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Realization and training 
of an inverter‑based printed 
neuromorphic computing system
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Mehdi B. Tahoori1*

Emerging applications in soft robotics, wearables, smart consumer products or IoT‑devices 
benefit from soft materials, flexible substrates in conjunction with electronic functionality. Due 
to high production costs and conformity restrictions, rigid silicon technologies do not meet 
application requirements in these new domains. However, whenever signal processing becomes too 
comprehensive, silicon technology must be used for the high‑performance computing unit. At the 
same time, designing everything in flexible or printed electronics using conventional digital logic is 
not feasible yet due to the limitations of printed technologies in terms of performance, power and 
integration density. We propose to rather use the strengths of neuromorphic computing architectures 
consisting in their homogeneous topologies, few building blocks and analog signal processing to 
be mapped to an inkjet‑printed hardware architecture. It has remained a challenge to demonstrate 
non‑linear elements besides weighted aggregation. We demonstrate in this work printed hardware 
building blocks such as inverter‑based comprehensive weight representation and resistive crossbars 
as well as printed transistor‑based activation functions. In addition, we present a learning algorithm 
developed to train the proposed printed NCS architecture based on specific requirements and 
constraints of the technology.

With the recent advances of new functional materials, next-generation electronics, which can enable lightweight, 
cheap and flexible products are emerging. At the same time silicon computing systems still undergo continued 
improvements, which pushes the boundaries of performance, power consumption and transistor density of 
integrated circuits. The aforementioned requirements of emerging application domains can never be reached 
with fundamental silicon-based VLSI technology due to constraints such as bulky substrates and high produc-
tion costs. Also innovative emerging technologies have opened a new market which enables penetrating our 
everyday-life by smart electronics in previously inaccessible application domains such as soft  robotics1, soft 
 sensors2, 3, flexible wearable medical devices or Internet of things (IoT)  infrastructures4. Especially for smart 
wearable devices and IoT, low-cost point-of-use fabrication techniques have to be explored to reduce the time-
to-market of products which are part of the fast-moving consumer goods  market5.

In order to enable this emerging field, new materials and processes are under development, which are expected 
to make the transition from research to application soon. In this regard, Printed Electronics (PE) is a promising 
candidate, as it offers ultra-low production costs due to its additive fabrication  process6. Similar to color print-
ing, PE fabrication processes can be categorized into different groups such as jet-printing7, 8, screen  printing9 
or roll-to-roll8 processes. In contrast to the costly lithography processes for wafer-scale silicon-based ICs, these 
fabrication processes are highly simplified, as the functional materials can be deposited directly on a wide range 
of substrates, including flexible carrier  materials10–13.

However, realization of printed smart electronics for sensor processing is not feasible yet in PE by using 
conventional digital computing. Due to the large feature sizes in PE, Boolean digital logic designs would lead to 
substantial area overhead, low performance and high power consumption, and consequently the aforementioned 
application requirements cannot be  met14.

In this respect biological-inspired neuromorphic computing can be leveraged as a suitable computing para-
digm for PE. A neuromorphic computing system (NCS) makes use of the physical characteristics of electronic 
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devices, such as voltage-induced currents through electric resistors and is inspired by the topology of the brain. 
Instead of memory blocks and digital processing units, NCS is built from artificial synapses and neurons.

A neuromorphic computing system can directly process sensory data without converting it into digital signals, 
which otherwise would require expensive analog/digital converters (ADCs). Moreover, analog signal process-
ing units lead to higher functional densities of printed circuits, and reduces both hardware footprint and power 
consumption of printed NCS (see Table 1). Finally, printed NCS can be trained to be intrinsically fault  tolerant15, 

16, which increases the low chip yield in PE and thus ensures reliable operation.
Popular realizations of NCS are based on feed-forward/artificial neural networks (ANN)17. ANNs are akin to 

the popular neural networks developed for CPU- or GPU-platforms. Here, signals are represented by real-valued 
voltage signals and processing is performed by the McCulloch-Pitts neuron  model17. Due to its simplicity, ANNs 
are commonly used in hardware implementations and training can be achieved by the well-known least-mean-
square learning rule. Due to the back-propagation-based learning  algorithm18, the training algorithm converges 
very fast to a solution and thus ANNs could demonstrate broad  applicability17.

Very recently, NCS manufactured by additive technologies have been proposed. Basic synaptic functions 
were fabricated on flexible  substrates19 using solution-based organic, electrochemically-gated  transistors20 and 
screen-printing approaches with PEDOT:PSS as the active  material21 as well as aerosol-jet-printing of carbon 
nanotube transistors (CNT)22. Moreover, a multiply-accumulate (MAC) engine on flexible substrates with a time 
domain encoded implementation was  presented23.  In24 an organic-based crossbar-architecture was introduced, 
which also realizes the MAC operation. Besides organic MAC operations, neuron activation functions were 
introduced. For instance, the authors  of25 reported on a low-complexity design for activation function circuits 
based on organic p-type transistors for implementation of an ANN.

