
Received: 30 July 2020 - Revised: 29 March 2021 - Accepted: 26 April 2021 - IET Cyber‐Physical Systems: Theory & Applications
DOI: 10.1049/cps2.12017

O R I G I N A L R E S E A R C H PA P E R

Table‐based formal specification approaches for control
engineers—empirical studies of usability

Suhyun Cha1 | Birgit Vogel‐Heuser1 | Alexander Weigl2 | Mattias Ulbrich2 |
Bernhard Beckert2

1Chair of Automation and Information Systems,
Technical University of Munich, Garching, Germany

2Institute of Theoretical Informatics, Karlsruhe
Institute of Technology, Karlsruhe, Germany

Correspondence

Suhyun Cha, Chair of Automation and Information
Systems, Technical University of Munich,
Boltzmannstr. 15, 85748, Garching, Germany.
Email: suhyun.cha@tum.de

Funding information

Deutsche Forschungsgemeinschaft, Grant/Award
Number: VO 937/28‐2, BE2334/7‐2, UL 433/1‐2

Abstract
The dependability characteristic of the control software of manufacturing systems is
highlighted more than before, going through repeated changes to cope with various and
varying requirements. Formal methods are researched to be applied to automation system
engineering to obtain a more effective and efficient quality assurance. One of the ap-
proaches, a formal specification language named Generalised Test Tables has been devel-
oped with the aim of intuitiveness and accessibility for automation application developers.
The result of the experiments conducted to assess the usability of this language is presented
here. Focussing on evaluating effectiveness and user satisfaction, three paper‐based ex-
periments have been conducted with students at the bachelor and master level. The eval-
uation results point to positive usability in both comparative effectiveness to conventional
language, that is, Petri Nets, and subjective perception of user satisfaction.

1 | INTRODUCTION

Cyber‐physical production systems (CPPS), including
manufacturing machines and logistics, have become more
complicatedfollowingcurrent trendssuchas increasingcustomer
flavour variety [1]. CPPS, also called as automated Production
Systems (aPS) [1], are Cyber‐Physical Systems applied in the
domain of manufacturing or production [2]. The proportion of
system functionalities realised by the software in aPS is increasing
[3] to benefit from its software's flexibility, among various disci-
plines, namely mechanics, electrics/electronics, and software [4].
Malfunctioning control software of such systems may cause
damage to the system itself, to payloads (and correspondingly
customers), or even to persons within the reach of the system;
therefore, sufficient softwarequality assurance is essential [5]. aPS
are usually automated with Programmable Logic Controllers
(PLCs), and these computing devices with control software are
expected to control aPS with assured quality in dependable and
safety–critical real‐time environments [6].

In today's industrial practice, control software quality is
commonly achieved by dynamic validation either through step‐
by‐step manual testing or automatically generated test cases [7].
However, the main weakness of traditional testing is that one

test case covers only a single, particular run of the aPS soft-
ware. This implies that system behaviour is often not fully
explored during validation and that some scenarios remain
untested, which might lead to an incomplete proof of software
correctness. Unpredictable and rare malfunctions may there-
fore remain, and this can have severe consequences. In contrast
to testing, formal verification achieves full coverage by proving
the correctness of an implemented programme mathematically
and exhaustively regarding the given specifications. Moreover,
formal verification in comparison could be suitable to satisfy
the requirement of guidelines or regulations related to reli-
ability, utilising its completeness in the process of re‐validation,
which is often required by regulations for each change of a
safety–critical aPS [8]. Thus, there is a need to support formal
verification of PLC software [9, 10].

Yet, formal verification is not commonly used to verify the
correctness of a control software [11–13]. One of the main
reasons for this is that it is difficult to specify the desired
temporal properties of a system since that requires expert
knowledge of high mathematical training in formal specifica-
tion languages [14, 15]. Even worse, in many cases, an informal
description of the requirements that could be used as a basis
for a formal specification [8] is not even available. The use of a

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is
properly cited.

© 2021 The Authors. IET Cyber‐Physical Systems: Theory & Applications published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.

IET Cyber‐Phys. Syst., Theory Appl. 2021;1–15. wileyonlinelibrary.com/journal/cps2 - 1

https://doi.org/10.1049/cps2.12017
https://orcid.org/0000-0001-7477-8008
https://orcid.org/0000-0003-2785-8819
mailto:suhyun.cha@tum.de
https://orcid.org/0000-0001-7477-8008
https://orcid.org/0000-0003-2785-8819
http://wileyonlinelibrary.com/journal/cps2

well‐defined specification language could provide the addi-
tional benefits of maintenance, reuse, and trouble‐shooting as
well as formal verification [11]. Ljungkrantz et al. [11] even
claim that ‘today's need for control software developers to
understand mechanical and electrical drawings might also be
less important if better specifications were available.’

