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9 Saulėtekio, LT-10222 Vilnius, Lithuania

Maximilian Löschner †

Institute for Theoretical Physics, Karlsruhe Institute for Technology,
Wolfgang-Gaede-Straße 1, 76131 Karlsruhe, Germany

(Received 29 October 2020; accepted 8 March 2021; published 13 April 2021)

We show how the renormalization constant of the Higgs vacuum expectation value fixed by a tadpole
condition is responsible for gauge dependences in various definitions of parameters in the Rξ-gauge. Then
we show the relationship of this renormalization constant to the Fleischer-Jegerlehner (FJ) scheme, which
is used to avoid these gauge dependences. In this way, we also present a viewpoint on the FJ scheme
complementary to the ones already existing in the literature. Additionally, we compare and discuss different
approaches to the renormalization of tadpoles by identifying the similarities and relations between them.
The relationship to the Higgs background-field renormalization is also discussed.
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I. INTRODUCTION

In modern particle physics, high precision calculations
are of increasing importance for finding signs of new
physics in the comparisons of theory predictions to
experimental data. An integral part of these calculations
is the subject of renormalization. Even though the main
principles of renormalization are well understood (see,
e.g., [1] for a recent review of electroweak radiative
corrections) and represent a standard textbook subject,
some subtleties are still actively discussed to the present
day. One of these is the subject of vacuum expectation
value (VEV) renormalization in conjunction with so-called
tadpole schemes. For existing examples of discussions in
the literature, see, e.g., [2–8] or [1] for a list of tadpole
schemes. However, we find that a unified exposition of
the relationships between such schemes is still missing in
the literature. Hence, in this paper, we want to elucidate the
relation between the renormalization of vacuum expect-
ation values, tadpole schemes, gauge dependences, and the
special role of Goldstone boson tadpoles in this respect.
More specifically, we show the connections between

methods that are commonly used in precision calculations
for the Standard Model (SM), as, e.g., in [1] and more
formal discussions of VEV renormalization in general
gauge theories as, e.g., in [9,10].
We want to emphasize the known fact that an indepen-

dent VEV (or tadpole) renormalization constant is neces-
sary in addition to the renormalization of the parameters
and fields of the unbroken theory in order to render all
n-point Green’s functions finite in the Rξ-gauge (this was
already noted in, e.g., [11,12]). In the broken phase, the
usage of the VEV in gauge-fixing functions affects the
global symmetry properties of the theory [9], which leads to
the need of this additional degree of freedom.1 Hence, in
spontaneously broken gauge theories such as the SM, this
can be understood as an artifact of the gauge-fixing
procedure rather than a direct consequence of the mecha-
nism of spontaneous symmetry breaking itself. This intro-
duction affects the definitions of the parameters, leading to
gauge dependences in some of them. In principle, these
gauge dependences will always cancel in physical observ-
ables. Moreover, the S-matrix can even be made finite
without renormalizing tadpoles at all, hence, leaving the
one-point Green’s functions infinite [11]. Nevertheless, it
can be favorable to demand gauge-independent physical
parameter definitions in perturbative calculations, i.e., for
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1Note that in some older literature, when the Rξ-gauge was not
as commonly used as it is nowadays, this fact might not be
mentioned. As an example, in [13–15], this fact is not discussed
due to the use of R-gauge fixing.
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intermediate expressions such as mass counterterms. The
Fleischer-Jegerlehner tadpole scheme (FJ scheme) [16] was
proposed to avoid these spurious gauge dependences. This
becomes even more important if one goes beyond the
Standard Model (BSM), where the usual on-shell (OS)
renormalization is not possible for all parameters (see [17]
for a discussion of the problems arising here) and explains
part of the renewed attention to the subject in the context of
the two-Higgs-doublet models [5–8,18].
The FJ scheme is closely related to the aforementioned

additional independent VEV-renormalization constant. As
we will see, the FJ scheme makes sure that this degree of
freedom will not enter the parameter and counterterm
definitions, and hence, allows for gauge-independent
definitions. However, neither in the original paper, nor in
the more recent ones on the scheme, is this relationship
explicitly exposed. Instead, the notions of the “proper VEV”
[16] or the “correct one-loop minimum” [1,5,8,18] are used
to motivate the gauge cancellations in the FJ scheme.We try
to fill the gap by exposing this feature and also suggest
looking at the scheme as simply being a convenient set of
counterterm redefinitions. Using this viewpoint, we also
show translations between different tadpoles schemes.
With a pedagogical purpose in mind, we carry out our

study for the SM at the one-loop level, but also comment on
the implications for BSM. Moreover, the paper is set up
such that our results can be easily reproduced using, e.g.,
the native FeynArts [19] SM file together with FeynCalc [20–
22] or FormCalc [23,24] (both with and without background
fields).
Note that in order to extend our discussion of gauge

dependences to higher-loop orders, one has to adopt the
complex mass scheme (CMS) [25–31] in addition to using
the FJ scheme. The reason being that in the presence of
unstable particles, propagator poles can acquire imaginary
parts from two loops onward, and the usual OS scheme
leads to gauge-dependent mass definitions in that case. One
can therefore only prove the gauge independence of the
complex propagator poles [27] and needs to include this in
the discussion via the CMS.
We start our presentation in Sec. II by explaining why it

is necessary to have an additional renormalization constant
in the spontaneously broken phase of the SM as compared
to the unbroken phase and introduce a tadpole condition to
fix the former. In Sec. III, we present the translations
between the renormalization constants of different param-
eter sets that are used as independent in the renormalization
procedure. In particular, we show the relations between
renormalization constants of symmetry-based (or “origi-
nal”) parameters of the theory to the ones used in the usual
OS scheme in [32]. These translations illuminate the gauge
dependences in the definitions of the usual mass renorm-
alization constants. In Sec. IV, we define the FJ scheme as
known from the literature, show how it provides gauge-
independent counterterm definitions, and present a new
viewpoint on the scheme in terms of renormalization

constant reparametrization. This section also relates the
FJ scheme to the findings presented in [9], and moreover,
we illustrate the differences between the tadpole schemes
by comparing VEV-renormalization constants numerically
and comment on the outcomes. We conclude our presen-
tation in Sec. V. Some details of our calculations can be
found in the appendixes. These include a short note on the
construction of the Rξ-gauge in the background-field
formalism in Appendix A, the calculation of the purely
gauge-dependent divergences using the background fields
in the SM (an adaptation from [9]) in Appendix B,
consequences of different renormalization conditions of
this approach in Appendix C, explicit divergences of
renormalization constants in Appendix D, and numerical
input values that we used to calculate VEV-renormalization
constants in Appendix E.

