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Data-driven machine learning (DDML) methods for the fault diagnosis and detection
(FDD) in the nuclear power plant (NPP) are of emerging interest in the recent years.
However, there still lacks research on comprehensive reviewing the state-of-the-art
progress on the DDML for the FDD in the NPP. In this review, the classifications,
principles, and characteristics of the DDML are firstly introduced, which include the
supervised learning type, unsupervised learning type, and so on. Then, the latest
applications of the DDML for the FDD, which consist of the reactor system, reactor
component, and reactor condition monitoring are illustrated, which can better predict
the NPP behaviors. Lastly, the future development of the DDML for the FDD in the NPP
is concluded.

Keywords: data-driven method, machine learning, fault detection and diagnosis, applications and development,
nuclear power plant

INTRODUCTION

Nuclear Energy Development
Nuclear energy is of continuous interest as it can meet increasing energy demands of the world
environmentally friendly (Jamil et al., 2016). On the one hand, nuclear power plants (NPPs) consist
of many complex systems and components. On the other hand, NPPs are also highly dynamic and
non-linear (Peng et al., 2018). In addition, the latest advances come to the further Generation IV
NPPs (Yao et al., 2020). In particular, further NPPs greatly emphasize the economics, safety, and
reliability over the previous NPPs (Locatelli et al., 2013).

This future of the NPP necessitates the high performance of the fault diagnosis and detection
(FDD) in the nuclear industry (Oluwasegun and Jung, 2020). First, the FDD can be adopted in the
reactor systems, components, and conditions. Later, it allows the reactor systems and components
to be fully optimally used to their lifetime before the maintenance or disposal. Meanwhile, the FDD
can reflect the current conditions and enable further prediction of possible malfunctions (Li et al.,
2020). Therefore, an accurate and efficient FDD is of great importance to ensure the economics,
safety, and reliability of the NPP.
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Fault Detection and Diagnosis in NPP
To achieve its goal, the nuclear industry has increased popularity
in adapting the FDD techniques (Rezaeianjouybari and Shang,
2020). And the research process of the FDD methods in the NPP
can be described as follows.

First, the traditional FDD approach in the NPP belongs to the
hardware redundancy method (Betta and Pietrosanto, 2000). For
example, the same quantity can be measured by several sensors,
and the voting scheme is also introduced for the sensor fault.
However, the hardware redundancy principle can hardly suitable
for other reactor systems and components (Lu and Upadhyaya,
2005). Thus, it comes to the limit checking method. Usually,
it is adopted to monitor the specified parameter of the NPP
to see whether the parameter exceeds the predefined value or
not (Jamil et al., 2016). Nevertheless, it can only detect the
fault when it exceeds a certain value, which could ignore the
incipient fault stage. Additionally, the FDD method based on the
analytical redundancy can overcome the disadvantages of both
the hardware redundancy and limit checking approach (Nguyen
et al., 2020). Meanwhile, it can predict the incipient anomalies,
optimize the operation schedule, reduce the maintenance cost,
and improve safety at the same time. Hence, the FDD method
based on the analytical redundancy is of emerging interest in the
NPP in these years.

Currently, the FDD methods based on the analytical
redundancy can be basically classified into three main types:
physic model-based, reliability-based, and data-driven methods
(Wang et al., 2020). For the physic model-based techniques,
the mathematical models are proposed to describe the research
objects. Moreover, the reliability-based approaches adapt the
probability theory and knowledge-based statics while it requires
prior experience or knowledge of the system (Ma and Jiang, 2011;
Jamil et al., 2016). However, it is not suitable for real industrial
applications like the NPP as it is highly dynamic and non-linear
(Zhao and Wang, 2018). At last, the data-driven approaches
require no prior experience of the NPP and just only need the
previous data for the model training (Betta and Pietrosanto, 2000;
Razavi-Far et al., 2009; Wang et al., 2020). In recent years, it is
a promising technique and of interest for the FDD in the NPP
(Moshkbar-Bakhshayesh and Ghofrani, 2013; Ren et al., 2016;
Utah and Jung, 2020; Nguyen et al., 2020).

Data-Driven Machine Learning Method
The data-driven approaches tend to be more suitable and able
to predict without a prior knowledge of the NPP. At the same
time, it potentially achieves high accuracy with low economic
cost. Combined with the machine learning (ML) algorithms, the
data-driven techniques have drawn increasing attention for the
FDD in the NPP in the past decades (Ma and Jiang, 2011; Mandal
et al., 2017a,b; Wang et al., 2020).

