means that the number of terms are reduced to

0.25 · |V |, where |V | is the number of terms in the dataset.
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5.5. Evaluation Results

Figure 5.4 shows our evaluation results with three di�erent classi�ers. The horizontal

axis represents the size of the training set. The vertical axis represents the di�erence

between classi�cation accuracy with lexical substitution and without, i.e., a positive value

indicates improvement of our method over unprocessed datasets.
4

The red values (left

bar) represent the accuracy di�erence using only semantic clustering, i.e., not using the

distributional information of the training data. The blue values (right bar) correspond to

the runs using our novel distance measure. The dots indicate the mean accuracy di�erence

over �ve runs, the thick error bars stand for the corresponding 25 percentile mark, i.e., the

accuracy di�erence of 3 of 5 runs. The thin lines extend to the minimum/maximum. Note,

for brevity, we refer in the following only to the achieved accuracy. This is valid since

considering precision, recall, or F-score results in the same conclusions. Nevertheless, we

present these numbers in the supplementary material.

Figure 5.4.: Classi�cation accuracy for each dataset using three di�erent classi�ers

We report on the results achieved with the best parameter combination, as described

previously. The accuracies used to calculate the di�erence in performance are the mean

accuracies measured over �ve runs of our algorithm. The algorithm is run with 4 di�erent

4
Note, that the value ranges are di�erent between the rows.
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training sizes. We can observe average improvements in all datasets, except for the Subj
dataset classi�ed with RAE and the Rt10k dataset classi�ed with MNB, both trained with

8500 samples. More precisely, of all 240 scenarios tested
5
, in 197 cases (82 %) our method

improves classi�cation accuracy, in 5 cases (2 %) no change is observed, and in 38 cases

(16 %) the performance slightly deteriorates. In 173 cases (72 %) distributional information

improves classi�cation accuracy, in 11 cases (5 %) there is no change, and in 56 cases (23 %)

the accuracy is worse. In 46 cases (19 %) distributional information has a higher added

value in terms of classi�cation accuracy than semantic information. These cases are mostly

ones on the Subjectivity dataset and on smaller training sets.

As expected, the largest improvements are observed in the smaller training sets. The mean

classi�cation accuracy increases for all tested dataset and classi�er combinations when

the sample size is at most 1000 samples. This con�rms the hypothesis that an exogenous

knowledge base can improve classi�cation when there is a lack of training samples. Next,

even with more complex classi�ers such as the RAE [107], our method could be used to

facilitate the training of models which generalize and, hence, perform better.

We also observe higher improvements with growing training sets, e.g., for CR classi�ed

with RAE and NBSVM the biggest average quality jump is observed in training sets

with 1000 samples. There seems to be an optimal training-set size, so that the external

knowledge brought from word embeddings has the most bene�cial e�ects. This is because

distributional information becomes robust enough for the substitutions to be most e�cient,

compared to classi�cation without word clusters.

5
4 Datasets × 4 Training-Set sizes × 5 Runs × 3 Classi�ers = 240
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6.1. Conclusions

The main motivation of this work is to understand di�erent aspects of word embedding

models better, which were previously not clear. In order to do this, we have presented a

three-way analysis of word embedding models. Before the analysis chapters, in Chapter

2, we have introduced all the necessary background information, notation and previous

works, which were necessary for the remainder of the work. This includes an introduction

of word embedding models in general, text classi�cation fundamentals, introduction to

n-grams and the datasets used throughout the work. Then, we went through the di�erent

analysis aspects, which we categorized into algorithmic, theoretical and application groups.

We have dedicated a chapter for each group.

First, in the algorithmic chapter (Chapter 3), we have evaluated the e�ect of the di�erent

parameter settings on the similarity values of word embedding models. More precisely, we

train models with systematically di�erent parameter settings and compare their similarity

value distributions. To generalize our �ndings, we have extended our scope of models with

considering two novel models that embed syllables and sentences, respectively, instead of

words. The results show that the same value can represent di�erent grades of similarity

in di�erent models, but at the same time almost all distributions have a very similar bell

shape. We prove with statistical tests that most of the normalized distributions are almost

identical even with the most extreme parameter settings, such as very large dictionaries

or small dimensionality.