II. AN ADDITIONAL COUNTERTERM IN Rξ

The necessity of an independent VEV-renormalization
constant for renormalizing one-point Green’s functions has
been noted before (e.g., see [11,12,33]). However, one might
come to the conclusion that this is done purely for conven-
ience. The reasons for this impression are given by the fact
that S-matrix elements are finite even without renormalizing
tadpoles at all [11] or the fact that a gauge fixing other than
the Rξ-gauge is used, such as in [13–15], where indeed all
n-point Green’s functions can be made finite via multipli-
cative renormalization of the parameters of the unbroken
theory. Here, wewant to clarify that the latter statement is not
true in the Rξ-gauge. As discussed rather recently in [9], the
explanation comes from the fact that this gauge fixing
explicitly breaks a global SUð2Þ ×Uð1Þ symmetry. Then,
a VEV counterterm cannot be forbidden on the grounds of
symmetry arguments, or in other words, its divergence
structure is not fixed by the field strength renormalization
of a physical scalar. In order to fix its divergence structure, the
authors of [9] restore the original global symmetries of the
theory by the introduction of background fields2 and express
the VEV renormalization in terms of the background-field
renormalization. Additionally, via the use of Becchi-Rouet-
Stora-Tyutin (BRST) sources, the difference between the
VEV’s divergence structure and the physical scalar field’s
renormalization is isolated. We will now clarify these points
explicitly for the SM.
We consider the usual Higgs potential of the SM:

VðϕÞ ¼ μ2ϕ†ϕþ λðϕ†ϕÞ2: ð1Þ

The neutral component of the Higgs doublet ϕ acquires a
VEV v as in

2This setup is also related to more formal studies of algebraic
renormalization [34–39]. In these studies, the term rigid sym-
metry is used instead of global symmetry, but the meaning is
the same.
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ϕ ¼
 

Gþ
W

1ffiffi
2

p ðvþ hþ iGZÞ

!
; ð2Þ

where Gþ
W and GZ are the Goldstone boson fields and h is

the physical Higgs field. The tree-level minimum condition
for Eq. (1) gives

∂V
∂h
����
h¼GW=Z¼0

¼ 0 ⇒ v2 ¼ −
μ2

λ
; ð3Þ

which leads to the Higgs mass being

m2
h ¼ 2λv2 ¼ −2μ2: ð4Þ

Following [9], we introduce background fields denoted
by “hats” via

ϕ → ϕþ ϕ̂ ¼
 

GW
1ffiffi
2

p ðhþ iGZÞ

!
þ
 

Ĝþ
W

1ffiffi
2

p ðvþ ĥþ iĜZÞ

!
:

ð5Þ

The Rξ-gauge-fixing function is modified in such a way
that the gauge fixing and ghost part of the Lagrangian are
invariant under the global gauge transformation, where the
gauge parameters are restricted to3

ξ ¼ ξW ¼ ξZ ¼ ξA: ð6Þ

An explicit construction of the gauge-fixing functions using
background fields in the SM is explained in Appendix A. In
this case, one finds that all n-point Green’s functions can be
rendered finite using only multiplicative renormalization
constants,

p → Zpp; f →
ffiffiffiffiffiffi
Zf

p
f; f̂ →

ffiffiffiffiffiffi
Zf̂

q
f̂ ð7Þ

for all parameters p, fields f, and background fields f̂ of
the theory. However, in order to isolate purely gauge-
dependent divergences4 in a single constant Ẑϕ, we write
the field and background-field renormalization as

ϕþ ϕ̂ →
ffiffiffiffiffiffi
Z̄ϕ

q 0
B@ 1ffiffiffiffiffiffi

Ẑϕ

q ϕþ
ffiffiffiffiffiffi
Ẑϕ

q
ϕ̂

1
CA ð8Þ

and identify the renormalization of the components of the
physical scalar and VEV by

ffiffiffiffiffiffi
Zh

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z̄ϕ=Ẑϕ

q
; ð9aÞ

Zv ¼
ffiffiffiffiffiffi
Zĥ

p ¼
ffiffiffiffiffiffiffiffiffiffiffi
Z̄ϕẐϕ

q
: ð9bÞ

It is now comfortable to introduce, schematically,

δ ¼ Z − 1; ð10Þ

for every renormalization constant. Then from Eqs. (9a)
and (9b) at one loop we have5

δh ¼ δ̄ϕ − δ̂ϕ; δv ¼
1

2
ðδ̄ϕ þ δ̂ϕÞ: ð12Þ

It is thus clear that the VEV renormalization can coincide
with the Higgs field renormalization only if δ̂ϕ vanishes.
We show how one can get the divergent part of δ̂ϕ with the
help of BRST sources in Appendix. B. The result for the
UV divergent part is

δ̂ϕjUV ¼ 2

4 −D
ξ

16π2v2
ð2m2

W þm2
ZÞ; ð13Þ

where D is the number of space-time dimensions, and
mW and mZ are masses of W and Z bosons, respectively.
Hence, it clearly vanishes for ξ → 0, and can only then let
the VEV renormalization coincide with the Higgs field
renormalization.
To further see the role of δ̂ϕ, we consider the Higgs one-

point function. By inserting renormalization constants into
Eq. (1), collecting all the terms linear in h, and using the
tree-level minimum condition Eq. (3), we get a counterterm
for the one-point function of h, i.e.,

δth ¼ −λv3ðδλ − δμ2 þ δ̄ϕ þ δ̂ϕÞ; ð14Þ3An explicit calculation shows that at one loop, it is enough to
use a single additional counterterm even without the equality
of the gauge parameters of Eq. (6). However, it is unclear whether
this holds at higher-loop orders. One can construct a gauge-fixing
function which preserves the global invariance even when
Eq. (6) does not hold instead. Such a gauge-fixing function
was introduced in [39], yet we want to focus our discussion on
the widely used Rξ-gauge.

4Note that Z̄ϕ can nevertheless have gauge-dependent finite
parts. This effectively comes about due to the Passarino-Veltmann
function B0ðp2; m2ξ; m2ξÞ carrying gauge-independent UV di-
vergent but gauge-dependent finite terms. Hence, Z̄ϕ can just be
used as a tool to disentangle divergence structures.

5Note that since we started with the multiplicative constants,
all parameter renormalization constants including the one of the
VEV are defined dimensionless, leading to simpler relations
between the constants. The translation to the dimensionful
constants can be easily done by replacing

δp →
δp
p

ð11Þ

in all our expressions.
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which is fixed by the tadpole condition, i.e.,

δth þ Th ¼ 0; ð15Þ

where Th are the one-loop tadpole contributions.
Throughout the rest of this paper, we keep this as a fixed
condition in all different tadpole schemes. The gauge-
dependent part of the tadpole function Th is

ð16Þ

where (ξ) denotes that we take only the gauge-dependent
tadpoles, and A0 is a one-point Passarino-Veltman function
[40]. Checking the UV divergences in Eq. (16) and using
Eq. (14) in Eq. (15), we see that the gauge-dependent
divergences cancel as

TðξÞ
h jUV − λv3δ̂ϕjUV ¼ 0; ð17Þ

hence, δ̂ϕ alone absorbs all the gauge-dependent divergen-
ces in the tadpole condition. As shown in [7] for the multi-
Higgs-doublet SM, one can come to the same conclusions
by simply demanding the finiteness of all scalar n-point
functions via fδμ2 ; δλ; δ̂ϕ; δhg, where δ̂ϕ is introduced ad hoc
as an additional VEV-renormalization constant and without
any reference to the background-field formalism.6 For a
derivation of this kind in the SM, we show the divergences
of the relevant n-point functions in Appendix D.
When using the Rξ-gauge fixing in the SM, there are no

gauge-dependent divergences in other renormalization
constants (see Appendix D for explicit expressions); hence,
we have

∂
∂ξ δλjUV ¼ ∂

∂ξ δμ2 jUV ¼ ∂
∂ξ δ̄ϕjUV ¼ 0: ð18Þ

Since δ̂ϕjUV vanishes when ξ → 0, while the gauge-inde-
pendent part is obviously untouched by this limit, we can
conclude that δ̂ϕ renormalizes purely the spurious diver-
gences that are caused the gauge-fixing procedure in the
Rξ-gauge. It is therefore only necessary as an independent
renormalization constant when ξ ≠ 0. In this sense, it is the
minimal addition to the set of renormalization parameters
of the unbroken theory in order to render all n-point
Green’s functions finite. Moreover, any inclusion of δ̂ϕ
in counterterm definitions will carry over its gauge

dependence. As we will see in the next section, this is
usually the case for mass counterterms.