Although many of the aforementioned contributions realize parts of a printed NCS, they either do not provide 
all fundamental building  blocks24, they are not based on printable  materials19, 20, 25, or they can only be partially 
 printed21. Also, the majority of existing solutions realize only MAC operations with positive neural network 
weights implemented by resistor- or memristor-based crossbar  architectures24–26. However, this is a serious 
restriction as most neural network-based classifiers require also negative weights to achieve reasonable infer-
ence accuracy. Additionally, appropriate activation functions are required to provide full neuron processing. In 
fact, for many organic devices, the implementation of activation functions for ANNs - preferably consisting of 
several hidden layers—is not yet well-established24.

In this work, we address the aforementioned shortcomings and demonstrate that all fundamental building 
blocks for printed ANNs can be fabricated within the same process and materials, such as MAC operation, 
non-linear activation functions and comprehensive weights representation. Among the different manufacturing 
processes, we deployed inkjet printing as the targeted fabrication technology in this work. Compared to roll-to-
roll or screen-printing processes, inkjet-printing allows for highly customized designs, generated on-the-fly by 
a computer-aided design (CAD) software. This allows for on-demand designs and democratizes the fabrication 
for point-of-use hardware, enabling new use cases where silicon fabrication is not an option.

Prior work on inkjet-printed electronics were limited to standard building blocks, such as logic  gates27, 
diode-based organic  rectifiers28,  amplifiers29, 30, Digital-to-Analog  converters31 and  memories32. As a result, the 
proposed printed NCS presented in this work makes the transition from these conventional computing devices 
to inkjet-printed neuromorphic computing hardware.

The presented MAC operation in this work is realized by a crossbar architecture, where conductive materials 
vertically connect crossbar rows with columns to form artificial synapses. However, instead of using voltage-
programmable memristors for the MAC  operation25, printed resistors are used, which leads to several benefits: 
first, compared to memristors, resistors do not suffer from non-linear behavior, which would prevent back-
propagation learning rules to  converge33. Second, by printing resistors at the crossbar-interconnects, the circuit 
can be customized for diverse use cases for small and medium batch sizes.

Table 1.  Comparison between proposed ANN components (ADC: Analog–Digital-Converter, ReLU: 
Rectified Linear Unit) and conventional digital implementation. The numbers for the neuron are for a 3-input 
neuron design. In the case of the digital implementation (4-bit and 8-bit), the computations (addition and 
multiplication) are performed sequentially.

Precision Components Delay (ms) Area ( mm
2) Power #Transistors

4-bit

ADC 13.8 25.4 328µW 185

Adder 13 7.9 289µW 59

Multiplier 13.6 15 550µW 103

ReLU 2.5 1.7 80µW 10

Neuron 69 48 1.25mW 357

8-bit

ADC 154 957 37.18mW 5938

Adder 29 22 793µW 144

Multiplier 28 85 3.1mW 583

ReLU 2.55 3.7 210µW 22

Neuron 522 1068 41.25mW 6602

Analog Neuron 27 0.49 859µW 4
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Another contribution of this work is the adaption of ANN learning algorithms for NCS. As ANN learning 
routines are tailored to the functional behavior of MAC operations and activation functions, dissimilarities 
caused by different technologies prevent the application of existing learning  solutions34 to converge. To this end, 
we provide a learning algorithm which takes these technology-specific ANN realizations into account, such as 
feasible ranges of printed resistors and incorporate the circuit-level characteristics of the printed ANN compo-
nents to map the trained weights to the hardware level. Based on the target application and available datasets, the 
neural network weights are learned in a supervised training routine and printed to the ANN to achieve tailored 
signal processing. Moreover, due to the proposed variation-aware training methodology, the printed ANN is 
robust against process variation and substantially restores inference accuracy losses.

The proposed designs of the ANN components were validated by characterization of fabricated hardware 
prototypes, and in a second step a large-scale ANN was simulated and trained with the proposed learning rou-
tine and under consideration of the technology-dependent constraints. In summary, our approach proposes a 
NCS, which can be primarily deployed for near-sensor-processing and other application domains such as IoT 
and soft robotics.

Results
Proposed printed neuromorphic computing system. We will present in the following, designs and 
hardware prototypes of printed NCS components at the circuit level, which can be used as basic building blocks 
to realize arbitrary large ANN architectures in PE. These building blocks represent all three basic mathematical 
operations required to solve a wide range of ANN-based regression or classification tasks: MAC operation, posi-
tive and negative weights, and non-linear activation function.

The proposed NCS architecture is depicted in Fig. 1. At the top of Fig. 1, the high-level perspective of a 
printed NCS is illustrated. The printed NCS can be placed next to a sensor, from which it collects the input data. 
The sensory data is processed by the printed NCS using ANN inference. The ANN output signals can interface 
actuators for control commands, printed displays or wireless communication devices, to name a few examples.

While circuits for ANN operations can easily be derived for digital (Boolean) logic, analog designs require 
technology-dependent constraints. These constraints set bounds on maximum possible device performance, 
power consumption and area requirement, but also on device yield which limits the achievable complexity of 
printed analog hardware. As a result, analog building blocks such as operational amplifiers, which allow for 
realization of arithmetical operations are not feasible in PE, as they demand for many transistors.

