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Abstract

In 1997 Dominic Mayers, published a no-go theorem that stated, no unconditionally secure quantum
bit commitment protocol is possible. However, the accompanying proof is not very accessible. In
this thesis, first the necessary background to follow the proof is presented. Then the proof of the
theorem is laid out step by step, illustrated with examples and put into perspective of later research.
Furthermore, quantum bit commitment schemes, that do not fall under the no-go theorem are
explored. The most common approaches for such quantum bit commitment schemes are compared,
classified, and reviewed.

Zusammenfassung

Dominic Mayers veröffentlichte 1997 ein Unmöglichkeitstheorem, in welchem er zeigte, dass es

keine quantenkryptographische bit-commitment Verfahren gibt, die uneingeschränkt sicher sind.

Der begleitende Beweis lässt allerdings einige Details aus und ist somit schwer nachzuvollziehen.

In dieser Bachelorarbeit werden also zunächst die Grundlagen vorgestellt, die notwendig sind um

dem Beweis zu folgen. Dann wird der Beweis schrittweise in einer Form, der besser zu folgen ist,

dargelegt und fehlende Details ergänzt. Des Weiteren wird der Beweis mit Beispielen illustriert,

und der Beweis ins Verhältnis zu späteren Ergebnissen gesetzt. Darüber hinaus werden gängige

Quanten-Bit-Commitment-Verfahren, die nicht unter das Unmöglichkeitstheorem fallen, erarbeitet.

Diese Verfahren und Herangehensweisen, solche Verfahren zu konstruieren, werden miteinander

verglichen, klassifiziert und begutachtet.
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I. Introduction

Bit commitment is a powerful cryptographic primitive, that can be used to implement
secure coin tossing1, oblivious transfer2, and secure two-party computation3. For this
reason, an unconditionally secure bit commitment protocol, so a protocol that does not rely
on computational assumptions, is highly desirable. It is well known that under classical
assumptions unconditional bit commitment is impossible.

With the advent of quantum computation the cryptographic primitive of key distribution,
that was previously only possible under some computational assumptions, was found to
be possible in such a way that it relies only on the validity of quantum physics (Scarani
et al. 2009; Shor and Preskill 2000). With bit commitment being a powerful primitive,
cryptographers searched for such unconditional secure protocols for bit commitment, that
rely only on quantum theory. However, in 1997 Dominic Mayers published a paper,
proving that no such unconditionally secure quantum bit commitment (qbc) protocol
exists. Mayers showed that if a quantum commitment protocol is unconditionally secure
against the receiver, the sender can always successfully cheat.

Over the years, there have been some sceptics of the no-go theorem, whose protocols were
later shown to still be vulnerable to the attack presented. However it is still possible to
implement quantum bit commitment under certain conditions, or for some weaker security
notions.

I.1. Problem Statement

In his proof Mayers does not give a high level of detail. Some theorems are cited and
asserted to give rise to certain properties, without an explicit proof of these statements.
For instance he mentions that there exists a transformation that lets the sender cheat,
however it is not explained how exactly this transformation is constructed. While it is
possible to verify that these statements are in fact true, it is not always straight forward to
do so, and to follow along in the proof. In short, while Mayer’s paper was ground-breaking,
it is not very accessible.

While the no-go theorem is widely accepted, it does not take the role of special relativity
or decoherence into account. With that a number of assumptions that can be made, under
which unconditionally secure quantum bit commitment can still be achieved. In addition
to this, (quantum) bit commitment protocols that may not be unconditionally secure but
fulfil other security definitions, also have useful applications. Such protocols were explored
by a number of authors. However it appears, that there exists no comprehensive overview
of those different approaches.

1As shown by Blum (1983), who uses a form of bit commitment (though not named as such) to build his
coin tossing protocol.

2Unconditionally secure quantum bit commitments are used by Bennett, Brassard, et al. (1992), Crépeau
(1994), and Yao (1995) to implement secure oblivious transfer.

3Secure two-party computation can be based on oblivious transfer (Kilian 1988), or on “committed
oblivious transfer” (Crépeau, van de Graaf, and Tapp 1995), a combination of oblivious transfer and bit
commitment. As bit commitment enables oblivious transfer, secure two-party computation can also be
attributed to bit commitment.

1



2 Chapter I. Introduction

I.2. Related Work

The focus of this Thesis will be on Mayers (1997), which proves the impossibility of
unconditionally secure quantum bit commitment. Mayers also mentions his anterior
article (Mayers 1996) about the insecurity of a specific qbc scheme, which has more detail
on some aspects of the 1997 paper. Independently of Mayers Lo and Chau (1998) also
published an impossibility proof for quantum bit commitment, in which they use many
of the same techniques as Mayers (1997), and elaborate on some parts while simplifying
others. The BB84 quantum bit commitment scheme proposed by Bennett and Brassard
(1984) will also be of interest, as it is the first quantum bit commitment scheme described,
and whose existence lead to the general discussion of whether qbc is possible. In fact the
“EPR-Attack” which was later generalized in the proofs of Lo and Chau (1998) and Mayers
(1997), is presented by Bennet and Brassard alongside with the protocol.

As it has been noticed, that a secure qbc-protocol could be obtained by forcing the
sender to perform measurements, attempts have been made, to do so using computationally
secure classical bit commitments. However it was shown by Brassard, Crépeau, et al.
(1998), that trying to force the sender to perform real measurements by using classical
bit commitments fails at the classical bit commitments. They prove this by showing that
classical bit commitment schemes are inherently vulnerable against quantum attacks.

An extended no-go theorem is provided by D’Ariano et al. (2007). They describe
why some authors are not convinced by Mayers’ proof, then introduce a model in which
no fixed strategy has to be followed by the receiver of the commitment, so that it also
includes protocols of sceptics like the one of Yuen (2005). Thereafter a no-go theorem of
unconditional security on this most general model is formulated.

Nielsen and Chuang (2010) give a comprehensive introduction to quantum information
and quantum computation. A well put together definition of quantum ensembles and
a useful form of Schmidt’s decomposition theorem are given by Hughston, Jozsa, and
Wootters (1993), both of which are mentioned to be used by Lo and Chau (1998) and
Mayers (1997), and whose usage will be made more explicit in the thesis. Aspects of
entanglement are reviewed by Horodecki et al. (2009), and while quantum bit commitment
is only briefly mentioned, it is very interesting to see how useful entanglement can be in
other cryptographic applications, as opposed to quantum bit commitment where it is a
weak point of most protocols that implement it.

A very interesting but impractical approach for a quantum bit commitment protocol
that evades even the most general impossibility proof is one that takes general relativity
into account. Such a protocol is presented by Kent (1999). The promising concept of noisy
storage is proposed by Konig, Wehner, and Wullschleger (2012), where an unconditionally
secure quantum bit commitment can be achieved trough forced storage which induces
decoherence. Another protocol of interest is the one Crépeau, Légaré, and Salvail (2001)
present, as it achieves either the unconditional hiding or the unconditional binding property
without making strong assumptions.

I.3. Contribution and Outline

This thesis provides a wider look at Mayer’s no-go theorem and a detailed explanation
of its proof, including auxiliary theorems and how they are utilized. Mayers proved, the
sender is able to perform an attack on the quantum bit commitment protocol. The thesis
explicitly constructs this attack and provides examples, that illustrate the steps taken in
the attack. For an interactive example, the attack on BB84 will be implemented in Q#, a
functional programming language for quantum applications developed by Microsoft (Svore
et al. 2018). To address the variety of proposed protocols, an overview is given over the
most popular ways to achieve quantum bit commitment in some form or another. This
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survey classifies those approaches by assumptions, sub-protocols used and level of security
achieved, and puts their feasibility into perspective.
To start with, Chapter II will provide a preliminary overview of cryptographic, mathe-

matical and quantum theoretical concepts needed for the following chapters. In Section II.1
some general cryptographic notions and the classical primitive of bit commitment are
presented. Section II.2 gives mathematical definitions that will afterwards be used in
Section II.3 as a foundation for quantum information theoretic definitions and theorems.
In addition to that, Section II.3 provides an information theoretical and computational
introduction to quantum theory. Core concepts that will be needed for the understanding
of Mayer’s proof and this thesis are presented here. Section II.4 then provides the quan-
tum counterparts of cryptographic primitives, not only for bit commitment but also for
primitives, that will later be explored in Chapter IV.

The in-depth proof of Mayers theorem, and context around it is then given in Chapter III.
The first section of this chapter defines the environment in which the proof of the no-go
theorem will be modeled. A generalized measurement to handle classical information in a
quantum context is presented in Subsection III.1.1, which models classical information as
special collapsed quantum states. With this generalized measurement, Subsection III.1.2
then shows how a generalized two-party system is modelled. Using this model in Section III.2,
the quantum bit commitment protocol BB84 is presented alongside with an attack strategy
on it. This attack is important as its generalization leads to Mayers’ no-go theorem.
The generalized attack on quantum bit commitment protocols is then presented in

Section III.3. With Alice being the participant which sends the commitment and Bob
the participant which receives the commitment, Subsection III.3.1 explains, why one
can assume the quantum bit commitment protocol to be secure against Bob, and what
that means for the properties of the protocol. These properties are then addressed in
Sections III.3.2–III.3.4, where initially it is shown which advantage Alice gains from the
protocol being secure against Bob, and then in III.3.3 how she is able to cheat if the
protocol is perfectly secure against Bob. Mayers proof uses Hughston, Jozsa, and Wootters
(1993) to argue that there exists a unitary transformation on Alice side, that allows her to
change her mind after the commitment. This transformation is explicitly constructed in
this subsection. Then in III.3.4 it will be shown how Alice is still able to cheat, even if the
protocol is only unconditionally secure against Bob. It will be shown that it is not possible
for Bob to differentiate the cheating state after Alice changed her mind from the respective
honest state.
The no-go theorem is then put into context in Sections III.4 and III.5. Section III.4

explains why Mayers’ proof was criticised by some authors, and how D’Ariano et al. proved
an even more general version of the no-go theorem that undoubtedly includes the sceptics
attempts to circumvent the no-go theorem. Subsequently in Section III.5 a weaker form
of quantum bit commitment, that does not fall under the framework of Mayers proof, is
discussed. It is shown, that there already exist specific attack strategies against it, and that
the more generalized proof, discussed in III.4, can also be applied to this form of quantum
bit commitment.
Finally, Chapter IV presents ways in which quantum bit commitment still can still

be achieved. Possibilities of protocols that do not fall under the setting of the no-go
theorems, and can possibly achieve unconditional security under some specific assumptions,
are explored in Section IV.1. Section IV.2 presents protocols that, while not achieving
unconditional security, achieve either unconditional concealing, unconditional biding, or a
different tradeoff of those properties.

A conclusion of this thesis is given in Chapter V. In Appendix A, an interactive example
is presented, that implements the BB84 protocol and the attack on it in Q#.





II. Preliminaries

This chapter provides an introduction to cryptographic, mathematical and quantum
theoretic concepts, that will be needed for the following chapters.

II.1. Cryptographic Primitives

In this section some cryptographic primitives and their security conditions will be presented.

Definition II.1 (Adjectives for security proprties). A property in (quantum) cryptography
is defined to hold unconditionally, if it holds against a cheater with no limit on time, space
or technology available to them.

A protocol is

• perfectly secure, if its security properties hold in any case against any attacker.

• It is statistically secure, if the probability of an unconditional attacker succeeding is
negligible in its security parameter.

• It is computationally secure, if its security depends on the assumption that a certain
(quantum) computation is hard to perform. ♣

II.1.1. Bit Commitment

Bit commitment is an asymmetric cryptographic primitive between two parties. One party
wants to commit themselves to a bit and desires the other party not to be able to determine
the contents of this commitment before they unveil it. Meanwhile, the other party is
interested in the first party not being able to change their mind about the commitment.
Throughout this thesis, the committing party will be called Alice, and the party receiving
the commitment will be called Bob.

Often the analogy of a strong-box is used, where Alice writes her bit on a piece of paper
and puts it in a box which she then gives to Bob and thus commits herself to this bit. Bob
is not able to open this box without the key, which Alice provides when she decides to
unveil the committed bit. A bit commitment protocol thus consists of two phases, the
commit phase and the unveil phase.

During the commit phase, Alice decides on a bit to commit and encodes it in some way.
The encoded bit is called a commitment. She then sends this commitment to Bob.

In the unveil, sometimes also called decommitment phase, Alice provides information
to Bob that indicate the bit she committed herself to and that makes it possible for Bob
to verify, whether she really did commit herself to that bit. Bob then either accepts that
commitment or rejects it. If he accepted the bit he then announces what he thinks the
committed bit was.

It is sometimes useful to model Alice’s and Bob’s actions these two phases through
procedures commit(b) and unveil(cb). Procedure commit(b) models the commit phase and
takes the bit to commit as an input. It returns the commitment cb. The unveil phase is
modelled through unveil(cb) which takes the commitment cb as an input and either returns
a bit b or ⊥ on error, or if cheating has been detected.

During the commit and unveil phase additional communication and computation can
occur. So as a more broad description, the commit phase is the phase from the start

5



6 Chapter II. Preliminaries

of the protocol, including any setup procedures, until Bob has received and processed a
commitment of some form, and the unveil phase is the phase at the end of the protocol
where the contents of the commitment are unveiled to Bob and he verifies its correctness.

Sometimes the notion of a holding phase is useful. This phase describes processes in
the time after the commit phase, but before the unveil phase. In most honest protocols
nothing happens in this phase, therefore it is often omitted.

Definition II.2 (Correctness of a bit commitment). A bit commitment is correct, if in any
case in which both parties are honest and Alice committed to b ∈ {0, 1}, Bob accepts the
commitment and is convinced that Alice committed to b. ♣

Definition II.3 (Perfectly and statistially binding for classical bit commitments). A bit
commitment scheme is perfectly binding, if and only if every commitment that can be
revealed to be b ∈ {0, 1} cannot be revealed to be 1− b. A bit commitment scheme with a
security parameter n is statistically binding, if and only if given any commitment c, the
probability that Alice successfully reveals 0 in the unveil phase minus the probability that
Alice successfully reveals 1 is negligible in the security parameter.

∀A(·)→ c : |Pr [unveil(c)→ 0]− Pr [unveil(c)→ 1]| ≤ negl(n) . (II.1)

♣

Definition II.4 (Perfectly and statistically concealing for classical bit commitments). A
bit commitment scheme is perfectly concealing, if and only if any commitment produced by
commit(·) contains no information about the committed bit. A bit commitment scheme
with security parameter n is statistically concealing, if and only if for any two commitments
c0 and c1, that can honestly be revealed to 0 and 1 respectively, the probability that Bob
is able to correctly differentiate between the two is negligible in the security parameter.
Note, a commonly used synonym for concealing is hiding. ♣

Definition II.5 (Perfect and unconditional security for classical bit commitments). A bit
commitment scheme is perfectly secure, if and only if it is perfectly concealing and perfectly
binding. It is unconditionally secure, if and only if it is perfectly or statistically concealing
and perfectly or statistically binding against an unconditional adversary. ♣

It is known, that perfect and unconditionally secure bit commitment is impossible in the
classical world (Kilian 1988, p. 24).

II.2. Linear Algebra

In quantum information and quantum computation, the fundamental unit of information
is the quantum bit (qubit), analogous to the fundamental unit of information in classical
information theory, which is the bit. In the same way that classical bits can have states
that are described by the numbers 0 and 1, qubits can have states that are described by
the vectors |0〉 and |1〉. Unlike classical bits, but like in Example II.1, states of qubits can
be described as a superposition of multiple basis states.

II.1 Example The wave function of a photon can be described as α |↑〉+ β |→〉, whereas α
and β are complex numbers, that encode the amplitude and phase of a wave function in
the ↑ or → direction respectively. It is said that the photons state is in a superposition of
the states |↑〉 and |→〉.

When measured, the photon will have either a vertical polarization with a probability of
|α|2 or a horizontal polarization with a probability of |β|2. ∗
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This example shows some physical background of what is going to follow. To understand
how to model the behaviour of a quantum mechanical system in a way that is useful for
quantum information and quantum computation, first some mathematical foundations
have to be laid out. The concepts laid out in this section will then be put in relation to
quantum computing in Section II.3. The definitions in this section are based on Nielsen
and Chuang (2010).

II.2.1. Hilbert Space

A vector space with an inner product is called an inner product space. Furthermore an inner
product space that is a complete metric space is called a Hilbert space. All finite dimensional
vector spaces are complete. In quantum computation and quantum information, finite
complex vector spaces are used to describe quantum states as vectors. So in this context,
inner product spaces are the same as Hilbert spaces.

The dirac notation is used to describe vectors of the n-dimensional Hilbert space H := Cn

of vectors of complex numbers. It consists of the elements |·〉 and 〈·|, called ket and bra
respectively. When writing |ψ〉, or 〈ψ|, ψ is the label assigned to the vector. Given

|ψ〉 :≡

ψ1
...
ψn

 , (II.2)

it applies that

〈ψ| ≡
(
ψ∗

1 · · · ψ∗
n

)
, (II.3)

where ψ∗
i denotes the complex conjugate of ψi. This means that 〈ψ| = (|ψ〉∗)T .