A. Remarks

Employing the tadpole condition of Eq. (15) is of special
interest when working with the generating functional for
the one particle irreducible (1PI) Green’s functions, which
is defined as the Legendre transformation of the generating
functional for the connected Green’s functions. This trans-
formation is only well defined for vanishing one-point
Green’s functions, making Eq. (15) essential [27,41,42].
The 1PI generating functional in turn is used for deriving
functional identities such as the Slavnov-Taylor [43] or
Nielsen identities [44].
Questions about gauge dependence in connection with

VEV renormalization can also be very relevant in studies of
effective loop potentials. It has already been noted in [45],
in the context of an Abelian-Higgs model, that Goldstone
boson tadpoles violate the so-called Higgs-low-energy
theorem (HLET). This relates to an older finding that
one can not get Goldstone boson tadpoles from any
potential by taking a derivative with respect to the Higgs
VEV [3]. The violation of the HLET is in correspondence
to the necessity of δ̂ϕ in the Rξ-gauge. In [45], the Rξ-gauge
is traded for the so-called Rξ;σ-gauge, which reinstates a
global symmetry of the Lagrangian and in this way avoids
the necessity of an independent VEV counterterm though.
Similarly, in studies of finite temperature phase transi-

tions (see, e.g., [46,47]), one finds gauge-dependent posi-
tions of the minima of effective loop potentials.7 Here, this
is a result of using an Rξ-gauge and defining the effective
action as the sum of 1PI graphs, i.e., without tadpole and
other external leg contributions. Moreover, it is interesting
to find the diagram in Fig. 1 of [47], which determines the
Nielsen coefficient of a one-loop effective potential. Our
definition of δ̂ϕ via BRST sources shown in Fig. 2 of
Appendix B is the equivalent of this in terms of its
divergence structure.
As a last note in this section, we would like to stress

the differences in the use of background fields in [9,48].
It might appear as if the authors state exact opposites,
namely, that a nonzero VEV counterterm is strictly
necessary versus the statement that no VEV renormali-
zation in addition to the Higgs field renormalization is
needed.8 However, both statements are not contradictory,
as the respective contexts differ. In [48], the authors do
not renormalize quantum fields at all, as they are
interested only in the Green’s functions of the back-
ground fields. Then, the statement that no genuine VEV
counterterm is needed translates to the fact that no

6In [7], δvk is the equivalent of vδ̂ϕ.

7Nevertheless, the values of the potentials at these points are
found to be gauge independent.

8Both references use the notation δv for different quantities
leading to potential confusion.
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renormalization in addition to Eq. (9b) is necessary. In
[9], however, the focus lies on the renormalization of
quantum fields, while the background fields are still used
to preserve the symmetry structure of the theory. Then,
Ẑϕ in Eq. (9b) is interpreted as an additional counterterm
to the one of Eq. (9a), due to a mismatch between
quantum field renormalization and the renormalization of
its VEV. In their notation, δv ≠ 0 as they parametrized it
in a relationship with the quantum instead of the back-
ground-field renormalization as compared to [48].

III. TRANSLATION OF RENORMALIZATION
CONSTANTS

Before a renormalization procedure is carried out,
one has to choose a set of independent renormalization
constants. In the SM, one usually chooses experimentally
well-accessible physical parameters as independent
renormalization constants, while in BSM studies, it can
be convenient to use the set of original theory parameters
and the VEVs, especially when the use of an MS scheme
cannot be avoided. For the comparability of different
choices, it is instructive to have a translation between
the sets of renormalization constants. To get these relations,
consider that we have a parameter set fpg related at tree
level to a parameter set fp0g by some function f:

p0
i ¼ fiðfpgÞ: ð19Þ

Introducing renormalization constants as in Eq. (B9) and
expanding to one-loop order induces the relations

δp0
i
¼ 1

fiðfpgÞ
· ðδpj

pjÞ
∂
∂pj

fðfpgÞ: ð20Þ

In the SM, the relevant set of tree-level relations is

m2
h ¼ μ2 þ 3λv2; mW ¼ v

2
g2; mZ ¼ v

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g21 þ g22

q
;

e ¼ g1g2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g21 þ g22

p ; th ¼ −vðμ2 þ v2λÞ: ð21Þ

Using Eq. (20), we get the relations between the renorm-
alization constants of the parameter renormalized tadpole
scheme (PRTS) [32], usually used with an OS scheme, to
the ones of the original parameters, namely,

fth; mh;mW;mZ; eg ↔ fv; μ2; λ; g1; g2g; ð22Þ

where g1 and g2 are the Uð1Þ- and SUð2Þ-couplings,
respectively. The results are shown in the first column of
Table I, where δv is expressed in terms of the field
renormalization constants of Eq. (12). This is to show
where the gauge-fixing-induced ξ-dependences appear via
δ̂ϕ. Inspecting the first column of Table I, one clearly sees
that δ̂ϕ enters the definition of the usual mass counterterms.
This means that the latter are necessarily gauge dependent
if one defines them as in the PRTS. In the next section,
we will present the FJ scheme and show its role in
the cancellation of gauge dependences by virtue of the
renormalization constant redefinitions shown in the second
column of Table I.

IV. RELATIONS AMONG DIFFERENT
VEV SCHEMES

A. FJ scheme

The FJ scheme is a procedure of reinstating tadpole
contributions in perturbative calculations so that parameter
definitions can be defined in a gauge-independent way.

TABLE I. The mass, VEV, and electric charge renormalization constants are expressed in terms of the
renormalization constants of gauge couplings g1, g2 and potential parameters λ, μ together with the (background)
field renormalization constants in the two tadpole schemes. This is to emphasize the relations of divergence
structures between the different renormalization constants. Δ is the “FJ term” used to relate counterterms from the
usual tadpole scheme to the FJ scheme (see Sec. IVA).