To tackle this problem, we have suggested a formal spec-
ification language in the recent works [16, 17], namely
Generalised Test Tables (GTTs). The origin of GTT lies in test
tables that are the industry's practices to describe test cases in
the table form [18, 19]; and GTT can be used as a formal
language for verification purposes supplementing testing by
generalising test tables. The technical applicability of the lan-
guage has been demonstrated and evaluated in [8] regarding
formally analysed expressiveness and as a result of verification
experiments using a set of demonstrator scenarios.

A formal specification language works as a communication
medium between peers [20] of the requirement, the verifier,
and the user of the verification. Therefore, usability is as
important as the functional effectiveness of the language.
While these types of languages that provide concepts and
notations tailored for a specific purpose [21] are being devel-
oped to obtain higher productivity in system engineering
through appropriate notations and abstractions, the usage rate
of these is comparably low often due to the frequent absence
of usability validation [22, 23]. Thus, the need to understand
the usability of the developed language leads to evaluation
initiatives valuing the result by following the standard defini-
tion of usability [24]. The International Organisation for
Standardisation (ISO) [25] defines usability as ‘the extent to
which a system, product, or service can be used by specified
users to achieve specified goals with effectiveness, efficiency,
and satisfaction in a specified context of use.’ (Note: This is a
definition from ISO/IEC 9241‐210. Standards including us-
ability, e.g. ISO 25010:2011—also known as withdrawn ISO
9126‐1, refer to this definition.) With regard to these three
factors, we focussed on effectiveness and user satisfaction.

The evaluation experiments presented in this paper were
conducted to understand effectiveness and user satisfaction.
Effectiveness means the possibility of accomplishing a suc-
cessful task and that a user should be able to comprehend and
create artefacts in the (modelling) language to an acceptable
degree, as summarised by Schalles et al. in [26] in this regard. User
satisfaction means the degree to which user needs are satisfied in
the usage [27] (it is defined similarly in different works of liter-
ature such as [26, 28]). In three experiments, potential users of
the developed language participated in the training, exercises,
and a user perception questionnaire for the analysis of (i) how
much effectiveness is achieved compared with conventional
language, (ii) how much satisfaction the users perceive during
usage of the language; and (iii) assessed feedback to elaborate the
developed language coming up with the users’ perspective.

The paper’s outline is given as follows: First, the ap-
proaches of domain‐specific languages for formal specifica-
tions are reviewed together with usability evaluations in
Section 2. In Section 3, the target language, GTTs, is intro-
duced. In Section 4, research questions (RQs) and

corresponding hypotheses are stated for the experiments. The
experiment plans and results are presented in Section 5 and 6,
respectively, followed by the summary of the hypotheses’
proofs and a discussion of validity in Section 7. Finally, the
paper closes with the conclusion and an outlook in Section 8.

2 | RELATED WORKS

Since this paper presents the evaluation of a developed formal
specification language's usability, this section addresses states
of related research works about formal specification ap-
proaches of automation system in Section 2.1 and their us-
ability studies in Section 2.1.

2.1 | Formal languages used in formal
verification of aPS control software

Although formal verification of aPS behaviour is a comparably
recent research topic, some works have focussed on verifying
PLC software using model checkers with conventional logics as
specification from [29] up to [30]. Some research already tar-
geted formal verification of the IEC 61131‐3 programme (e.g.
[31–33]). Specification relaxation is another stream to ease the
specification elaboration to benefit from counterexample, for
example, [34] as a recent approach.

Formal languages to specify desired behaviour have also
interested researchers. Dwyer et al. [35] present initial work
applicable for industrial cases as property specification patterns.
Pattern‐based approaches have been tailored for automation
systems with regard to safety patterns for production systems
engineering (e.g. [36]) or for automotive control units (e.g. [37]).
More accessible to engineers, graphical specification languages
are developed and used. Grafcet [38] is a widely used standard
due to its accessibility and still researched for modelling (e.g.
[39]). Timing diagrams have also been considered as a major
graphical language as utilised in [7] or [40] exemplarily. Darvas
et al. [41] presented a formal specification language for PLC
programs aiming at code generation, although it lacks details of
state change descriptions. Przigoda et al. [42] utilised Unified
Modelling Language (UML) and Object Constraint Language
(OCL) models to be used for property verification. GTTs [16,
17] are suggested recently as a formal specification language of
reactive systems, covering usability limitations. This approach is
motivated by test tables suggested by industry, as they are pref-
erable and introduced in Section 3.

2.2 | Usability study of specification
languages

Domain‐specific languages provide concepts, notations elab-
orated for a specific purpose, and higher productivity in system
engineering [21]. Since model‐based engineering methodolo-
gies are pervasive, metamodels and languages appear in various
forms to satisfy goals and needs. Focussing on specific aims

2 - CHA ET AL.

often hinders the actual usage aspects and then the language is
only left in theory. There are studies regarding the usability of
modelling languages that are usually used to design systems or
the usability of a tool itself regarding the user interfaces (e.g.
[43]). Since the GTT approach aims at a formal specification,
some works focussing on the evaluation of specification lan-
guages are stated here.