At present, the data-driven machine learning (DDML)
methods, including the neural network, support vector machine
(SVM), dimension reduction learning (DRL), ensemble learning
(EL) or random tree (RT), regression approaches, and so on, have
been applied to predict the NPP behaviors (Jamil et al., 2016;
Saeed et al., 2020). Nevertheless, few researches concern with the

state-of-the-art progress and future trends for both the DDML
approach for the FDD and the NPP (Bartlett and Uhrig, 1992; Ma
and Jiang, 2011; Moshkbar-Bakhshayesh and Ghofrani, 2013).

Especially, Bartlett and Uhrig (1992) briefly presented the
artificial neural network (ANN) method for the FDD in the
NPP. However, it only concerns the ANN method. In 2011,
Ma and Jiang (2011) considered six areas of applications of
the FDD in the NPP. Moreover, the transient diagnosis in
the NPP was illustrated with the ANN approach (Moshkbar-
Bakhshayesh and Ghofrani, 2013). However, there are either
the specified component (system) or the outdated techniques
in the available research. As the DDML techniques in the
NPP sharp a lot in recent years (Rezaeianjouybari and Shang,
2020; Yao et al., 2020; Saeed et al., 2020), there exists a
gap in the current state-of–the-art of the DDML techniques
for the FDD in the NPP. In this review, the current
classifications, principles, characteristics, and applications of the
FDD in the NPP, followed by the discussion on the future
development of the DDML method for the NPP state prediction,
will be illustrated.

Scope of This Review
Compared with the physic model-based and reliability-based
techniques, the data-driven methods have the superior advantage
in the trade-off between the safety, reliability, and economics
of the NPP. In addition, it has been considered as a promising
future FDD direction from the encouraging results made by the
recent studies. However, to the best of our knowledge, there still
lacks research on comprehensive reviewing the state-of–the-art
progress on the DDML for the FDD in the nuclear industry.
Therefore, this review focuses on elaborating the DDML in the
NPP, introducing the applications of the DDML in the NPP
and illustrating the future development. In section “Overview of
the DDML for FDD in NPP,” principles and characteristics of
the DDML for the FDD are discussed, including the supervised
learning type, unsupervised learning type, and reinforcement
learning type. Section “Development of DDML for FDD in NPP”
shows the applications and further development of the DDML
for the FDD. Section “Conclusion” explains the conclusions and
remarks on the DDML for the FDD. It should be noted that
this review would emphasize the DDML for the FDD in the
nuclear industry.

OVERVIEW OF THE DDML FOR FDD
IN NPP

Generally, the DDML for the FDD in the NPP can be
classified into several types. First, these types include supervised
learning, unsupervised learning, and reinforcement learning
by the principle of the learning type. Second, these can be
sorted into regression, instance-based learning, neural network,
deep learning, dimension reduction, and kernel-based learning
algorithms by the algorithm type. In addition, the detailed
classifications of DDML for FDD in NPP are as shown in
Figure 1. As for the DDML, it is of emerging interest for the
FDD in the NPP. Hence, it is necessary to be illustrated in detail.
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FIGURE 1 | Detailed classifications of data-driven machine learning (DDML) for the fault diagnosis and detection (FDD) in the nuclear power plant (NPP).

Finally, the research profile of the DDML for the FDD in the NPP
is described as follows.

Supervised Learning Method
In Table 1, the ANN method, linear regression, logistic
regression, SVM, k-nearest neighbor (kNN), RT, and naive

Bayes (NB) for the FDD in the NPP belong to the supervised
learning approaches.

Artificial Neural Network Approach
A typical ANN is constructed by three parts: the structure
(the input signal, hidden layer, and output), learning algorithm
(update the synaptic weights), and activation function. For
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TABLE 1 | Status of the data-driven machine learning (DDML) of the supervised learning method for the fault diagnosis and detection (FDD) in the nuclear
power plant (NPP).

References Methods Type Characteristics

Aizpurua et al. (2018), Oluwasegun and
Jung (2020), and Po (2020)

ANN Supervised learning type Quickly adjustment; require a lot of data

Hadad et al. (2011) Linear regression Supervised learning type Direct and fast; abnormal value

Ayodeji et al. (2018) Logistic regression

Zio (2007), Liu et al. (2013), Ren et al.
(2016), Moshkbar-Bakhshayesh (2020),
Meng et al. (2020), and Wang et al.
(2021)

SVM Supervised learning type Largest geometric interval; low efficiency

Biet (2012) and Liu et al. (2013) kNN Supervised learning type Without modeling and training; large amount of calculation

Sharanya and Venkataraman (2018) RT Supervised learning type Without dimensionality reduction; overfit

Liu et al. (2013) and Chen and
Jahanshahi (2017)

NB Supervised learning type Easy to train; unable to process related parameters

example, the ANN approaches are taken for the FDD in the NPP
like the control rod drive system and accident prevention system
(Aizpurua et al., 2018; Po, 2020; Oluwasegun and Jung, 2020)
as shown in Figure 2. In Figure 2, the input signals x1, x2, . . .,
xn are the control rod step number, coil current data, vibration
data, coolant temperature, etc. They correspond to each synaptic
weight w1, w2, . . ., wn, respectively. After the procession of the
summing junction and the activation function ϕ(·), the output
y(k) is obtained. Additionally, the ANN approach can quickly
adjust to new problems. However, it requires a lot of data for the
training and it is hard to select the meta parameters.