Usual tadpole scheme [32] FJ scheme [16]

Δ ¼ 0 Δ ¼ Th
vm2

h
¼ 1

2
ðδλ − δμ2 þ δ̄ϕ þ δ̂ϕÞ

δv ¼ 1
2
ðδ̄ϕ þ δ̂ϕÞ δvjFJ ¼ 1

2
ðδμ2 − δλÞ

δth ¼ −λv3ðδλ − δμ2 þ δ̄ϕ þ δ̂ϕÞ δthjFJ ¼ 0

δM2
h
¼ 3

2
ðδλ þ δ̄ϕ þ δ̂ϕÞ − 1

2
δμ2 δM2

H
jFJ ¼ δμ2

δM2
W
¼ 2δg2 þ δ̄ϕ þ δ̂ϕ δM2

W
jFJ ¼ 2δg2 þ δμ2 − δλ

δM2
Z
¼ 2

g2
2
δg2þg2

1
δg1

g2
1
þg2

2

þ δ̄ϕ þ δ̂ϕ δM2
Z
jFJ ¼ 2

g2
2
δg2þg2

1
δg1

g2
1
þg2

2

þ δμ2 − δλ

δmf
¼ δy þ 1

2
ðδ̄ϕ þ δ̂ϕÞ δmf

jFJ ¼ δy þ 1
2
ðδμ2 − δλÞ

δe ¼ δejFJ ¼ 1
g2
1
þg2

2

ðg21δg2 þ g22δg1Þ
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In the current literature, this procedure is often paraphrased
as a shift of the VEV to the correct minimum of the
loop-corrected scalar potential [1,5,8,18]. This means
that one first shifts the bare VEV by the full tadpole
contributions, i.e.,

vbare ¼ vbarejFJ þ Δv; Δv ¼ Th

m2
h

; ð23Þ

where we indicated the shifted VEV by “FJ.” Only then,
one adopts multiplicative renormalization constants and
insertsΔv at each appearance of the VEV in the Lagrangian
before using the parameter relations of Eq. (21). Since
Eq. (23) constitutes a redefinition of the bare VEV, it no
longer can be interpreted in terms of the background-field
renormalization constant, and we introduce an independent
δvjFJ for its renormalization. Then, the initial bare VEV is
related to the renormalized VEV v as

vbare ¼ vþ vδvjFJ þ Δv: ð24Þ

The full tadpole counterterm becomes

δth ¼ −λv3ðδλ − δμ2 þ 2δvjFJÞ − Δvm2
h: ð25Þ

Using the definition of the FJ-VEV shift, Eq. (23), we see
that the first term of Eq. (25) must vanish in order to fulfill
the tadpole condition of Eq. (15), which leads to the
identification

δvjFJ ¼
1

2
ðδμ2 − δλÞ: ð26Þ

This shows that in the FJ scheme, one recovers the tree-
level relation between the VEV and the parameters of the
scalar potential of Eq. (3), so that the VEV renormalization
can be fully expressed in terms of shifts of the potential
parameters μ2 and λ. In this sense, the shift of Eq. (23) can
be paraphrased as shifting the VEV to the correct one-loop
minimum. Or, as presented in [16], one chooses the
proper VEV.
Introducing the shift of Eq. (23) into the Lagrangian

everywhere is effectively equivalent to including regular
tadpole contributions in the Green’s and vertex functions in
addition to the 1PI contributions, i.e., effectively setting
δth ¼ 0 as well as Δ ¼ 0. Nevertheless, the FJ scheme has
the appeal that renormalized one-point functions vanish
exactly with the tadpole condition Eq. (15) being fulfilled,
while they would remain formally divergent in the latter
case. Since Eq. (26) does not include δ̂ϕ in its definition, it
has no gauge-dependent UV divergences in contrast to the
PRTS. This is shown in Table I where we also see that none
of the other parameters carries a δ̂ϕ-dependence in the FJ
scheme. Here, we see the relationship between the FJ
scheme and the additional VEV-renormalization constant

of [9], or equivalently, δ̂ϕ: The FJ scheme cancels the
gauge-dependent divergences which come about due to the
breaking of the global gauge symmetry via the Rξ-gauge
fixing. We will discuss the gauge dependence of finite parts
at the end of the section.

B. FJ reparametrization

Equation (23) together with the tadpole condition
Eq. (15) might seem as two renormalization steps.
However, Eq. (23) represents a mere redefinition of a bare
parameter. In the following, we make this redefinition
more explicit and thereby give an equivalent way of
formulating the FJ scheme. This will also simplify the
comparison of the different tadpole schemes.
We first generate counterterms via multiplicative

renormalization of the parameters fv; μ2; λ; g1; g2g and
then do a simple zero insertion of what we call a FJ term
Δ in the bare VEV, i.e.,

vbare ¼ vð1þ δv − Δþ ΔÞ; ð27Þ

where Δ is the dimensionless equivalent of the VEV shifts
used in Eq. (23), namely,

Δ ¼ Th

vm2
h

: ð28Þ

We then redefine the VEV counterterm by

δvjFJ ¼ δv − Δ; ð29Þ

which gets us back Eq. (24), and thereby make the relation
between the two tadpole schemes explicit. Similarly, we
can identify

δmf
jFJ ¼ δm − Δ; ð30aÞ

δm2
V
jFJ ¼ δm2

V
− 2Δ; ð30bÞ

δm2
h
jFJ ¼ δm2

h
− 3Δ; ð30cÞ

and thereby parametrize the change in going from the
renormalization constants of the PRTS to the ones of the FJ
scheme. In deriving the last line of Eq. (30c), care needs to
be taken by imposing the tadpole condition only after the
shift Eq. (29) was inserted.
Diagrammatically, Eq. (27) can be understood as a

simple reassignment of the two instances of Δ. In the case
of one-loop corrections to a fermion mass, this means
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ð31Þ

where one can identify the FJ mass renormalization
constant of Eq. (30a) in the first diagram, which has no
gauge-dependent divergences due to the cancellation of δ̂ϕ
in its definition, while the third diagram represents implicit
tadpole contributions. Instead, if we choose Δ ¼ 0, the first
diagram represents a gauge-dependent mass counterterm
δm as defined in the PRTS. In any case, the usual tadpole
condition of Eq. (15) provokes the cancellation of the last
two diagrams.
Generically, we can write

ð32Þ

in order to emphasize the inclusion of (implicit) tadpole
contributions in the FJ scheme. Here, the superscript
“Pr” stands for renormalization prescriptions such as
using the MS or OS scheme, which needs to be specified
for discussing the gauge dependence of finite parts.
Concerning the latter, one finds that the FJ scheme also
leads to gauge-independent one-loop mass parameter
definitions in the OS scheme.
There is a simple explanation of why the reintroduction

of tadpoles in the FJ scheme gives a gauge-independent
result. As an example, we consider a fermion one-loop pole
mass in a bare perturbation theory:

ð33Þ

Thewhole expression Eq. (33) is gauge independent, as it is
a one-loop pole mass [27], while mbare is gauge indepen-
dent by principle. Thus, the mass shift, i.e., the term in
parentheses in Eq. (33), is gauge independent as well. This
means that the gauge dependence of the tadpole contribu-
tions induced by the Goldstone boson tadpoles of Eq. (16)
is canceled when added to the 1PI contributions. With the
FJ scheme implicitly including the tadpole contributions,
one realizes that the mass renormalization constants of
Eq. (30) therefore are gauge independent in terms of their
finite parts as well when defined in an OS scheme. Note
that in the PRTS, where Eq. (15) enforces tadpoles to
vanish in Eq. (33) and no VEV shift is introduced, mbare
needs to compensate for the gauge dependence of the 1PI

contributions for mpole to be gauge independent (see,
e.g., [8]).