Teruel et al. [44] present a brief result of usability evaluation
for a requirement modelling language showing a completeness
rate and a user satisfaction analysis. Snook and Harrison [45]
show the similar comprehensibility between a formal specifica-
tion language and Java. Carew et al. [46] experiment for the
acceptance level of formal and informal specification and
training time for formal language. Razali et al. [47] present the
usability experiment result of the combination of semi‐formal
and formal language with regard to comprehensibility and
preferences, and conclude that the combination is useful in
promoting specification. Timing‐diagram‐based language im-
plies usability of the conventional timing‐diagram, and pattern‐
based approaches (e.g. [36, 48]) are also regarded as usable,
initiated by categorising existing specifications and extracting the
patterns. Focussing on this aspect, Pakonen et al. [15] review the
accessibility of several specification languages regarding
coverage of predefined formal properties as effectiveness eval-
uation in terms of ISO standards. Empirical evaluation result is
reported including the subjective confidence aspect, for a dia-
grammatic representation in [49]. Another modelling language is
presented together with a brief notation evaluation in [50]. Un-
fortunately, not many usability evaluation studies could be found
for most of the specification languages stated in the previous
section. Even though the developed or extended language is
regarded to entail a certain level of usability implicitly inherited
from the origin, the usability of the developed language should
be re‐evaluated for its formation as well as objective changes.

3 | TARGET LANGUAGE

AGTT is a formal specification language designed to represent a
set of allowed reactive systems’ behaviours, originated from
concrete test tables that are test cases from industry practices. A
test case indicates a sequence of concrete input and output value
pairs (I�O) where I andO describing the domain of input and
output values of the system are under test. Each entry (i,o) in
(I�O) is a step in the test where i is the concrete input stimuli to
the system, and o is the expected response. Since the output of
the reactive system depends not only on the current input, but
also on the input history, a description in a table form is used to
specify steps (rows) in which values are passed to inputs, and the
resulting output variables of the system (columns).

While a test table represents a single test case with concrete
values in the cells, GTTs describe a family of test cases by
substituting concrete values with constraint expressions based
on generalisation concepts (cf. Figure 1: Full details of the lan-
guage, including the syntactic and semantic formalisms, can be
found in [8, 17])

� Abstraction: cells may contain constraint expressions to
represent possible concrete values as described ‘value in the
interval from 0 to p’ in [#3:X], or ‘value greater than Y/2’ in
[#3:Z].

� Referencing: corresponding relations among cells can be
expressed using global variables [#2:B], for example, [#2:C],
[#2:X], [#3:B], and [#3:X] with value constraints related to
‘p’, or cell indices (i.e., column names) used in other cells, for
example [#2:Y], [#2:Z], [#3:Y], and [#3:Z]. Referring by
column name can be expressed with designating relative
cycles such as ‘[‐n]’ for the n‐th previous scan cycle.

� Duration generalisation: possible repetition cycles and rows
are specified using a duration constraint describing lower and
upper bound of the execution, for example [#2:Duration],
meaning that the row must be repeated more than five times.

� Block repetition: some consecutive rows can be grouped
with a specific symbol with its own duration (or repetition)
constraint. Row groups can be nested.

Formally, a GTT represents a regular expression over the
pairs of pre‐ and post‐conditions (φ, ψ) ∈ CΣ where CΣ is the
set of all constraints over variable signature Σ consisting of the
input and output variables of the system. A tuple (φ, ψ) models
a single row, where the constraints for the input (φ) and output
(ψ) are conjunctively joined. The row and group repetition is
expressed via the repetition operators. Hence, a GTT describes
the set S of sequences of pre‐and post‐conditions, that is, S ⊆
(φ, ψ)*. Considering all possible value combinations of
constraint in G, the conformance of a system against a GTT G
is defined as conforming to Σ. Until the end of the table or
invalid input (regarding the pre‐conditions) is received, the
system conforms with an instantiated GΣ if and only if its
outputs do not violate the sequence of post‐condition. This
concept has been defined with a two‐party game between a
reactive system and a GTT in [17].

Compared to the other approaches indicated in Section 2
exemplarily, this GTT approach has been motivated by the
industry practices, that is, test tables, which are also embedded
within one of the most common IEC61131‐3 development
environments (CODESYS Test Manager [51]). Although
various formats have been suggested as intuitive methods,
many have been rejected to be used in day‐to‐day aPS engi-
neering activities mainly due to its additional effort for the
automation engineers to get trained. In this context, this paper
targets to investigate how much the developed approach ac-
cords with the main objective; and this will be discussed in
detail in the next section.