Regression Algorithm
Especially, the linear regression assumes that the dependent
variable obeys a Gaussian distribution, whereas the logistic
regression assumes that the dependent variable follows a
Bernoulli distribution. Based on the linear regression, the logistic
regression introduces non-linear factors through the Sigmoid
function. For instance, Hadad et al. (2011) performed a linear
regression analysis to evaluate the network performance in
the NPP. In 2018, Ayodeji et al. (2018) combined the logistic
regression with the SVM for the incipient fault diagnosis in the
NPP. In particular, the regression algorithm is direct and fast
while it also needs to handle the abnormal value.

Support Vector Machine Method
The basic idea of the SVM learning is to solve the separation
hyperplane that can correctly divide the training dataset. In
Figure 3A, the formula represents the separating hyperplane.
In addition, w is the normal vector to the hyperplane with a
magnitude w. The parameter b/w is the offset amount between
the hyperplane and the origin. Furthermore, the two hyperplanes
wx − b = 1 and wx − b = − 1 are the margins of two classifies.
Overall, the distance between the two margins is 2/w. For a
linearly separable dataset, there are infinitely such hyperplanes
(i.e., perceptrons), whereas the separating hyperplane with the
largest geometric interval is the only one. It has the largest
geometric interval while the efficiency may not be high.

For the FDD in the NPP, Zio (2007) applied the SVM in the
anomalies and malfunctions occurring in the feedwater system.

Then, Liu et al. (2013) developed the SVM for monitoring the
components of NPPs. In addition, Ren et al. (2016) proposed
the SVM with sparse representation. Furthermore, Moshkbar-
Bakhshayesh (2020) utilized the SVM for the control rod system.
Meanwhile, Meng et al. (2020) combined the SVM and objective
function method for the loose parts. At last, Wang et al. (2021)
adopted the SVM together with the principal component analysis
(PCA) and clustering algorithm for the sensor faults in the NPP.

k-Nearest Neighbor Technique
The principle of the kNN technique is described in Figure 3B. In
the prediction of point xu in Figure 3B, four neighboring samples
belong to the category c1 and only one neighboring sample
belongs to the category c2. Hence, the point xu is classified as the
category c1. But from the visual observation, it should be more
reasonable to divide into circular classification. According to this
situation, a weight such as ω1, ω2, and ω3 can be also added to the
distance measurement. First, Liu et al. (2013) coupled the kNN
technique with the SVM for monitoring the components of NPPs.
Biet (2012) conducted the rotor FDD with the kNN technique
and feature section in the NPP. On the one hand, the advantages
of this algorithm are simple, easy to understand, and without
modeling and training. And it is suitable for multi-classification
problems. On the other hand, the shortcomings of this algorithm
include the lazy algorithm and a large amount of calculation when
classifying the test samples.

Random Tree Approach
The RT approach contains two parts, one is “random” and the
other is “tree.” It is based on the decision tree (DT). It can
produce very high-dimensional (many features) data without
dimensionality reduction or feature selection. And Sharanya
and Venkataraman (2018) carried out the RT for the FDD of
the coolant tower in the NPP. Meanwhile, it can judge the
importance of features. However, the RT has been shown to
overfit in some noisy classification or regression problems.

Naive Bayes Method
The NB is a classification method based on the Bayes’ theorem
and the independence assumption of characteristic conditions.
For this technique, Liu et al. (2013) combined the NB with
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FIGURE 2 | The artificial neural network (ANN) approach for the fault diagnosis and detection (FDD) in the nuclear power plant (NPP).

FIGURE 3 | The support vector machine (SVM) and k-nearest neighbor (kNN) method for the fault diagnosis and detection (FDD) in the nuclear power plant (NPP).
(A) SVM (B) kNN.

SVM for components in the NPP. In 2017, Chen and Jahanshahi
(2017) carried out the FDD of thermocouples with the naive
Bayes method in the NPP. It is fast, easy to train, and has
good performance. Meanwhile, it may fall short when the input
variables are related.

Unsupervised and Reinforcement
Learning Method
Then, the DDML methods of the unsupervised learning type for
the FDD in the NPP include the clustering (Baraldi et al., 2013;
Li et al., 2020; Wang et al., 2021) and PCA (Ayodeji et al., 2018;
Ling et al., 2020; Yu et al., 2020; Wang et al., 2021) techniques as
shown in Table 2.