Fortunately, as we demonstrate in this work, analog circuit designs exist which fulfill the aforementioned 
requirements and at the same time provide all the functionalities to map neural network concepts with all its 
basic building blocks to PE.

For general neural networks running on CPUs or GPUs, the negative weights operation is not termed as an 
individual feature for NNs as it is a part of the MAC operation, which is implemented in software and performed 
by the floating-point unit of the processor. As we neither have a floating-point unit in PE, nor a microprocessor 
which carries out software programs, an alternative must be found for PE circuits.

All the designs of the three building blocks presented in this work, have the capability to process analog data, 
encoded by voltage levels. These physical quantities with their continuous value representation are a substitution 
of digital multi-bit logic, which would lead to infeasible design overhead in PE. Moreover, the presented building 
blocks have very low device count, not more than two transistors per device, which is even exceptionally in the 
analog electronics domain.

As illustrated in Fig. 1, by interconnection of the three building blocks (“inv”, “MAC”, “ptanh”), one neuron 
(“pNeuron”) can be implemented with arbitrary number of input signals. By interconnection of different neurons, 
a larger scale artificial neural network can be realized (top of Fig. 1). These three fundamental building blocks 
are described separately in the following.

Multiply accumulate (MAC) operation. The MAC operation is a standard operation for performing ANN infer-
ence. At each ANN node, the MAC operation—as part of a single neuron—adds up the inputs, scaled and 
weighted by the ANN weights wi . The output of the MAC operation can be computed by:

where xb is a constant input and thus wbxb is denoted as the constant neuron bias b.
For ANNs implemented in software and running on CPUs, this operation is usually performed sequentially 

in the floating-point unit, or in parallel on Digital Signal Processors (DSP). In contrast, the implementation of 
MACs for printed neuromorphic hardware is much different. First of all, the inputs of a neuron xi are encoded 
as voltage signals Vi (or V̄i if the input is inverted), which are applied to a crossbar architecture with printed 
resistors Ri at the crossbar interconnects (see Fig. 2a). According to Ohm’s law, the voltages across the resistors 
( Vi − Vx ) are converted into currents, and these currents are summed up following Kirchhoff ’s rule. The output 
voltage Vx of the crossbar can be computed similar to a Y-circuit (i.e., a circuit where one port of each resistor is 
connected together). As only resistors are contained, the crossbar resembles a linear circuit and the output volt-
age Vx can be computed analytically (a more detailed mathematical derivative of the MAC formulas is provided 
in the supplementary document).

The relationship between the neuron input voltages xi = Vx and the neuron weights wi , as well as the constant 
bias voltage b = Vbias · wb , is as follows:

(1)a = x
T
w =

∑

i

wixi + wbxb =
∑

i

wixi + b
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Figure 1.  Top: Printed Neural Network with sensor inputs and actuators, Middle: circuit schematics of the 
inkjet-printed neuron (pNeuron) and the hardware prototypes of its three fundamental building blocks: 
negative weights circuit (inv), multiply accumulate operation (MAC) and non-linear tanh-like activation 
function (ptanh) Bottom: physical layout of the hardware prototypes.
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For simplicity, we denote in the following the resistors Ri with the conductances gi = 1
Ri

 , or gb = 1
Rb

 and 
gd = 1

Rd
 respectively.

Thus, the synaptic weights can be abbreviated by:

and for the bias weight:

and the decoupling weight:

As can be obtained from Eq. (2), the crossbar output Vx behaves like a MAC operation:

Moreover, from Eqs. (3) and (4) it is obvious that wi and wb are lower- and upper-bounded: wi ,wb ∈ [0, 1] . 
A reason for the lower bound is the fact that resistors are physically only positive. On the other side, the upper 
bound can be explained that in a passive resistor network, applied voltages cannot be increased, only reduced 
due to power dissipation. Another constraint can be obtained by summing up all wi , wb and wd , as a result the 
second constraint is:

It is important to note that the above Eq. (7) with coupled weights can be decoupled by proper adjustment of 
the conductor/resistor gd/Rd (also called Rbase ,  see25). The decoupling resistor Rd is added to the resistive crossbar 
similar to Ri and Rb , however a constant voltage of 0 V is applied to it (i.e. Vd = 0 V), see Fig. 1. As a result, the 
decoupling resistor can be used as a placeholder to adjust the weight formula (Eqs. (3) and (4)) without biasing 
the MAC output Vx (Eq. (2)).

Although decoupling of weights through gd simplifies ANN training, as (one constraint less), it leads to 
smaller absolute values of all other wi (second constraint), which implies high signal losses at each ANN layer 
and consequently the output signals of the crossbar—the result of the MAC operation—becomes susceptible to 
signal noise. However, this voltage degradation can be compensated by the activation function proposed in this 
work, which despite their non-linear property also behave as voltage buffer elements.