4 | RESEARCH QUESTIONS AND
HYPOTHESES

A newly developed language would be promoted more for its
usage in engineering activities if it were evaluated with regard
to its usability as well as its technical utility and if it were
evolved based on evaluation analyses. To accomplish such

CHA ET AL. - 3

purposes, we have formulated the following RQs regarding
usability of GTTs under consideration of effectiveness and
user satisfaction:

� RQ1: Is the target language effective for the purpose?
� RQ2: Is the target language satisfactory for automation

engineers?

Considering major usage activities of the specification lan-
guage, as applied in [52] and described in [53], effectiveness could
be defined as the ability to understand, create and learn per-
spectives. Looking at each of these chronologically, creating is
important to represent the intention of the requirement (prop-
erties) in the viewpoints of the automation engineers, that is,
developers or testers of the automation system software, as
grounds for verification. Also, understandability is important for
developers to figure out whether the existing specifications de-
pict the property correctly or how the specifications diverge from
the intention. For the proper use of the language, the user must
understand it correctly with regard to its syntaxes and semantics.

To measure usability with regard to these aspects, an eval-
uation of the control language, Petri Nets (PN), was also con-
ducted to see the comparable dominance compared with the
conventional language objectively instead of solely measuring
the absolute degree. For the tasks, the language should be able
to deliver the originally intended semantics to the user through
the understanding activity. This can be assessed by observing
whether users comprehend the intention of the specified de-
scriptions in the language (H1.1). In reverse, the language
should be able to appropriately describe the intended behaviour
by the user. This can be assessed by observing whether users
use defined notations of the language properly to describe the
given behaviour (H1.2). If the understanding and creation of
activities regarding the target language depend on the specific
knowledge or experience of the user, the aim of user accessi-
bility is faced since the successful result of these activities would
be affected by individual knowledge or background levels, not
by the language itself, and the domain experts with prior
knowledge are not necessarily the language's end users [20]
(H1.3). Additionally, scalability of the language is to be
considered with the assumption of usage for practical cases.
Although it would be systematically possible to describe
enlarged behaviour, comprehension and creation of the scaled
version by users, is assessed separately (H1.4).

The degree of user satisfaction is another aspect to be
researched with regard to the usability of the language. Based
on the system usability scale items [54] in consideration of the

major activities of language usage, users must have confidence
regarding comprehension and creation after some experience
in using it (H2.1, H2.2). From the same point of view, the
degree of experience for learning should not be regarded as
very large (H2.3). In addition, the degree of satisfaction would
be related to the users’ will to utilise it as a solution or, more
specifically, as a tool to achieve the solution (H2.4, H2.5). The
hypotheses regarding each RQ are summarised in Table 1.

5 | EVALUATION EXPERIMENT

Over the 2019 summer semester and the 2019–2020 winter
semester, three experiments were conducted with master and
bachelor students of the mechanical engineering department at
the Technical University of Munich. The experiments were
conducted in a paper‐based manner since the application was
still in development. The subsections describe each of the
experiment designs and participants. All the programme codes
given to students during the experiments were in IEC 61131‐3
Structured Test.

For the control language in the comparison experiment,
Condition/Event (C/E) type PN [55] was selected among
various types of PN for two reasons. First, C/E PN has a
similar mechanism to represent the behaviour evolution of the
system without handling tokens to avoid unnecessary disad-
vantages in the control language. It consists of the conditions
and resulting events without tokens. The conditions could be
comparable with the input section of the GTT and the
resulting event to the output section. As long as the GTT does
not have a divergence, it works similar to the GTT since one
behaviour path is indicated as GTT. Second, the participants
were well aware of it since it had been taught in another
mandatory course as a system behaviour description language.
To cover the participants who did not know about it, a cor-
responding lecture had been conducted before the experiment
(cf. Section 5.2).

The given tasks for the evaluations are developed based on
a lab‐sized manufacturing plant demonstrator, extended Pick &
Place unit (xPPU) [56] which has been invented to benchmark
evolution scenarios of aPS. Although xPPU is quite simple
comparable with the actual plant system, it realises the basic
functionalities representative as identified by Spindler et al.
[57]. Tasks in the evaluation are based on some of the sce-
narios, component parts, or comparable machines from the
actual machines.

5.1 | Comparing the effectiveness of GTT
and PN concerning understanding and
creating with separated participant groups
(Experiment 1)

This experiment (Exp‐1) consists of a one‐hour tutorial of the
target language, that is, GTTs, given to the participants in the
form of a lecture allowing them to ask questions and including a
review of examples. Tasks were given to the participants

F I GURE 1 An example of a Generalised Test Tables (GTT; derived
from [16])

4 - CHA ET AL.

separately in the target language (GTT) and the control language
(PN) for comparison. The first experiment was also planned as a
preliminary measurement of the appropriate level of tasks.

