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Abstract
Machine learning with application to questions in the physical sciences has become a widely used
tool, successfully applied to classification, regression and optimization tasks in many areas.
Research focus mostly lies in improving the accuracy of the machine learning models in numerical
predictions, while scientific understanding is still almost exclusively generated by human
researchers analysing numerical results and drawing conclusions. In this work, we shift the focus
on the insights and the knowledge obtained by the machine learning models themselves. In
particular, we study how it can be extracted and used to inspire human scientists to increase their
intuitions and understanding of natural systems. We apply gradient boosting in decision trees to
extract human-interpretable insights from big data sets from chemistry and physics. In chemistry,
we not only rediscover widely know rules of thumb but also find new interesting motifs that tell us
how to control solubility and energy levels of organic molecules. At the same time, in quantum
physics, we gain new understanding on experiments for quantum entanglement. The ability to go
beyond numerics and to enter the realm of scientific insight and hypothesis generation opens the
door to use machine learning to accelerate the discovery of conceptual understanding in some of
the most challenging domains of science.

1. Introduction

Machine learning (ML) recently has become a widely used tool with many applications in the physical
sciences [1], ranging from chemistry (for example, prediction of quantum chemistry properties [2], solving
Schrödinger’s equation [3], predicting reactions [4], materials discovery [5] or inverse materials design
[6, 7]) to physics (for example, identification of phases of matter [8], astronomical object recognition [9],
or validation of quantum experiments [10]) and biology (for example, prediction of protein structures [11]
or drug design [12, 13]). Some open challenges regarding the application of machine learning models in
natural sciences include the accessibility, homogeneity, amount and quality of available data, as well as a lack
of machine learning models which inherently include physical laws, limiting the interpretability of the
models’ predictions. While ML models are successfully used and optimized to accelerate numerical
predictions or to recognize or generate patterns in existing data, it is rarely inquired how the machine finds
solutions, i.e. which patterns and correlations it detected and exploited. Thus, the scientific insight obtained
by the model is not directly transferred to human scientists. First attempts to use artificial intelligence in
physical sciences aimed to directly answer scientific questions, e.g. determine the location of protein
encodings in the genome [14]. Further attempts to employ machine learning models to obtain insight and
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Figure 1.Workflow for automated hypothesis generation. (a) General workflow, starting with a database of graphs and respective
properties, followed by training of a machine learning model that allows for the extraction of feature importances, e.g. gradient
boosting regression. Features with high importance are combined and analysed in a way that facilitates interpretation in order to
stimulate scientific insight. (b) Schematic illustration of the gradient boosting regression method [19], where multiple simple
decision tree models are trained sequentially. Each new decision tree is trained to correct the residual errors (red lines) of the
previous models, so the final prediction F0(x) can be written as a sum of the mean label c0 and a weighted series of models hi(x),
where each hi predicts the deviation of the previous i− 1 models from the ground truth. (c) Each decision tree is trained on
samples that are represented using predefined input features (coloured squares) and uses their values to split the data set
sequentially into smaller subsets which are used for the predictions. The subgraph based input representation used in this work
allows a direct interpretation of the feature importances (d) that are computed based on a quantification of how meaningful
features are for the accuracy of the machine learning model.

help scientists to develop theories were focused on rediscovering solutions to already solved problems, e.g. to
rediscover the coordinate transformation in astrophysical [15] and non-linear dynamical systems [16], or to
detect symmetries and conservation laws [17]. The methods used in these cases enforce information
bottlenecks or interpretable transformations in the ML model that then can inspire scientific understanding
[18]. However, to our knowledge such methods were mostly applied to solved problems and have not been
used yet to obtain novel insight and answers to questions that are not well understood yet.

In this work, we propose to use machine learning and systematic data analysis to automate further the
process of generation of interpretable scientific hypotheses. We demonstrate the applicability of the approach
using two questions in the natural sciences — a rediscovery task of chemistry knowledge (hydrophobicity
and molecular energy levels in simple as well as application relevant molecules) and the discovery of new
intuitions in physics (quantum optics). We show that our approach ‘rediscovers’ but also extends known
chemical rules of thumb for solubility and energy levels of organic molecules with application in organic
photovoltaics and organic light-emitting diodes, and helps us to better understand the entanglement created
in quantum optical experiments.