These �rst evaluations have showed how parameters a�ect the similarity values, but not

how they in�uence the quality of the models. In contrast, in the next part of our algorithmic

analysis, we have described experiments that allow us to answer which di�erences in

quality one can expect when training word embedding models on fragmented corpora,

such as the Google n-gram corpus, compared to full-text. With these experiments we are

able to quantify how much fragmentation and di�erent minimum count settings changes

the average quality of the respective word embedding models. Using our experiments,

we give recommendations on which n-gram versions to use for word embedding model

training. We have also answered important research questions, such as ’How sensitive are

the models to the fragmentation and the minimum count parameter?’ and ’What is the

reason for the quality loss of models trained with high fragmentation or a high minimum

count parameter?’.

121



6. Conclusions and Future Work

An in-depth evaluation of the results con�rmed that one generally can expect good

quality for n-grams with n ≥ 3. In addition, we have showed that the minimum count

parameter is highly corpus size dependent and should not be used for corpora with size

similar to or smaller than the Wikipedia dump. Finally, our results have showed that the

fragmentation and the minimum count parameter introduce di�erent kinds of error. Based

on this, we conclude that n-gram corpora such as Google Books are valid training data for

word embedding models. In summary, our evaluation results indicate that one can train

high-quality embedding models with n-grams if some (mild) prerequisites hold. This is

particularly true for the Google n-gram corpus, which is a good corpus to this end.

Although, in the algorithmic analysis chapter we have showed how the similarity value

distributions of word embedding models change when trained with di�erent parameter

settings, the notion of similarity and the meaning of similarity values remained ambiguous.

In the theoretical analysis chapter (Chapter 4), we have studied when exactly such values

are meaningful in word embedding models.

Our core �nding is that meaningful similarity threshold values exist, and they can be found

for each speci�c word embedding model by calculating similarity-value and similarity-list

aggregates. Since these thresholds are not general, they should be calculated for every

individual model using the evaluation method we have presented. We have also shown

that these insights are corpus-independent.

Based on these results, we propose a new similarity-threshold aware evaluation method of

word embedding models, built on top of the baseline method, which does not compare the

word pairs during evaluation that fall below the calculated threshold. We have compared

the baseline method and our similarity-threshold aware evaluation method with several

models on well-known benchmark test sets. We show that our method indeed can a�ect

the evaluation results signi�cantly. We conclude that our method ensures a more reliable

comparison of word embedding models, which also helps the design of such models in the

future.

In the last, application analysis chapter (Chapter 5), we have presented a new approach

to short text classi�cation using a lexical substitution based preprocessing method that

employs word embedding models. Since it is a preprocessing method, it is an orthogonal

extension of any text classi�cation algorithm. Our method mimics how human annotators

preprocess texts: It replaces words unknown to the classi�er with known ones and sub-

stitutes semantically similar words for statistical robustness, in order to compensate the

scarcity of labeled documents. The main contribution of this chapter is the de�nition of a

semantic-distributional word-distance measure. This is the �rst time when the combina-

tion of semantic and distributional information is used in term substitution. Our results

show that classi�cation accuracy increases using the preprocessed training data to train

the classi�ers in every case, but most signi�cantly when labeled data is scarce.
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6.2. Future Research Directions

Our algorithmic and theoretical analysis results strengthened our intention to generalize

our threshold computation method in the future. We deem such evaluations relevant for

any application scenario, where any attribute is measured by a score. We hypothesize that

such patterns appearing in our evaluations, such as highly di�erent, but when normalized

similar distributions or meaningful and meaningless value intervals, appear in various other

models as well. We not only aim at generalizations within word embedding models or NLP,

but for any �eld of scienti�c research. We intend to �nd use cases where di�erent, not only

similarity, scores can be compared in order to �nd meaningful threshold values. As a matter

of fact, we have already published a work [113] with highly similar fundamental ideas, in

another, completely unrelated �eld of computer science, namely trajectory clustering in

moving object databases.