Following paper‐based exercises, tasks had to be answered
during another hour, one week after the training, due to the
timing constraint. To estimate the participants’ achievement, two
different scales of specifications and target systems were pro-
vided as understanding tasks followed by one creating task. The
evaluation session was proceeded by the presenter in front of the
participants. The participants were divided into two groups and
provided with the behaviour described in GTT or PN. Each
group received the specification of each language alternately in
two understanding tasks, so that they would not be biased by the
learning effect of the tasks. A summary of notations of each
language was provided to all participants, so that theywere not to
be biased unnecessarily by not recalling notations.

In task1 (simpler understanding task, 150), a brief
description in the natural language and a formal specification
(in GTT for Group1 and in PN for Group2) were provided as
information of the target system block. Participants were
requested to understand the given information and then find
errors in the programme code. Task2 (scaled understanding
task, 150) was framed the same way, but with another system
block and the formal specification was assigned the opposite
way: in PN for Group1 and in GTT for Group2. The assigned
time was set for task1 despite the increased scale since the
number of erratic parts was reduced. For task3 (creating task,
300), a precise description in the natural language and the
corresponding programme code were provided as information
about the target system block. Participants were requested to

understand the given information and then create a formal
specification in both GTT and PN. More time was assigned,
assuming that creating requires more time than understanding
since it requires more processes such as notation diversity,
syntax check, and structuring [58].

5.2 | Comparing the effectiveness of GTT
and PN concerning understanding and
creating with balanced tasks (Experiment 2)

This experiment (Exp‐2) was designed based on the analysis of
Exp‐1 and conducted as part of the class exam with 34 master
course students. Learning from the Exp‐1 and its result, which
will be discussed in detail in the next section, as well as the
complexity level between GTTs and the control language (PN),
were to be balanced more precisely and correctly. Since the
participants had to handle both GTTs and PN as specification
languages for each task, the target behaviour of each should
not be the same due to the learning effect. In other words, one
might recognise behaviour with the easier language for him/
herself and try to apply it to the other if the same system is
given in two languages. Instead, the system for each language
was different, but the complexity of the behaviour described in
the language was controlled to be at the same level. For this,
each had the same table size when described in GTTs and the
same number of places and transitions in PN. It was learnt
from Exp‐1 that not all the lecture participating students were
aware of PN clearly and the knowledge level should be
balanced for the comparison, otherwise fewer number of the

TABLE 1 Research questions (RQs) and related hypotheses

RQ Related hypothesis Proof method

RQ1: Is the target language effective
for the purpose?

H1.1: A user can understand a system behaviour by the
specifications in GTTs similar to or better than by the
conventional language (Petri Nets [PN]).

Score comparison of the understanding specification
task in GTTs and PN

H1.2: A user can create a specification regarding a system
behaviour in Generalised Test Tables (GTTs) similar to or
better than in the conventional language (PN).

Score comparison of the creating specification task in
GTTs and PN

H1.3: Understanding and creating specifications in GTTs are
less related to the background knowledge of the user
regarding software engineering than to the conventional
language (PN).

Correlation study between the understanding task
score and the personal grade

H1.4: The score of the understanding task is less sensitive to the
scale of the specification in the target language than the
conventional language (PN).

Correlation study between the specification
complexity and the score comparison of the
understanding task

RQ2: Is the target language
satisfactory for automation
engineers?

H2.1: Users have confidence in understanding a specification in
GTTs.

Questionnaire

H2.2: Users have confidence in creating a specification in GTTs. Questionnaire

H2.3: Users think the language, that is GTTs, is reasonably
learnable.

Questionnaire

H2.4: Users are satisfied with the language, that is GTTs as a
behaviour specification representation method in general.

Questionnaire

H2.5: Users would like to use the language, that is GTTs, as a
behaviour specification representation method in the future.

Questionnaire

CHA ET AL. - 5

participants would be regarded as valid which might affect the
validity of the experiment results. Thus, a comparable training
session for PN was conducted for the lecture students and
relevant materials were given as done for GTT.

Two tasks were provided in Exp‐2 with subtasks for each.
In the first task, a brief description in the natural language and
a formal specification in PN were provided. The first sub‐tasks
are regarding the understanding of the specification consisting
of two questions of understanding overall behaviour and
tracking some signal pair changes. Different from Exp‐1,
programme code was not involved in this task on the one hand
to simplify the task focussing on the specification, and on the
other hand to remove any bias due to programme compre-
hension abilities. Since the amount of information and ques-
tions were reduced, the assigned time was also decreased to
6 min. The second sub‐tasks were in regard to creating the
specification, which was partially based on a given specifica-
tion. The creation of repeated behaviour was the special focus
in this creation experiment. The partial behaviour was thus
indicated as a repeated part on the given specification and
participants were asked to generate the change on the sheet. In
PN, two options were given: to implement the change with a
counting variable (easy) and by adding places and corre-
sponding edges (hard) to see at which level the GTT is com-
parable. The next task was framed the same way as with the
first one with PN but targeting a different system with the
formal specification in GTT. Like the previous task, pro-
gramme code is left out to remove the bias factor. The amount
of writing is slashed to focus on the specific notation (for
repetition description) as well as to harmonise with the other
exam questions.