C. Numerical comparison

In this section, we want to show an explicit deter-
mination of the VEV-renormalization constants in the
various schemes and give a numerical example for their
comparison.
We can use the relations Eq. (21) to define the VEV

counterterms via the renormalization constants δg2 and
δm2

W as

δvðfδpgÞ ¼ δvðδg2; δm2
WÞ ¼ v

�
δm2

W

2m2
W
−
δg2
g2

�
; ð34Þ

which holds for both tadpole schemes. The SUð2Þ-coupling
g2 can in turn be expressed as

δg2 ¼
e
2sw

δeþ δm2
W − c2wδm2

Z

m2
Z −m2

W
: ð35Þ

This step is usually done such that physical quantities
known to high accuracy can be used as input parameters.
The charge renormalization constant δe can be defined in
terms of the γ-γ self energy and the γ-Z mixing [1]. It does
not depend on the choice of a tadpole scheme (because the
Higgs field h does not couple to the photon, and there is no
γ-Z-h vertex) and neither does δg2 as defined in Eq. (35).
Instead, the difference between the VEV-renormalization
constants comes about via the definition of δm2

W . As
explained in Sec. IVA, the FJ scheme is equivalent to
including tadpoles in the counterterm definitions either
implicitly as in Eq. (32), or explicitly as if they were not
renormalized at all. This means we can define

ð36Þ

for the on-shellW-boson mass counterterm. This definition
is gauge independent. In contrast to that, no tadpole
contributions enter Eq. (34) in the PRTS, leading to the
definition

ð37Þ

which is a gauge-dependent quantity. Hence, using Eq. (36)
or Eq. (37) in Eq. (34) defines the VEV counterterm in the
FJ or the PRTS scheme, respectively. A third version of the
VEV counterterm is the definition via the Higgs back-
ground-field renormalization δĥ using Eq. (B9). One
possible renormalization condition for the latter is
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∂
∂p2

ΣR
ĥ ĥ
jp2¼m2

h
¼ 0; ð38Þ

where ΣR
ĥ ĥ

is the one-loop renormalized self-energy of the
Higgs background field. Then, we can define

δvjBG ¼ v
2
δĥjOS: ð39Þ

A definition of the VEV counterterm in terms of field
renormalization constants can be expected to be gauge
dependent, and this is indeed the case.
Now, using Eq. (34) together with Eq. (36) for the FJ

scheme and Eq. (37) the PRTS, one can verify by an
explicit one-loop calculation that

δvjPRTS ¼ δvjFJ þ Δv¼∞ δvjBG: ð40Þ

This serves as a consistency check of Eq. (29) together with
Eq. (12). Note that the second equal sign only holds for the
UV parts of the counterterms, which is to be expected,
because there is no simple relation between Eq. (38) and the
other renormalization conditions in terms of finite parts.
Nevertheless, we think it is illuminating to see a direct
comparison of three rather different approaches to tadpole
and VEV renormalization.
Using the numerical input parameters of Appendix E, the

expressions above yield

δvfinjPRTS ¼ 10.155 GeV; ð41aÞ

δvfinjFJ ¼ −138.457 GeV; ð41bÞ

Δvfin ¼ 148.612 GeV; ð41cÞ

δvfinjBG ¼ 15.2504 GeV: ð41dÞ

With these quantities being renormalization scale de-
pendent and all of them except for Eq. (41b) being gauge
dependent, one cannot put too much of an interpretation on
these values. Nevertheless, it allows us to discuss two
interesting aspects.
First, we see that Eq. (41b) being defined OS and

Eq. (41c) show a large cancellation when combined to
give Eq. (41a), which we tested for a wide range of
renormalization scale values. In theories where not all
model parameters can be defined via process-independent
physical observables in an OS scheme, such cancellations
can be absent, potentially leading to sizable shifts when Δ
is included in parameter definitions (for the sake of gauge
independence).
Second, both the VEV shift as well as δvfinjFJ receive

their largest contribution from the heaviest SM particle,
the top quark. While in the SM, one could minimize
the numerical effect of Δv or δvfinjFJ by choosing a

renormalization scale μR such that the top-quark tadpole
vanishes,9 this would not be of help in theories with
particles at much higher mass scales. This is because even
if μR is chosen to minimize the effect of the heaviest particle
tadpoles [i.e., via minimizing the effect of lnðμ2R=m2

heavyÞ in
the resulting A0 functions], the lighter ones would in turn
yield sizable shifts due to the large-scale difference
between μR and mlight.
These aspects are in accordance with the findings of [17]

where it was shown that tadpole contributions can be a
source of numerical instabilities. Another example is the
multi-Higgs-doublet Standard Model discussed by one of
the authors in [7], where a MS scheme is used and heavy
Majorana fermions give large contributions to Δv, ulti-
mately leading to very large corrections for one-loop
neutrino masses.
In this sense, the FJ scheme can present a trade-off

between gauge-independent quantities and numerical sta-
bility in a perturbative calculation.

D. Remarks

(i) The considerations in Sec. IVA are helpful for
adjusting parameter input values in one-loop calcu-
lations from the FJ scheme to ones without tadpole
contributions. As an example, we mention the MS
scheme, where from Eq. (29) one finds

vMSjFJ ¼ vMSð1 − ΔfiniteÞ; ð42Þ

and similar relations for the masses via Eq. (30). In
addition, since the lhs of Eq. (42) is gauge inde-
pendent, one can fully account for the gauge depend-
ences on the rhs via the Goldstone contributions
of Δ.

(ii) It is rather straightforward to generalize the pro-
cedure of Sec. IVA to BSM models with altered
scalar sectors, and we refer to the existing presenta-
tions of [1,8]. The two-Higgs-doublet model is one
example. Here, a simple way to generalize the FJ
procedure is to choose the Higgs basis [49–51].
Then, one can straightforwardly use Eq. (28) with Δ
being identified by Eq. (28). The only difference is
that Th and δth now represent the tadpole contribu-
tions and the tadpole counterterms of the extended
scalar sector in the Higgs basis. Another example is
the multi-Higgs-doublet model as discussed in [7],
where one can attribute a FJ term Δk to each doublet
ϕk and define these via the respective tadpole
contributions Tk.

(iii) One can think about solving the issues of gauge
dependence, numerical stability, and moreover, the

9To be precise, δvfinjFJ vanishes at a scale of μ2R ≃ð182 GeVÞ2= expð1Þ.
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compatibility of the background-field approach to
VEV renormalization by investigating alternative
definitions of Δ. One alternative is to define

Δ ¼ TðξÞ
h

vm2
h

; ð43Þ

where TðξÞ
h are only the gauge-dependent parts of the

tadpole contributions, i.e., the Goldstone boson
tadpoles of Eq. (16). This could be justified by
the claim that these contributions come about as an
artifact of the global symmetry breaking effect of the
Rξ-gauge. In this approach, gauge independence as
in the original FJ scheme would still be guaranteed,
because the difference in the choices of Δ would
only lie in gauge-independent contributions. Then,
large contributions to Δ, e.g., from the top quark or
even heavier particles in BSM models, would be
absent and lead to numerically smaller corrections.
Nevertheless, one could argue that this choice of Δ
seems somewhat arbitrary in the sense that not all
tadpole contributions are treated on the same footing
and that moreover, the extraction of the gauge-
dependent tadpole contributions might become less
obvious at higher-loop orders.

(iv) As discussed in Sec. II, δ̂ϕ absorbs the gauge-
dependent divergences coming from the introduc-
tion of the Rξ-gauge. One could try to mimic the
effect of a FJ-VEV shift via an appropriate choice of
the finite parts of δ̂ϕ. An obvious attempt would
be to use an OS condition for the renormalized
two-point function of the physical Higgs field
and the Higgs background field,10 i.e.,

∂
∂p2

Σhhjp2¼m2
h
¼ 0;

∂
∂p2

Σĥ ĥjp2¼m2
h
¼ 0: ð44Þ

This yields

δ̂ϕjOS ¼
1

2
ðδhjOS − δĥjOSÞ

¼ 1

4
ξg22

1

ð4πÞ2
�
2B0ðm2

h; ξm
2
W; ξm

2
WÞ

þ 1

cos2θW
B0ðm2

h; ξm
2
Z; ξm

2
ZÞ
�
: ð45Þ

Remarkably, it gives the same functional expression
as the unphysical Green’s function used to check the
divergences in Eq. (B11), except that the subtraction
point is p2 ¼ m2

h instead of p2 ¼ 0. This choice of

δ̂ϕ is equivalent to using Eq. (39). The numerical
comparison in Eq. (41) shows no coincidence with
the other VEV renormalizations and therefore in-
dicates that the renormalization conditions used in
the PRTS are incompatible with Eq. (45).