In Fig. 2a the schematic of the programmable resistor-based crossbar is illustrated with two inputs V1 and V2 , 
printed crossbar-resistances R1 , R2 , and decoupling resistor Rd . It is important to mention that for the realiza-
tion of a negative weight a single transistor is required, otherwise the MAC operation can be implemented by a 
passive circuit only consisting of resistors.

(2)Vx =
∑

i Vi wi + Vbias wb

(3)wi =
gi

(

∑

j gj

)

+ gb + gd

(4)wb =
gb

(

∑

j gj

)

+ gb + gd

(5)wd =
gd

(

∑

j gj

)

+ gb + gd

(6)a = Vx =
∑

i

wi Vi + wb Vbias =
∑

i

wixi + b

(7)
∑

i

wi + wb + wd = 1

Figure 2.  (a) The schematic of the 2-input crossbar ( V1,V2 ) implementing the MAC operation. (b) Depicts 
the layout of the fabricated MAC circuit. (c) Illustrates the waveforms from the simulation and circuit 
measurements.
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Negative weights operation (inv). The MAC operation in a single printed neuron can perform vector operations 
between a variable input signal vector x and a constant weight vector w . However, due to the implementation 
by a resistor crossbar, negative multiplications between inputs xi and weights wi (e.g., wi < 0 ) are not possible, 
as the resistances are physically only positive and the weights/resistor dependency is proportional (see Eqs. (3) 
and (4)). The restriction to only positive weights yields an ANN classifier whose output function is intrinsically 
monotonic in relation to its inputs. This would limit the applicability to potential classification or regression 
problems.

In order to achieve negative weights, we propose an inverter-based transfer function (Fig. 3a), which turns 
positive neuron input voltages into negative voltages and vice versa, similar to the operation xi · (−1) . The benefit 
compared to other existing  techniques34 is that the negative weights circuit is only used when necessary and then 
placed before crossbar resistors whose weights should be negated (Fig. 1). Consequently, the resulting printed 
neuron design offers less area, significantly less power consumption and reduced transistor count. Moreover, 
less material has to be printed which also reduces printing costs and time.

Tanh‑like activation function (ptanh). A non-linear activation is the third component required for ANN 
 computations35. This operation is applied directly to the output of the MAC operation (see Fig. 1). Problems 
with previous presented printable activation  functions25, 26 are the induced signal losses at the layer output, and 
moreover the lack of amplification possibilities between layers. A more suitable and feasible choice of an activa-
tion function circuit is the inverter-based approach presented in Fig. 4a. By cascading of two inverters, it acts as 
a non-inverting buffer element, which in addition to its non-linear behavior, restores voltage levels between the 
ANN layers. The behavior of this circuit resembles a hyperbolic tangent (tanh), thus we abbreviate it in the fol-
lowing as ptanh (printed tanh). The transfer function of the circuit is depicted in Figs. 1 and 4c.

Printed neural network. By interconnection of the three ANN building blocks, a printed functional neuron 
(pNeuron) can be constructed, with arbitrary number of neural inputs (i.e., synapses). It is remarkable that the 
pNeuron requires only two transistors for the activation function, and one transistor for each negative weight 

Figure 3.  (a) The schematic of the proposed negative weight circuit. Two voltage dividers are deployed to 
shift the zero-crossing of the output voltage towards 0V . (b) Depicts the microscopic photo of the hardware 
prototype. (c) Contains the simulated and measured transfer function of the circuit.

Figure 4.  (a) Schematic of inverter-based activation function for realizing tanh function (b) depicts a 
microscopic photo of the fabricated hardware prototype of (ptanh) (c) contains the simulated and measured 
waveforms.
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operation. This leads to very low hardware footprint and small delay and power consumption in comparison 
with a conventional digital implementation.

This fact can also be derived from Table 1, where we compared an analog 3-input neuron with a 4-bit and 
8-bit digital implementation. The digital neuron deploys a fixed-point multiplication unit with a rectified linear 
unit (ReLU) as the activation function. In order to keep the number of transistors reasonable, the multiplications 
and additions of the digital 3-input neuron are performed sequentially.

For the digital components, high-level synthesis tools were deployed to extract circuit characteristics. Due 
to the large number of transistors caused by the implementations of expensive analog-digital-converters (ADC) 
and multiplier units, the digital designs are infeasible to be fabricated by the inkjet-printing technology. When 
increasing the precision of the digital circuits from 4-bit to 8-bit, a trend of exponentially increasing transistor 
count, area, delay and power consumption can be observed. Moreover, as can be obtained from Table 1, the 
analog implementation requires much less area and is also superior in terms of delay and power consumption 
in comparison to the 4-bit and 8-bit digital neuron implementation. Obviously, this analysis encourages the 
utilization of analog designs in PE for NCS realization.

Based on the pNeuron design, larger NNs can be constructed by replicating the proposed neurons intra- and 
inter-layer-wise (Fig. 1 top). The resulting ANN can be deep with many hidden layers due to the amplification 
of the ANN outputs at the non-linear activation function. Furthermore, the printed NCS can be tailored to a 
target application, by first choosing the ANN topology, number of nodes and layers, and second by program-
ming the MAC operation by resistor printing to the crossbar interconnects after ANN training for point-of-use 
customization. As the negative weights circuit is only inserted at the required locations, this leads to a sparse 
ANN implementation with fewer components compared to existing  designs34.