A trajectory of a moving object is a sequence of GPS points. Finding similar trajectories is

a fundamental task in this �eld. Classical models face several limitations, most notably

scalability. To overcome these limitations, the authors of [70] adopted a similar idea to

word embedding models to create similarity preserving embeddings of trajectories. They

have named their model the t2vec (trajectory to vector) model.

Our evaluation in [113] investigates similar questions as we have done in this work

regarding word embedding models: What do similarity values coming from this new

embedding model mean? How do the parameters of the embedding model change the

meaning of similarity values? For example, is it possible that in one model two trajectories

which are 0.5-similar should be considered similar, and in another model trained with

di�erent parameter settings the same value implies dissimilarity?

In order to answer these questions, we have used similar methodology to evaluate the

meaningfulness of the deep trajectory similarity values in t2vec, as we have done in this

work with word embedding models. This means, we evaluate how di�erent parameter

settings a�ect the similarity values of the t2vec model. We conclude that the t2vec model

is robust regarding parameterization, by showing that the similarity-value distributions

are fundamentally very similar between models trained with di�erent parameters.

Regarding other research scenarios of ours, presented in this work, the possible future

works are more straightforward. As for the question whether it is suitable to train any

kind of natural language models on fragmented text, one needs to evaluate their quality

compared to full text versions and quantify the di�erences. Since the Google Books corpus

is one of the largest language data publicly available it may be very important for any

novel model to be trainable on n-grams, producing results on par or only slightly inferior

to the full text version.

Also, since our preprocessing method is an orthogonal extension to virtually any text

classi�cation algorithm, one can employ it with any novel method with a good possibility

of increasing its accuracy.
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model google msr rg-65 ws353 rare simlex mturk men

wiki_2_1 0.299 0.444 0.642 0.470 0.225 0.287 0.648 0.589

wiki_3_1 0.426 0.527 0.662 0.557 0.304 0.321 0.600 0.632

wiki_5_1 0.479 0.546 0.671 0.574 0.334 0.301 0.623 0.646

wiki_8_1 0.491 0.514 0.653 0.534 0.311 0.307 0.641 0.636

wiki_f_1 0.489 0.552 0.684 0.607 0.353 0.357 0.627 0.651

Table S1.: Models trained on di�erently fragmented 1 Billion corpora with win = 1.

model google msr rg-65 ws353 rare simlex mturk men

wiki_3_2 0.404 0.537 0.671 0.567 0.326 0.323 0.589 0.626

wiki_5_2 0.523 0.561 0.657 0.569 0.360 0.297 0.663 0.642

wiki_8_2 0.551 0.554 0.676 0.565 0.358 0.303 0.657 0.641

wiki_f_2 0.523 0.538 0.688 0.608 0.364 0.322 0.633 0.653

Table S2.: Models trained on di�erently fragmented 1 Billion corpora with win = 2.

model google msr rg-65 ws353 rare simlex mturk men

wiki_3_4 0.521 0.544 0.656 0.587 0.365 0.318 0.645 0.648

wiki_8_4 0.561 0.570 0.688 0.617 0.377 0.299 0.649 0.671

wiki_f_4 0.555 0.509 0.719 0.615 0.377 0.306 0.654 0.666

Table S3.: Models trained on di�erently fragmented 1 Billion corpora with win = 4.
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model google msr rg-65 ws353 rare simlex mturk men

wiki_8_7 0.573 0.547 0.662 0.631 0.355 0.307 0.646 0.663

wiki_f_7 0.581 0.507 0.722 0.634 0.366 0.323 0.644 0.680

Table S4.: Models trained on di�erently fragmented 1 Billion corpora with win = 7.