Dirac notation is useful for the inner product of two vectors in this complex vector space.
The inner product of the vectors |ψ〉 and |φ〉 is written as 〈ψ|φ〉 and calculated as

〈ψ|φ〉 := 〈ψ| |φ〉 =
∑

i

ψ∗
i φi . (II.4)

With the inner product defined, it is also possible to define the norm as

‖ |φ〉 ‖ =
√
〈φ|φ〉 . (II.5)

With respect to this norm, only vectors with unit length, so ‖ |ψ〉 ‖ = 1, describe valid
states of qubits.

As Hilbert spaces are vector spaces, different bases can be chosen so that linear combina-
tions of those basis vectors span the Hilbert space. A basis {|b〉1 , . . . , |b〉k} is orthonormal,
if and only if its vectors are normalized and orthogonal to each other, so

〈bi|bj〉 = δij :=
{

0, i 6= j

1, i = j
(II.6)

for each two basis states |bi〉,|bj〉. Such a basis spans a complex Hilbert space of dimension
k. Any orthonormal basis {|b〉1 , . . . , |b〉k} for a vector space V fulfills the completeness
relation ∑

i

|b〉i = I . (II.7)
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The two-dimensional complex Hilbert space is used to describe the state of single qubits,
and the basis usually chosen for this space is the so-called computational, or rectilinear
basis. It consists of

|0〉 ≡
(

1
0

)
, |1〉 ≡

(
0
1

)
. (II.8)

Another base for the same Hilbert space is the diagonal basis {|+〉 , |−〉} with

|+〉 := 1√
2

(|0〉+ |1〉), |−〉 := 1√
2

(|0〉 − |1〉) . (II.9)

To differentiate in which basis a vector is referred to in, the notation |ψ〉θ with θ ∈ +,×
is used.

|0〉+ := |0〉 , |1〉+ := |1〉 , (II.10)

|0〉× := |+〉 , |1〉× := |−〉 . (II.11)

If the index θ is not specified, θ = + is assumed. The naming and notation for the bases
used here follows the naming and notations of Bennett and Brassard (1984).

II.2.2. Operators

A linear operator on a vector space V is a function A : V → V for which

A

(∑
i

ai |ψi〉
)

=
∑

i

aiA (|ψi〉) , ∀ |ψi〉 ∈ V, ai ∈ C . (II.12)

Matrices are linear operators and linear operators can have matrix representation (Nielsen
and Chuang 2010, p. 64). So evaluating the matrix multiplication between the matrix
representation of the operator A and vector |ψ〉 is equivalent to applying operator A to
vector |ψ〉, A(|ψ〉) = A |ψ〉.

On a Hilbert space the Hermitian conjugate or adjoint of a matrix A is written as A†

and is the transpose of the complex conjugate A∗ of A,

A† = (A∗)T = ((aij)∗)T = (a∗
ji) . (II.13)

This application of the adjoint on a matrix is derived from the definition of the adjoint
for an operator. The adjoint of an operator on a Hilbert space is defined with the inner
product of that hilbert space.

Definition II.6 (Adjoint). Let A be an operation on a Hilbert space H, and for all |φ〉 , |ψ〉 ∈
H let |ψ′〉 := A(|ψ〉) and |φ′〉 := A†(|φ〉), then A† is the only operation such that

〈φ|ψ′〉 = 〈φ′|ψ〉 = 〈φ|A|ψ〉 . (II.14)

♣

For every matrix representation of operator A, the adjoint of that matrix is a matrix
representation of operator A†.

Definition II.7 (Hermitian, unitary and normal operators).

An operator A is


Hermitian or self-adjoint, iff A = A†

unitary, iff AA† = I

normal, iff AA† = A†A.

♣
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Hermitian and unitary operators are normal.

Definition II.8 (Positive operators). A Hermitian operator A is positive, if and only if for
all vectors |v〉 on the operators Hilbert space, 〈v|A|v ≥ 0〉. It is positive definite, if and
only if for all vectors |v〉 6= 0 on the operators Hilbert space, 〈v|A|v > 0〉. ♣

Definition II.9 (Projector). Given the n-dimensional vector space V and an m-dimensional
subspace W of V , it is possible to construct an orthonormal basis |v〉1 , . . . , |v〉n for V , such
that |v〉1 , . . . , |v〉m is a basis for W . The operator

P ≡
m∑

i=1
|vi〉 〈vi| (II.15)

is called the projector to subspace W . ♣

Projectors are Hermitian as (|ψ〉 〈ψ|)† = |ψ〉 〈ψ| for any vector |ψ〉.
Let A be a linear operator, that acts on a vector space V . The eigenvectors and

corresponding eigenvalues of A are the eigenvectors and corresponding eigenvalues of any
of the matrix representations of that linear operator A. The eigenvectors and eigenvalues
do not depend on a matrix representation, but the linear operator itself. Every eigenvalue
λ has an eigenspace. It is the vector space that it is spanned by the eigenvectors to which
the eigenvalue λ corresponds to, it also is a subspace of the operators vector space V .

Definition II.10 (Diagonal representation, diagonalizable). Let A be an operator on a vec-
tor space V and {|vi〉} an orthonormal set of eigenvectors of A with the eigenvalues λi. A
diagonal representation, or orthonormal decomposition, of A is a representation of the form

A =
∑

i

λi |vi〉 〈vi| (II.16)

Not every operator has such a representation. Operators for which a diagonal representation
exists are called diagonalizable. ♣

The following theorem is based on Nielsen and Chuang (2010, p. 72).

Theorem 1 (Spectral Decomposition):
Any diagonalizable operator is normal. Any normal operator M on a vector space V is
diagonalizable. The orthonormal eigenvectors {|vi〉} that make up a decomposition of M
are a basis for V . ♦

As {|vi〉} is an orthonormal basis for V , and |vi〉 are eigenvectors ofM with eigenvalues λi,
Pi := |vi〉 〈vi| are projectors to the respective eigenspaces of M . So M can be decomposed
into

M =
∑

i

λiPi . (II.17)

Since {|vi〉} is an orthonormal basis for V , Pi fulfill the completeness relation∑
i

Pi = I . (II.18)

In addition to that, an orthonormality relation for Pi can be formulated as

PiPj = |vi〉
=δij︷ ︸︸ ︷
〈vi|vj〉 〈vj | = δijPi , (II.19)
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II.2.3. Tensor Product

To combine multiple Hilbert spaces the tensor product can be used.

Definition II.11 (Tensor product). Let H1 and H2 be n and respectively m-dimensional
Hilbert spaces. Then H = H1 ⊗H2 is a Hilbert space of dimension nm with the following
properties. For its vectors:

∀ |ψ1〉 ∈ H1 |ψ2〉 ∈ H2 : |ψ1〉 ⊗ |ψ2〉 =: |ψ〉 ∈ H (II.20)

∀z ∈ C, |ψ1〉 ∈ H1 |ψ2〉 ∈ H2 : z(|ψ1〉 ⊗ |ψ2〉) = (z |ψ1〉)⊗ |ψ2〉 = |ψ1〉 ⊗ (z |ψ2〉) (II.21)

∀ |ψ1〉 , |ψ′
1〉 ∈ H1 |ψ2〉 ∈ H2 : (|ψ′

1〉+ |ψ1〉)⊗ |ψ2〉 = |ψ1〉 ⊗ |ψ2〉+ |ψ′
1〉 ⊗ |ψ2〉 (II.22)

∀ |ψ1〉 ∈ H1 |ψ2〉 , |ψ′
2〉 ∈ H2 : |ψ1〉 ⊗ (|ψ2〉+ |ψ′

2〉) = |ψ1〉 ⊗ |ψ2〉+ |ψ1〉 ⊗ |ψ′
2〉 . (II.23)

For any operator A on H1 and any operator B on H2, C := A⊗B is an Operator on H
and

∀ |ψ1〉 ∈ H1 |ψ2〉 ∈ H2 : C(|ψ1〉 ⊗ |ψ2〉) := A |ψ1〉 ⊗B |ψ2〉 . (II.24)

♣

It is possible to generalize this definition to vector spaces and operators that map between
different vector spaces, however this is not needed for the thesis and is therefore left out.

II.2 Example Let

|ψ〉 ≡
(
αA

βA

)
, |φ〉 =

(
αB

βB

)
, (II.25)

then the tensor product of those two vectors is

|ψ〉 ⊗ |φ〉 ≡
(
αA

βA

)
⊗ |φ〉 ≡

(
αA |φ〉
βA |φ〉

)
≡


αAαB

αAβB

βAαB

βAβB

 . (II.26)

∗

For brevity, the tensor symbol, ⊗, is sometimes omitted, and the dirac notation expanded,
so

|ψ〉 ⊗ |φ〉 = |ψ〉 |φ〉 = |ψ, φ〉 . (II.27)

For any number n of vectors of the form |xi〉θ with xi ∈ {0, 1} and θ ∈ {+,×}, a shorthand
way to describe their tensor product is

|x〉θ =
n⊗

i=1
|xi〉θ , x ∈ {0, 1}

n (II.28)

II.3 Example

|01〉+ = |0〉+ ⊗ |1〉+ (II.29)

∗

With this, the computational basis for multi-qubit systems can be defined. An n-qubit
system has 2n computational basis states that span the 2n-dimensional complex Hilbert
space. The computational basis for this space is

{|xi〉 : i ∈ {0, · · · , 2n − 1}} , (II.30)

where for each of the basis states xi ∈ {0, 1}n is the binary representation of i.
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II.4 Example Calculating the explicit vector |xi〉 leads to the quite interesting observation,
that the ith computational basis vector has a 1 in the ith place and zeroes everywhere else.

|xi〉 =



0
...
0
1
0
...
0


index i

index 0

∗

The diagonal basis for n qubits can be defined analogously.

II.2.4. Operator functions

Functions on operators are defined by matrix functions acting on the spectral decomposition
of an operator.

Definition II.12 (Operator function). Let A be a normal operator and f : C→ C a function.
With A =

∑
i λi |vi〉 〈vi| being the spectral decomposition of A, the function

f ′(A) ≡
∑

i

f(λi) |vi〉 〈vi| , (II.31)

is the corresponding operator function to f . ♣

One such operator function is the trace function.

Definition II.13 (Trace). Given an operator A, the trace of A is

Tr(A) ≡
∑

i

Aii (II.32)

The trace function is cyclic, linear, and invariant under similarity transformations. ♣

If an operator has the form |ψ〉 〈ψ|, the trace of that operator is

Tr (|ψ〉 〈ψ|) = 〈ψ|ψ〉 . (II.33)

Related to the trace function is the partial trace.

Definition II.14 (Partial trace). Given two vector spaces, A and B, then ∀ |a1〉 , |a2〉 ∈ A
and ∀ |b1〉 , |b2〉 ∈ B, the partial trace over system B is the linear function

TrB (|a1〉 〈a2| ⊗ |b1〉 〈b2|) ≡ |a1〉 〈a2|Tr (|b1〉 〈b2|)) . (II.34)

♣

It is also possible to define the square root of an operator.

Definition II.15 (Square root of an operator). The square root of a positive operator B
on a complex Hilbert space is the unique positive operator A, such that A2 = B. ♣
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II.3. Quantum Information and Quantum Computing

II.3.1. State Space

As described in Section II.2, quantum states can be represented as vectors on a complex
Hilbert space. The state of a quantum system can be in a superposition of multiple states.
In the vector representation this means, that the vector describing the state of the system
in question is a linear combination of vectors describing other states, usually basis vectors.

II.5 Example A single qubit in superposition of the computational basis states can be
written as

α |0〉+ β |1〉 = |ψ〉 ≡
(
α
β

)
∈ C2 (II.35)

When measured in that basis, the result will be |0〉 with a probability of |α|2 and |1〉 with
a probability of |β|2. Like in Example II.1, the state describing the qubit collapses to one
of the basis states. This means after measuring the qubit to be |0〉 (or |1〉 respectively) all
future measurements will also show the qubit to be |0〉 (or |1〉 respectively). The details of
measurement will be described in Section II.3.3. ∗

Given multiple systems, whose states can be described by the vectors |ψi〉Hi acting on
the Hilbert spaces Hi respectively, the state of the combined system can be described by
the state vector

|ψ〉H =
⊗

i

|ψi〉Hi , (II.36)

acting on H, the tensor product of the Hilbert spaces Hi. This notation, to write the
system a state belongs to as a superscript to the ket or bra describing that state, will be
used throughout the thesis where applicable.

II.3.2. Evolution

The evolution of a closed quantum system is described by an operation that transforms the
state of the system at time t1 to the state of the system at time t2. A closed system is a
system that does not interact with its environment, while an open system is a system that
is influenced in some way by its environment.
As quantum states can be represented as vectors on complex Hilbert spaces, linear

operators that can be applied on quantum states have a matrix representation and act on
the respective Hilbert spaces. An operation U applied to a quantum state |ψ〉 should also
result in a valid quantum state U |ψ〉 = |ψnew〉. As the restriction to a vector to describe a
valid quantum state is that it is of unit length, the restriction for a matrix to describe a
valid operation on a state has to be that it is unitary.

II.6 Example One important operation is the Hadamard transformation,

H = 1√
2

(
1 1
1 −1

)
(II.37)

It transforms the states |0〉 and |1〉 to a superposition of 1√
2(|0〉 + |1〉) and 1√

2(|0〉 − |1〉)
respectively. H is also Hermitian, and since it is unitary HH = I. ∗

In addition to modelling operators as matrices, there exists the quantum turing machine
and the quantum circuit model, which can help to structure quantum operations. The
latter models operations as (reversible) quantum logic gates and will be explored in
Subsection II.3.9.
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II.3.3. Measurement

Measurement in Quantum mechanics can be described by a set of measurement operators
{Mm}, acting on the Hilbert space of the system being measured. Each indexm corresponds
to a possible distinct measurement outcome that can occur. The probability for the
measurement outcome m to occur is

Pr[m] = 〈ψ|M †
mMm |ψ〉 , (II.38)

with |ψ〉 being the state of the system before being measured. Has m occurred, the state
of the system changes and the new state can be descried as

|ψnew〉 = Mm |ψ〉√
Pr[m]

. (II.39)

All possible outcomes have to be described, and all probabilities have to sum up to one for
any a priory system state, this is ensured with the completeness equation∑

m

M †
mMm = I (II.40)

A special class of measurements are projective measurements. Instead of directly being
described by a set of Measurement operators, they are described by an observable M , which
is composed of a set of Hermitian, orthogonal projectors {Pm}. To be more precise, M has
a spectral decomposition

M =
∑
m

mPm . (II.41)

The projectors then act analogously to the Measurement operators in the general case,
with the probability of receiving result m being

Pr[m] = 〈ψ|Pm |ψ〉 , (II.42)

with the a priori system state |ψ〉. The a posteriori system state with the occurrence of m
is

|ψnew〉 = Pm |ψ〉√
Pr[m]

. (II.43)

Another name for projective measurements is von Neumann measurements. “Measuring a
state in a basis” is a form of projective measurement, where the projectors correspond to
the basis states,

Pm = |m〉 〈m| . (II.44)

With Equation II.43, it can be verified that the new state after basis state |m〉 was measured,
is in fact the same basis state |m〉,

|ψnew〉 = |m〉 〈m| |ψ〉√
〈ψ| |m〉 〈m| |ψ〉

= |m〉 . (II.45)

With Equation II.42, the probability to get the measurement result m can be calculated to
be

Pr[m] =
√
〈ψ| |m〉 〈m| |ψ〉 = 〈ψ|m〉 . (II.46)
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II.7 Example Calculating the probabilities for the single qubit Example II.5:

Pr[0] = 〈ψ| |0〉 〈0| |ψ〉 =
(
α
β

)†(
1
0

)(
1
0

)†(
α
β

)
= (1α+ 0β)(1α∗ + 0β∗) = |α|2 (II.47)

Pr[1] = 〈ψ| |0〉 〈1| |ψ〉 =
(
α
β

)†(
0
1

)(
0
1

)†(
α
β

)
= (0α+ 1β)(0α∗ + 1β∗) = |β|2 (II.48)

∗

A special case of the measurement formalism is the POVM formalism, it focuses on the
measurement probability outcomes rather than the state after measurement. The initialism
POVM stands for“Positive Operator-Valued Measure”, which classifies its elements. POVMs
are defined to be a set {Em} of positive valued operators known as POVM elements, that
satisfy the completeness relation

∑
mEm = I. Given a POVM, a set {Mm} of measurement

operators can be derived by defining Mm :=
√
Em. Similarly, given a set of measurement

operators {Mm}, the POVM {Em} can be described with the elements Em = M †
mMm.

Following the probability equation for measurement operators II.38, the probability for
outcome m is given by Pr(m) = 〈ψ|Em|ψ〉. A completeness relation for POVMs can be
derived, following the completeness relation II.40 for measurement operators.