Afterward, the DDML research of the reinforcement learning
type gradually developed in Table 2. The DDML such as the
singular value decomposition (SVD) (Mandal et al., 2017a), deep
Q learning network (DQN) (Lee et al., 2020), and Monte Carlo
(MC) (Rao et al., 2009; Wang et al., 2018) are adopted by the NPP.

Clustering
Clustering algorithm refers to the classification of a group of
targets. Compared with other groups of the targets, the same

group of the targets are more similar to each other. In 2013,
Baraldi et al. (2013) adopted the clustering technique for the FDD
of the pressurizer. Later, Li et al. (2020) proposed a clustering
algorithm for the transient detection in the NPP. Furthermore,
Wang et al. (2021) utilized the clustering algorithm together
with the SVM and PCA for the sensor anomalies in the NPP.
This algorithm can make the data meaningful. Meanwhile, the
results with this algorithm become difficult to interpret for the
unusual datasets.

Principal Component Analysis Approach
The PCA approach is a kind of the dimensionality reduction
method, which pursues the purpose of using less information to
summarize or describe the data. In 2018, Ayodeji et al. (2018)
operated the PCA with the radial basis function (RBF) for the
transient scenarios in the NPP. Then, Yu et al. (2020) detected
the sensor faults with the PCA approach. Afterward, Ling et al.
(2020) presented the FDD of the reactor coolant system in the
NPP. Lastly, Wang et al. (2021) utilized the PCA together with
the clustering algorithm and SVM for the sensor anomalies in
the NPP. The main operation of the PCA approach is eigenvalue
decomposition, which is easy to implement. Conversely, the
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TABLE 2 | Status of the data-driven machine learning (DDML) of the unsupervised and reinforcement learning method for the fault diagnosis and detection (FDD) in the
nuclear power plant (NPP).

References Methods Type Characteristics

Baraldi et al. (2013), Li et al.
(2020) and Wang et al. (2021)

Clustering Unsupervised learning type Make data meaningful; difficult to handle the unusual data

Ayodeji et al. (2018), Ling et al.
(2020), Yu et al. (2020), and
Wang et al. (2021)

PCA Unsupervised learning type Easy to implement; certain degree of vagueness

Mandal et al. (2017a) SVD Reinforcement learning type No noise; only suits the numerical data

Lee et al. (2020) DQN Reinforcement learning type A lot of samples; sophisticated parameter adjustment

Rao et al. (2009) and Wang
et al. (2018)

MC Reinforcement learning type Without uncertainty; high a time and space complexity

meaning of each feature dimension of the principal component
has a certain degree of vagueness, which is not as explanatory as
the original sample feature.

Singular Value Decomposition Method
The SVD method also belongs to the dimensionality reduction
means. It is to decompose a large matrix into a form that is easy to
handle. For the FDD in the NPP, Mandal et al. (2017a) introduced
the SVD method to the thermocouple sensors. This algorithm
can simplify the data, remove the noise, and hence improve the
algorithm results. In contrast, it only suits the numerical data.

Deep Q Learning Network Technique
The DQN algorithm is a method of approximating the Q learning
through a neural network. In 2020, Lee et al. (2020) focused on
developing the algorithm for converting all the currently manual
activities in the NPP power-increase process to autonomous
operations. Among them, the DQN algorithm is included. For
the DQN algorithm, it can produce a large number of samples.
Conversely, the DQN algorithm may not necessarily converge
and require sophisticated parameter adjustment.

Monte Carlo Method
The MC method has its inherent capability in simulating the
actual process and random behavior of the system. First, Rao et al.
(2009) carried out the probabilistic safety assessment with the MC
method in the NPP. Then, Wang et al. (2018) explored the cyber-
attack scenarios with the MC method in the NPP. It can eliminate
uncertainty in reliability modeling while this algorithm requires
a high time and space complexity.

Algorithm Type Method
In the past decades, the DDML studies can be classified
into regression, instance-based learning, neural network, deep
learning, dimension reduction, and kernel-based learning
algorithms and they are shown in Table 3. Especially, the
DDML of the deep learning type is popular for the FDD
in the NPP recently. In addition, it is one of the recent
advancements in the ANN (Peng et al., 2018). Furthermore,
the deep learning type includes the recurrent neural network
(RNN) (Moshkbar-Bakhshayesh and Ghofrani, 2013; Ling et al.,
2020; Rezaeianjouybari and Shang, 2020), convolutional neural
network (CNN) (Chen and Jahanshahi, 2017; Yao et al., 2020;

Chae et al., 2020), deep neural network (DNN) (Mo et al., 2007;
Chae et al., 2020; Miki and Demachi, 2020; Rezaeianjouybari and
Shang, 2020; Saeed et al., 2020; Utah and Jung, 2020), deep belief
network or dynamic Bayesian network (DBN) (Mandal et al.,
2017b; Peng et al., 2018; Oh and Lee, 2020; Vaddi et al., 2020;
Zhao et al., 2020), and restricted Boltzmann machine (RBM)
(Rezaeianjouybari and Shang, 2020).