In Appendix C, we show that when promoting
Eq. (17) to a condition on finite terms as well, so that
δ̂ϕ absorbs the full Goldstone tadpoles, it leads to a
gauge-dependent charge renormalization condition.
This setting is practically equivalent to using δ̂ϕjOS,
apart from subtraction point being p2 ¼ 0 instead of
p2 ¼ m2

h. Hence, it shows the incompatibility of
δ̂ϕjOS with the usual charge renormalization con-
dition as discussed in Sec. IV C.

In general, there seems to be no obvious way to
define the finite parts of δ̂ϕ in order to mimic the
effect of the FJ procedure, and it therefore remains
purely as a tool for studying divergence structures.

V. CONCLUSIONS

The symmetry breaking effect of the Rξ-gauge fixing
leads to the necessity of a renormalization constant in
addition to the ones for parameters and fields for the
option to render all n-point Green’s functions finite. By
adapting the findings of [9] to the SM, we showed
explicitly how this independent renormalization constant
is related to the Higgs background-field renormalization
and to Goldstone boson tadpoles. Effectively, this degree of
freedom was used in the tadpole condition already in [40],
yet we wanted to emphasize its origin lying in the gauge
fixing as opposed to being a direct consequence of
spontaneous symmetry breaking. We showed how this
degree of freedom leads to gauge dependences in all the
counterterms it enters, such as the mass counterterms in
Table I.
The FJ scheme [16] manages to avoid these gauge

dependences in parameter and counterterm definitions.
The scheme was originally presented with arguments about
using the proper VEV, while in the recent literature, the
notion of true one-loop minimum [1] was employed. We,
however, showed that one can look at this scheme as being
simply a set of convenient counterterm redefinitions and in
this way provide some independence from the interpreta-
tion of these notions.
The global symmetry argument, which lets us claim that

we need only one additional renormalization constant δ̂ϕ,
breaks down whenever ξW ≠ ξZ. On the other hand, the FJ
scheme generalizes to any loop order straightforwardly also
when ξW ≠ ξZ, even though it implicitly uses the degree of
freedom of the Higgs background-field renormalization.
This hints at the possibility that a single renormalization
constant δ̂ϕ is enough also in this case, yet it is unclear
whether there exists a rigorous symmetry argument for that.

10This is in contrast to the approach of [9], where only infinite
contributions are taken into account.
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Hence, there is a subtle interplay between the VEV
renormalization interpreted as the renormalization of the
Higgs background field, and the FJ scheme.
We used the SM as a playground to test various

aspects of the renormalization in the Rξ-gauge with a
special emphasis on tadpole conditions and the connection
between different approaches to the subject. This becomes
especially relevant in BSM models with extended scalar
sectors, where, e.g., numerical effects of tadpole contribu-
tions and the discussion of gauge dependences in mixing
angles remain actively discussed [17,52]. We advocate the
use of the FJ prescription for keeping track of gauge
dependences in intermediate expressions and as a useful
tool for consistency checks in perturbative calculations.
Nevertheless, we also draw attention to settings where the
FJ scheme can yield large corrections in renormalized
quantities, potentially leading to numerical instabilities in
non-OS schemes and discuss a possible alternative.
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APPENDIX A: GAUGE-FIXING FUNCTIONS

In the background-field formalism, the gauge-fixing
functions for the Uð1Þ and SUð2Þ gauge-fixing parts,
respectively, are given by

FB ¼ ∂μBμ − iξg1

�
ϕ̂† Y

2
ϕ − ϕ† Y

2
ϕ̂

�
; ðA1Þ

Fi
W ¼ ∂μWi

μ − iξg2

�
ϕ̂† σ

i

2
ϕ − ϕ† σ

i

2
ϕ̂

�
; ðA2Þ

where ϕ is the Higgs doublet field, and ϕ̂ is its background
field. Both fields ϕ and ϕ̂ transform in the same way under
the global gauge transformation; hence, it is easy to show
that Eq. (A1) is invariant under the gauge transformation,
while Fi

W of Eq. (A2) transforms as a vector in the adjoint
representation of SUð2Þ. The antighost c̄i also transforms
as a vector in the adjoint representation; hence, the gauge-
fixing term

LGF ¼ s

�
c̄i
�
Fi þ ξ

2
Bi

��
ðA3Þ

is invariant. The mass eigenstate gauge-fixing functions are
recovered by

FA ¼ F3
WsW þ FBcW; ðA4Þ

FZ ¼ F3
WcW − FBsW; ðA5Þ

FW� ¼ 1ffiffiffi
2

p ðF1 ∓ iF2Þ; ðA6Þ

where sW and cW are the sine and cosine of the Weinberg
angle, respectively. Taking the limit

ϕ̂ →

�
0

1ffiffi
2

p v

�
ðA7Þ

in Eqs. (A1) and(A2) and inserting them into Eqs. (A4)–
(A6), we recover the usual Rξ-gauge-fixing functions:

FA ¼ ∂μAμ;

FZ ¼ ∂μZμ − ξmZGZ;

F�
W ¼ ∂μW�

μ ∓ iξmWG�
W: ðA8Þ

APPENDIX B: CALCULATION USING
BRST SOURCES

Following [9], we find the divergence structure of δ̂ϕ
directly from the unphysical Green’s functions that include
BRST sources. The Higgs doublet of the SM is decom-
posed into quantum and background field:

Φ ¼ ϕþ ϕ̂: ðB1Þ

The fields Φ and ϕ̂ correspond to ϕeff and ϕ̂þ v̂ of [9],
respectively. The BRST transformation of the background
field is postulated to be in a contractible pair with another
background field q̂,

sϕ̂ ¼ q̂ϕ; sq̂ϕ ¼ 0; ðB2Þ

so neither ϕ̂ nor q̂ contribute to the BRST cohomology
[53]. In other words, they do not contribute to the physical
spectrum of the theory. The BRST transformation for the
field Φ is

sΦ ¼ g2i
σk

2
ðϕþ ϕ̂Þck þ

i
2
g1ðϕþ ϕ̂ÞcB: ðB3Þ

From Eqs. (B2) and (B3), we get

sϕ ¼
�
g2i

σk

2
ðϕþ ϕ̂Þck þ

i
2
g1ðϕþ ϕ̂ÞcB − q̂ϕ

�
; ðB4Þ
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where σ are Pauli matrices, and ck and cB are the ghost
fields of the SUð2Þ and Uð1Þ gauge group, respectively.
Finally, we include the BRST source Kϕ in the Lagrangian

LK ¼ K†
ϕsϕþ sϕ†Kϕ: ðB5Þ

The renormalization transformations of the field and
background field from Eq. (8) are