II.3.4. Phase

Consider the state |ψ〉 = α |0〉+β |1〉 , α, β ∈ C of a single qubit. As described in Example II.1
and Sections II.2.1 and II.3.1, the complex numbers α, β encode the amplitude and phase
of a wave function in the chosen basis states. This can be explicitly shown by rewriting the
state vector as

|ψ〉 = eiγ
(

cos θ2 |0〉+ eiϕ sin θ2 |1〉
)
, γ, ϕ, θ ∈ R . (II.49)

It is important to point out the relevance of the phase. The phases, or more precisely phase
differences dictate how probability amplitudes of states interfere with each other.

II.8 Example Take the states |ψ1〉 = 1√
2 |0〉 + 1√

2 |1〉 and |ψ2〉 = 1√
2 |0〉 −

1√
2 |1〉. With

both of these states, measuring in the rectilinear basis, the probability of getting |0〉 or |1〉
respectively is 1

2 . But a system in equal superposition of those states is in the state

|ψ〉 = 1√
2

( 1√
2
|0〉+ 1√

2
|1〉) + 1√

2
(|ψ2〉 = 1√

2
|0〉 − 1√

2
|1〉) (II.50)

= 1
2(|0〉+ |0〉) + 1

2(|1〉 − |1〉) (II.51)

= |0〉 . (II.52)

Which, when measured in the rectilinear basis always results in |0〉. ∗

Since only the phase difference dictates how the probability amplitudes of states interact
with each other, this also means that the global phase will have no effect on measurement
outcomes and can safely be ignored. The state thus can be described by

|ψ〉 = cos θ2 |0〉+ eiϕ sin θ2 |1〉 , ϕ, θ ∈ R . (II.53)

It can be observed, that the state is dependent of two rational angles. The boch sphere
(Figure II.3.1) visualizes this observation. A one qubit quantum state is illustrated as
a point on the surface of the bloch sphere. Its position is defined by the angle ϕ off
the x-Axis and the angle θ off the y-Axis. Observe that since |0〉 = cos 0

2 + eiϕ sin 0
2 |1〉
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and |1〉 = cos π
2 |0〉 + eiϕ sin π

2 |1〉 , ϕ ∈ R, the orthogonal basis states |0〉 and |1〉 lie on
opposite sites of the same axis in the bloch-sphere-representation. So these states that are
orthogonal in Hilbert space lie on the same axis in the bloch sphere. This also visualizes
that θ represents the bias a state has towards one basis state or the other. In contrast
to that, |ϕ〉 represents the phase difference between the basis states, which grows less
important the closer states move to the poles. The states {|+〉 , |−〉} of the diagonal basis

|ψ〉

|1〉

|−〉

|+〉

|0〉

x

y

z

ϕ
θ

Figure II.3.1.: Bloch sphere

are at an θ = 90◦ angle to the computational basis states. As they are also orthogonal in
Hilbert space, they also share an axis on the Bloch sphere.

II.3.5. Entangled States, Separable States

The state of a multi qubit system can be entangled. When a system is entangled, evolution
or measurement on one part of the system instantaneously influences the measurement
outcome another, spatially distant, part of the system.

II.9 Example An example for an entangled pair of qubits is the EPR-pair |ψ〉 = 1√
2(|00〉+

|11〉). Here |0〉 |0〉 and |1〉 |1〉 are the only possible results, so if one measures the left qubit
to be |0〉 (respectively |1〉) it is known that a measurement of the right qubit will always
return |0〉 (respectively |1〉) as well. ∗

There are degrees of entanglement a state can have. Genrally a state |ψ〉A⊗B is separable,
if and only if there exist states |ψ〉A,|ψ〉B such that |ψ〉A⊗B = |ψ〉A⊗|ψ〉B and it is entangled
if and only if it is not separable.

II.3.6. Density Operators

In a more general form than state vectors, states can also be descried by density operators.

Definition II.16 (Density operator). A positive operator ρ is a density operator, if and
only if it has a trace equal to one,

Tr(ρ) = 1 . (II.54)

♣
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The state of a system that can be described by the vector |ψ〉 on a complex Hilbert space,
can equivalently be described by the density operator ρ = |ψ〉 〈ψ|.

A system whose state can be described by a single density operator ρ may not necessarily
be described by a single vector as well. A system can be in an ensemble of states, this
means that for a set {|ψi〉} of state vectors it is known to be in state |ψi〉 with probability
pi. Such a system is said to be in a mixed state, and this state can be described by a single
density operator

ρ =
∑

i

pi |ψi〉 〈ψi| . (II.55)

In terms of density operators, if a system is known to be in the state ρi with the probability
pi := Pr(ρi), its density operator is

ρ =
∑

i

piρi . (II.56)

A detailed definition of ensembles is given in Definition III.1. A quantum systems state is
a pure state, if and only if it is known exactly. That is, when its state can be described by
a single vector |ψ〉 or a density matrix ρ that can be written as ρ = |ψ〉 〈ψ|. For any pure
state ρ, it applies that Tr(ρ2) = 1, and for any mixed state ρ′, it applies that Tr(ρ′) < 1.
Let U be the unitary transformation that describes the evolution of a system from the

state described by |ψ〉 to the state described by U |ψ〉. The same transformation can be
applied to a system in a state described by the density operator ρ. The new state of the
system is then described by ρnew = UρU †.
Given a complete set {Mm} of measurement operators and the a priori system state ρ,

the probability for measurement outcome m to occur is given by

Pr(m) = Tr(M †
mMmρ) (II.57)

and the state of the system after the measurement is

ρnew = MmρM
†
m

Tr(M †
m)

. (II.58)

Take multiple systems whose states can be described by the density operators ρHi
i , acting

on their respective state spaces Hi. Analogous to the state vector description, the composite
system is described on the state space H =

⊗
Hi, and its state is described by the operator

ρH =
⊗

i

ρHi
i . (II.59)

Given a composite system in the state ρ, the states of the systems making up the
composite system can be described using the partial trace over ρ. As with state vectors,
when describing states of different or composite systems, a superscript is added to the
density operator, indicating the respective system it acts on. Let H = HA ⊗HB be the
state space of the composite system of the systems A and B with the state spaces HA and
HB respectively. Denote ρH the state of the composite system, then the resulting reduced
density operatorof system A is

ρHA = TrB(ρH) , (II.60)

and the reduced density operator for system B is

ρHB = TrA(ρH) . (II.61)

With TrP ,P ∈ {A,B} being the partial trace over system P . Even when ρH is a pure state,
in many cases ρHA or ρHB are mixed states.
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Theorem 2 (Schmidt decomposition1):
Let |ψ〉 be a pure state of a system H1 ⊗H2, and let k := min(dim(H1),dim(H2)). Then
there exist orthonormal bases {|ei〉} and {|fi〉} of systems H1 and H2 respectively, and
coefficients {0 ≤ λi ∈ R :

∑k
i=1 λi = 1}, such that |ψ〉 can be written as

|ψ〉 =
k∑

i=1
λi |ei〉 |fi〉 . (II.62)

This is called the Schmidt decomposition of |ψ〉. ♦

To find such orthonormal states, the following corollary can be used.

Corollary 3 (Schmidt polar form2):
Let |ψ〉 be a pure state of a system H1 ⊗ H2. Let ρ1 = TrH2(|ψ〉 〈ψ|) and ρ2 =
TrH1(|ψ〉 〈ψ|) the reduced density operators of systems H1 and H2 respectively, and let
k := min(dim(H1), dim(H2)). Then ρ1 and ρ2 have the same nonzero eigenvalues with
the same multiplicities. Following that, if one space is larger than the other, the extra
dimensions are made up with zero eigenvalues. Let |ei〉 and |fi〉 be orthonormal eigenvectors
of ρ1 and ρ2 respectively. Then |ψ〉 can be written as

|ψ〉 =
k∑

i=1

√
λi |ei〉 |fi〉 . (II.63)

This is sometimes also referred to as the Schmidt polar form. ♥

II.3.7. Distance Measures

Quantum distance measurements aim to describe how similar two states are, or how difficult
it is to tell them apart. As it is not possible to read the exact amplitude and phase of a qubit,
but only to measure it and receive some result with some probability, quantum distance
measures are in some regards similar to measures differentiating probability distributions.
One such measure for difference in quantum states is the trace distance between those

states.

Definition II.17 (Trace distance). The trace distance between two states ρ and σ is

D(ρ, σ) := 1
2 Tr |ρ− σ| , (II.64)

with |A| :=
√
A†A ♣

The trace distance between single qubit states can be visualized well on the bloch sphere,
it is equal to 1

2 the Euclidean distance between those states on it.
Another important measure is the fidelity.

Definition II.18 (Fidelity). The fidelity between two states ρ and σ is

F (ρ, σ) := Tr
√
ρ1/2σρ1/2 . (II.65)

For all
ρ, σ, 0 ≤ F (ρ, σ) ≤ 1 , (II.66)

where equality in II.66 is achieved on the left side if and only if ρ and σ are orthogonal,
and on the right side if and only if ρ = σ. ♣

1This theorem is based on the phrasing Nielsen and Chuang (2010, p. 109) give of Schmidt (1907, §15).
2This corollary is based on the application Hughston, Jozsa, and Wootters (1993, p. 5) give of Schmidt
(1907, §15).
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So a higher fidelity between states means that they are harder to tell apart, while a
higher trace distance implies that the states are less similar to each other. Both fidelity and
trace distance are invariant under unitary transformations that are applied to both states.

Given an unknown state |ψi〉 from a set of known orthonormal states {|ψi〉}, it is possible
to determine which state of the set was given by performing an appropriate measurement.
However, if given a state |φi〉 from a set of known non-orthogonal states {|φi〉}, it is not
possible to determine which state was given with absolute certainty . The amount of
information that is possible to gain about |φi〉 is dependent of how close {|φi〉} are to each
other. The closer they are, the harder they are to differentiate. This observation is related
to the no-cloning theorem.

Theorem 4 (No-cloning):
Non-orthogonal quantum states cannot be copied. That is, for any given quantum device
that performs a valid operation modelled by a unitary operation U : If U is able to copy
|ψ〉 and |φ〉 as follows

|ψ〉 |ξtarget〉U = |ψ〉 |ψ〉 (II.67)

|φ〉 |ξtarget〉U = |φ〉 |φ〉 , (II.68)

then |ψ〉 and |φ〉 are either the same state, or orthogonal to each other. ♦

See also the no-cloning theorem as given by Nielsen and Chuang (2010, p. 532).

II.3.8. Decoherence

While in quantum information usually closed systems are considered, in reality most systems
are influenced by their environment. Consider a system in a pure a state represented by the
matrix ρ, the diagonal elements are called populations while the off-diagonal elements are
called coherences. When interacting with the environment the populations stay unaffected,
while the coherences get multiplied with a factor of modulus of less than one and thus get
suppressed with more interactions over time (Hornberger 2009, p. 224). After the interaction,
the system is not in a pure state anymore. The populations measure the probabilities that
the system is in either state of the basis states. The coherences measure the amount of
quantum interference between the states (Brandt 2003, p. 309) and characterize the ability
of the system to display a superposition between basis states (Hornberger 2009, p. 224).
This loss of coherence occurs in a special basis, determined by the type of environmental
interaction.

II.10 Example Let the state of a system be the pure state |ψ〉 = 1√
2 |0〉 + 1√

2 |1〉. The

corresponding density operator is

ρ = 1
2

(
1 1
1 1

)
. (II.69)

Through interaction with the environment, ρ eventually loses its coherences. The system is
now in the mixed state

ρ′ = 1
2

(
1 0
0 1

)
= 1

2

(
1 0
0 0

)
+ 1

2

(
0 0
0 1

)
= 1

2 |0〉 〈0|+
1
2 |1〉 〈1| . (II.70)

Thus it is not in superposition, but in an ensemble of the states |0〉 and |1〉, each with
probability 1

2 , analogous to a system that has been measured but whose result has been
forgotten. ∗

Decoherence is also the reason why large scale systems do not seem to show quantum
behaviour.
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II.3.9. Quantum Circuits

Computing is fundamentally reversible. However, in classical computing some information
is not kept track of, so that it is not reversible anymore. This is not the case for quantum
computing, as operations are carried out on individual particles or a set of individual
particles. This is also modeled in the algebraic sense: operations are unitary matrices and
thus invertible. In fact, the inverse of a unitary matrix is its complex conjugate.

The quantum circuit model models operations as quantum logic gates, similar to classical
circuits that use classical logic gates. There are some differences between quantum and
classical circuits, as per the no-cloning theorem, fanout operations are not permitted. As
quantum operations have to be reversible, and the classical or operation is not, fan-in is
not permitted either. Time in a quantum circuit diagram is modeled to go in one direction.
In this thesis, it is always modeled going from left to right.

In a quantum circuit diagram single qubits are presented on quantum “wires”, classical
wires for classical bits are drawn as double stroked wires. A quantum circuit usually consists
of quantum and classical wires, quantum logic gates and measurement operators. On the
left side of a quantum circuit, for each quantum wire, the state that wire starts in can
be denoted. Quantum logic gates can be unitary operations, controlled-not-gates, or
controlled unitary operations. A controlled operation means that the operation is only
applied to the target qubit, if the control qubit is one. Gates that have multiple control or
target qubits are also valid quantum logic gates. Those parts of quantum circuit diagrams
are illustrated in Figure II.3.2.

|0〉⊗n U

(a) Unitary operation

|ψ〉

|0〉 U

(b) Controlled unitary operation

|ψ〉

(c) Measurement operator

|ψ〉

|φ〉

(d) controlled-not

Figure II.3.2.: Components of a quantum circuit

All quantum circuits can be rewritten to use only a discrete subset of quantum logic
gates, so called universal gates. The number of those universal gates in a circuit can be a
good metric of how complex the operation being modelled, is.

Theorem 5 (Deferred measurement):
The usage of a measuring apparatus at any point of the quantum circuit can be moved to
the end of said circuit, without changing its behavior ♦

Theorem 6 (Implicit measurement):
Any unterminated quantum wire is assumed to be measured. This does not change the
circuits’ behaviour. ♦

Compare to principles of deferred and implicit measurement as given by Nielsen and
Chuang (2010, p. 186 et seq.).
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II.4. Quantum Cryptography

II.4.1. Quantum bit commitment

Quantum bit commitment (qbc) works analogous to classical bit commitment, however
instead of a classical commitment cb, the bit b is encoded in a quantum state |ψb〉. A
difference is that an encoding |ψb〉 can be chosen so that the probability of unveil(|ψb〉)→ b
is an arbitrary probability p. This is reflected in the modified security definitions.

Definition II.19 (Perfectly binding for quantum bit commitments). A quantum bit com-
mitment scheme is perfectly binding, if and only if for any commitment |ψ〉 and for any
procedures unveil′1,unveil′2, modified by a dishonest Alice,

|Pr
[
unveil′1(|ψ〉)→ b

]
− Pr

[
unveil′2(|ψ〉)→ (1− b)

]
| = 0 . (II.71)

♣

Definition II.20 (Perfectly concealing for quantum bit commitments). A quantum bit com-
mitment scheme is perfectly concealing, if and only if every commitment |ψb,η〉 produced
by a honest Alice is perfectly concealing. The random string η denotes all the classical
information available to Bob after the commit-phase. The encoding is perfectly concealing,
if and only if the following two conditions are met: No information about b is provided
by η. The reduced density operators, ρB(|ψ0,η〉) and ρB(|ψ1,η〉), of the collapsed states in
Bob’s systems B for b = 0 and b = 1 respectively given η are identical, so

F (ρB(|ψ0,η〉), ρB(|ψ1,η〉)) = 1 . (II.72)

♣

It is known that there exists no perfectly secure, that means perfectly binding and
perfectly concealing, quantum bit commitment scheme. Therefore, it is reasonable to define
weaker properties.

Definition II.21 (Statistically binding for qbc). A quantum bit commitment scheme with
security parameter n is statistically binding, if and only if it can be made arbitrarily close
to perfectly binding by an increase of n. So if and only if for every commitment |ψ〉 and
for procedures unveil′1, unveil′1, modified by a dishonest Alice,

|Pr
[
unveil′1(|ψ〉)→ b

]
− Pr

[
unveil′2(|ψ〉)→ (1− b)

]
| ≤ negl(n) . (II.73)

♣

Definition II.22 (Statistically concealing for qbc). A quantum bit commitment scheme with
security parameter n is statistically concealing, if and only if it can be made arbitrarily close
to perfectly concealing by an increase of n. So with the same notation as in Definition II.20,
an increasingly small amount of information about b is contained in η, and

F (ρB(|ψ0,η〉), ρB(|ψ1,η〉)) = 1− δ, δ ≥ 0 , (II.74)

♣

with δ ≤ negl(n).