5.3 | Evaluating subjective user satisfaction
(Experiment 3)

This experiment (Exp‐2) was designed and planned to be
conducted at the bachelor student level in perspective of
behavioural complexity and the range of notation. The master
students could be regarded as module developers who are able
and willing to deal with this type of formal specification, while
the bachelor students are comparable with the application
engineers. Based on this reason, the subjects were decided to
be master students in the previous experiments and then
extended to the bachelor level in this experiment to conform
to the appropriateness in an immature background level.

These are downsized and reduced to consider the level of
the participants as well as to focus on the effectiveness of some
specific notations of GTT. The ultimate goal of this experi-
ment compared with the previous experiments is to achieve a
qualitative assessment from the participants regarding their
subjective perceptions. The experiment consisted of 40 min of
tutorial and exercise tasks asked of participants to be answered
for 35 min, including a qualitative questionnaire.

The exercises consisted of an understanding task and a
creating task like the other experiments: answering the question
regarding behaviour with respect to the brief natural language

description and a specification in GTT and creating the spec-
ification based on the partially given specification in GTT.
After that, the participants were asked to answer the evaluation
questionnaire, which is a tailored version of the System Us-
ability Scale (SUS) [54] regarding understanding, creating, and
general impression. The questionnaire was intended to rate
these aspects as perceptions in a Likert scale of one to five.
Answer options consisted of the least to the most suitable of
the questions including two negative, one neutral, and two
positive answers, namely, strongly disagree, disagree, uncertain,
agree, and strongly agree. To avoid unintentional factors, the
statements were prepared in mixed‐tone (positive and negative)
by forcing the respondent to read each statement and make an
effort to think about it (cf. [59, 60]). The overall experiment
plan is summarised in Table 2.

6 | EXPERIMENT RESULTS

In the experiments, the participants participated in training and
were asked to perform the exercise tasks and answer the
subjective assessment questionnaire depending on the experi-
ment. Additional questionnaires were given to the participants
to collect their profiling information. Participants’ profiles with
regard to the understanding of their aspects are presented in
Section 6.1. The results collected in the experiments are pre-
sented with descriptive and inference statistics in Section 6.2.

6.1 | Participants’ profiles

One of the reasons for the conduct of these evaluations with
university students is that they would be at a similar level to
junior engineers [61] in the field as major future users of the
language, that is, GTTs and that they are likely to use such
types of languages in (future) practices. Therefore, bachelor
students represent immature engineers with some basic theo-
retical knowledge about engineering and embedded system
implementation, and master students are more mature in
automation software engineering inclusive of specifications.

In Exp‐1, the number of participants attending was 29,
including 18 valid participants (9 for each group) regarding
language training caused by the difference of timing. The
overall profile is also effective for Exp‐2 in which participants
from the same group attended.

In Exp‐2, there were 34 participants. Although it was not
revealed clearly who had attended the tutorial due to the an-
onymity of the experiments, the participants could be regarded
as fully trained since it is an exam that matters to their degree
results. The participants were master course students with
mostly a mechanical engineering major with an average grade
of 2.26 (σ: 0.50) in the German grade mark scale with 1 as the
highest and 5 as the lowest grade (Figure 2a). (Note: German
grading system overview and comparable US/UK grading is
shown in [62]) More than 80% of the participants had some
experience in the industry in the form of internships and
working. The work duration among the experienced ones

6 - CHA ET AL.

T
A

B
L
E

2
Su

m
m
ar
y
of

th
e
ta
sk
s
pe
rf
or
m
ed

in
th
e
ex
pe
rim

en
ts

E
xp

er
im

en
t

T
as

k
de

sc
ri

pt
io

n
T

im
e

(m
in

)
T

ar
ge

t
gr

ou
pa

D
iffi

cu
lty

le
ve

l
R

em
ar

ks

C
om

pa
ri

ng
ef

fe
ct

iv
en

es
s

E
xp

‐1
(N

=
9)

a F
or

G
ro
up

1
an
d
G
ro
up

2
ea
ch

1.
U

nd
er

st
an

di
ng

sp
ec

ifi
ca

tio
ns

(1
)

in
G

T
T

/P
N

15
M

B
as
e
1

▪
G
iv
en

sp
ec
ifi
ca
tio

n:
G
ro
up

1
in

G
en
er
al
ise

Te
st

Ta
bl
e

(G
T
T
),
G
ro
up

2
in

PN
To

re
ad

th
e
sp
ec
ifi
ca
tio

n
an
d
fin

d
vi
ol
at
io
n
in

th
e

gi
ve
n
sh
or
te
r
IE

C
61

13
1‐
3
co
de
:c

he
ck
in
g

br
an
ch

co
nd

iti
on

an
d
m
iss

in
g
im

pl
em

en
ta
tio

n

2.
U

nd
er

st
an

di
ng

th
e

sp
ec

ifi
ca

tio
n

(2
)

in
G

T
T

/P
N

–
sc

al
ed

15
>

ba
se

1
▪

G
iv
en

sp
ec
ifi
ca
tio

n:
G
ro
up

1
in

PN
,
G
ro
up

2
in

G
T
T

(s
w

itc
he

d
sp
ec
ifi
ca
tio

n
la
ng

ua
ge
)