Recurrent Neural Network Approach
The biggest difference between the RNN approach and the
traditional neural network is that each time it will bring the
previous output result to the next hidden layer and train together.
In 2013, Moshkbar-Bakhshayesh and Ghofrani (2013) studied
the advanced approaches, which include the RNN approach for
the transient diagnosis in the NPP. Then, Rezaeianjouybari and
Shang (2020) reviewed the RNN algorithm and DNN technique
for the prognostics and health management (PHM) in the NPP.
Afterward, Ling et al. (2020) presented the RNN approach and
PCA for the FDD in the reactor coolant system in the NPP.
Especially, the RNN has the ability to learn and execute complex
data conversion over a long period of time. It also may cause the
problem of the vanishing gradient.

Convolutional Neural Network Method
The CNN algorithm is iteratively trained with a certain model
to extract the features. It has been adopted for crack detection
(Chen and Jahanshahi, 2017), sensor fault conditions (Yao et al.,
2020), and pipe corrosion (Chae et al., 2020). Additionally, the
advantages of the CNN algorithm are that it can automatically
perform the feature extraction and has no pressure on the high-
dimensional data processing. Meanwhile, it needs to adjust the
parameters need and requires a large size of the sample.

Deep Neural Network Technique
The DNN technique has been proposed for the transient
detection (Mo et al., 2007), PHM (Rezaeianjouybari and Shang,
2020), fault state detection of the solenoid operated valves (Utah
and Jung, 2020), and the novel fault scheme (Saeed et al., 2020)
in the NPP. In addition, Chae et al. (2020) combined the long–
short term memory (LSTM) network with the SVM and CNN
approach to diagnose the pipe corrosion in the NPP. Finally, the
LSTM network, which is an RNN approach, was also applied for
the bear fault in the NPP (Miki and Demachi, 2020). It has a
strong learning ability while the model design is complex.
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TABLE 3 | Status of the data-driven machine learning (DDML) of the algorithm type method for the fault diagnosis and detection (FDD) in the nuclear power plant (NPP).

References Methods Type Characteristics

Moshkbar-Bakhshayesh (2020) FFBPNN Neural network type Fast classification; decrease in accuracy

Moshkbar-Bakhshayesh (2020) BPNN Neural network type Self-learning ability; low efficiency

Moshkbar-Bakhshayesh and Ghofrani
(2013), Ling et al. (2020), and
Rezaeianjouybari and Shang (2020)

RNN Deep learning type Execute complex data; vanishing gradient

Chen and Jahanshahi (2017), Chae
et al. (2020), and Yao et al. (2020)

CNN Deep learning type Automatically feature extraction; require a lot of sample

Mo et al. (2007), Chae et al. (2020), Miki
and Demachi (2020), Rezaeianjouybari
and Shang (2020), Saeed et al. (2020),
and Utah and Jung (2020)

DNN Deep learning type Strong learning ability; complex model design

Mandal et al. (2017b), Oh and Lee
(2020), Peng et al. (2018), Vaddi et al.
(2020), and Zhao et al. (2020)

DBN Deep learning type Quickly adjustment; requirement of a lot of data

Rezaeianjouybari and Shang (2020) RBM Deep learning type

Ayodeji et al. (2018) and Wang et al.
(2019)

RBF Kernel-based Type Fast in convergence; require a lot of data

Deep Belief Network and RBM Method
The DBN method is a major method of the Bayesian network
(BN). It was applied to classify the fault data of the thermocouple
sensors (Mandal et al., 2017b), accident prediction (Peng et al.,
2018), operation failure of the high temperature gas-cooled
reactor (Zhao et al., 2020), loss of coolant accident (LOCA)
identity (Oh and Lee, 2020) and cybersecurity threats (Vaddi
et al., 2020) in the NPP. Lastly, the DBN can be seen as a
stack of the RBM (Rezaeianjouybari and Shang, 2020). The DBN
and RBM method belong to the neural network (NN) method.
Hence, the pros and cons of the two techniques are the same as
the ANN approach.

Other Techniques
For the kernel-based type approach, the above SVM comes to the
first place. Followed with the SVM, the RBF was adopted for the
transients monitoring (Ayodeji et al., 2018; Wang et al., 2019). It
is fast in convergence while it requires a lot of data. In addition,
Moshkbar-Bakhshayesh (2020) investigated the feed-forward
back-propagation neural network (FFBPNN), backpropagation
neural network (BPNN), DT and SVM for the uncontrolled
withdrawal of control rods in the NPP. The advantages and
disadvantages of these methods are shown in Table 3.