Definition II.23 (Statistical security for qbc). Finally, a qbc-protocol (with security pa-
rameter n) is statistically secure, if and only if it is statistically binding and statistically
concealing. ♣

As with the classical definitions, the statistical definitions can be extended to unconditional
binding, concealing or secure, if they hold against an unconditional adversary.
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II.4.2. Controllable Algorithms

As described in Subsection II.3.9, quantum circuits are reversible which means for every
quantum circuit, given all outputs, all inputs can be determined. However, only some of
the output is relevant for the algorithm the quantum circuit is trying to implement.

II.11 Example Consider the controlled-not gate (Figure II.4.1a), take both inputs, but
only regard the second output, then it acts just like a classical xor-gate. Given only the
output 0 of an xor gate, one cannot determine, whether both inputs were 1, or if both
inputs were 0. With the extra (upper) output of a controlled-not gate, which does not
change its value, one can determine both inputs and thus reverse the operation. Is one to
implement an xor function using (reversible) quantum gates, the upper output however is
of no relevance. ∗

Those outputs not relevant for the algorithm are labeled as trash and are not regarded
as part of the actual output. In general, trash bits have an undefined value. Not all input
bits are of special relevance either, inputs that have predefined values are called presets
and not regarded as part of the actual input.

II.12 Example To implement an and gate, one can take a controlled-controlled-
not-gate (Figure II.4.1b), set the c wire to the preset 0, and leave the a, b wires as inputs.
The c wire, on which the target bit is carried, then carries the output and the a and b
wires, which carried the control bits, are trash. ∗

a

b

(a) controlled-not

a

b

c

(b) controlled-controlled-not

Figure II.4.1.: Controlled operations with labeled inputs

A controllable algorithm is then defined to be an efficient reversible algorithm, where the
total number of garbage bit configurations is polynomial in the size of the input (Chau and
Lo 1997).

II.4.3. Quantum One-Way Functions and Permutations

In this subsection, the definitions for quantum one-way functions and quantum one-way
permutations are following Crépeau, Légaré, and Salvail (2001). There are functions that
can be evaluated by quantum computers more efficiently than by classical computers, such
as integer factoring (Shor 1994, 1999). So it makes sense to phrase the definitions of
quantum one-way functions and permutations in such a way as to include those functions
which a quantum computer could, but a classical computer could not, compute in the
forward direction (Dumais, Mayers, and Salvail 2000).

Definition II.24 (Quantum one-way function). A classical function f : {0, 1}n → {0, 1}l(n),
with l(n) being a function in the security parameter n, is called a quantum one-way function
(qowf), if and only if f(x) can be efficiently computed by a quantum computer given any
x ∈ {0, 1}n but for any polynomial-time quantum adversary A

Pr[A(1n, y) ∈ f−1(y) : y := f(x), x ∈R {0, 1}n] ≤ negl(n) . (II.75)

Such an adversary is often called an inverter. ♣
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Definition II.25 (Quantum one-way permutation). A classical permutation f : {0, 1}n →
{0, 1}n is called a quantum one-way permutation (qowp), if and only if p(x) can be
efficiently computed by a quantum computer given any x ∈ {0, 1}n but for any polynomial-
time quantum adversary A

Pr[A(1n, y) ∈ p−1(y) : y := p(x), x ∈R {0, 1}n] ≤ negl(n) . (II.76)

♣

One might wonder whether the existence of reversible computing is opposed to the
concept of one-way functions, as one could, with knowledge of the quantum circuit that
produces y = f(x), run said quantum circuit in reverse to produce x = f−1(y). However,
as described in Section II.4.2, a quantum algorithm usually also produces trash bits, which
are disregarded and not part of the considered output, but would be necessary, to execute
the circuit in reverse. So Chau and Lo (1997) give and prove a precision for the definition of
quantum one-way functions (respectively permutations). They show a one-to-one function3

that can be computed efficiently, is one-way exactly when it cannot be computed by any
controllable algorithm.

II.4.4. Quantum Hard-Predicate

To concentrate the one-wayness of a quantum one-way permutation to a single bit, Adcock
and Cleve (2002) give a definition of a hard-predicate.

Definition II.26 (Hard-Predicate). Given a quantum one-way permutation f : {0, 1}n →
{0, 1}n, h : {0, 1}n → {0, 1} is a hard-predicate of f , if and only if for any random a ∈ {0, 1}n
h(a) is easy to predict, but for any quantum adversary A,

Pr [A(f(a)) = h(a)] ≤ 1
2 + negl(n) . (II.77)

♣

II.4.5. Quantum Oblivious Transfer

There are several types of oblivious transfer, the one relevant for this thesis is quantum
one-out-of-two oblivious transfer, abbreviated with qot. The definitions in this subsection
are based on Crépeau (1994).
In qot, Alice prepares two messages, b0 and b1, for Bob and Bob chooses a c ∈ {0, 1},

that specifies which one of those messages he wishes to receive. Alice should not be able
to discover which message Bob chose to receive, and Bob should only able to retrieve
information about the message he chose, without being able to gain any information about
the other. So a one-out-of-two quantum oblivious transfer has to fulfill the following criteria

Definition II.27 (Correctness). A qot-protocol is correct, if and only if whenever Alice
and Bob both follow the protocol honestly, Alice starts with input bits b0 and b1, and Bob
makes the choice c, the protocol ends with Bob receiving bc ♣

Definition II.28 (Privacy). A qot-protocol is private, if and only if

1. for all b0 and b1, Alice chooses, for all a priori information H4 she has access to, and
whatever program she runs, she is not able to gain any information about c.

2. for all a priori information H Bob has access to, for all b0 and b1 Alice chooses and
for all c he chooses, and whatever program he runs, he is not able to gain information
about more than one of b0 and b1. ♣

3When regarding presets as part of the inputs and trash as part of the outputs, all quantum circuits always
have the same number of inputs as outputs, and thus implement one-to-one functions.

4H identifies information the participant has before the protocol starts.
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The statistical definitions of these properties are for some constraint 0 < ε < 1 and the
security parameter n. The protocol is statistically correct, if and only if it is correct except
with a probability of at most εn. Furthermore it is statistically private, if and only if it is
private except with a probability of at most εn.
Also of note is that Crépeau (1994) introduces a qot-protocol which they claim to be

secure, however they base its privacy on the security of the BCJL-protocol (Brassard,
Crepeau, et al. 1993) which was later shown to be insecure by the very proof that is
explored in this thesis (Mayers 1997). However, its privacy could be based upon another
secure bit commitment. This is explored in Subsection IV.2.3.





III. The Impossible

In this chapter the no-go theorem of Mayers (1997) will be explored. First the generalized
environment, in which the proof of the no-go theorem will take place, is presented. Then
the explicit BB84 scheme will be put into this environment. A cheating strategy and an
example for it will be subsequently shown. Later in this chapter it will be discussed, how
the cheat for Alice, as described by Mayers, works in a general scenario.

III.1. Environment

The environment in which the no-go theorem will be presented assumes that neither party
or means of communication are affected by decoherence. In addition to that, relativistic
effects will not be taken into account. It is also assumed, that parties not following the
honest protocols are not bounded by space, time or computational power. It follows, that
they are able to perform any valid quantum mechanical measurement or evolution. Let
Alice be the party sending the commitment and Bob the party receiving it. The entire
system is described by a set of subsystems

HS,A ⊗HS,B︸ ︷︷ ︸
HS

⊗HE,A ⊗HE,B

︸ ︷︷ ︸
HE

⊗HA ⊗HB (III.1)

HA,HB are two-dimensional quantum registers, belonging to Alice and Bob respectively.
However, Alice and Bob are able to introduce new registers, initialized in the |0〉 state.

• HE = HS ⊗HE,A ⊗HE,B is the environment.

• HS = HS,A ⊗HS,B stores transmitted classical Bits.

• HS,A bits Alice transmitted or received and HS,B bits Bob transmitted or received.

• HE,A and HE,B store untransmitted classical Bits of Alice and Bob respectively.

• |ψb〉 of HE ⊗HA ⊗HB is an encoded commitment.

III.1.1. Measuring a State

Let the measured system be in an initial state |φ〉 = α |φ0〉+ β |φ1〉. To execute a binary
measurement outcome, participant P ∈ {Alice,Bob} introduces a new quantum register
which initially is in the state |0〉. P entangles it with the measured system, the new state
of the entire system is of the form α |0〉 |φ0〉 + β |1〉 |φ1〉. After that, they send the new
register to a measurement apparatus HE,P . This process of entangling |φ〉 with a new
register and sending this register to a measuring apparatus is later referred to as sending
|φ〉 to the environment.

As an external viewer, which is not aware of this measurement outcome, this can be seen
as if the measuring apparatus amplifies and stores each component |x〉 as a state |x〉HE,P .
The resulting state is

α |0〉HE,P |φ0〉HP + β |1〉HE,P |φ1〉HP . (III.2)

This is illustrated as a quantum circuit in Figure III.1.1. However, as the state actually
has collapsed into the state |ξ〉, this collapse has to be taken into account when modelling
transformations on the new state of the system.

25
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|0〉 of HE,P

|φ〉 of HP

|0〉 |φ〉 α |0〉 |φ0〉+ β |1〉 |φ1〉 α |0〉HE,P |φ0〉+ β |1〉HE,P |φ1〉

Figure III.1.1.: Quantum Circuit demonstrating how Participant P measures a system

In this simple case, the amplitudes are dependent on whether Ps measurement outcome
was 0 or 1, thus they are dependent on the occurrence of the bit ξP , and III.2 can be
written as

1∑
ξP =0

α(ξP) |ξP〉HE,P |φξP 〉
HP . (III.3)

As multiple measurements accumulate, and as multi qubit-measurements can be modelled
likewise, ξP can also represent a bit-string.

III.1.2. State of the Entire System

The state of the system HE,P ⊗HP can always be represented as∑
ξP

α(ξP) |ξP〉HE,P |φξP 〉 . (III.4)

To represent the transmission of classical bits from Alice to Bob, a transformation is used
that maps |x〉(E,A) |0〉(E,B) into |x〉(S,A) |x〉(S,B). This is not in conflict with the no-cloning
theorem, as the underlying information in this process is classical and states representing
classical information are orthogonal to each other. Analogously to represent the transmission
of classical bits from Bob to Alice, a transformation is used that maps |0〉(E,A) |x〉(E,B) into

|x〉(S,A) |x〉(S,B). This means Alice keeps a record of the transmitted bits and Bob likewise.
So the contents of HS,A and HS,B are always the same and the string ξS can be used to
label bits that have been transmitted between the parties.
As a result, the total system is always in a state∑

ξS ,ξA,ξB

α(ξS ,ξA,ξB) |ξS , ξA, ξB〉HS⊗HE,A⊗HE,B |ψ(ξS , ξA, ξB)〉HA⊗HB . (III.5)

• |ψ(ξS , ξA, ξB)〉 is the state of HA⊗HB associated with the occurrence of ξS , ξA and ξB.

• η = (ξB, ξS) random classical information available to Bob after encoding, stored in
HS ⊗HE,B.

• |ψb,η〉 is the corresponding state of system HEA ⊗HA ⊗HB after the encoding.

• ρB(|ψb,η〉) = TrHA⊗HE,A(|ψb,η〉 〈ψb,η|) the reduced density operator on HB given η.

III.2. BB84

BB84 is the name given to a qbc-protocol first presented on in the conference paper Pro-
ceedings of IEEE International Conference on Computers, Systems and Signal Processing
by Bennett and Brassard (1984). The conference paper was later published in “Quantum
Cryptography” (Bennett and Brassard 2014).
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The idea of BB84 is to create a commitment by encoding random bits in either the
rectilinear or the diagonal basis, and to unveil it by unveiling the random bits used to
create the commitment. To encode a classical bit b in the rectilinear or diagonal basis,
means to create a state |b〉+ or |b〉× respectively. These bases are used because for b = 0, 1,
measuring |b〉+ in the diagonal basis yields |0〉× and |1〉× with equal probabilities, and
measuring |b〉× in the rectilinear basis yields |0〉+ and |1〉+ with equal probabilities. The
security parameter n dictates how many random bits will be encoded in this way.

In the commit-phase, Alice chooses whether to commit to b = 0 or b = 1 and chooses
the diagonal or rectilinear basis respectively. She then generates n perfectly random bits
wi, which she encodes in the chosen basis. Bob receives the encoded bits |ri〉 from Alice
and measures each of those qubits in a basis that was chosen perfectly random between
the rectilinear and the diagonal basis. An algorithmic description of the commit phase is
given by Algorithm 1

Algorithm 1: commit

1 Alice
2 b ← {0, 1}
3 θ = b ? × : +
4 for i ∈ {1 . . . n} do
5 wi

$← {0, 1}
6 |ri〉 := |wi〉θ
7 Alice

|ri〉→Bob

8 w :=
(
w1 · · · wn

)T

9 Bob

10 θ̂1 . . . θ̂n = θ̂
$← {+,×}n

11 foreach ri do
12 ŵi = Mθ̂i

|ri〉

In Lines 5–7 of Algorithm 1 the state

|ψb,w〉 := 1√
2

(
|0〉HE,A

θ |0〉HB
θ + |1〉HE,A

θ |1〉HB
θ

)
, (III.6)

is created. This is because from an outsider perspective, Line 5 can be seen as creating the
state |0〉θ + |1〉θ and measuring it, as described in Section III.1. Abstracted further and
with the principle of deferred measurement applied, the Lines 5 to 7 can be seen as first
creating a random state, transforming its basis if necessary, and then measuring it in the
respective basis. This is expressed as a quantum circuit in Figure III.2.1.

In the unveil-phase, Alice sends Bob the bits wi she used to create the encodings in
commit. Bob knows that for all wj that Alice has sent, which do not match his own

corresponding measurement results, ŵj , the basis θ̂j he used for his measurement must
not have been the one that Alice used to create |rj〉. Since Alice used the same basis for

all wi-encodings, all those θ̂j on Bob’s side, where ŵj mismatched wj , have to correspond

to the same basis. So Bob understands the complement of one such θ̂j as the basis Alice

chose, and then tests whether the other θ̂j would have resulted in the same basis. If not all

of those θ̂j correspond to the same basis, Alice must have not followed the honest protocol.

A failure case that can occur is when all of Bob’s measurements ŵi also match Alice’s
bits wi, where Bob chose a different Basis than θ. In this case he can derive no information
about the basis Alice chose or whether she cheated, and thus the protocol fails. However,
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|b〉

|0〉 H H gets sent to Bob

|0〉 H stays with Alice

created
random
variable

switched to
diagonal basis

sent
new state

to environment

Figure III.2.1.: Quantum circuit describing Lines 5–7 of Algorithm 1

Algorithm 2: unveil

1 Alice
w→ Bob

2 Bob
3 j′ ← {j : wj 6= ŵj}

4 θ̃ :=
{

+, θ̂j′ = ×
×, θ̂j′ = +

5 foreach j : wj 6= ŵj do

6 if θ̂j′ 6= θ̂j then
7 return ⊥

8 return θ̃
?= ×

the probability of this happening decreases exponentially with an increase of the security
parameter.
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III.2.1. Defeating BB84

A dishonest Alice executes honest commit for b = 0 but never sends anything to the
environment. Thus, the underlying systems of the State III.6 changes

|ψ′
0,w〉 = 1/

√
2
(
|0〉HA

+ |0〉HB
+ + |1〉HA

+ |1〉HB
+

)
. (III.7)

While this is formally the same state as the one generated in an honest commit, due to the
change of the underlying systems there now exists a unitary transformation on Alice’s side
to transform III.7 into

|ψ′
1,w〉 = 1/

√
2
(
|0〉HA

× |0〉HB
× + |1〉HA

× |1〉HB
×

)
. (III.8)

In the BB84 case this transformation is the identity transformation:

|ψ′
0,w〉 = 1√

2

(
|0〉HA

+ |0〉HB
+ + |1〉HA

+ |1〉HB
+

)
(III.9)

= 1√
2

(1
2
(
|0〉HA

+ |0〉HB
+ + |0〉HA

+ |1〉HB
+ + |1〉HA

+ |0〉HB
+ + |1〉HA

+ |1〉HB
+

)
(III.10)

+ 1
2
(
|0〉HA

+ |0〉HB
+ − |0〉HA

+ |1〉HB
+ − |1〉HA

+ |0〉HB
+ + |1〉HA

+ |1〉HB
+

))
(III.11)

= 1√
2

( 1√
2

(
|0〉HA

+ + |1〉HA
+

)
⊗ 1√

2

(
|0〉HB

+ + |1〉HB
+

)
(III.12)

+ 1√
2

(
|0〉HA

+ − |1〉HA
+

)
⊗ 1√

2

(
|0〉HB

+ − |1〉HB
+

))
(III.13)

= 1√
2

(
|0〉HA

× |0〉HB
× + |1〉HA

× |1〉HB
×

)
= |ψ′

1,w〉 . (III.14)

How this allows Alice to cheat is demonstrated in the following example.