Hardware prototypes characterization. As a proof of concept, the three building blocks for printed 
NCS were fabricated using an Fujifilm Dimatix DMP 2850 material inkjet printer. The corresponding circuit 
diagrams, layouts/microscope photos and measured transfer functions of the three hardware prototypes of the 
fundamental ANN building blocks are depicted in Fig. 2 (MAC), Figs. 3 (inv) and 4 (ptanh).

Multiply‑accumulate (MAC) prototype. In Fig. 2a the circuit for the MAC operation is depicted. The weights 
wi of the MAC operation depend on the resistance vales of R1 and R2 , which are inkjet-printed and customized 
according to the ANN training step. Figure 2b shows the layout of the hardware prototype of the printed cross-
bar. The passive conductive structures, including the meander resistor ( Rd ) were obtained from laser-ablated 
ITO-sputtered glass substrates. The resistors R1 and R2 were printed using PEDOT:PSS conductive ink. This 
allows for customization of the neuron according to the pre-trained weights vectors.

The transient measured input and output waveforms are depicted in Fig. 2c. Both V1 and V2 are pulsed 
between −1 and 1V , with a pulse width of 10ms and 5ms , respectively. The output pulse Vx is obtained in 
dependence of the input pulses. The circuit response behaves as expected, showing only close to 0V signals 
when the inputs are complementary to each other. The output Vx is pulled up or down to 0.5V or − 0.5V when 
both signals are at 1V or −1V , respectively. The resulting weights were: w1 = w2 ≈ 0.25 and wd ≈ 0.5 . So 
both coefficients of the MAC operation are set to 0.25, and the correct summation and multiplication result 
Vx = w1 · V1 + w2 · V2 = 0.25 · V1 + 0.25 · V2 is obtained from the measured waveform. Figure 2c also shows 
the simulated waveform extracted from the circuit simulator. The measured signal is approaching the simulation 
result and confirms the correct implementation of the MAC circuit.

The choice of design parameters and the measurement results are depicted in Table 2.

Negative weights prototype (inv). The proposed circuit schematic of the negative weight operation is shown in 
Fig. 3a. Due to the absence of PMOS transistors in this technology, the pullup network of the inverter consists 
of a resistor ( R5 ) and an NMOS transistor in the pull-down network ( T1 ). Moreover, two voltage dividers ( R1,R2 
and R3,R4 ) are inserted to improve the rail-to-rail behaviour. The additional bias pin was inserted for fine-tuning 
and shifting of the zero crossing point but was however not required in the final experiment.

The resistor and transistor sizing were performed using SPICE simulations based on a prior developed printed 
process design kit (PPDK)36. The design parameter values are provided in Table 2. VSS was adjusted from initial 
−2.0V to −2.2V to shift the zero crossing point of the circuit transfer function towards 0V.

Table 2.  Design parameters and result metrics of hardware prototypes. Resistance values Ri,Rd are indicated, 
also the supply voltages VDD/VSS and the printed transistor channel geometries Ti=width/length=W/L.

Components MAC inv ptanh

Design parameters

R1 = 100 k� R1/R2 = 160�/80� R1/R2 = 180 k�/80 k�

R2 = 100 k� R3/R4 = 25 k�/15 k� T1 = 100µm/80µm

Rd = 50 k� R5 = 80 k� ; T1 = 500µm/40µm T2 = 500µm/40µm

VDD/VSS = 1V/− 2.2V VDD/VSS = 1V/− 1V

Results

Delay 1ms 4ms 4.5ms

Power 31.3µW 30mW 44.8µW

Area 2.6mm2 20.3mm2 25.6mm2
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The output transfer function’s range of values is approximately between −1V and 1V , thus signal degradation 
across this circuit element is prevented as the full input voltage swing is also provided at the output.

The DC measurements of the negative weights circuit are shown in Fig. 3c, where the input signal Vin is swept 
from −1V to 1V . It can be seen that the output signal Vout follows the input signal Vin inversely proportional. 
As we show later, this behaviour is adequate to approximate negative ANN weights which allow for successful 
classification of benchmark datasets. The measured and simulated DC transfer functions of the negative weights 
circuit are depicted in Fig. 3c. The simulated transfer function used for the high-level benchmark dataset evalu-
ation is parameterized by the following model function (this fit is also depicted in Fig. 3c):

with

As the tanh function is a point symmetric function, multiple parameters η exist which implement the same 
functionality. For this reason, we bounded the parameter η4 to be positive to obtain a unique parametrization. 
The choice of design parameters and the measurement results are depicted in Table 2. The reason why the power 
consumption of this circuit is so high is due to the first voltage divider R1 and R2 . As the resistances of both 
resistors are in the range of only hundreds of ohms and as secondly a constant voltage source is applied to them 
(VDD-VSS), a high current is induced which leads to high power dissipation. One way to achieve substantial 
power consumption reduction is by scaling all resistances R1-R4 up by a constant factor ≫ 1.