To
re
ad

th
e
sc
al
ed

sp
ec
ifi
ca
tio

n
an
d
fin

d
vi
ol
a-

tio
n
in

th
e
gi
ve
n
lo
ng

er
IE

C
61

13
1‐
3
co
de
:

ch
ec
ki
ng

br
an
ch

co
nd

iti
on

▪
Sc

al
ed

siz
e
sp
ec
ifi
ca
tio

n
an
d
pr
og

ra
m
m
e
co
de

ta
rg
et
in
g

m
or
e
di
ffi
cu
lt
le
ve
l

3.
C

re
at

in
g

th
e

sp
ec

ifi
ca

tio
n

30
B
as
e
2

▪
G
ro
up

1
in

G
T
T
→

PN
,G

ro
up

2
in

PN
→

G
T
T

To
ge
ne
ra
te

th
e
sp
ec
ifi
ca
tio

n
re
ga
rd
in
g
th
e
na
t-

ur
al

la
ng

ua
ge

de
sc
rip

tio
n
an
d
co
rr
es
po

nd
in
g

co
de

in
IE

C
61

13
1‐
3

‐
C

on
ve

rs
ed

cr
ea
tin

g
or
de
r
of

th
e
la
ng

ua
ge

▪
M
or
e
tim

e
as
sig

ne
d
on

cr
ea
tin

g

E
xp

‐2
(N

=
34

)
1.

U
nd

er
st

an
di

ng
th

e
sp

ec
ifi

ca
tio

n
in

P
N

6
M

<
ba
se

1
(b
as
e
3)

▪
Ta

sk
s
ar
e
sim

pl
ifi
ed

by
re
m
ov

in
g
th
e
co
de

in
sp
ec
tio

n
pa
rt

an
d
ba
la
nc
ed

co
m
pl
ex
ity

‐w
ise

re
ga
rd
in
g
th
e
ta
rg
et

sy
st
em

in
G
T
T
an
d
PN

qu
es
tio

ns
To

re
ad

th
e
sp
ec
ifi
ca
tio

n
w
ith

re
sp
ec
t
to

th
e

ov
er
al
lb

eh
av
io
ur

un
de
rs
ta
nd

in
g
an
d
sp
ec
ifi
c

va
ria

bl
e
pa
ir
tr
ac
es

2.
C

re
at

in
g

th
e

sp
ec

ifi
ca

tio
n

in
P

N
6

<
ba
se

2
(b
as
e
4)

▪
T
he

or
de
r
of

so
lv
in
g
ta
sk
s
an
d
tim

e
lim

it
is
no

tc
on

tr
ol
le
d

To
im

pl
em

en
tp

ar
tia
lr
ep

et
iti
on

on
th
e
gi
ve
n
PN

(i)
us
in
g
a
va
ria

bl
e
an
d
(ii
)a

dd
in
g
m
or
e
pl
ac
es

3.
U

nd
er

st
an

di
ng

th
e

sp
ec

ifi
ca

tio
n

in
G

T
T

s
6

=
ba
se

3
‐

M
ar
ke
d
on

th
e
le
ft

co
lu
m
n
is

th
e
ex
pe
ct
ed

tim
e
du

ra
tio

n
fo
r
ea
ch

ta
sk

To
re
ad

th
e
sp
ec
ifi
ca
tio

n
w
ith

re
sp
ec
t
to

th
e

ov
er
al
lb

eh
av
io
ur

un
de
rs
ta
nd

in
g
an
d
sp
ec
ifi
c

va
ria

bl
e
pa
ir
tr
ac
es

4.
C

re
at

in
g

th
e

sp
ec

ifi
ca

tio
n

in
G

T
T

sT
o
im

pl
em

en
tp

ar
tia
l

re
pe
tit
io
n
on

th
e
gi
ve
n
G
T
T

ta
bl
e

2
=

ba
se

4
‐

Pa
rt
ic
ip
an
ts

w
ou

ld
as
sig

n
as

th
ey

w
ish

w
ith

in
th
e
ov

er
al
l

al
lo
w
ed

tim
e
du

ra
tio

n
(9
0
m
in
)

(C
on

tin
ue
s)

CHA ET AL. - 7

spans from 2 to 8 months for an internship and from 6 to
48 months for part‐time or full‐time work (Figure 2b and 2c).
The participants evaluated their programing skill as interme-
diate level (mean: 3.17 and σ: 0.17 in a Likert scale with 1 as the
lowest and 5 as the highest) in a self‐assessment.