III.1 Example (Attack on BB84, four qubit case) Let n = 4. Alice chooses b = 0. Instead
of choosing random w1 . . . w4 ← {0, 1}4 and creating |ri〉 = |wi〉+, Alice creates the EPR
pairs

|hi〉 = 1√
2

(
|00〉+ + |11〉+

)
, i = 1, . . . , 4 . (III.15)

For each pair she labels one bit |ri〉 and sends those |ri〉 to Bob, keeping the other registers.
Let Bob choose the Bases

θ̂ =


+
+
×
×

 , (III.16)

and let him measure

ŵ = 0101 . (III.17)

This is the end of the commit procedure.
|00〉θ and |11〉θ are the only possible measurement outcomes, when measuring |00〉θ±|11〉θ

in the θ basis. This means, the EPR pairs have collapsed to(
|00〉+ , |11〉+ , |00〉× , |11〉×

)
. (III.18)

If Alice does not want to change her commitment, she does nothing to her state and
measures it in the rectilinear basis. For i = 1, 2 this is the same basis Bob has measured his
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qubits in, and since the first two EPR pairs have collapsed to |00〉+ (for i = 1) and |11〉+
(for i = 2) respectively, she measures |0〉+ and |1〉+ respectively on her bits and receives
the same bits Bob has measured:

w1,2 = ŵ1,2 = 01 . (III.19)

For i = 3 Bob measured |0〉×, so the total state of this pair has collapsed to |00〉× =
1
2(|00〉+ + |01〉+ + |10〉+ + |11〉+). Since Alice measures in the rectilinear base, she receives
0 or 1 with equal probabilities, so a random bit w3.

Similarly for i = 4, Bob measured |r4〉 in the diagonal basis and since |11〉× = 1
2(|00〉+ +

|01〉+ − |10〉+ − |11〉+), Alice receives a random bit again. This means, there are four
possibilities for w

w =


0100 =: w(1)

0101 =: w(2)

0110 =: w(3)

0111 =: w(4) .

She sends her w to Bob and Bob looks at the i where wi 6= ŵi

w
(1)
4 6= ŵ4 ⇒ θ = +, b = 0 (III.20)

w(2) = ŵ ⇒ ⊥ (III.21)

w
(3)
3,4 6= ŵ3,4 ∧ θ̂3 = θ̂4 ⇒ θ = +, b = 0 (III.22)

w
(4)
3 6= ŵ3 ⇒ θ = +, b = 0 . (III.23)

Where the inconclusive result is the same that would have occurred in an honest scenario
where Bob would have measured by chance the same string that Alice has chosen. So Alice
succeeds in convincing Bob she was always committed to b = 0.

If Alice wants to change her commitment to b = 1, she “transforms” |ψ′
0,ŵ〉 into |ψ′

1,ŵ〉 =
1√
2(|00〉× + |11〉×) by measuring it in the diagonal basis instead of the rectilinear one.

Analogous to above, for i = 3, 4 this is the same basis as the one Bob has measured his
qubit in, and since |00〉× and |11〉× are the only possible outcomes, she receives the same
bits as Bob has measured

w3,4 = ŵ3,4 = 01 . (III.24)

For i = 1, 2 Bob measured in the rectilinear basis, and since Alice measures in the diagonal
basis, she receives random bits w3,4.
As above, the bits she measured in the same basis as Bob (diagonal) are the same as

Bob’s and thus are not looked at. All bits that can differ from bits Bob measured, belong to
Bob’s rectilinear basis measurements and thus Bob is convinced that Alice really committed
b = 1. Effectively she cheated by delaying her measurement until after the commit phase
and indirectly transforming the commitment state. ∗

III.3. Attack on Generalized QBC

It is assumed that initially all quantum registers are set to |0〉, as qbc with pre-shared
entangled states are practically of no use, as trust in such a state would have to be assumed
which defeats the purpose of a qbc or bc1.

1For the no-go theorem that is presented here and was presented by Lo and Chau (1997) and Mayers
(1996), it is sufficient to assume that no pre-existing shared entanglement exists. The assumption, that
all quantum registers are set to |0〉 at the beginning of the protocol follows Mayers (1996), while Lo and
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Let commitA,unveilA, |ψA〉 modified by dishonest Alice, commitB, |ψB〉 modified by
dishonest Bob. While looking at one cheating party, it is assumed that the other party is
bund to a fixed honest strategy.

As many notations presented throughout this thesis will be combined in this section,
a summary of these notations is given here. Everything inside a ket is part of the label
for that state vector. A different label usually means a different state. Every sub- and
superscript outside the ket describes attributes that state has.

|ψ〉Hθ (III.25)

|ψP
b,ξ〉 (III.26)

State III.25 is a state with label ψ, encoded in the basis θ, that acts on the Hilbert space
H. State III.26 is a commitment, encoding b, created by dishonest party P, which has
stored ξ in their classical registers.

III.3.1. Scheme is Secure Against Bob

A cheating Bob follows a modified commit procedure, commitB, in which he never sends
a register away to the environment. Denote η = ξB, ξS the classical information stored
on Bob’s side and γ the string of transmitted bits, stored in HS after commitB. Since
Bob does not send anything to the environment, ξB is the empty string and η = γ. For
the same reason, the state |ψB

b,η〉 that is produced in commitB is the state of the system
HE,A ⊗HA ⊗HB. Bob succeeds in cheating if he is able to gain some information about
b before the unveil-phase. To be more precise, he succeeds if he is able to break the
concealing-property of the scheme. Following Definition II.22, for the scheme to be secure
against Bob, the fidelity of the reduced density operators on Bob’s side has to be

F ′′ (η) := F
(
ρB
(
|ψB

0,η〉
)
, ρB

(
|ψB

1,η〉
))

= 1− δ, δ ≥ 0 , (III.27)

with δ close to zero.

For this insecurity proof it is assumed that the scheme is secure against Bob because
otherwise the scheme would already be insecure.

III.3.2. Security Against Bob Implies Insecurity Against Alice

As in the attack on BB84, without loss of generality, cheating Alice in commitA chooses
b = 0 and does not send any registers to the environment, with the exception of classical
bits she is required to transfer to Bob (using a non quantum channel).

γ is the classical, random string stored in HS after commitA and is in fact the same string
as the one stored in HS after commitB. |ψA

b,γ〉 is the collapsed state of the commitment.

This is the state of the remaining system HE,B⊗HA⊗HB, as HE,A is not used in commitA.

Thus, the reduced density matrix on Bob’s side ρB
(
|ψA

b,γ〉
)
is the state of system HB⊗HE,B.

Lemma 1:
If the scheme is perfectly or unconditionally secure against Bob the expected value of the
fidelity

F ′(γ) := F
(
ρB
(
|ψA

0,γ〉
)
, ρB

(
|ψA

1,γ〉
))

(III.28)

is equal to, or respectively arbitrarily close to, 1. ♠

Chau (1997) assumes that no entanglement is pre-shared, and the system starts in a pure state. Both of
these assumptions can be lifted to also include non-static qbc-protocols, so protocols where the state of
Bob’s system at the start of the protocol is not known to Alice. This is shown by Li et al. (2011) without
changing actual the proof. However for the sake of readability Mayer’s assumption is kept in this thesis.
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Proof: |ψA
b,γ〉 and |ψB

b,γ〉 are formally identical. They can be expressed as follows:

|ψA
b,γ〉 =

∑
ξS ,ξA,ξB

α(ξS ,ξA,ξB)|ξS〉HS |ξA〉H
′
A |ξB〉HE,B |ψ〉HA⊗HB (III.29)

|ψB
b,γ〉 =

∑
ξS ,ξA,ξB

α(ξS ,ξA,ξB)|ξS〉HS |ξA〉HE,A |ξB〉H
′′
B |ψ〉HA⊗HB , (III.30)

where H′
A is the subsystem of HA, that replaces HE,A in cheating Alice’s |ψA

b,γ〉 and H′′
B is

the subsystem of HB, that replaces HE,B in cheating Bob’s |ψB
b,γ〉. ρB(|·〉) is the reduced

density operator of Bob’s systems. This means all of Alice’s systems are traced out.
It will now be shown that the reduced density operators on Bob’s side after commitA

and after commitB are also formally identical.

ρB
(
|ψA

b,γ〉
)

(III.31)

= TrHA⊗HE,A

(
|ψA

b,γ〉 〈ψA
b,γ |
)

= TrHA⊗HE,A

 ∑
ξS ,ξA,ξB

α|ξS〉HS |ξA〉H
′
A |ξB〉HE,B |ψ〉HA⊗HB


 ∑

ξS ,ξA,ξB

α∗〈ξS |HS 〈ξA|H
′
A〈ξB|HE,B〈ψ|HA⊗HB


=

∑
ξS ,ξA,ξB

αα∗

(
TrHA⊗HE,A

(
|ξS〉〈ξS |HS ⊗ |ξA〉〈ξA|H

′
A ⊗ |ξB〉〈ξB|HE,B ⊗ |ψ〉〈ψ|HA⊗HB

))
=

∑
ξS ,ξA,ξB

αα∗
(
|ξS〉〈ξS |HS ⊗ |ξB〉〈ξB|HE,B ⊗ TrHA

(
|ψ〉〈ψ|HA⊗HB

)
〈ξA|ξA〉

)
, (III.32)

and

ρB
(
|ψB

b,γ〉
)

(III.33)

= TrHA⊗HE,A

(
|ψB

b,γ〉 〈ψB
b,γ |
)

= TrHA⊗HE,A

 ∑
ξS ,ξA,ξB

α|ξS〉HS |ξA〉HE,A |ξB〉H
′′
B |ψ〉HA⊗HB


 ∑

ξS ,ξA,ξB

α∗〈ξS |HS 〈ξA|HE,A〈ξB|H
′′
B〈ψ|HA⊗HB


=

∑
ξS ,ξA,ξB

αα∗

(
TrHA⊗HE,A

(
|ξS〉〈ξS |HS ⊗ |ξA〉〈ξA|HE,A ⊗ |ξB〉〈ξB|H

′′
B ⊗ |ψ〉〈ψ|HA⊗HB

))
=

∑
ξS ,ξA,ξB

αα∗
(
|ξS〉〈ξS |HS ⊗ |ξB〉〈ξB|H

′′
B ⊗ TrHA

(
|ψ〉〈ψ|HA⊗HB

)
〈ξA|ξA〉

)
. (III.34)

When comparing III.32 and III.34, it can be observed that the density operators of the
cheating states on Bob’s side are in fact formally identical.

ρB
(
|ψA

b,γ〉
)

= ρB
(
|ψB

b,γ〉
)
. (III.35)

As Bob does not send registers away to the environment, ξB is the empty string in
commitB and η = (ξB, ξS) = ξS = γ, and thus

F ′′(η) = F ′′(γ) = F
(
ρB
(
ψB

0,γ

)
, ψB

1,γ

)
III.35= F

(
ρB
(
ψA

0,γ

)
, ψA

1,γ

)
= F ′(γ) . (III.36)
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Since the scheme is asserted to be perfectly or respectively unconditionally secure against
Bob, the value of F ′′(η) has to be equal or respectively arbitrarily close to one and so F ′(γ)
has to be as well.

III.3.3. Transforming Zero to One

Suppose the commitment protocol is perfectly secure against Bob. This means, following

Lemma 1, that F ′(γ) = 1. So ρB
(
|ψA

0,γ〉
)

= ρB
(
|ψA

1,γ〉
)

:= ρB. It is shown that Alice is

then able to cheat, by changing her commitment during the holding phase. Later this will
be extended to commitment protocols that are not perfectly, but unconditionally, secure
against Bob.

Definition III.1 (ensembles2). An ensemble of quantum states is a collection of normalized
states |ψ̂1, · · · , ψ̂n〉 with fixed a priori probabilities p1, · · · , pn. To any such ensemble a
density matrix is associated with.

ρ =
n∑

i=1
pi |ψ̂i〉 〈ψ̂i| . (III.37)

For convenience, the ensemble is represented as {|ψi〉 , · · · , |ψn〉} where |ψi〉 = √pi |ψ̂i〉, so
that pi = 〈ψi|ψi〉 and

ρ =
n∑

i=1
|ψi〉 〈ψi| (III.38)

An eigen-ensemble of a given state ρ on an n-dimensional Hilbert space with an orthonormal
basis of eigenvectors ê1, . . . , ên that have the eigenvalues λ1, . . . , λn, is an ensemble of the
form {|e1〉 , . . . , |ek〉} where 〈ei|ei〉 = λi for each i. States |e1〉 where the eigenvalues λi = 0
are not included in the ensemble, thus k = rank(ρ) ≤ n. ♣

Theorem 7 (Ensembles of a density matrix3):
For a given density matrix ρ on an n-dimensional Hilbert space, let |φ1〉 , . . . , |φn〉 be any
ensemble of pure states with associated density matrix ρ. Then there exists a matrix
N ∈ Cs×k whose columns are k orthonormal vectors in Cr, so r ≥ k := rank(ρ), such that

|φi〉 =
k∑

j=1
Nij |ej〉 , i = 1, . . . , s . (III.39)

♦

Theorem 8 (Zero to One):
|ψA

b,γ〉 is the corresponding collapsed state of the remaining system HA ⊗ HB ⊗ HE,B.

ρB
(
|ψA

0,γ〉
)

= ρB
(
|ψA

1,γ〉
)
implies that there exists a unitary transformation on Alice’s side

which maps |ψA
0,γ〉 into |ψA

1,γ〉. ♦

Proof: ρB
(
|ψA

0,γ〉
)

= ρB
(
|ψA

1,γ〉
)

=: ρB = TrHA⊗HE,A

(
|ψA

b,γ〉 〈ψA
b,γ |
)
is the reduced density

matrix of Bob’s systems HB⊗HE,B. According to Schmidt’s decomposition theorem, |ψA
0,γ〉

can be written as

|ψA
0,γ〉 =

s∑
i=1

√
λ0,i |â(0)

i 〉
HA ⊗ |b̂(0)

i 〉
HB⊗HE,B

, (III.40)

2Following Hughston, Jozsa, and Wootters (1993, section 1).
3Following Hughston, Jozsa, and Wootters (1993, section 2).
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where |â(0)
i 〉

HA
are eigenstates of ρA

(
|ψA

0,γ〉
)
forming an orthonormal basis of HA and

|b̂(0)
i 〉

HB⊗HE,B
are eigenstates of ρB forming an orthonormal basis for system HE,B. λ0,i are

the eigenvalues of TrHA⊗HE,A(|ψA
0,γ〉 〈ψA

0,γ |) and of TrHB⊗HE,B(|ψA
0,γ〉 〈ψA

0,γ |) with the same
multiplicity where any extra dimensions are made up with zero eigenvalues (Hughston,
Jozsa, and Wootters 1993). This means that

ρB =
s∑

i=1
λ0,i |b̂(0)

i 〉
HB⊗HE,B 〈b̂(0)

i |
HB⊗HE,B

, (III.41)

and thus {√
λ0,i |b̂(0)

i 〉
HB⊗HE,B

}
(III.42)

is a ρB eigen-ensemble, as

〈b̂(0)
√
λ0,i|

√
λ0,ib̂

(0)〉
|b̂(0)

i 〉 is normal
=

√
λ0,i

√
λ0,i = λ0,i . (III.43)

Similarly, since |ψA
1,γ〉 is a pure state it can be written as a decomposition of eigenstates

and eigenvalues.

|ψA
1,γ〉 =

s∑
i=1

√
λ1,i |â(1)

i 〉
HA ⊗ |b̂(1)

i 〉
HB⊗HE,B

, (III.44)

so

{√
λ1,i |b̂(1)

i 〉
HB⊗HE,B

}
is an eigen-ensemble of ρB. As eigen-ensembles are unique, it

follows that λ0,i = λ1,i =: λi are the same eigenvalues and

|b̂(0)
i 〉

HB⊗HE,B = |b̂(1)
i 〉

HB⊗HE,B =: |b̂i〉
HB⊗HE,B

(III.45)

are the same eigenstates.

There exists a unitary matrix that transforms one orthonormal basis of HA into another

orthonormal basis of HA. Let S be the matrix that transforms |â(0)
i 〉

HA
into |â(1)

i 〉
HA

, so

S |â(0)
i 〉

HA = |â(1)
i 〉

HA
. (III.46)

The same matrix can be used to transform |ψA
0,γ〉 into |ψA

1,γ〉, as is shown below.

|ψA
1,γ〉 =

s∑
i=1

λi |â(1)
i 〉

HA ⊗ |b̂i〉
HB⊗HE,B

(III.47)

=
s∑

i=1
λiS |â(0)

i 〉
HA |b̂i〉

HB⊗HE,B
(III.48)

= S
s∑

i=1
λi |â(0)

i 〉
HA ⊗ |b̂i〉

HB⊗HE,B
(III.49)

= S |ψA
0,γ〉 . (III.50)

Theorem 9 (Perfect security against Bob implies insecurity against Alice):
Any qbc-protocol that is perfectly concealing is not unconditionally binding. ♦
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Proof: Following Lemma 1, F ′(γ) = 1, thus ρB
(
|ψA

0,γ〉
)

= ρB
(
|ψA

1,γ〉
)
. Then Theorem 8

asserts that there exists a unitary transformation on Alice’s side which maps |ψA
0,γ〉 into

|ψA
1,γ〉. This means without loss of generality, Alice can cheat by choosing b = 0, executing

commitA, and applying the transformation S in unveilA4 if she wishes to change her mind.
Further in unveilA she sends the states to the environment, that she was supposed to send
to the environment in commit and continues with honest unveil after that.