Tanh‑like activation function prototype (ptanh). The schematic of the tanh-like function is depicted in Fig. 4a. 
Resistor sizing was achieved by design extraction based on SPICE simulations and the PPDK. A microscope 
photo is shown in Fig. 4b. Two transistors were printed, one for each inverter, and the conductive tracks were 
again obtained from laser-structured ITO-sputtered glass substrates. The design parameters chosen for this 
component are illustrated in Table 2. The additional bias pin for zero crossing point tuning was not required in 
this experiment.

The measured and simulated DC transfer functions of the ptanh circuit are depicted in Fig. 4c. As can be 
seen, excellent rail-to-rail behavior is observed. The output signal voltage levels are ideally pulled up/down to 
1V/−1V , thus this component can preferably deployed as a voltage buffer for voltage signal replenishment at the 
output of each ANN layer. An important remark here is that the sensing resolution of the output signal was about 
100mV . In order to be able to distinguish the low- and high output signals of this activation function, we intro-
duce a safety margin through the learning function of the ANN (more details in the Supplementary Document).

The simulated transfer function used for the high-level benchmark dataset evaluation is parameterized by 
the following model function:

with

Similar to the fit of the inv(x) function, the parameter η4 is bounded to the positive range to obtain a unique 
parametrization. The function fit is also indicated in Fig. 4c. The measurement results about delay, power and 
area are presented in Table 2.

Training printed neural networks. To train the proposed printed neural networks, several steps of the 
classical (hardware-agnostic) neural network training procedure need to be adapted to consider the technologi-
cal constraints regarding the ranges of feasible resistances. Additionally, the circuit level constraints, such as the 
coupling of the weight values need to be respected. Finally, separability of the voltage signals at the ANN output 
layer has to be considered to obtain the correct classification outcome. This requires a minimum sensing resolu-
tion of the output signals, which has to be considered during training.

These constraints are addressed by introducing special parameters we call surrogate conductances θi . The 
surrogate conductances encode the value of a respective conductance through their absolute value, i.e., gi = | θi | 
while the sign of θi encodes if the input to the respective resistor should be inverted (negative weight). Through 
this, the weighted sum (or MAC operation) is modelled as

where inv(x) denotes the inverted input x (see Fig. 3c for the graph of inv(x) ) and 1{·} denotes an indicator func-
tion returning 1 if the respective condition is true, else 0.

Furthermore, the signal separation is encouraged through a custom loss function that is further enhanced 
through a penalty term. The penalty term is thereby introduced to penalize infeasible conductance values in 
training which is performed using the backpropagation 18 algorithm. To stabilize the training, the initial values 
for the training variables are chosen in consideration of the characteristics of the printed tanh (ptanh) activation 
function. After the training is complete, infeasibly small conductance values are set to zero. This relates to not 
printing the respective connection.

(8)inv(x) = −(η1 + η2 · tanh((x − η3) · η4))

η1 = −0.104, η2 = 0.899, η3 = −0.056, η4 = 3.858

(9)ptanh(x) = η1 + η2 · tanh((x − η3) · η4)

η1 = 0.134, η2 = 0.962, η3 = 0.183, η4 = 24.10.

∑

i

wi

(

xi · 1{θi ≥ 0} + inv(xi) · 1{θi < 0}

)

,
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Many sources of variation, such as printed conductance and transistor variations as well as voltage and tem-
perature fluctuations or variations in the activation and inverter function circuit may impair the performance 
and accuracy of the printed neural networks. To combat these effects, we propose a variation-aware training 
solution. Here, the training objective is to minimize the expected loss under simulated variations by using Monte 
Carlo gradient  estimates37 for  backpropagation18. For the details of the specific steps, see Sects. 3 and 4 of the 
supplementary material.

The entire design flow and training. The complete flow of design, training, mapping and fabrication can 
be seen in flowchart of Fig. 5. From an initial idea, the desired functionality is described in the form of input-
output relationships. These relationships are then converted into training data for the printed neural network 
(pNN). Through the training procedure, a pNN is developed expressing the desired functionality. Then the 
automatic circuit design is performed where the trained pNN is mapped into printed hardware components and 
their interconnections. In the last step, the circuit realizing the desired functionality is fabricated.

Benchmark results for trained printed neural networks. To validate that our pNN is trainable, 
robust and sufficiently expressive under the given restrictions, we trained and evaluated several pNNs using our 
proposed variation-aware training procedure. The results of the learned pNNs are compared to a random guess 
baseline (most frequent training data class) and a standard (hardware-agnostic) neural network implementation 
of a comparable architecture. This network is referred to as reference NN in the following. For the reference NN, 
a standard tanh activation function is used instead of the ptanh activation function.

In order to assess the efficiency of our variation-aware training method, we performed PVT (process, volt-
age, temperature) variation analysis on both a nominal-trained pNN and the variation-aware trained NN. The 
results are discussed in the following. For a detailed discussion of the training process and preparation of the 
data see the Supplementary Material.