ϕ →
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z̄ϕ=Ẑϕ

q
ϕ; ϕ̂ →

ffiffiffiffiffiffiffiffiffiffiffi
Z̄ϕẐϕ

q
ϕ̂; ðB6Þ

thus, the introduced “technical” background field q̂ trans-
form as

sϕ̂ → s
ffiffiffiffiffiffiffiffiffiffiffi
Z̄ϕẐϕ

q
ϕ̂ ¼

ffiffiffiffiffiffiffiffiffiffiffi
Z̄ϕẐϕ

q
q̂ ⇒ q̂ →

ffiffiffiffiffiffiffiffiffiffiffi
Z̄ϕẐϕ

q
q̂: ðB7Þ

BRST sources transform as the inverse renormaliza-
tion transformation of the corresponding field. Then, the
relation

δΓ
δKϕ

¼ hsϕi; ðB8Þ

where Γ is the effective vertex functional and is unchanged
after the renormalization transformation. From Eq. (B6),
we get that the transformation for the BRST source of the
Higgs doublet quantum field is

Kϕ →
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ẑϕ=Z̄ϕ

q
Kϕ: ðB9Þ

Including all these renormalization transformations into
Eq. (B5), we get

LK ¼ K†
ϕ

�
g2i

σk

2
ðϕþ Ẑϕϕ̂Þck þ

i
2
g1ðϕþ Ẑϕϕ̂ÞcB

�

− ẐϕK
†
ϕq̂ϕ þ H:c: ðB10Þ

The last term gives the counterterm for an unphysical
Green’s function that includes only Ẑϕ. We will look at the
Green’s function Γq̂hKh

, where h is the Higgs field compo-
nent of the doublet. The counterterm of this Green’s
function is shown in the last diagram of Fig. 1. To calculate
this Green’s function at one loop, one only needs the
Feynman rules for interactions between q̂,Kϕ, and c, which
can be read out from Eqs. (B10) and (A3), and are shown in
Fig. 1. The loop diagram that we will need to calculate is
shown in Fig. 2. The result of the sum of Fig. 2 and the last
diagram of Fig. 1 is

iΓ̂½1�
q̂hKh

¼ −iδ̂ϕ þ i
1

4
ξg22

1

ð4πÞ2
�
2B0ð0; ξm2

W; ξm
2
WÞ

þ 1

cos2θW
B0ð0; ξm2

Z; ξm
2
ZÞ
�
; ðB11Þ

or, using A0ðm2Þ ¼ m2ð1þ B0ð0; m2; m2ÞÞ, mW ¼ g2v
2
, and

mW ¼ cos θWmZ:

Γ̂½1�
q̂hKh

¼ −δ̂ϕ þ
1

ð4πÞ2v2 f2½A0ðm2
WξÞ − ξm2

W �

þ ½A0ðm2
ZξÞ − ξm2

Z�g: ðB12Þ

The finiteness of this two-point function fixes the diver-
gences of δ̂ϕ. Moreover, Eq. (B12) immediately shows that
its divergences coincide with the ones of the Goldstone
boson tadpoles Eq. (16), which means that δ̂ϕ indeed
absorbs all the gauge-dependent divergences in the tadpole
condition Eq. (15).

APPENDIX C: GAUGE DEPENDENCE IN THE
BACKGROUND-FIELD-MODIFIED OS SCHEME

In this section, we present the consequence of promoting
Eq. (17) to a renormalization condition on finite parts,
namely,

FIG. 1. Feynman rules for calculating δ̂ϕ.

FIG. 2. One-loop diagram for calculating δ̂ϕ.
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TðξÞ
h − λv3δ̂ϕ ¼ 0: ðC1Þ

In principle, this is a valid renormalization condition, which
allows us to absorb all the tadpole finite gauge dependences
into δ̂ϕ. One can verify that the FJ term Δ is

Δ ¼ 1

2
δ̂ϕ þ gauge independent ðC2Þ

when Eq. (C1) holds. This allows for a more direct
interpretation of a FJ term in the sense of a background-
field renormalization also in finite parts, leading to a
gauge-independent OS mass renormalization constant.
Also, the form of Eq. (C2) gives a possibility to modify
the FJ procedure to include only the gauge-dependent
term, namely, δ̂ϕ. However, we will show that this choice,
together with the OS conditions on the two-point functions,
leads to a gauge-dependent charge renormalization con-
stant and cannot be used with the usual charge renormal-
ization condition presented in, e.g., [1,32,33].
To show this, we first need to get the gauge-dependent

part of δ̄ϕ in this scheme. For that, we look at the gauge-
dependent part of the Higgs self-energy, which can be
written as

Σξ ¼
1

ð4πvÞ2 ðp
2 −m2

hÞðfZ þ 2fWÞ

þm2
h

1

ð4πvÞ2
3

2
ðA0ðm2

ZξZÞ þ 2A0ðm2
WξWÞÞ; ðC3Þ

fV ¼ A0ðm2
VξÞ −

1

2
ðp2 þm2

hÞB0ðp2; m2
Vξ; m

2
VξÞ: ðC4Þ

The gauge-dependent part of the renormalized one-loop
self energy function is

ΣR
ξ ¼ δhjξp2 − ðδm2

h
þ δhÞjξm2

h þ Σξ; ðC5Þ

where we write jξ to denote the gauge-dependent terms of
the renormalization constants. The OS conditions give

∂
∂p2

ΣRjp2¼m2
H
¼ 0; ΣRjp2¼m2

H
¼ 0: ðC6Þ

Inserting Eqs. (C3)–(C5) into OS conditions Eq. (C6)
to check the gauge-dependent parts, we get the gauge
dependences of the mass and field renormalization con-
stants of the OS scheme (i.e., in the tadpole scheme of
Ref. [32]):

δm2
h
jξ ¼

1

ð4πvÞ2
3

2
½A0ðm2

ZξZÞ þ 2A0ðm2
WξWÞ�; ðC7Þ

δhjξ ¼ −
1

ð4πvÞ2 f½A0ðm2
ZξÞ þ 2A0ðm2

WξÞ�

−m2
h½B0ðp2; m2

Zξ; m
2
ZξÞ þ 2B0ðp2; m2

Wξ; m
2
WξÞ�g:

ðC8Þ

By using the expression for Δ from Eq. (C2) and δ̂ϕ,
fixed by Eq. (C1), we see that the FJ-OS mass counterterm,
as defined in Eq. (30c), is truly gauge independent:

ðδm2
h
jFJÞjξ ¼ δm2

h
jξ − 3Δξ ¼ δm2

h
jξ −

3

2
δ̂ϕ ¼ 0: ðC9Þ

From Eq. (12), we can get the field renormalization part δ̄ϕ
that does not have gauge-dependent divergences. However,
it turns out that in the OS, the finite part of δ̄ϕ is gauge
dependent:

δ̄ϕjξ ¼ δhjξ þ δ̂ϕ

¼ 1

ð4πvÞ2m
2
h½B0ðp2; m2

Zξ; m
2
ZξÞ

þ 2B0ðp2; m2
Wξ; m

2
WξÞ�: ðC10Þ

Note that the divergences in this term are gauge indepen-
dent as they should be.
Now using Eq. (C1) together with Eq. (28), we see that

we must have

δλjξ þ δ̄ϕjξ − δμ2 jξ ¼ 0: ðC11Þ

From the fact that the FJ mass renormalization constant of
the Higgs boson coincides with δμ2 (see Table I) and is
gauge independent, the gauge dependence of δλ is