III.2 Example (Modified BB84) In Subsection III.2.1 it was shown that in BB84, |ψA
0,γ〉 =

|ψA
1,γ〉. This example modifies BB84 to demonstrate application of theorem zero to one.

Consider the new basis that arises when rotating the states of the rectilinear basis on the
bloch sphere by 45◦ around the y-axis and then 135◦ around the z-axis. Its states are

|0〉o := |i〉 := cos
(
π

8

)
|0〉+ ei π

4 sin
(
π

8

)
|1〉 (III.51)

|1〉o := |h〉 := sin
(
π

8

)
|0〉+ ei 5π

4 cos
(
π

8

)
|1〉 . (III.52)

BB84 is now modified as follows: wherever the original protocol uses the diagonal basis,
the new protocol uses the new basis. This means the cheating states of the new protocol
are

|ψA
0,γ〉 = 1√

2
|00〉+ + 1√

2
|11〉+ (III.53)

|ψA
1,γ〉 = 1√

2
|00〉o + 1√

2
|11〉o . (III.54)

|ψA
1,γ〉 can be simplified as follows:

|ψA
1,γ〉 = 1√

2
|00〉o + 1√

2
|11〉o (III.55)

≡ 1√
2

(
cos(π

8 )√
i sin(π

8 )

)
⊗
(

cos(π
8 )√

i sin(π
8 )

)
+ 1√

2

(
sin(π

8 )
−
√
i cos(π

8 )

)
⊗
(

sin(π
8 )

−
√
i cos(π

8 )

)
(III.56)

= 1√
2


cos2(π

8 )√
i cos(π

8 ) sin(π
8 )√

i cos(π
8 ) sin(π

8 )
i sin2(π

8 )

 + 1√
2


sin2(π

8 )
−
√
i cos(π

8 ) sin(π
8 )

−
√
i cos(π

8 ) sin(π
8 )

i cos2(π
8 )

 = 1√
2


1
0
0
i

 (III.57)

≡ 1√
2
|00〉+ + 1√

2
i |11〉+ . (III.58)

4Or at any point in the holding phase.
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The reduced density operators on Bob’s side are

ρB
(
|ψA

1,γ〉
)

= TrA
(
|ψA

1,γ〉 〈ψA
1,γ |
)

(III.59)

= TrA

(( 1√
2
|00〉+ i√

2
|11〉

)( 1√
2
〈00|+ −i√

2
〈11|

))
= TrA

( ( 1√
2
|0〉HA ⊗ |0〉HB

)( 1√
2
〈0|HA ⊗ 〈0|HB

)
+
( 1√

2
|0〉HA ⊗ |0〉HB

)(−i√
2
〈1|HA ⊗ 〈1|HB

)
+
(
i√
2
|1〉HA ⊗ |1〉HB

)( 1√
2
〈0|HA ⊗ 〈0|HB

)
+
( 1√

2
|1〉HA ⊗ |1〉HB

)( 1√
2
〈1|HA ⊗ 〈1|HB

))
=1

2 TrA
(
|0〉HA 〈0|HA ⊗ |0〉HB 〈0|HB

)
+ −i2 TrA

(
|0〉HA 〈1|HA ⊗ |0〉HB 〈1|HB

)
+ i

2 TrA
(
|1〉HA 〈0|HA ⊗ |1〉HB 〈0|HB

)
+ 1

2 TrA
(
|1〉HA 〈1|HA ⊗ |1〉HB 〈1|HB

)
=1

2 〈0|0〉 |0〉 〈0|
HB + −i2

=0︷ ︸︸ ︷
〈0|1〉 |0〉 〈1|HB + i

2

=0︷ ︸︸ ︷
〈1|0〉 |1〉 〈0|HB + 1

2 〈1|1〉 |1〉 〈1|
HB

=1
2 |0〉 〈0|

HB + 1
2 |1〉 〈1|

HB

=1
2 〈0|0〉 |0〉 〈0|

HB + 1
2

=0︷ ︸︸ ︷
〈0|1〉 |0〉 〈1|HB + 1

2

=0︷ ︸︸ ︷
〈1|0〉 |1〉 〈0|HB + 1

2 〈1|1〉 |1〉 〈1|
HB

=1
2 TrA

(
|0〉HA 〈0|HA ⊗ |0〉HB 〈0|HB

)
+ 1

2 TrA
(
|0〉HA 〈1|HA ⊗ |0〉HB 〈1|HB

)
+ 1

2 TrA
(
|1〉HA 〈0|HA ⊗ |1〉HB 〈0|HB

)
+ 1

2 TrA
(
|1〉HA 〈1|HA ⊗ |1〉HB 〈1|HB

)
= TrA

(( 1√
2
|00〉+ 1√

2
|11〉

)( 1√
2
〈00|+ 1√

2
〈11|

))
= TrA

(
|ψA

0,γ〉 〈ψA
0,γ |
)

= ρB
(
|ψA

0,γ〉
)
. (III.60)

Thus, the conditions of theorem zero to one are met.

Define ρB := ρB
(
|ψA

1,γ〉
)
. Analogous to Equations III.59–III.60,

ρA
(
|ψA

0,γ〉
)

= ρA
(
|ψA

1,γ〉
)

= 1
2 |0〉 〈0|

HA + 1
2 |1〉 〈1|

HA = 1
2

(
1

1

)
. (III.61)

So ρB, ρA
(
|ψA

0,γ〉
)
and ρA

(
|ψA

1,γ〉
)
have the eigenvalues λ1 = λ2 = 1

2 .

|f1〉 := |0〉 , |f2〉 := |1〉 (III.62)

are eigenvectors of ρB,

|e(0)
1 〉 := |0〉 , |e(0)

2 〉 := |1〉 (III.63)

eigenvectors of ρA
(
|ψA

0,γ〉
)
and

|e(1)
1 〉 := |0〉 , |e(1)

2 〉 := i |1〉 (III.64)

eigenvectors of ρA
(
|ψA

1,γ〉
)
. With that, Schmidt decompositions of |ψA

0,γ〉 and |ψA
1,γ〉 are

|ψA
b,γ〉 =

2∑
i=1

√
λi |e(b)

i 〉 |fi〉 , b ∈ {0, 1} . (III.65)
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To find S the following equations are solved.

S |0〉 = |0〉 ⇒ S =
(

1
∗

)
(III.66)

S |1〉 = i |1〉 ⇒ S=
(
∗

i

)
. (III.67)

It follows, that

S =
(

1
i

)
(III.68)

is the operation Alice has to apply only on her side to convert |ψA
0,γ〉 to |ψA

1,γ〉. ∗

III.3.4. Non-Perfect QBC

It will now be shown, that such a transformation not only exists if the qbc-protocol is
perfectly concealing, but also if it is unconditionally concealing. Thus, it will be shown a
cheating transformation on Alice’s side exists if F ′(γ) is not equal, but arbitrarily close to
one.

Definition III.2 (Purification5). Let ρ be any mixed state on Hilbert space H1. A purifica-
tion of ρ is any pure state |φ〉 in any extended hilbert space H1 ⊗H2 with the property
that ρ = TrH2(|φ〉 〈φ|). ♣

Theorem 10 (Uhlmann’s theorem6):
Let ρ1, ρ2 be states of the same quantum system H1 and |φ1〉 , |φ2〉 purifications of ρ1 and
ρ2 respectively into H1 ⊗H2. Then the fidelity between ρ1, ρ2 is the maximization over
the inner product of all such purifications.

F (ρ1, ρ2) = max
|φ1〉,|φ2〉

|〈φ1|φ2〉| (III.69)

♦

For readability the following short labels for states and density operators will be used:

ρB
(
|ψA

0,γ〉
)

=: ρ0, ρB
(
|ψA

1,γ〉
)

=: ρ1, |ψ0,γ〉 =: |ψ0〉 , |ψA
1,γ〉 =: |ψ1〉 . (III.70)

Theorem 11 (Unconditional security against Bob implies insecurity against Alice):
Any qbc-protocol that is unconditionally concealing is not unconditionally binding. ♦

Proof: Following Lemma 1, 0 < F ′(γ) = F (ρ0, ρ1) = 1 − δ, with δ > 0, for a very small
delta. Per Definition III.2, |ψ1〉 is a purification of ρ1. As Uhlmann’s theorem applied to
ρ0 and ρ1 describes a maximization over all purifications of those states, there exists a
purification |ψ01〉 of ρ0, such that

〈ψ01|ψ1〉 ≥ F ′(γ) . (III.71)

Since |ψ0〉 and |ψ01〉 are purifications of the same reduced density operator ρ0, there exists
an operation on HA that transforms |ψ0〉 into |ψ01〉. Equation III.71 implies, that the
probability of Bob being able to differentiate |ψ1〉 from |ψ01〉 and thus detect Alice’s cheat,
goes to zero as δ goes to zero and F ′(γ) nears one. This is underlined in the following
equation.

F (|ψ01〉 〈ψ01| , |ψ1〉 〈ψ1|) ≥ 1− δ . (III.72)

5Following Jozsa (1994, Definition 1).
6Following Jozsa (1994, Theorem 2).
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Theorem 12 (Unconditionally secure qbc is impossible):
No quantum bit commitment that falls under the framework presented in this chapter is
unconditionally secure. ♦

Proof: A qbc-protocol that is not unconditionally hiding is not unconditionally secure.
Assume the protocol is unconditionally hiding. Then following Theorems 9 and 11 it is not
unconditionally binding.

III.3.5. Complexity of Alice’s Cheat

A malicious Alice has been modeled as an unconditional attacker. In this section it will be
shown how much computational power Alice would actually need to perform the attack, by
showing the computational complexity of the attack to be in O(2nω), 2 < ω < 2.37369.

III.3.5.1. Complexity of the Transformation

As seen in Subsection III.3.3, to find the cheating transformation that maps a state
committing to zero to a state committing to one, an eigen-decomposition of the reduced
density operator on Bobs side has to be calculated and an appropriate basis transformation
has to be found. Transforming one basis into another in high dimensions is a costly
procedure. This is shown in an example and then generalized.

III.3 Example The Hilbert Space for a two qubit system is of dimension 22 = 4, thus a
basis consists of four, four-dimensional state vectors. Two bases of this Hilbert Space are
considered:

b = {b1,b2,b3,b4} (III.73)

and

b′ =
{
b′

1,b′
2,b′

3,b′
4
}
, (III.74)

where for i = 1, 2, 3, 4

bi =


αi

βi

γi

δi

 (III.75)

and

b′
i =


α′

i

β′
i

γ′
i

δ′
i

 (III.76)

respectively. An operation S is searched, such that it transforms states of b to states of b′.
Thus, such an operator has to fulfill the following system of equations

S


αi

βi

γi

δi

 =


α′

i

β′
i

γ′
i

δ′
i

 , i = 1, 2, 3, 4 . (III.77)
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Written differently

S

=(b1,b2,b3,b4)︷ ︸︸ ︷
α1 β1 γ1 δ1
α2 β2 γ2 δ2
α3 β3 γ3 δ3
α4 β4 γ4 δ4

 =

=(b′
1,b′

2,b′
3,b′

4)︷ ︸︸ ︷
α′

1 β′
1 γ′

1 δ′
1

α′
2 β′

2 γ′
2 δ′

2
α′

3 β′
3 γ′

3 δ′
3

α′
4 β′

4 γ′
4 δ′

4

 , (III.78)

and since (b1,b2,b3,b4) is orthonormal,

S = (b′
1,b′

2,b′
3,b′

4)(b1,b2,b3,b4)T . (III.79)

∗

Alice has created the states that make up the density operator on her side, so she is
aware of that concrete operator. However, she still has to find the eigenstates, needed
to calculate the cheating operation. Decomposing the density operator into eigenstates
has the same complexity as matrix multiplication (Demmel, Dumitriu, and Holtz 2007).
To calculate the basis conversion S, which is also the cheating transformation operation,
a matrix multiplication has to be performed, which for a system of dimension k has a
complexity of O(kω), 2 < ω < 2.37369 (Davie and Stothers 2013).

In the general case, if the honest protocol requires n-bit (classical) string to be transferred
(w in the BB84 scheme), the Hilbert Space on dishonest Alice’s side is of dimension k = 2n.
Thus, the complexity of transforming |ψA

0,γ〉 into |ψA
1,γ〉 is O(2nω + 2nω ) = O(2nω ) =

O(2nω), 2 < ω < 2.37369.

III.3.5.2. Finding the Cheating State

To find the purification |ψ01〉 described in Equation III.71, no maximization problem has
to be solved. Instead, the proof by Jozsa (1994, section 4) describes how to construct this
state. First Schmidt polar forms of |ψ0〉 and |ψ01〉 are computed:

|ψ0〉 =
k∑

i=1

√
λi |ei〉 |fi〉 (III.80)

and

|ψ01〉 =
k∑

i=1

√
µi |ẽi〉 |gi〉 . (III.81)

This is possible, even though |ψ01〉 is not yet known, since the Schmidt polar form is given
by the eigenvalues λi, µi and the orthonormal eigenvectors |ei〉 , |ẽi〉 of ρ0 and ρ1 respectively.
Then matrices are calculated that transform the different orthonormal bases into each
other,

|ẽi〉 = V |ei〉 , |gi〉 = U1 |ẽi〉 . (III.82)

And since |ei〉 , |ẽi〉 are eigenvectors of ρ0 and ρ1 respectively√
λi |ei〉 = √ρ0 |ei〉 ,

√
µi |ei〉 = √ρ1 |ẽi〉 . (III.83)

Using Jozsa (1994, Lemma 7), it then can be shown analogous to Jozsa (1994, Section 4),
that |ψ01〉 can be constructed as follows

|ψ01〉 =
k∑

i=1

√
ρ1U

T
1 V V

T |ei〉 ⊗ |ei〉 . (III.84)
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The eigen-decomposition and basis transforming operator can be reused to find the operator
S, that maps |ψ0〉 into |ψ01〉, following Subsection III.3.3.

Thus |ψ01〉 and S can be found by calculating eigen-decompositions and basis transfor-
mations. The complexity to do these operations, where the honest protocol requires the
transfer of n bits, was already shown to be O(2nω), 2 < ω < 2.37369 in III.3.5.1.

III.4. Different Strategies for Bob

The proof of Mayers and Lo and Chau, assumes a fixed honest strategy followed by Bob.
This has been criticized by some who assert, that this assumption of Bob’s behavior would
lose the generality of the proof.

One such skeptic is Yuen (2005), who presents a protocol using so called anonymous
states, which they claim to be unconditionally secure. Such skeptics argue, that Mayers’ and
Lo-Chau’s proof is merely a demonstration of the impossibility for Kerckhoffian protocols,
so protocols that follow the principle that security of cryptographic protocols should not
rely on keeping parts of the algorithm secret.

However, an extended version of Mayers’ no-go theorem is still applicable. This was
shown by D’Ariano et al. (2007). The Authors extend the no-go theorem to general
strategies for both Alice and Bob.

D’Ariano et al. make a distinction between protocols and strategies. Protocols are the
framework that regulates the exchange of messages. Strategies are the particular plans
Alice and Bob have for operating their local laboratories. When Bob follows a specified
honest strategy b?, which is publicly known in accordance with Kerckhoff’s principle, their
proof coincides with the analysis in Mayers, Lo and Chau’s proof.

Mayers, Lo and Chau treat classical information quantum mechanically and send it over
noiseless quantum channels. In contrast to that, the model of D’Ariano et al. explicitly
allows information transfer over classical channels. As a formalism to explicitly handle
classical information in protocols, D’Ariano et al. identify quantum systems by their
observable algebras. In this formalism, a quantum system with Hilbert space H represented
by the algebra B(H) of operators on H.
Another formalism used is the communication tree to represent different stages of the

protocol and their relation to each other. Every node represents the classical information
shared up to that point. The nodes also indicate whose turn it is by associating the first
node to Bob’s turn and then alternating between parties’ turns. Branches represent possible
signals to be sent. It is also noted for every classical signal, which kind of quantum system
accompanies it. However, the observable algebras of Alice and Bob’s laboratories do not
only depend on the node in the communication tree but also on their chosen strategies.

Cheating becomes harder for Alice if the protocol requires some exchange of classical
information as she no longer has full control over the two commitment states. Unitaries
which introduce superpositions of states which belong to different classical values already
sent to Bob are forbidden. Thus, Alice has to find a cheating unitary for every classical
communication history.

With those formalisms, D’Ariano et al. give a general framework for two-party cryp-
tographic protocols, in which they then show that secure quantum bit commitment is
impossible. A protocol that falls out of this setting is also presented. It relies on decoher-
ence in Bob’s lab and explores the distinction between local erasure of information and
destruction of quantum correlations. It will be revisited in IV.1.1.2.