Our model represents its findings in a graph representation which is directly related to chemical or
physical instances in the specific scientific domain. The results are statements regarding distinct subgraphs
that can easily be comprehended and therefore, scientifically interpreted and understood by experts. This is
in stark contrast to conventional machine learning models where the internal representations are only
indirectly connected with the real physical entities and thus hard to impossible to interpret.

2. Method

2.1. Computer generated hypotheses
We suggest an automated workflow for ML-based generation of human-interpretable scientific hypotheses as
illustrated in figure 1(a). The workflow is based on a reference database of calculated (potentially also
measured) data points with graph-based structure and with corresponding target properties. A binary
feature vector describing presence/absence of automatically generated subgraphs [20] is used to train a tree
ensemble method, e.g. gradient boosting [19] or random forest regression/classification [21, 22], that allows
for the quantification of feature importances. Based on the features with the highest importance, a list of
hypotheses is generated. Each hypothesis has the human understandable form

Feature i leads to an increase/decrease of the target property with strength s
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where i is the index of the corresponding feature (subgraph) in the input and strength s quantifies the degree
of correlation between feature i and the target property. High feature importance does not necessarily
correspond to a high direct correlation with the target feature. In many cases, multiple features have to be
combined in order to become predictive, even if the single features individually do not help in the predicting
the target property. Therefore, important features are combined using logical operations (and, xor,…) to
automatically generate combined features which, especially in presence of higher-order correlations, can be
directly interpreted by researchers.

2.2. Input representation and experiments
In this work, we test this workflow on two experiments in chemistry and physics. The first experiment targets
the automated generation of intuitive rules that determine molecular properties, whereas the second aims at
hypothesis generation for entanglement properties of quantum optical experiments. In both cases, we can
describe the data points as graphs (molecules and quantum optical experiments), where nodes are chemical
elements or optical instruments while edges are chemical bonds or photon paths travelling through the
setup. This allows us to use fingerprinting techniques to generate input representations (bit-vectors), e.g.
using the algorithm for circular extended-connectivity fingerprints [20]. This iterative algorithm generates a
unique representation of each node, including its local environment. In each iteration, hashing functions are
used to aggregate the information (predefined node and edge features) of the next nearest neighbors of each
node, thus implicitly integrating information of one additional neighbor shell in each iteration. In the end, a
hashing function is used to map all subgraphs found in the graphs to bit-vectors. Each entry in these
bit-vectors encodes the presence or absence of a certain subgraph. A similar approach has been used in Lopez
et al [23] to determine molecular substructures in molecules for organic solar cells that lead to high power
conversion efficiencies. Other models that link the presence of subgraphs (or more generally features) in the
input data to properties can potentially be employed in our workflow (see e.g. Duvenaud et al [24] where
molecular fragments are identified that correlate with toxicity, the Grad-CAMmethod by Selvaraju et al [25]
for convolutional neural networks or the GNNExplainer by Ying et al [26]). In contrast to this work, some of
these approaches depend on the analysis of single samples and thus only indirectly allow to conclude about
an entire data set. Furthermore, these approaches assign importance indicators to single nodes or edges of a
graph, which are not necessarily binary numbers, which complicates the direct interpretation. Due to their
general applicability to all graphs where node and edges can be represented by one or multiple categorical
features, we focused on automatically generated circular fingerprints in this work.

3. Results

To test the automated hypothesis generation workflow, we performed experiments in two scientific domains,
molecular chemistry (section 3.1) and quantum optical experiments (section 3.2). We computed physical
properties of these graphs and used the generated data sets and the workflow described in figure 1 to
automatically generate hypotheses that can be either compared to a collection of widely known chemical
rules of thumb or that can help to better understand entanglement in quantum optical experiments for
designing future experiments.

3.1. Chemical intuition for solubility, energy levels
In case of the chemistry experiment, we used two prototypical target properties — the water–octanol
partition coefficient which describes the solubility of molecules in water (polar) vs. octanol (non-polar) as
well as the energy of the highest occupied molecular orbital. Both properties are of high relevance for the
application of molecules as pharmaceuticals or in electronic devices, e.g. for organic solar cells, organic
light-emitting diode (OLED) displays or organic flow batteries. We furthermore analysed existing
application-specific data sets, namely a data set of thermally activated delayed fluorescent (TADF) molecules
as emitter molecules for OLEDs [27], the Harvard Clean Energy project data set [28, 29] and a data set of
non-fullerene acceptor molecules for organic solar cells [23]. Solubility and energy levels are relatively well
understood and for both properties there exist several widely known rules of thumb, often described as
chemical intuition, which describes how certain functional groups influence them. Our experiment aims to
test whether the automated hypothesis generation method can ‘rediscover’ those rules and potentially add
new or refined rules. For frontier orbital gaps reported in the Harvard Clean Energy data set and the
non-fullerene acceptor data set as well as for singlet-triplet energy splittings reported in the TADF data set,
there exists less chemical intuition on how to influence and tune them.