DEVELOPMENT OF DDML FOR FDD IN
NPP

Currently, huge achievements have already been made in its
applications to predict the behaviors of the NPP. Therefore,
there is a need to summarize the latest applications of the
DDML in the NPP. It can also open future prospects to
improve the accuracy of the FDD and have insights into the
underlying mechanisms.

Furthermore, the DDML is a promising area with a flexible
and efficient fitting algorithm. It does not underlie physical
knowledge. Tables 4–6 summarize the approaches taken by a

wide range of authors recently. Generally, the DDML for the FDD
in the NPP can be classified into three areas: (1) reactor system,
(2) reactor component, and (3) reactor condition monitoring.

Latest Applications of DDML for FDD in
the NPP System
As shown in Table 4, the DDML has been utilized for the FDD
in the reactor coolant system (Ayodeji and Liu, 2018a; Farber
and Cole, 2020), secondary loop system (Dong and Zhang, 2020),
instrumentation control system (Holbert and Lin, 2012), and
feedwater system (Zio, 2007) in the NPP.

First, Ayodeji and Liu (2018a) proposed the SVM for the
incipient fault conditions of the reactor coolant system in the
pressurized water reactor. In addition, Farber and Cole (2020)
combined the ANN with the physical model-based method for
the loss of coolant accident (LOCA) of the reactor coolant
system. Then, Dong and Zhang (2020) presented the causality
graphs, which belong to the BN approach for the secondary
loop system in the NPP. Afterward, Holbert and Lin (2012)
integrated the fuzzy logic, which is a kind of the NN techniques
for the instrumentation control system in the NPP. At last, Zio
(2007) utilized the SVM approach for the feedwater system of a
boiling water reactor.

TABLE 4 | Latest applications of the data-driven machine learning (DDML) for the
fault diagnosis and detection (FDD) of the nuclear power plant (NPP) system.

References Methods Objectives

Ayodeji and Liu (2018a) SVM Reactor coolant system

Farber and Cole (2020) ANN + physic model

Dong and Zhang (2020) BN (Causal graphs) Reactor secondary
loop system

Holbert and Lin (2012) NN (fuzzy logic) Instrumentation control
system

Zio (2007) SVM Feedwater system
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TABLE 5 | Latest applications of the data-driven machine learning (DDML) for the
fault diagnosis and detection (FDD) of the nuclear power plant (NPP) component.

References Methods Objectives

Baraldi et al. (2013) Clustering Pressurizer

Zhang et al. (2020) RNN (LSTM)

Di et al. (2013) PCA + Regression Reactor coolant
pump

Liu and Zio (2017) SVM

Lu and Upadhyaya (2005) NN (GMDH) Steam
generator

Zhao and Upadhyaya (2005) BN (causal graphs)

Razavi-Far et al. (2009) NN (fuzzy logic)

Li et al. (2012) PCA

Ayodeji and Liu (2018b) Regression

Ayodeji and Liu (2019) ML

Oluwasegun and Jung (2020) ANN Control rod

Moshkbar-Bakhshayesh (2020) DT + FFBPNN + SVM

Biet (2012) kNN + Sparse Turbine
generator

Zhang et al. (2013) BN (causal graphs)

Ren et al. (2016) SVM + Sparse Bearing

Zhao and Wang (2018) DNN

Miki and Demachi (2020) RNN (LSTM)

Upadhyaya et al. (2003) PCA + NN (GMDH) Sensors

Mandal et al. (2017a) SVD

Mandal et al. (2017b) DBN

Choi and Lee (2020) RNN

Yu et al. (2020) PCA

Nguyen et al. (2020) Physic model

Wang et al. (2021) SVM + PCA + clustering

TABLE 6 | Latest applications of the data-driven machine learning (DDML) for the
fault diagnosis and detection (FDD) of the nuclear power plant (NPP)
condition monitoring.