The soundness and security conditions in the impossibility proof are quantified. Alice’s
honest strategies for committing 0 or 1, i.e. a0 or a1, can be distinguished with high
probability on Bob’s side. If Alice honestly followed ak, and Bob’s measurement results in
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k with a probability ≥ (1− η) for a very small η ≥ 0, then the protocol is η-verifiable or
η-sound.

The protocol is ε-concealing, if Alice’s honest strategies cannot be distinguished (up to
an error of ε) by Bob before the opening phase. Probabilities he measures differ by at most
ε, no matter which strategy he follows. When this condition holds with ε = 0, the protocol
is perfectly concealing.

A pair of cheating strategies a#
0 , a

#
1 for Alice, such that Bob cannot distinguish a0 from

a#
0 and a1 from a#

1 better than with probability difference δ, is called a δ-cheating strategy.

a#
0 must be the same as a#

1 throughout the commitment phase. Such a δ-cheating strategy
necessarily has to work against all of Bob’s strategies.

If no δ-cheating strategies exist, the protocol is δ-binding. If this is the case and the
protocol has a public opening rule — this means in the opening phase the participants
meet and Alice allows Bob to perform arbitrary measurements in her system — not even
Alice herself could help Bob to tell the difference between her strategies in the opening
phase. It is shown, that any protocol that is ε-concealing allows δ-cheating protocol for
Alice with δ ≤ 2

√
ε.

In an anonymous state protocol as described by Yuen (2005), Bob sends a system to
Alice whose state is only known to him, and which an honest Alice has to use in some way
for the creation her commitment. Such an anonymous state protocol would lead Alice to
lack some information such that Uhlmann’s theorem still implies existence of a cheating
transformation, but the transformation might be unknown to her. In an anonymous state
protocol, Alice effectively chooses not a state, but a channel to encode her commitment.
Thus, Uhlmann’s theorem no longer applies and a Stinespring representation is used in
place.

The Stinespring representation generalizes Uhlmann’s theorem from quantum states to
quantum channels. States can also be expressed as channels with the one-dimensional input
space C. This generalization is the basis for the result of D’Ariano et al.

To not restrict generality of their proof by simplifying assumptions, a large class of
strategies are to be considered. The framework presented poses no restriction to finite
dimensional systems or number of rounds. The only restriction is, that the expected number
of rounds should be finite. Arbitrarily many rounds of communication of varying lengths,
infinite dimensional local laboratory Hilbert spaces etc., all fit into the framework. The
idea followed for simplifications is that “obviously inferior methods of analysis for Bob” or
“inferior methods to cheat for Alice” need not be considered. What an “obviously inferior
strategy” is, is then explicitly defined in their proof.

The discussion presented in the article is restricted to qbc-protocols in which concealment
is guaranteed for all branches of the communication tree. Such types of commitment
protocols are sometimes referred to as strong bit commitments. In a weak bit commitment,
Bob may learn the value of the bit as long as Alice receives a message stating the bit value
has been disclosed. Weak bit commitment is argued to also be impossible.

III.5. Cheat-Sensitive Bit Commitment

Bit commitment as presented in II.4.1 and as used by Lo and Chau (1997) and Mayers
(1997) is strong bit commitment. Weak bit commitment is defined to be secure, not only
if the probability of a successful attack is arbitrarily close to zero, but also if there is a
non-zero chance of a cheating party being detected doing so. For this reason this form of
bit commitment is also called cheat-sensitive bit commitment.

Hardy and Kent (2004) describes two such supposedly cheat-sensitive qbc schemes, a
non-relativistic and a relativistic one. The only additional assumption that they use is,
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that the commitment will eventually be revealed. The protocol provides challenges for
Alice and Bob each, that reveal cheating with some probability when challenged. It works
by defining a game that decides which party is challenged and what that means for the
continuation of the protocol. A key point to mention, is that they have at one point in the
protocol a quantum coin-flip operation to decide the party to be challenged.
Independently Aharonov et al. (2000) presented a so called quantum escrow protocol,

which is either cheat-sensitive-binding, or cheat-sensitive-concealing. It also features a
challenge, that is given to either party. They also provide a biased quantum coin-flipping
protocol.

In a later issue (the one cited here), Aharonov et al. (2000) acknowledge Hardy and Kent
(2004) and explain how their quantum escrow protocol could also be combined with their
coin-flipping protocol to possibly achieve a cheat-sensitive qbc-protocol. However, they
note that the security of such a protocol is still an open question, as the independence
between the protocols is hard to prove or disprove, and thus leave the security of their
third protocol as an open question. They also criticize Hardy and Kent (2004) for not
regarding the security against a cheater that tries to correlate the two parts of the protocol
to their advantage.
Indeed, cheating methods for the above mentioned type of supposed cheat-sensitive

protocols are provided by S. Ishizaka (2007) using this kind of exploit. The authors show
how a cheating Bob is able to recover the state he collapsed whenever he looses the coin-flip,
and that modifications of the protocol that obstruct this cheating method for Bob open up
cheating methods for Alice. They conclude that this dilemma (that either Bob or Alice is
able to cheat in a qbc-like protocol) cannot be solved but only postponed by introducing a
coin-flipping subroutine. This conclusion is further explored by Satoshi Ishizaka (2008).
In addition to that, as mentioned in IV.1.1.2, D’Ariano et al. (2007, p. 24) argue, a

modified version of their no-go theorem can also be applied to cheat-sensitive qbc.



IV. The Possible

While quantum bit commitment in the framework of Lo and Chau (1997) and Mayers (1997)
has shown to be impossible, one might consider different assumptions (such as physical
assumptions or technological constraints), or even different security definitions under which
quantum bit commitment can be securely implemented. Figure IV.2.1 gives an overview of
the different assumptions, primitives, and forms of qbc, discussed in this chapter.

IV.1. Unconditional Security

After the protocol and attack of Bennett and Brassard (1984) was first published, protocols
were proposed, falsely claiming to achieve unconditional secure qbc-protocols. Notable
is a protocol by Brassard, Crepeau, et al. (1993), which was later called BCJL, as its
disproval lead to Mayers’ generalized no-go theorem and proof. However, there has still
been a large number of papers that tried to circumvent Mayers’ and Lo and Chau’s proof
without changing the assumptions, for example by combining quantum protocols with
classical protocols or by using anonymous states (Yuen 2005). Those protocols were then
disproven by D’Ariano et al. (2007) who published a more general no-go theorem.

This does not mean that unconditionally secure qbc is impossible under all assumptions.
By introducing new assumptions like the existence of noise in certain places or by taking
special relativity into account, unconditionally secure qbc schemes can be constructed.
Modifying the goal for security has also been considered.

IV.1.1. Noise and Decoherence

Decoherence usually describes the phase-dampening process that causes a particle to lose its
quantum properties by interacting with many environmental particles and quantum-noise
is usually used more broadly to describe the loss of coherence. However, the two terms have
historically been used interchangeably by some authors (Nielsen and Chuang 2010, p. 398).
Noise is usually an unwanted property in quantum computation as loss of quantum

properties is counterproductive when trying to use them in calculations. As a consequence,
quantum error-correction is a field of great interest (Nielsen and Chuang 2010, p. 453).
However, in quantum cryptography there have been investigations on whether noise or deco-
herence can be used to actually make protocols more secure, as many attacks, including the
Mayers-Lo-Chau attack, rely on cohering quantum properties to be carried out successfully.

IV.1.1.1. Noisy Storage

Konig, Wehner, and Wullschleger (2012) introduce the concept of a noisy-storage channel
to formally relate the security of a qbc-protocol to sending information through such a
channel. They assume that no large scale reliable quantum storage is available, therefore
they introduce a model in which storage is limited and stored qubits are subjected to a
specified level of noise over time. In that they also assume Markovian noise, as they assume
that noise only ever increases and thus information stored only ever decreases.

They force participants of a protocol to use the storage device by introducing time delays
and then argue that realistic levels of noise rule out even the most general attack. This
model also includes the bounded quantum-storage model as initiated by Damgard et al.
(2005) as a special case.

43
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The decoding probability is defined to be the probability that a randomly chosen bit
string sent through a storage device can be successfully retrieved. It is shown that arbitrary
channels, that have the property that the decoding probability decays exponentially above
a certain threshold, can be used to achieve security. The authors also show that the number
of classical bits, that can be sent through the noisy-storage channel, being limited is a
sufficient condition for security.

For their qbc-protocol they introduce a novel cryptographic primitive, called weak string
erasure, on which they base the protocol on. The authors prove their protocol to be secure
in the model they presented and explain that their new primitive could be of independent
interest.

As the noisy-channel assumption is the only restriction to the adversary, and they claim
the noisy-channel assumption to be particular realistic itself, the assumptions needed for
this approach appear rather reasonable.

IV.1.1.2. Trusted Decoherence

In addition to generalizing Mayers’ proof, D’Ariano et al. (2007) also use decoherence
cleverly to define a decoherence-based qbc scheme, not affected by their own proof.
They present three ways to use decoherence for a more secure protocol. Trusted deco-

herence in Alice’s laboratory is implemented by a notary overseeing Alice’s actions during
the commitment phase, who is able to take some part of Alice’s system and destroy it if
cheating is suspected. The notary is able to leave after the commit phase and thus the
authors argue, this protocol is cheaper than one where a notary oversees Alice for the whole
protocol. The constructed protocol is proven to be perfectly concealing and statistically
binding.
A notary overseeing Alice actions is quite a strong assumption, even it is only for the

commit phase, so they also present a protocol based on a weaker assumption. In this
protocol, coherence in Bob’s Laboratory is destroyed by a process that Bob has no control
over, such that only classical records remain for him. While this would at first glance weaken
the already weaker partner, it is argued if one is able to convince Alice this decoherence
is really occurring, she will have lower demands on concealment. So a protocol, that is
both statistically concealing and statistically binding, can be constructed under these
assumptions. In their paper, such a construction is shown and proven to be secure.

A third place where trusted decoherence can be used to implement secure bit commitment
is the transmission-line between Alice’s and Bob’s laboratories. The authors do not show a
protocol of their own for this, but rather refer to other implementations that have been
shown at the time.

IV.1.1.3. Sender Unable to Perform Large Coherent Measurements

Salvail (1998) assumes Alice is not able to perform generalized measurements involving
more than n-qubits.
To be more precise Salvail first explains, that coherent measurements can be seen as a

unitary transformation acting on the observed system and an ancilla, followed by von Neu-
mann measurements in the computational basis, not dissimilar from how measurements are
described in Subsection II.3.3. He then argues performing such a n-coherent measurement
for a large n is difficult, given that a large, coherent, unitary transformation has to be
carried out. A scheme is then presented, for which it is subsequently shown that such large
coherent measurements need be performed in order to apply Mayers’ attack on it. So it is
proven that the scheme is both statistically binding and statistically concealing under the
aforementioned assumption of difficulty, performing large n-coherent measurements.

The assumption of the impossibility to perform n-coherent generalized measurements is
difficult to assess. This is because, while at the time of writing such measurements are not
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possible yet, they could become possible in the future. Blumoff et al. (2016) demonstrate a
highly coherent quantum computing architecture based on superconducting qubits, and use
it to establish specific multi-qubit measurements, and Kjaergaard et al. (2020) review this
superconducting mode of operation to be promising for larger scale, error-corrected quantum
computers. So, it cannot be ruled out, that with future development, the generalized
n-coherent measurements as described by Salvail will in fact be possible.

IV.1.2. Special Relativity

Special relativity and relativistic quantum theory is interesting for cryptography, as its
principles allow new models in which tasks are possible that are impossible in purely quantum
theoretic models and vice versa. Those principles include the no-signaling principle which
prohibits superluminal signaling (that is sending signals faster than the speed of light) and
the principle of information causality which forbids two spacelike separated events to have
influence on each other. The principles of relativistic quantum theory are given by Kent
(2012), and a great introduction to spacetime and what it means for events to be spacelike
separated is given by John D. Norton (2020). An example for a task that is impossible
in relativistic quantum theory but not in non-relativistic is summoning, as given by the
no-summoning theorem (Kent 2012).

A cryptographic protocol that makes use of special relativity is called a relativistic
protocol. The impossibility of sending signals faster than the speed of light can be used in
such a way as to guarantee that communication from one cooperating partner to the other
is not possible in less than a fixed amount of time, which in turn can be used instead of
the very strong assumption that (one of) the partners is situated in a faraday cage.

Kent (1999) introduces an unconditionally secure bc protocol based on special relativity.
This is a classical protocol, the enforcement of classicality is suggested to be implemented
by use of trusted decohering channels as described in IV.1.1.2. It works by splitting Alice
and Bob each in two cooperating parties and makes it possible for Bob to verify that
indeed they cannot communicate with each other. This is achieved by using a sequence of
communications which to maintain security have to be kept up, even after the revelation of
the commitment.

In the implementation, the locations x1, x2 are defined and the Laboratories Ai, Bi

of Alice and Bob have to be within distance δ of these locations xi for i = 1, 2, where
4x = |x1−x2| � δ. The test Bob can perform to confirm Alice’s locations works as follows:
with the speed of light set to c = 1, let Bi send test signals to Ai and to pass the test, Ai

has to reply to these messages within 2δ time.

Ai need to share a random string between them before the protocol starts. In the
protocol, classical bit commitments are carried out in regular intervals, alternating between
commitments from A1 to B1 and commitments from A2 to B2 where each commitment
consumes an increasingly long segment of the random string shared by the Alices. The
time in which each of those commitments has to be completed is limited to a fixed interval
4t�4x. This is continued until an Alice chooses to unveil the commitment. To verify
the unveiled bit, Bob has to gather data of both B1 and B2 in one place. It is proven that
this need to wait for information, both for unveiler and unveilee, implies that the protocol
presented is not vulnerable to Mayers’ or Lo and Chau’s attack. It also is not vulnerable
against the attack of D’Ariano et al. (2007).

A quantum version of the protocol where Alice is able to keep a qubit in superposition is
also discussed, but it is argued that this gives her no advantage over randomly choosing a
classical bit. However, it is mentioned that while this is true for a standalone qbc-protocol,
caution has to be held when using it as a sub-protocol of another protocol.

It is also noted that an implementation of this protocol would need an exponential
increase in channel capacity for an increasing commitment time, as an ever-increasing
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amount of information has to be sent in a fixed time interval.
Channel capacity describes how much information can be transmitted over a classical

channel such as a copper wire, or over a respective quantum channel. It is clear that
the requirement for an exponential increasing channel capacity makes the protocol not
actually practically usable. The protocol thus is a theoretical solution to the problem of
unconditionally secure bit commitments over arbitrary long time intervals. It is argued
however, that the time delay enforcement, on which the protocol is based around, could
also be implemented using other physical assumptions.

IV.2. Concealing and Binding Security Tradeoffs

While in most if not all realistic settings unconditionally secure, non-relativistic quantum
bit commitment is impossible, protocols fulfilling weaker security conditions are possible,
considering some assumptions. Of particular interest are those protocols that are either
unconditionally binding or unconditionally concealing and computationally concealing or
computationally binding respectively, as other cryptographic protocols can be based upon
qbc-protocols with these properties. For example zero knowledge arguments can be based
on unconditionally concealing bit commitment (Brassard, Chaum, and Crépeau 1988).
Most of the protocols presented in this section are based on the assumption of the

existence of either quantum one-way functions, or quantum one-way permutations.

IV.2.1. Unconditionally Concealing

IV.2.1.1. From Quantum One-Way Permutations

Dumais, Mayers, and Salvail (2000) introduce and prove the security of a perfectly concealing
and computationally binding qbc scheme based on quantum one-way permutations. For the
perfectly concealing property, it is shown that the commitment states on Bobs side are in
fact always identical. The authors parametrize their binding definition with a performance
success ratio, R(n) ≥ T (n)/S(n) where T (n) is the number of universal gates, needed
to implement an adversary, S(n) the probability they are successfully able to cheat and
n the security parameter. To be more precise, they define a qbc to be R(n)-binding if
no adversary with R(n) ≥ T (n)/S(n) exists. An analogous definition of a R(n)-secure
family of quantum one-way functions is also given. In their analysis they then show, that
for any R(n)-secure family of quantum one-way permutations their qbc-protocol, that

takes such a family as an input, is R′(n)-binding with R′(n) ∈ Ω
(√

R(n)
)
. They also

argue, alongside with Salvail (1998), that the limitation keeping a conditional attacker from
breaking the scheme is not their computational power, but the size of the entanglement
that their quantum computer can deal with.

IV.2.1.2. From Quantum One-Way Functions

Crépeau, Légaré, and Salvail (2001) improve this by proving that it is possible to convert
a statistically binding (and computationally concealing) qbc scheme to a statistically
concealing (and computationally binding) one. This means that a statistically concealing
and computationally binding qbc scheme can be based upon any quantum one-way function.