Figure 2 shows two solubility related hypotheses that were generated using our workflow. Without prior
knowledge, the algorithm predicts two widely known chemical groups/motifs for increasing solubility in
polar solvents (carbonyl group in figure 2(a) and to increase solubility in non-polar solvents (conjugated
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Figure 2. Hypotheses about molecular solubility. (a) Lower log P values (better solubility in water compared to octanol) can be
achieved using the carbonyl groups, while (b) conjugated carbon chains lead to higher log P values.

Figure 3. Hypotheses about molecular energy levels. Molecular subgraphs with a positive (left) and negative (right) influence on
the HOMO energy. The groups ‘discovered’ by our automated workflow are widely known activating (resonance donating or
electron donating) and deactivating groups, such as oxido/amino groups and nitrile groups.

carbon chain in figure 2(b)). Figure 3 shows an overview of molecular subgraphs that positively and
negatively influence the HOMO energy of a molecule. To our surprise, five of the nine groups shown in the
figure can directly be found in chemistry textbooks or Wikipedia when searching for electrophilic aromatic
directing groups which can change the energy levels of molecules through the inductive effect and the
mesomeric effect. Specifically, the oxido (O−) group that shows the strongest positive influence on the
HOMO is well known for a strong resonance donating and a strong inductive effect which both leads to an
increase in HOMO energy. Furthermore, heterocycles that contain nitrogen, as well as amine (NH2) groups
are also known for lifting the HOMO level to higher energies. On the other hand, the nitrile group (C≡N) is
one of the most widely known electron-withdrawing groups that lowers the HOMO energy of molecules due
to its resonance withdrawing and inductively withdrawing nature.

The patterns found to be relevant for small HOMO–LUMO gaps in the Harvard Clean Energy data set as
well as in the non-fullerene acceptor data set are mostly related to extended aromatic systems and fused
aromatic rings (see figures 5(a) and S1(a) (available online at stacks.iop.org/MLST/2/025027/mmedia)). This
finding is well-understood by chemists due to the widely known relation between the size of an aromatic
system (i.e. the degree of delocalization of π-electrons) and the frontier orbital gap [30]. In the limit of
infinite delocalization (e.g. in graphene), the HOMO–LUMO gap closes completely. This relation was also
exploited in the development of conductive polymers, which was awarded with the Nobel Price in Chemistry
in 2000 and which created the field of organic electronics [31].

However, we additionally found several interesting and surprising patterns both in the photovoltaic data
sets (figures 5(b) and (c)) and in the TADF dataset (figure 4). In case of the Harvard Clean Energy data set,
we find that aromatic heterocycles with sulfur (e.g. thiophene rings) as well as silicon heteroatoms (e.g. silole
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Figure 4. Hypotheses singlet-triplet splittings in the TADF data set [27]. The data-driven algorithm finds the well known and
widely exploited structure-property relation of triarylamines and small single triplet gaps (<0.5 eV, upper panel). However, it
finds an additional, less known motif of alternating single-double-bond bridges that are related to increased singlet triplet gaps
(>0.5 eV, lower panel).

Figure 5.Hypotheses about HOMO–LUMO gaps in the Harvard Clean Energy data set [28, 29] and a non-fullerene acceptor data
set [23]. (a) The automated hypotheses generation protocol rediscovers the widely known relation between extended aromatic
systems (containing e.g. nitrogen heteroatoms) and reduced HOMO–LUMO gaps. (b) Thiophene but also more uncommon
silole rings are found to correlate with small HOMO–LUMO gaps. (c) Thiophene rings bridged with double bonds (quinoid
structures) are found to decrease the HOMO–LUMO gap in the non-fullerene acceptor data set. (Note the different scale in panel
(c) compared to (a, b), due to differences in the data sets.)

rings) significantly reduce the HOMO–LUMO gap. While the former are widely used in organic electronics
to control energy levels and reduce HOMO–LUMO gaps, silole rings are more unusual.