PVT‑analysis on nominal‑trained pNN. For the PVT analysis, we used variation models of the pNN circuit 
components as discussed in Sect. 4.5 in the Supplementary Material. Monte Carlo simulations were performed 
during NN inference based on the pNN variation model and coefficient of variation. The impact of PVT vari-
ation on the nominal-trained pNN are depicted in the barchart of Fig. 6. As can be obtained from Fig. 6, the 

Figure 5.  The proposed procedure allows for an on-demand design and fabrication given a specification 
of a desired functionality. While the on-demand design is realized through training a pNN according to the 
specification, the derived design can be readily fabricated through the on-demand fabrication capabilities of 
inkjet-printed electronics.

Figure 6.  PVT analysis—inference accuracy of pNN using nominal (variation-unaware) training procedure. 
Variation parameter represents the coefficient of variation of the process, voltage and temperature variation 
models. The middle lines in the boxes refer to the mean test accuracy, while the whiskers depict the standard 
deviation.
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impact of PVT variations on the inference accuracy is dataset-dependent. While most of the Monte Carlo sam-
ples for ’Acute Inflammations’ achieve a test accuracy above 90%, samples for ’Energy efficiency (y1)’ reach 
from 60% down to less than 20%. For 10% (coefficient of variation) PVT variation, the test accuracies are wider 
distributed, and mean accuracy is below 75% for the majority of the datasets. The PVT variation results for the 
nominal-trained pNNs are also presented in Table 3.

PVT‑analysis on variation‑aware‑trained pNN. The PVT-variation-based Monte Carlo simulation for the var-
iation-aware-trained pNN are illustrated in Fig. 7. From the figure the fact can be derived, that the variation-
aware training method substantially improves the test accuracy. For both, 5% and 10% PVT variation, the test 
accuracy distributions are much narrower. Also for 5% PVT variation, the mean test accuracies are above 80% 
for most of the datasets. The impact of variation-aware training is still existent for 10% PVT variation.

The PVT variation results are also summarized in Table 3, which additionally contains the standard (hard-
ware-agnostic) NN, the variation-free pNN (0% variation) and the random guess baseline. Instead of the conven-
tionally used standard inference accuracy, we deploy measuring-aware accuracy (MaA) as the evaluation metric, 
as it takes also the differentiability of measured output voltages of the pNN into account, which is important in 
a practical case involving a measurement tool or actuators at the pNN output layers which require a particular 
sensing margin T. The proposed evaluation metric is described in more detail in Sect. 5 in the Supplementary 
document.

Regarding the simulation results in Table 3, our main observation is that all pNNs surpass the baseline 
result. Secondly, we can see that for the variation-aware pNN almost all the trained pNNs reach comparable 

Figure 7.  PVT analysis—inference accuracy of pNN using variation-aware training procedure. Variation 
parameter represents the coefficient of variation of the process, voltage and temperature variation models. The 
middle lines in the boxes refer to the mean test accuracy, while the whiskers depict the standard deviation.

Table 3.  The evaluation table of the experiments. Architecture with neurons/layer. The experiments were 
carried out as described in Sect. 5 of the supplementary material. Each number represents test measuring-
aware accuracy (see supplementary material). The results under variation are based on 100 samples and the 
mean and the standard deviation of the Measuring-aware accuracy are reported. The reported random guess 
baseline indicates the accuracy for always predicting the most frequent class in the training set.

Dataset Architecture

pNN (variation-aware) pNN (nominal)

Reference NN Random guess0% 5% 10% 5% 10%

Acute inflammations 6-4-3-2 1 0.95 ± 0.06 1.0 ± 0.00 0.945 ± 0.08 0.91 ± 0.1 1 0.48

Balance Scale 4-4-3-3 0.91 0.86 ± 0.03 0.82 ± 0.05 0.83 ± 0.07 0.74 ± 0.11 0.89 0.44

Breast cancer Wis-
consin 9-4-3-2 0.97 0.97 ± 0.0 0.97 ± 0.01 0.93 ± 0.08 0.77 ± 0.21 0.97 0.67

Energy efficiency (y1) 8-4-3-3 0.85 0.73 ± 0.13 0.64 ± 0.16 0.387 ± 0.22 0.27 ± 0.21 0.86 0.43

Energy efficiency (y2) 8-4-3-3 0.90 0.84 ± 0.02 0.82 ± 0.04 0.82 ± 0.06 0.7 ± 0.16 0.91 0.46

Iris 4-4-3-3 0.96 0.95 ± 0.05 0.89 ± 0.10 0.86 ± 0.14 0.68 ± 0.22 0.98 0.28

Mammographic mass 5-4-3-2 0.80 0.70 ± 0.09 0.65 ± 0.11 0.6 ± 0.11 0.51 ± 0.12 0.81 0.55