Their proof works as follows: a statistically concealing and computationally binding qbc
is constructed from a quantum oblivious transfer protocol and a statistically binding qbc.
For quantum oblivious transfer it is shown that it can be based on a statistically binding
bit commitment scheme. It is proven that the classical statistically binding commitment
scheme given by Naor (1991), which is based upon a pseudo-random bit generator, is
secure against an adversary with access to a quantum computer if this pseudo-random
bit generator is also secure against a quantum adversary. This can be achieved using a
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quantum one-way function. The one-way function is used to construct a pseudo-random
bit generator which is resistant to quantum distinguishers.

Thus, both statistically binding and computationally concealing qbc and computationally
binding and statistically concealing qbc can be constructed from a quantum one-way
function. This stands in contrast to the classical case, where a statistically binding and
computationally concealing bc can be based upon a one-way function, but computationally
binding and statistically concealing bc schemes can be based on one-way permutations, but
not on one-way functions. This means in this instance, the assumptions in the quantum
case can be weakened compared to the classical case.

IV.2.2. Unconditionally Binding

IV.2.2.1. From Quantum One-Way Permutations

Adcock and Cleve (2002) show a perfectly binding and computational concealing qbc-
protocol from any quantum one-way permutation, as a complement to Dumais et al.
computationally binding protocol.

The classical Goldreich-Levin-Theorem reduces inverting a one-way function to predicting
a hard-predicate of this function. Adcock and Cleve present a quantum version of this
theorem. They then use it to construct a perfectly binding, computationally concealing
qbc.

IV.2.2.2. From Approximate-Preimage-Size Quantum One-Way Functions

Koshiba and Odaira (2009) define the almost onto property for quantum one-way functions.
The existence of such quantum one-way functions is an assumption that is stronger than that
of quantum one-way functions in general, but weaker than the assumption of quantum one-
way permutations. Such a quantum one-way function is called an approximate-preimage-size
quantum one-way function. Based on such approximate-preimage-size quantum one-way
function, they define a qbc-protocol that is statistically concealing and computationally
binding. Their qbc-protocol is a generalization of the protocol described in IV.2.1.1, in
which they replace the quantum one-way permutations of Dumais, Mayers, and Salvail
(2000) with quantum one-way functions.

In their proof, they base the computational binding property on the quantum one-way
property of the function used by the protocol and the statistically concealing property on
its almost-onto property.

IV.2.2.3. From Quantum One-Way Functions

As mentioned in IV.2.1.2, Crépeau, Légaré, and Salvail (2001) also show a statistically
binding and computationally secure qbc based on Naors classical bc. While the protocol
of Crépeau, Légaré, and Salvail (2001) only assumes quantum one way functions and Koshiba
and Odaira (2009) thus hold stronger assumptions, the advantage of the latter over the
former protocol is that it is non-interactive and thus easier to analyze for potential flaws.
Koshiba and Odaira (2009) also argue, if there exists a general construction of an almost-
onto quantum one-way function, then a statistically concealing quantum bit commitment
scheme can be constructed from any quantum one-way function which would, for the reason
mentioned above, be an advantage over Crépeau, Légaré, and Salvail (2001).

IV.2.3. Partially Binding, Partially Concealing

As various protocols with varying degrees of concealment and bindingness have been
introduced, the question arises what the best possible tradeoff between those two properties
looks like. Spekkens and Rudolph (2001) explore exactly that. They define measures
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for bindingness, Alice’s control 0 ≤ C ≤ 1
2 , and concealment, Bob’s gain 0 ≤ G ≤ 1

2 .
They then explore the bounds of those measures on their own and by fixing the one while
maximizing the other. Their result for Gmax, the maximum amount of information Bob
can gather is given by the trace distance: Gmax ≥ 1

2D(ρ0, ρ1). In contrast to that, the
maximum amount of control Alice has to change her mind, Cmax, is restricted by the
fidelity: Cmax ≥ 1

2F (ρ0, ρ1)2. The states ρ0 and ρ1 are the states in Bob’s possession after
the commit-phase. They also define the class of so-called purification bit commitment
protocols, of which BB84 is part of. It is shown that protocols of that class saturate the
bounds Gmax = 1

2D(ρ0, ρ1) and Cmax ≥ 1
2F (ρ0, ρ1).
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V. Conclusion

It has been shown that in a very general setting, unconditional quantum bit commitment is
impossible. However, it also has been shown that there are some promising non-standard
settings, that could potentially be implemented, in which unconditional quantum bit
commitment would be possible. Weaker forms of quantum bit commitment also have been
presented.

There still are some open questions that this thesis could not answer which need further
analysis. One such question is, that D’Ariano et al. 2007 claim that Alice and Bob may
also draw on an unlimited supply of certified classical or quantum correlations, in the form
of an arbitrary shared initial state ρ0, and yet their no-go theorem still applies and secure
qbc remains impossible. This conflicts with Mayers (1997) and Lo and Chau 1997, who
claim that qbc with pre-shared entangled states can be trivially realized.
Another question left unanswered is the one of quantum string commitment, where

instead of bits, bit strings are being committed. Of course it is possible to implement string
commitment given bit commitment, but there is some research, that presents quantum
string commitment as a weaker form of qbc, even weaker than weak qbc. Possibilities,
applications and limitations of quantum string commitments are being discussed by amongst
others Buhrman et al. (2008), Jain (2005), and Unruh (2016).

Lastly whether or not generalized measurements as described in IV.1.1.3 actually can be
applied remains to be seen.
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A. Interactive Example

In Listing A.1 an interactive version of the attack on BB84 is given in Q#. For a guide to
install the Q# development kit (QDK) see https://docs.microsoft.com/en-us/azure/
quantum/install-command-line-qdk. After QDK has been installed, to compile and
execute the program A.1 and A.2 have to be in the same folder. Then execute for example
dotnet run -alice-change-mind true -n 10. The first flag determines whether Alice
will change her mind from committing to b = 0 to b = 1 and the second flag is the security
parameter n, so how many qubits will be transferred from Alice to Bob.

The source code can also be found in https://git.scc.kit.edu/urpyg/Ausarbeitung.

1 namespace BB84Attack {
2 open Microso f t .Quantum . Canon ;
3 open Microso f t .Quantum . I n t r i n s i c ;
4 open Microso f t .Quantum . Measurement ;
5 open Microso f t .Quantum . Convert ;
6 open Microso f t .Quantum . Diagnos t i c s ;
7

8 // Superv i so r i s a neut ra l party to work around Q# l im i t a t i o n s , that only
9 // a l l ows qub i t s to be used with in a block .

10 // S ta r t s A l i c e and Bob as funct i ons ,
11 // aliceChangeMind c on t r o l s whether A l i c e w i l l change her mind a f t e r
12 // commit .
13 @EntryPoint ( )
14 operat i on Superv i so r ( aliceChangeMind : Bool , n : Int ) : Result {
15 // f a i l e d i n d i c a t e s whether the p ro to co l f a i l e d .
16 mutable f a i l e d = f a l s e ;
17 // resB s t o r e s the r e s u l t Bob determines the commitment to be
18 mutable resB = One ;
19 // a l i c eUnv e i l c on t r o l s which b i t A l i c e w i l l unve i l
20 mutable a l i c eUnv e i l = Zero ;
21

22 // This b lock acqu i r e s qub i t s to use f o r the commitment and attack ,
23 // envBits are qubits , kept in Al ice ’ s environment f o r the attack ,
24 // sendBits are qubits , that w i l l be sent to Bob f o r the commitment .
25 use ( envBits , sendBits ) = (Qubit [ n ] , Qubit [ n ] ) {
26 Message ( ”Commit Phase ”) ;
27 // Al ice ’ s part o f the commit procedure
28 commitAlice ( envBits , sendBits ) ;
29 Message ( $ ”A l i c e s qub i t s={envBits } ; Bobs={sendBits } ”) ;
30 // Bob ’ s part o f the commit procedure .
31 // Superv i so r g i v e s Bob the qub i t s that A l i c e ”sends ” him .

32 // thetaHat , θ̂ , are the bases Bob chose to measure the qub i t s in ,
33 // wHat , ŵ , i s the measurement r e s u l t s o f Bob .
34 l e t ( thetaHat , wHat) = commitBob ( sendBits ) ;
35 Message ( ”Holding Phase ”) ;
36 ho ldAl i c e ( aliceChangeMind , envBits ) ;
37 i f ( aliceChangeMind ) {
38 s e t a l i c eUnv e i l= One ;
39 }
40 Message ( ”Unvei l phase ”) ;
41 l e t w = unve i lA l i c e ( a l i c eUnve i l , envBits ) ;
42 s e t ( resB , f a i l e d ) = unveilBob ( thetaHat , wHat , w) ;
43 // cleanup , not important f o r attack
44 ResetAl l ( envBits ) ;
45 ResetAl l ( sendBits ) ;
46 }
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47 i f ( f a i l e d ) {
48 Message ( ”Commitment f a i l e d ”) ;
49 } e l s e {
50 Message ( ”Bob determined commitment to be ”) ;
51 }
52 re turn resB ;
53 }
54

55 // commitAlice i s the part o f the commit procedure
56 // that i s executed by d i shone s t A l i c e .
57 // She always commits to Zero and does not send anything to the
58 // environment .
59 // envBits are the qubits , that A l i c e w i l l keep .
60 // bitsToSend are the qubits , that A l i c e w i l l send to Bob
61 operat i on commitAlice ( envBits : Qubit [ ] , bitsToSend : Qubit [ ] ) : Unit {
62 Message ( ”A l i c e s commit Procedure ”) ;
63 // Create random sta t e s , but do not send them to the environment ,
64 // entang l e s those s t a t e s with the b i t s to send .
65 f o r i in 0 . . Length ( envBits ) −1{
66 H( envBits [ i ] ) ;
67 CNOT( envBits [ i ] , bitsToSend [ i ] ) ;
68 }
69 }
70

71 // commitBob i s the part o f the commit procedure , executed by Bob .
72 // r e c e i v edB i t s are the qubits , Bob r e c e i v ed from Al i c e .
73 operat i on commitBob ( r e c e i v edB i t s : Qubit [ ] ) : ( Result [ ] , Result [ ] ) {
74 Message ( ”Bobs commit procedure ”) ;

75 // bases s t o r e s the bases θ̂ , Bob uses to measure the qub i t s in
76 mutable bases = new Result [ 0 ] ;
77 // wHat , ŵ , s t o r e s the measurement r e s u l t s
78 mutable wHat = new Result [ 0 ] ;
79 use rand = Qubit ( ) {
80 // The random bases are generated by putt ing qub i t s i n to equal
81 // supe rpo s i t i on and sending them to the environment
82 // ( measuring them) .
83 f o r i in 0 . . Length ( r e c e i v edB i t s ) −1{
84 H( rand ) ;
85 s e t bases += [MResetZ ( rand ) ] ;
86 }
87 }
88 // Measures the qubits , A l i c e sent in the bases determined above .
89 Message ( ”Bob measures h i s qub i t s ”) ;
90 f o r i in 0 . . Length ( r e c e i v edB i t s ) −1{
91 s e t wHat += [ measureRectOrDiag ( bases [ i ] , r e c e i v edB i t s [ i ] ) ] ;
92 }
93 re turn ( bases , wHat) ;
94 }
95

96 // ho ldAl i c e i s where a cheat ing Al i c e would apply her cheat ing
97 // t rans fo rmat ion to her qub i t s .
98 // However as i t has been shown in BB84 t h i s t rans fo rmat ion i s the
99 // id en t i t y , so nothing happens here .

100 operat i on ho ldAl i c e ( changeMind : Bool , envBits : Qubit [ ] ) : Unit {
101 Message ( ”A l i c e s hold procedure ”) ;
102 i f ( not changeMind ) {
103 // Do nothing
104 re turn ( ) ;
105 }
106 // Apply Transformation
107 }
108

109 // unve i lA l i c e i s Al ice ’ s part o f the unve i l procedure ,
110 // bitToUnvei l determines which b i t she w i l l unve i l to Bob .
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111 operat i on unv e i lA l i c e ( bitToUnvei l : Result , envBits : Qubit [ ] ) : Result [ ] {
112 Message ( ”A l i c e s unve i l procedure ”) ;
113 Message ( ”A l i c e unve i l i n g One? ”+ BoolAsStr ing ( ResultAsBool (

bitToUnvei l ) ) ) ;
114 // Only now , she measures her qub i t s
115 Message ( ”A l i c e measures her qub i t s ”) ;
116 mutable w = new Result [ 0 ] ;
117 f o r i in 0 . . Length ( envBits ) −1{
118 // The b i t to unve i l determines the ba s i s she measures the qub i t s
119 // in
120 s e t w += [ measureRectOrDiag ( bitToUnvei l , envBits [ i ] ) ] ;
121 }
122 re turn w;
123 }
124

125 // unvei lBob i s Bob ’ s part o f the unve i l procedure .
126 // thetaHat are the same Bases , Bob used in commitBob .
127 // wHat are h i s measurement r e s u l t s from commitBob ,
128 // w i s the bit−s t r i n g sent by Al i c e to unve i l the commitment .
129 // r e tu rn s committed b i t and whether the p ro to co l f a i l e d .
130 operat i on unvei lBob ( thetaHat : Result [ ] , wHat : Result [ ] , w: Result [ ] ) : (

Result , Bool ) {
131 Message ( ”Bobs unve i l procedure ”) ;
132 Message ( $ ”thetaHat={thetaHat }) , wHat={wHat} ”) ;
133 mutable mismatches = new Int [ 0 ] ;
134 f o r i in 0 . . Length (wHat) −1{
135 i f (wHat [ i ] != w[ i ] ) {
136 s e t mismatches += [ i ] ;
137 }
138 }
139 Message ( $ ”Mismatches={mismatches} ”) ;
140 i f ( Length (mismatches ) == 0) {
141 // Cannot determine commitment , as a l l w and ŵ are equal
142 Message ( ”Al l w and wHat equal ”) ;
143 re turn ( Zero , t rue ) ;
144 }
145 l e t the taT i lde = f l i pR e s u l t ( thetaHat [ mismatches [ 0 ] ] ) ;
146 f o r i in 0 . . Length (mismatches ) − 1{
147 i f ( the taT i lde == thetaHat [ mismatches [ i ] ] ) {
148 // Al i c e must have cheated
149 Message ( ”A l i c e must have cheated ”) ;
150 re turn ( Zero , t rue ) ;
151 }
152 }
153 re turn ( thetaTi lde , f a l s e ) ;
154 }
155

156 // measureRectOrDiag measures a qubit in r e c t i l i n e a r or d iagona l ba s i s .
157 // ba s i s i s Zero f o r r e c t i l i n e a r , One f o r d iagona l
158 // bitToMeasure qubit to measure ,
159 // r e tu rn s measurement r e s u l t .
160 operat i on measureRectOrDiag ( ba s i s : Result , bitToMeasure : Qubit ) : Result

{
161 i f ( b a s i s == Zero ) {
162 //Used f o r r e c t i l i n e a r ba s i s
163 l e t r = M( bitToMeasure ) ;
164 Message ( $ ”Measured {bitToMeasure} in Rect , got ” + Resul tAsStr ing

( r ) ) ;
165 re turn r ;
166 } e l s e {
167 l e t r = Measure ( [ PauliX ] , [ bitToMeasure ] ) ;
168 Message ( $ ”Measured {bitToMeasure} in Diag , got ” + Resul tAsStr ing

( r ) ) ;
169 re turn r ;
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170 }
171 }
172

173 // f l i pR e s u l t f i p s a measurement r e su l t , Zero to One and One to Zero .
174 operat i on f l i pR e s u l t (b : Result ) : Result {
175 re turn BoolAsResult ( not ResultAsBool (b) ) ;
176 }
177

178 operat i on Resul tAsStr ing ( r : Result ) : S t r ing {
179 i f ( ResultAsBool ( r ) ) {
180 re turn ”One” ;
181 } e l s e {
182 re turn ”Zero ” ;
183 }
184 }
185 }

Listing A.1: BB84Attack/Program.qs

1 <Pro j ec t Sdk=”Microso f t .Quantum . Sdk /0 .15 .2102129448 ”>
2

3

4 <PropertyGroup>
5 <OutputType>Exe</OutputType>
6 <TargetFramework>netcoreapp3 . 1</TargetFramework>
7 </PropertyGroup>
8

9 </ Pro j e c t>

Listing A.2: BB84Attack/BB84Attack.csproj
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Proofs of Knowledge”. In: Journal of Computer and System Sciences 37.2, pp. 156–189.
issn: 0022-0000. doi: 10/bfj632. url: https://www.sciencedirect.com/science/
article/pii/0022000088900050 (visited on 03/05/2021).

Brassard, Gilles, Claude Crepeau, et al. (Nov. 1993). “A Quantum Bit Commitment Scheme
Provably Unbreakable by Both Parties”. In: Proceedings of 1993 IEEE 34th Annual
Foundations of Computer Science. Proceedings of 1993 IEEE 34th Annual Foundations
of Computer Science, pp. 362–371. doi: 10/dts6zf.
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