References Methods Objectives

Mo et al. (2007) DNN Transient diagnosis

Moshkbar-
Bakhshayesh and
Ghofrani (2013)

ANN

Ma and Jiang
(2011)

ANN

Ma and Jiang
(2011)

ANN Loose part monitoring

Meng et al. (2020) SVM

Zhao and
Upadhyaya (2005)

BN (causal graphs) Incipient fault monitoring

Chen and
Jahanshahi (2017)

CNN + NB Crack monitoring

Chae et al. (2020) SVM + CNN + LSTM Pipe corrosion monitoring

Wang et al. (2018) MC Cyber-attack monitoring

Vaddi et al. (2020) DBN

Latest Applications of DDML for FDD in
the NPP Component
In Table 5, the reactor components, which include the pressurizer
(Baraldi et al., 2013; Zhang et al., 2020), reactor coolant pump

(Di et al., 2013; Liu and Zio, 2017), steam generator (Lu
and Upadhyaya, 2005; Zhao and Upadhyaya, 2005; Razavi-Far
et al., 2009; Li et al., 2012; Ayodeji and Liu, 2018b, 2019),
control rod (Moshkbar-Bakhshayesh, 2020; Oluwasegun and
Jung, 2020), turbine generator (Biet, 2012; Zhang et al., 2013),
bearing (Ren et al., 2016; Zhao and Wang, 2018; Miki and
Demachi, 2020), and sensors (Upadhyaya et al., 2003; Mandal
et al., 2017a,b; Choi and Lee, 2020; Nguyen et al., 2020; Yu
et al., 2020; Wang et al., 2021) are captured by different
modeling techniques.

Initially, Baraldi et al. (2013) tested the clustering for the FDD
in the pressurizer in the NPP. Later, Zhang et al. (2020) applied
the LSTM for the water lever prediction of the pressurizer.
For the reactor coolant pump, Di et al. (2013) conducted
the FDD for the reactor coolant pump with the PCA and
kernel-based regression method. Finally, Liu and Zio (2017)
predicted the leakage from the reactor coolant pump with
the SVM.

However, Lu and Upadhyaya (2005) adopted the group
method of data handling method (GMDH), which is a kind
of the NN approach for modeling the interrelationship of
the U-tube steam generator (UTSG). Zhao and Upadhyaya
(2005) presented the causal graphs for a pressurized water
reactor. Razavi-Far et al. (2009) detected the faults of the
steam generator using the fuzzy logic technique. Meanwhile,
the PCA (Li et al., 2012) and support vector regression
(Ayodeji and Liu, 2018b) are also adopted for the FDD of the
steam generator.

For the control rod, Oluwasegun and Jung (2020) provided
the health monitoring with the ANN approach. Meanwhile,
Moshkbar-Bakhshayesh (2020) predicted the uncontrolled
withdrawal of control rods transient with the DT, FFBPNN, and
SVM. In addition, Biet (2012) recoded the rotor faults of the
turbine generator with the kNN and sparse. However, Zhang
et al. (2013) developed the causal graphs for the FDD of the
turbine generator. Furthermore, the SVM plus sparse, DNN,
and LSTM approaches for the FDD of the roller bearing were
also proposed, respectively (Ren et al., 2016; Zhao and Wang,
2018; Miki and Demachi, 2020). Lastly, various techniques,
including the PCA, GMDH, SVD, DBN, RNN, and clustering,
are carried out for the sensor faults correspondingly in the NPP
as shown in Table 4 (Upadhyaya et al., 2003; Mandal et al.,
2017a,b; Choi and Lee, 2020; Nguyen et al., 2020; Yu et al., 2020;
Wang et al., 2021).

Latest Applications of DDML for FDD in
the NPP Condition Monitoring
To satisfy the reliability, safety, and economics of the
NPP, the condition identification of the NPP is expected
to become increasingly popular as shown in Table 6
(Moshkbar-Bakhshayesh and Ghofrani, 2013).

For the transient monitoring, Mo et al. (2007) proposed
the DNN for the NPP. Furthermore, the ANN method for
the transient monitoring in the NPP is mainly reviewed
(Moshkbar-Bakhshayesh and Ghofrani, 2013; Ma and Jiang,
2011). Additionally, the ANN and SVM approaches have
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been adopted for the loose part monitoring (Ma and Jiang,
2011; Meng et al., 2020). Meanwhile, the causal graphs are
also utilized for the incipient fault monitoring (Zhao and
Upadhyaya, 2005). Moreover, Chen and Jahanshahi (2017)
detected cracks on the underwater metallic surfaces from the
nuclear inspection videos with the CNN and NB techniques.
Furthermore, three approaches, including the SVM, CNN, and
LSTM, are combined for the flow-accelerated corrosion of the
pipe in the NPP (Chae et al., 2020). Especially, the new threats
of the cyber-attack scenarios in the NPP are identified with
the MC and DBN methods (Wang et al., 2018; Cyber threats:
Vaddi et al., 2020).

Further Development of DDML for FDD
in NPP
The DDML is of emerging interest in the FDD in the
NPP. As mentioned above, significant efforts have already
been taken in the prediction of the NPP behaviors. The
future development of the DDML for the FDD in the NPP
can be concluded based on the latest applications of the
DDML for the FDD in the NPP as described in sections
“Latest Applications of DDML for FDD of NPP System” to
“Latest Applications of DDML for FDD of NPP Condition
Monitoring.”