Seeds 7-4-3-3 0.97 0.92 ± 0.04 0.90 ± 0.05 0.9 ± 0.07 0.72 ± 0.15 0.96 0.27

Tic-Tac-Toe End-
game 9-4-3-2 0.97 0.89 ± 0.07 0.80 ± 0.04 0.83 ± 0.17 0.71 ± 0.2 0.97 0.64

Vertebral Column (2 
classes) 6-4-3-2 0.87 0.77 ± 0.04 0.72 ± 0.06 0.77 ± 0.07 0.7 ± 0.09 0.88 0.69

Vertebral Column (3 
classes) 6-4-3-3 0.82 0.67 ± 0.04 0.63 ± 0.06 0.65 ± 0.12 0.57 ± 0.12 0.79 0.51
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performance to the reference network. Thirdly, the variation-aware-trained pNN has acceptable test accuracy 
for the 5% PVT variation corner for the majority of datasets. We therefore conclude that the proposed pNN 
models and designs are robust against variations, including process variations leading to imperfections of the 
’inv’ and ’ptanh’ building blocks.

Discussion/conclusion. In this work, we propose the architecture and implementation of a NCS realized 
by inkjet-printed metal oxide electronics, which allows for flexible form factors and enables customized solu-
tions for future applications. The presented neuromorphic hardware solves classification problems, which is 
in particularly interesting for near-sensor processing applications and smart products of low-cost consumer 
markets.

The presented NCS is built from functional materials, which can all be deposited by a compact and low-cost 
inkjet printer, leading to very low fabrication costs and enables new solutions of customized electronics which 
cannot be realized by silicon-based processes. Besides the technology, we propose circuit designs for this tech-
nology, which provide all functional operations to implement non-spiking artificial neural networks. Several 
constraints from the technology and printed neuromorphic architecture are considered, such as limited set of 
digital and analog components in PE, and signal degradation across ANN layers. As a proof of concept, the 
proposed circuit designs for printed NCS were fabricated using an Dimatix inkjet printer.

A significant advantage of our approach is that arbitrary large printed (deep) neural networks can be built 
due to the signal restoration property of the printed neuron concept. The ANN is also scalable with respect to 
the ANN layer size due to the crossbar-based multiply accumulate operation. The proposed ANN architecture 
is validated simulation-based on benchmark datasets of popular classification problems. PVT analysis was per-
formed to prove that the variation-aware trained pNN is also robust against variations including imperfections 
of the fabricated ANN building blocks. In this regard, we propose a variation-aware training routine which can 
be deployed before pNN fabrication and which in particular takes the process-induced pNN component varia-
tions into account, enabling high-accuracy neural network classifiers in PE.

The area requirement of the ANN in this work was about 400mm2 with a delay of 30ms during ANN inference. 
However, extreme improvements in area, delay and power are expected in future designs which are beyond the 
capabilities of the presented hardware prototypes in this work. Further developments of the presented printing 
technology are replacement of the conductive tracks by inkjet-printed conductors or even by screen-printed 
materials to maximize the production throughput, without sacrificing the customizability of the printed NCS. 
Further advancements are centered around the room-temperature processed semiconductor material which 
enables flexible and plastic substrate carriers for the future.

We consider this work as an important step towards the realization of printed neuromorphic computing sys-
tems which can support the penetration of pervasive computing systems in future application domains, which 
require extremely low-cost, green and flexible computing architectures, e.g., for direct processing of sensory 
data of wearable and smart devices.

Methods
Inkjet‑printing technology. The transistors were fabricated by inkjet-printable functional inks: In2O3 for 
the semiconductor channel material, composite solid polymer electrolyte (CSPE) for the dielectric substitute 
and PEDOT:PSS as the electrical conductor for the top-gate contact. For the printing process the Dimatix DMP-
2850 inkjet printer was deployed, which supports exchangeable inkjet cartridges. In total three cartridges were 
used, one for each of the functional materials. For the fabrication of the inorganic n-type electrolyte-gated tran-
sistors (EGT), first the semiconductor is printed and annealed at 400◦ for two hours. In a subsequent step, the 
electrolyte is printed on top of the semiconductor channel. Finally PEDOT:PSS is printed to provide a top-gate 
contact. These processing steps are explained in more detail in the Supplementary document. In addition to the 
top-gate contact, PEDOT:PSS is also printed to obtain resistors for the MAC circuit. The feasible range of printed 
resistors was found experimentally and is [ 100k�,10M�].

Electrical characterization. The electrical characterization was performed at constant humidity level 
(50%) and room temperature ( 295◦K ) using a Yokogawa DL6104 digital oscilloscope in combination with a 
Süss Microtech probe station. For the MAC circuit, transient measurements were performed with a combina-
tion of input pulses ranging from −1V and 1V . For the pulse generation two Keithley 3390 waveform generators 
were utilized. For the measurements of the inv and ptanh circuit, DC measurements were performed, using the 
Keithley 3390 waveform generators with a very slow voltage ramping signal, starting at −1V and ending at 1V . 
The power supply for VDD and VSS for all three measurements were provided by Agilent 4156C Semiconductor 
Parameter Analyzer.

Data availability
Data related to this study are available upon request from the corresponding authors.
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