In the non-fullerene acceptor data set (see figure 5(c)) we found that thiophene rings connected by
double bonds (i.e. forming a quinoid structure instead of aromatic systems) also significantly reduce the
HOMO–LUMO gap, which is a know relation first described by Brédas [32]. However, such systems require a
specific functionalization in the periphery of the molecule to enforce the quinoid structure of the two
thiophene rings, which intrinsically is less stable and thus higher in energy than the aromatic structure.

In case of the TADF data set (see figure 4), we found expected patterns such as triarylamines that
correlate with decreased singlet triplet gaps (S1–T1 gaps) as well as rather unexpected patterns
(e.g. conjugated bridges) that are identified by our workflow as chemical groups that highly correlate with
large singlet triplet gaps. Low singlet–triplet splittings in TADF molecules are typically achieved by
decoupling electron donating and electron accepting parts of a molecule to reduce the exchange interaction
between the frontier orbitals which would otherwise lower the triplet state compared to the singlet state and
open an undesired singlet–triplet splitting. The decoupling of the fragments can be achieved by introducing
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Figure 6. Hypotheses about quantum optical experiments. Experimental substructures leading to a decrease in the overall size of
the Hilbert space of involved qubits (nQ) are shown in (a) while substructures with positive influence are shown in (b).

twist angles close to 90◦ between the fragments. One way to accomplish this are triarylamines bridges
between the fragments. We expect that the conjugated bridges between fragments have precisely the opposite
effect: They lead to a planar alignment of the adjacent fragments and thus an enhanced exchange interaction,
reduced triplet energies and finally increased singlet–triplet splittings.

3.2. Physical intuitions for quantum experiments
As a second example, we use quantum optical experiments for producing high-dimensional, multipartite
quantum entanglement [33, 34]. These experiments grow in interest as they allow the investigation of
fundamental physical properties — such as local realism [35] — in laboratories. Furthermore, such quantum
states are the key resources for large and complex quantum communication networks [36, 37], which are on
the edge of commercial availability. The experimental setups that we consider consist of standard optical
components that are used in labs, such as non-linear crystals for the creation of photon pairs, single-photon
detectors, beam splitters, holograms or Dove prisms. Under approximations that are closely resembled in
experiments, the final emergent quantum state can be reliably calculated [38].

A key challenge lies in the design of experiments which creates certain desired quantum systems. The
difficulty arises from counter-intuitive quantum phenomena, which raises the question of whether human
intuition is the best way to design new experiments. Several studies have therefore developed automated and
machine-learning augmented approaches for the design of experiments [39–44]. The goal in our approach is
to tackle this challenge in a completely different way, namely by improving the scientist’s intuition about
these systems.

Specifically, we are investigating optical setups with three-photon entanglement in high dimensions,
using a fourth photon as a trigger. The experimental setups can be represented as graphs where vertices
represent optical elements, and edges correspond to the photon paths connecting these elements.
Analogously to chemical elements, the optical elements can have one to four connections. For example, a
beam splitter has four input-output modes, while a detector has only one input. As a measure of
entanglement, we use the overall size of the involved Hilbert space in terms of involved qubits,
nQ = log2(d1d2d3), where di stands for the rank of density matrix after tracing out photon i [45, 46].

We used the same fingerprint-based graph representation as in section 3.1 and trained a gradient
boosting regression model to predict nQ. Using the algorithm outlined in figure 1, we form a list of
hypotheses of subgraphs features that influence nQ most. This computer-generated list was analysed and
interpreted by a domain expert.

The two features which influence nQ most negatively contradict the intuition in the field, see figures 6(a),
(b) and S2. Surprisingly, both of them represent subgraphs that are core elements of two experimental setups
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Figure 7. Logically combined hypotheses about quantum optical experiments. Combining single-subgraph hypotheses with
logical operations leads to intuitively interpretable relations, which is illustrated here with two examples. The upper panel shows
the logically combined feature and its correlation with nQ, while the lower panels show the correlations of the isolated subgraphs.

which have produced high-dimensional multipartite entanglement in the laboratory [47, 48]. Specifically,
if the outputs of two non-linear crystals (both crystals produce entangled photon pairs in the same 3D mode
space) are connected directly via a beam splitter or interferometer, the entanglement of the resulting state is
predicted to be comparably low. This can be interpreted in the following way: the photons from the two
different crystals need to combine at some point, otherwise, they remain bi-separable. However, if they
combine directly after their generation, the equal mode spaces mix in such a way that it is difficult to increase
their dimensionality subsequently. It is therefore explicitly enlightening that several of the features that
positively influence nQ correspond to elements which shift the entire mode space by plus or minus three
before or after the beam splitters or non-linear crystals. The insight for a human researcher now is to shift the
mode space by three (as the local dimension is three), before combining photons from different non-linear
crystals to achieve a high nQ. This leads to mode spaces of twice the original size and thereby increasing the
probability for large overall entanglement dimensionalities.