δλjξ ¼ −δ̄ϕjξ: ðC12Þ

From Table I, we see that δλ enters the definition of the FJ
mass renormalization constants, which are gauge indepen-
dent. Hence, from the gauge independence of δM2

W
jFJ,

δM2
Z
jFJ and δmf

jFJ, we get

0 ¼ 2δg1;2 jξ − δλjξ ¼ 2δg1;2 jξ þ δ̄ϕjξ; ðC13Þ

0 ¼ δyjξ −
1

2
δλjξ ¼ δyjξ þ

1

2
δ̄ϕjξ; ðC14Þ

which leads to

1

g21 þ g22
ðg21δg2 jξ þ g22δg1 jξÞ þ δ̄ϕjξ ¼ δejξ þ δ̄ϕjξ ¼ 0:

ðC15Þ
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From Eq. (C15), we see that the charge renormalization
constant δe is gauge dependent, because it needs to cancel
the gauge dependence of δ̄ϕjξ given in Eq. (C10). Note that
this is solely because we enforced Eq. (C1). Thus, we have
two tadpole conditions, pole and residue conditions for the
W, Z, and Higgs two-point function, which are in total
eight conditions; hence, they fully determine g1;2, δλ, δμ2 ,

δ̄ϕ, δ̂ϕ, and the field renormalization constants of the Z and
W bosons. This means that there is no freedom left to
impose a charge renormalization condition as in, e.g.,
[1,32,33], which would give a gauge-independent charge
renormalization constant otherwise. Nevertheless, it is
interesting to see that the gauge-independent definition
of the charge renormalization constant is possible also in
this “scheme” by absorbing δ̄ϕ into their definitions, as
suggested by Eq. (C15). Hence, in principle, it is possible to
use Eq. (C1) instead of the usual charge renormalization
condition and even define a gauge-independent charge
renormalization constant. Yet to understand all the conse-
quences of this unconventional choice, a more thorough
study is needed which is beyond the scope of this work.

APPENDIX D: EXPLICIT DIVERGENCES

We used the SM file from FeynArts together with FormCalc

to get the explicit expressions for the divergences. The
divergences of the one-, two-, three-, and four-point
function of the Higgs boson in the SM, respectively, are

ΓUV
h ¼ v3ðAþ Gþ SÞ; ðD1Þ

ΓUV
hh ¼ p2

�
1

v2
Bþ 2

m2
h

G

�
þ v2ð3Aþ 5SþGÞ; ðD2Þ

ΓUV
hhh ¼ 6vðAþ 2S − GÞ; ðD3Þ

ΓUV
hhhh ¼ 6ðAþ 2S − 2GÞ; ðD4Þ

where we abbreviated

A ¼ −
1

ð4πv2Þ2
�
4

� X
f¼e;μ;τ

m4
f þ 3

X
q¼u;d;s;c;t;b

m4
q

�

− 3ð2m4
W þm4

ZÞ
�
; ðD5Þ

B ¼ 1

ð4πvÞ2
�
2

� X
f¼e;μ;τ

m2
f þ 3

X
q¼u;d;s;c;t;b

m2
q

�

− 3ð2m2
W þm2

ZÞ
�
; ðD6Þ

S ¼ 3

2

m4
h

ð4πv2Þ2 ; G ¼ 1

2

m2
h

ð4πv2Þ2 ð2m
2
Wξþm2

ZξÞ; ðD7Þ

and omitted a global factor of 2
4−D. The divergences in A and

B come from loop diagrams with ghosts, vectors, and

fermions. Note that neither A nor B are gauge dependent,
since ghost and vector boson gauge dependences cancel
exactly. The divergences abbreviated as S come from dia-
grams with the Higgs boson loop contribution. Finally, the
only gauge-dependent UV divergent term G corresponds to
divergences of the Goldstone boson loop and vanishes in the
case of ξ → 0. Note that wewrote all these functions in terms
of four abbreviated constants; thus,weneed four independent
conditions and 4 degrees of freedom to uniquely fix them. In
the case of ξ → 0, the number is reduced to only 3. The
4 degrees of freedom are μ, λ, δ̄ϕ, and δ̂ϕ. They appear in the
counterterms of one-, two-, three-, and four-point functions
of the Higgs boson, respectively,

δΓh ¼ −
1

2
m2

hvðδλ − δμ2 þ δ̄ϕ þ δ̂ϕÞ; ðD8Þ

δΓhh ¼ −
1

2
m2

hð3δλ − δμ2 þ 5δ̄ϕ þ δ̂ϕÞ þ p2ðδ̄ϕ − δ̂ϕÞ;
ðD9Þ

δΓhhh ¼ −3
m2

h

v
ðδλ þ 2δ̄ϕ − δ̂ϕÞ; ðD10Þ

δΓhhhh ¼ −3
m2

h

v2
ðδλ þ 2δ̄ϕ − 2δ̂ϕÞ: ðD11Þ

To make sure that the renormalized n-point functions are
finite, we solve four equations:

δΓUV
h þ ΓUV

h ¼ 0; ðD12Þ
δΓUV

hh þ ΓUV
hh ¼ 0; ðD13Þ

∂
∂p2

ðδΓUV
hh þ ΓUV

hh Þ ¼ 0; ðD14Þ

δΓUV
hhh þ ΓUV

hhh ¼ 0: ðD15Þ
They give us

δμ2 ¼ Bþ 1

λ
S; δλ ¼ 2

�
Bþ 1

λ
S

�
þ 1

λ
A;

δ̂ϕ ¼ 1

λ
G; δ̄ϕ ¼ −B; λ ¼ m2

h

2v2
: ðD16Þ

Inserting these expressions into Eq. (D11), we automatically
get

δΓUV
hhhh þ ΓUV

hhhh ¼ 0; ðD17Þ
where ΓUV

hhhh is given in Eq. (D4).
The VEV counterterms presented in Sec. IV C have

divergences, which can be read out from Table I, inserting
the expressions for the renormalization constants shown in
Eq. (D16):

δv ¼ 1

2
vðδ̂ϕ þ δ̄ϕÞ ¼

1

2
v

�
1

λ
G − B

�
; ðD18Þ
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δvjFJ ¼
1

2
vðδμ2 − δλÞ ¼ −

1

2
v

�
Bþ 1

λ
Sþ 1

λ
A

�
; ðD19Þ

δvjFJ ¼ δvþ Δv

⇒ Δv ¼ −
1

2
v

�
1

λ
Sþ 1

λ
Aþ 1

λ
G

�
¼ −

1

m2
h

ΓUV
h :

ðD20Þ

APPENDIX E: INPUT VALUES

Here we present the numerical input values used in
Eqs. (41a)–(41d) together with the software package

LoopTools [54] at its standard renormalization scale of
μR ¼ 1 GeV,

ξ ¼ 1; mW ¼ 80.398 GeV; mZ ¼ 91.1876 GeV;

mh ¼ 125.09 GeV; v ¼ 246.221 GeV;

me ¼ 0.000510999 GeV; mμ ¼ 0.105658 GeV;

mτ ¼ 1.77684 GeV;

mu ¼ 0.19 GeV; mc ¼ 1.4 GeV; mt ¼ 172.500 GeV;

md ¼ 0.19 GeV; ms ¼ 0.19 GeV; mb ¼ 4.75 GeV;

e ¼ 0.308147:
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