model google msr rg-65 ws353 rare simlex mturk men

wiki_2_1_0 0.341 0.449 0.640 0.485 0.224 0.289 0.645 0.608

wiki_2_1_2 0.347 0.431 0.624 0.490 0.196 0.274 0.625 0.596

wiki_2_1_5 0.203 0.370 0.489 0.415 0.128 0.266 0.571 0.537

wiki_2_1_10 0.113 0.213 0.404 0.254 0.090 0.235 0.414 0.422

Table S5.: Models trained on the 2-gram Wikipedia corpora, win = 1, with di�erent

minimum count parameter.

model google msr rg-65 ws353 rare simlex mturk men

wiki_3_1_0 0.422 0.533 0.657 0.557 0.305 0.318 0.595 0.635

wiki_3_1_2 0.412 0.531 0.623 0.552 0.297 0.306 0.588 0.635

wiki_3_1_5 0.312 0.441 0.542 0.439 0.187 0.221 0.501 0.511

wiki_3_1_10 0.258 0.354 0.520 0.437 0.134 0.156 0.448 0.387

Table S6.: Models trained on the 3-gram Wikipedia corpora, win = 1, with di�erent

minimum count parameter.

model google msr rg-65 ws353 rare simlex mturk men

wiki_5_1_0 0.483 0.533 0.652 0.566 0.341 0.293 0.639 0.651

wiki_5_1_2 0.357 0.401 0.567 0.470 0.134 0.201 0.544 0.529

wiki_5_1_5 0.122 0.239 0.410 0.420 0.057 0.141 0.453 0.410

wiki_5_1_10 0.079 0.135 0.369 0.344 0.034 0.087 0.320 0.359

Table S7.: Models trained on the 5-gram Wikipedia corpora, win = 1, with di�erent

minimum count parameter.

model google msr rg-65 ws353 rare simlex mturk men

wiki_8_1_0 0.485 0.510 0.648 0.544 0.320 0.297 0.633 0.640

wiki_8_1_2 0.276 0.280 0.551 0.409 0.116 0.209 0.540 0.492

wiki_8_1_5 0.027 0.091 0.339 0.223 0.034 0.098 0.278 0.349

wiki_8_1_10 0.012 0.030 0.256 0.201 0.030 0.056 0.209 0.207

Table S8.: Models trained on the 8-gram Wikipedia corpora, win = 1, with di�erent

minimum count parameter.
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model google msr rg-65 ws353 rare simlex mturk men

wiki_3_2_0 0.413 0.545 0.668 0.554 0.316 0.308 0.605 0.625

wiki_3_2_2 0.407 0.545 0.644 0.561 0.311 0.300 0.594 0.621

wiki_3_2_5 0.330 0.451 0.509 0.425 0.201 0.243 0.521 0.538

wiki_3_2_10 0.269 0.359 0.509 0.402 0.142 0.178 0.421 0.399

Table S9.: Models trained on the 3-gram Wikipedia corpora, win = 2, with di�erent

minimum count parameter.

model google msr rg-65 ws353 rare simlex mturk men

wiki_5_2_0 0.518 0.547 0.668 0.585 0.351 0.300 0.643 0.656

wiki_5_2_2 0.358 0.426 0.581 0.537 0.154 0.237 0.544 0.558

wiki_5_2_5 0.155 0.236 0.331 0.398 0.053 0.148 0.476 0.382

wiki_5_2_10 0.087 0.138 0.337 0.284 0.045 0.087 0.427 0.290

Table S10.: Models trained on the 5-gram Wikipedia corpora, win = 2, with di�erent

minimum count parameter.

model google msr rg-65 ws353 rare simlex mturk men

wiki_8_2_0 0.540 0.551 0.680 0.583 0.352 0.307 0.654 0.653

wiki_8_2_2 0.290 0.309 0.571 0.445 0.134 0.204 0.556 0.519

wiki_8_2_5 0.037 0.084 0.344 0.259 0.023 0.112 0.289 0.341

wiki_8_2_10 0.012 0.030 0.256 0.201 0.023 0.056 0.240 0.199

Table S11.: Models trained on the 8-gram Wikipedia corpora, win = 2, with di�erent

minimum count parameter.