A different feature which was used in the two experimentally demonstrations, but significantly negatively
influences nQ is the following: one output of a non-linear crystal is directly connected to the detector. For
human designers, this leads to the convenient fact that it simplifies the initial state (as double-emissions from
one crystal can be ignored in this case). However, the entanglement of this photon with the other two
photons can never be larger than three (as the local mode space is three). A similar, negatively influencing
feature is a certain interferometer, which sorts the parity of the involved modes, directly connected to a
detector. This acts as a filter, thus reducing the mode space of the incoming photon by half, thereby reducing
the overall possible entanglement significantly.

3.3. Logically combined features
We can logically combine graph features, as described in 2, and find the most significant macro-features for
quantum experiments. In figure 7(a), two small sub-experiments are combined with a logical and, i.e. the
feature is the combination of both structures. Individually, the presence of the first feature has a negative
influence on nQ. The second feature, a parity sorter followed by two detectors, influences nQ positively.
Surprisingly, their combination has a significant negative influence on nQ and can be seen as an almost
sufficient condition for nQ ≈ 4 . This behaviour can be interpreted using the Klyshko advanced wave-picture
for quantum correlations in quantum optics [49]. The detector after the photon pair creation heralds a
specific quantum state in the other photonic path. If those photons deterministically split at the parity sorter,
the ability to mix with the photons from the other input ports (thus from the other crystal) vanish. From this
insight, the human designer can learn that a heralded single-photon should be combined in a probabilistic
way with the photons of the other crystal, using beam splitters instead of parity sorters.

A second macro-feature, figure 7(b), combines two insights that we gained in figure 6. The macro-feature
in figure 7(b) shows that the absence of either three positive or three negative mode shifters in front of a
beam splitter has a very negative impact on the nQ. Thereby, the algorithm has discovered that both
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increasing or decreasing helps to have very positive influence on the final entanglement, and thereby suggests
that one can be agnostic about the shift direction, and the importance lies in the actual increase of the local
Hilbert space before the mixing. This features clearly shows how logical combinations can simplify the
interpretation of scientific data.

4. Conclusion and outlook

We presented a data-driven machine learning workflow for automated generation and verification of
hypotheses about observations in natural sciences. We presented examples from chemistry and physics, but
our method is directly applicable to most applications, where structures can be represented as graphs, e.g. to
DNA/RNA data in biology [50, 51], chemical reaction networks [52, 53] or graphs in social sciences. In
chemistry, the workflow ‘rediscovers’ widely known relations regarding solubility and electronic properties of
molecules (often referred to as chemical intuition). In physics, the algorithm discovers rules to generate
highly entangled three-photon states in quantum optical experiments. These rules are interpretable by
human experts in retrospect, yet not known or postulated before, and even contradicting some of the field’s
current understanding. Finding such rules will not only help researchers to understand complex scientific
relationships and thus design better experiments, but also reduce unavoidable and often undetectable bias
generated by prior knowledge and anticipations.

4.1. Hypothesis testing
In addition to automated hypothesis generation, protocols for testing of the postulated hypotheses would be
beneficial. In case of the chemistry experiment, a possible hypothesis testing protocol would generate
mutations of each molecule in the training set to test the hypotheses on molecules with similar
representations, where (ideally) only the relevant feature is changed. In case of the quantum optical
experiments, not all random mutations will lead to maximally entangled states between all photons, which is
a requirement to compute the entanglement of the quantum state. We currently see two options for
automated hypothesis verification both of which we are currently implementing. The first follows the same
procedure of mutation and computation as in the chemistry experiment, with the caveat that only a small
fraction of the mutations will lead to useful results, potentially making the procedure computationally costly.
The second option is based on finding other experimental setups within the whole database that are as
similar to the reference experiment as possible, with the exception of the feature that is currently analysed.
This procedure is computationally costly as well but does not require new computations.
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