Combination of DDML and Physic Model-Based
Approach
For the DDML, the training data input and the results output.
Hence, it is commonly regarded as a “black box.” Although
the physic model-based techniques are difficult to be proposed
to describe the research objects, it still has its advantages.
However, the combination of the DDML and physic model-
based approach can help better understanding of the physical
process (Farber and Cole, 2020). Furthermore, the DDML
can be illustrated the experiment data clearly if the physic
model-based approach functions. It should be noted that
the hybrid of the DDML and physic model-based approach
may attribute to higher computational resources. Nevertheless,
it can provide reasonable and accurate insights into the
physical processes.

Hybrid of Different Time-Scale Methods
In Tables 4–6, various methods for the FDD of the reactor
systems, reactor components, and reactor condition monitoring
are illustrated generally. Among them, there are hybrid
of two or more techniques (Upadhyaya et al., 2003; Di
et al., 2013; Ren et al., 2016; Chae et al., 2020; Moshkbar-
Bakhshayesh, 2020; Wang et al., 2021). In particular, the time
scale of the physical process of each object differs, which
corresponds to its suitable methods for the FDD. Especially,
the hybrid of the two or more methods for the FDD can
be a superior solution for the evolution of the NPP. By
this hybrid, it can present both the short-time and long-time
behaviors of the NPP.

Sparse Data Treatment
Due to the safety, reliability, and economic issues, there is
usually a lack of the experiment data of the FDD in the NPP.
For a reactor system, reactor component, and reactor condition
monitoring, not every parameter or data can be obtained.
Therefore, there is a need for the DDML approach that is
suitable for the sparse data. Special DDML can meet the urgent
requirement properly.

Accurate and Fast Simulations
From the above treatment, the experiment data are hardly
obtained under some conditions. Hence, the simulations
are commonly performed to generate the training data
(Wang et al., 2020; Yu et al., 2020). An accurate and
fast simulation can understand the system, component,
or condition with relatively acceptable computation cost.
Detailed simulations are costly. One solution is to create
a database of the historic results for the simulations
and then train the DDML model. Later, DDML can also
contribute to the experiment design for reasonable relatively
fewer experiments.

CONCLUSION

In this paper, the state-of-the-art progress on the DDML
for the FDD in the nuclear industry, which is an
emerging interest on both the DDML approach for the
FDD and the NPP, is reviewed. The main conclusions
are obtained.

First, the DDML for the FDD in the NPP, which includes
the supervised learning type, unsupervised learning type, and so
on, are classified clearly with their characteristics, which help a
comprehensive overview of the DDML.

1. Then, principles of various DDML for the FDD in the NPP,
in particular, the DDML of the supervised learning type
and deep learning type are explained in detail.

2. Furthermore, the latest applications of the DDML
for the FDD, which consist of the reactor system,
reactor component, and reactor condition monitoring
are illustrated.

Lastly, the future development of the DDML for the FDD
in the NPP is concluded. Considering the accuracy, complexity,
and computation amount, the combination of the DDML and
physic model-based approach, hybrid of different time-scale
methods, accurate, and fast simulations are the future trends for
the FDD in the NPP.

Compared with the physic model-based and reliability-based
techniques, the DDML have superior advantages in the trade-
off between the safety, reliability, and economics of the NPP.
With the advancement of the information technologies and ML
algorithms, together with the hybrid of the various approaches in
different time scales, the DDML is to be a promising technique
for the advanced NPP modeling in the future.
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NOMENCLATURE

ANN The artificial neural network

BPNN The back propagation neural network

BN The Bayesian network

CNN The convolutional neural network

DBN The deep belief network or dynamic Bayesian network

DDML The data-driven machine learning

DNN The deep neural network

DRL The dimension reduction learning

DQN The deep Q learning network

DT The decision tree

EL The ensemble learning

FDD The fault diagnosis and detection

FFBPNN The feed-forward back-propagation neural network

GMDH The group method of data handling

kNN The k-nearest neighbor

LOCA The loss of coolant accident

LSTM The long–short term memory

MC The Monte Carlo

ML The machine learning

NB The naive Bayes

NN The neural network

NPP The nuclear power plant

PCA The principal component analysis

PHM The prognostics and health management

RBF The radial basis function

RBM The restricted Boltzmann machine

RNN The recurrent neural network

RT The random tree

SVD The singular value decomposition

SVM The support vector machine

UTSG The U-tube steam generator

b The model parameter

c1, c1, c3 The category in the kNN method

w The normal vector to the hyperplane

w1, . . ., wn The synaptic weights

w The magnitude

x1, . . ., xn The input signals

xu The prediction point in the kNN method

yk The output signals

ϕ(·) The activation function
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