model google msr rg-65 ws353 rare simlex mturk men

wiki_5_4_0 0.544 0.569 0.663 0.589 0.367 0.304 0.638 0.658

wiki_5_4_2 0.379 0.440 0.565 0.537 0.171 0.228 0.525 0.570

wiki_5_4_5 0.167 0.230 0.343 0.420 0.073 0.156 0.469 0.391

wiki_5_4_10 0.102 0.152 0.351 0.277 0.061 0.102 0.429 0.309

Table S12.: Models trained on the 5-gram Wikipedia corpora, win = 4, with di�erent

minimum count parameter.
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model google msr rg-65 ws353 rare simlex mturk men

wiki_8_4_0 0.579 0.570 0.697 0.609 0.371 0.307 0.657 0.669

wiki_8_4_2 0.302 0.321 0.579 0.457 0.141 0.197 0.560 0.534

wiki_8_4_5 0.055 0.101 0.339 0.271 0.031 0.134 0.271 0.355

wiki_8_4_10 0.020 0.042 0.281 0.212 0.014 0.067 0.250 0.205

Table S13.: Models trained on the 8-gram Wikipedia corpora, win = 4, with di�erent

minimum count parameter.

model google msr rg-65 ws353 rare simlex mturk men

wiki_8_7_0 0.573 0.564 0.686 0.609 0.347 0.315 0.648 0.672

wiki_8_7_2 0.276 0.295 0.577 0.425 0.145 0.231 0.556 0.531

wiki_8_7_5 0.023 0.096 0.354 0.277 0.034 0.87 0.299 0.329

wiki_8_7_10 0.012 0.042 0.260 0.189 0.012 0.029 0.261 0.189

Table S14.: Models trained on the 8-gram Wikipedia corpora, win = 7, with di�erent

minimum count parameter.

model google msr rg-65 ws353 rare simlex mturk men

1b_2_1_0 0.302 0.435 0.623 0.490 0.241 0.299 0.638 0.612

1b_2_1_2 0.302 0.420 0.618 0.469 0.207 0.281 0.611 0.601

1b_2_1_5 0.212 0.376 0.474 0.398 0.128 0.266 0.571 0.537

1b_2_1_10 0.113 0.213 0.404 0.254 0.101 0.242 0.407 0.434

Table S15.: Models trained on the 2-gram 1 Billion corpora, win = 1, with di�erent mini-

mum count parameter.

model google msr rg-65 ws353 rare simlex mturk men

1b_3_1_0 0.425 0.523 0.634 0.561 0.312 0.309 0.601 0.632

1b_3_1_2 0.416 0.511 0.623 0.540 0.301 0.291 0.574 0.620

1b_3_1_5 0.299 0.420 0.534 0.451 0.175 0.219 0.496 0.517

1b_3_1_10 0.245 0.348 0.509 0.444 0.144 0.161 0.433 0.390

Table S16.: Models trained on the 3-gram 1 Billion corpora, win = 1, with di�erent mini-

mum count parameter.
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model google msr rg-65 ws353 rare simlex mturk men

1b_5_1_0 0.473 0.531 0.640 0.556 0.340 0.267 0.623 0.636

1b_5_1_2 0.345 0.405 0.558 0.476 0.122 0.199 0.539 0.536

1b_5_1_5 0.108 0.232 0.416 0.415 0.071 0.134 0.467 0.421

1b_5_1_10 0.061 0.144 0.372 0.355 0.042 0.079 0.307 0.373

Table S17.: Models trained on the 5-gram 1 Billion corpora, win = 1, with di�erent mini-

mum count parameter.

model google msr rg-65 ws353 rare simlex mturk men

1b_8_1_0 0.466 0.518 0.661 0.539 0.337 0.303 0.621 0.627

1b_8_1_2 0.267 0.270 0.556 0.400 0.123 0.221 0.531 0.481

1b_8_1_5 0.035 0.082 0.351 0.210 0.036 0.099 0.269 0.335

1b_8_1_10 0.019 0.022 0.244 0.184 0.030 0.067 0.202 0.193

Table S18.: Models trained on the 8-gram 1 Billion corpora, win = 1, with di�erent mini-

mum count parameter.

model google msr rg-65 ws353 rare simlex mturk men

1b_3_2_0 0.413 0.524 0.659 0.557 0.316 0.307 0.612 0.638

1b_3_2_2 0.405 0.534 0.619 0.537 0.311 0.300 0.594 0.621

1b_3_2_5 0.302 0.466 0.506 0.439 0.214 0.227 0.525 0.544

1b_3_2_10 0.255 0.354 0.481 0.389 0.156 0.188 0.421 0.402

Table S19.: Models trained on the 3-gram 1 Billion corpora, win = 2, with di�erent mini-

mum count parameter.

model google msr rg-65 ws353 rare simlex mturk men

1b_5_2_0 0.499 0.516 0.651 0.586 0.371 0.321 0.609 0.636

1b_5_2_2 0.334 0.408 0.591 0.506 0.161 0.250 0.516 0.533

1b_5_2_5 0.117 0.209 0.340 0.396 0.077 0.168 0.435 0.351

1b_5_2_10 0.070 0.123 0.303 0.291 0.055 0.084 0.402 0.301

Table S20.: Models trained on the 5-gram 1 Billion corpora, win = 2, with di�erent mini-

mum count parameter.
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model google msr rg-65 ws353 rare simlex mturk men

1b_8_2_0 0.530 0.555 0.647 0.549 0.362 0.311 0.638 0.640

1b_8_2_2 0.278 0.312 0.575 0.437 0.137 0.189 0.523 0.508

1b_8_2_5 0.032 0.069 0.323 0.238 0.023 0.102 0.269 0.338

1b_8_2_10 0.008 0.035 0.243 0.188 0.023 0.067 0.225 0.167

Table S21.: Models trained on the 8-gram 1 Billion corpora, win = 2, with di�erent mini-

mum count parameter.

model google msr rg-65 ws353 rare simlex mturk men

1b_5_4_0 0.532 0.572 0.654 0.571 0.371 0.298 0.623 0.648

1b_5_4_2 0.367 0.422 0.569 0.541 0.174 0.232 0.509 0.566

1b_5_4_5 0.171 0.217 0.327 0.411 0.080 0.161 0.454 0.393

1b_5_4_10 0.106 0.145 0.356 0.270 0.067 0.98 0.431 0.300

Table S22.: Models trained on the 5-gram 1 Billion corpora, win = 4, with di�erent mini-

mum count parameter.

model google msr rg-65 ws353 rare simlex mturk men

1b_8_4_0 0.581 0.571 0.687 0.602 0.372 0.300 0.641 0.643

1b_8_4_2 0.308 0.298 0.542 0.455 0.146 0.191 0.565 0.529

1b_8_4_5 0.057 0.089 0.331 0.251 0.048 0.135 0.262 0.371

1b_8_4_10 0.025 0.032 0.267 0.234 0.008 0.054 0.234 0.194

Table S23.: Models trained on the 8-gram 1 Billion corpora, win = 4, with di�erent mini-

mum count parameter.

model google msr rg-65 ws353 rare simlex mturk men

1b_8_7_0 0.574 0.543 0.674 0.614 0.344 0.324 0.652 0.657

1b_8_7_2 0.277 0.259 0.534 0.409 0.161 0.224 0.544 0.541

1b_8_7_5 0.023 0.071 0.321 0.236 0.044 0.68 0.275 0.306

1b_8_7_10 0.016 0.036 0.234 0.149 0.008 0.034 0.251 0.180

Table S24.: Models trained on the 8-gram 1 Billion corpora, win = 7, with di�erent mini-

mum count parameter.
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Table S25.: Results on the sampled datasets using the Multinomial Naive Bayes classi�er.

Table S26.: Results on the sampled datasets using the Naive Bayes Support Vector Machine

classi�er.
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Table S27.: Results on the sampled datasets using the Recursive Auto-Encoder classi�er.
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