In Exp‐3, the participants were 73 bachelor students.
Assuming that the students did not have influential industry
experiences since the lecture was taken in the fifth semester of
the bachelor course, only the grade information of the par-
ticipants was gathered (Figure 2d).

6.2 | Experiment results and discussion

6.2.1 | The preliminary experiment (Exp‐1)

First, in the understanding tasks (i.e., task1 and task2) of Exp‐
1, the participants were asked to find faults within the pro-
gramme code with respect to the given specification in GTT or
PN (Figure 3a, 3b). In the first task, GTT specification
(Group1) showed better scores than PN one (Group2).
Conversely, PN specification (Group1) showed a better result
than GTT one (Group2). Although the overall point is higher
in task2 for both languages, direct comparison between task1
and task2 would not be meaningful because of differences in
the type of system behaviour, the size of specifications, and the
length of the given code. Although the second task was tar-
geted to evaluate the scaled case (i.e. more difficult), the PN
specification scale was not managed well while GTT specifi-
cations and the given programme size were scaled. Therefore,
it is hard to say which language is dominant over the other
regarding understandability (H1.1).

For the creating task, the participants were asked to create
specifications in both languages for one target system. The
overall mean value of the results is very similar in GTT and PN
(Figure 3c), and thus H1.2 is true. However, the results of each
group are very interesting. For Group1, the specification cre-
ation task of GTT is given before PN, which is in reverse order
in Group2. For each group, the preceding one (i.e. GTT for
Group1 and PN for Group2) got a lower point. They probably
learnt behaviour during the first specification creation task and
could then represent the second specification creation better.

One observation of tasks is the sensitivity to the specifi-
cation scale (cf. Table 3). Since the specification size grew
around 2.3 times in GTT (from 3 to 7 rows), 25% degradation
was observed. In PN, 37% degradation was observed while the
specification size grew 2.3 times (from 8 to 18 edges).
Although it is a simple comparison, not considering the dif-
ference of inputs/outputs that affect the GTT size, the
sensitivity of the language to the growth of the specification
seems less in GTT than in PN (H1.4).

The result was also analysed with respect to the background
knowledge of the participants. The participant's profile, grade,
working, and internship experience could be regarded as criteria
for the background level. The trend line of GTT showed a more
gentle slope than the one of PN (Figure 4a) even though it takes
the position lower than that of PN. Here, the creation task resultT

A
B

L
E

2
(C
on

tin
ue
d)

E
xp

er
im

en
t

T
as

k
de

sc
ri

pt
io

n
T

im
e

(m
in

)
T

ar
ge

t
gr

ou
pa

D
iffi

cu
lty

le
ve

l
R

em
ar

ks

Su
bj

ec
tiv

e
sa

tis
fa

ct
io

n
E

xp
‐3

(N
=

73
)

1.
U

nd
er

st
an

di
ng

th
e

sp
ec

ifi
ca

tio
n

in
G

T
T

s
15

B
=

ba
se

3
▪

Si
m
ila
r
ta
sk
s
to

E
xp

‐2
w
ith

m
or
e
tim

e
co
ns
id
er
in
g
th
e

le
ve
lo

f
pa
rt
ic
ip
an
ts

To
re
ad

th
e
sp
ec
ifi
ca
tio

n
w
ith

re
sp
ec
t
to

th
e

ov
er
al
lb

eh
av
io
ur

un
de
rs
ta
nd

in
g
an
d
sp
ec
ifi
c

va
ria

bl
e
pa
ir
tr
ac
es

2.
C

re
at

in
g

th
e

sp
ec

ifi
ca

tio
n

in
G

T
T

s
10

<
ba
se

1
&

>
ba
se

4
▪

Re
du

ce
d
sc
op

e
in

cr
ea
tin

g
ta
sk

co
m
pa
re
d
w
ith

E
xp

‐1
;b

ut
m
os
t
ba
sic

no
ta
tio

ns
ar
e
in
cl
ud

ed
To

im
pl
em

en
t
pa
rt
ia
lr
ep
et
iti
on

3.
Q

ua
lit

at
iv

e
qu

es
tio

nn
ai

re
10

N
/A

‐

a M
=

M
as
te
r,
B

=
B
ac
he
lo
r.

8 - CHA ET AL.

was considered for comparison since the effective comparison is
possible betweenGTTand PNwith the valid number of samples
who answered the task and shared the grade (6 forGTTand 8 for
PN). The comparison of the mean value of creation results also
showed that the internship experience is less influential in GTT
than PN (Figure 4b). The comparison for working experiences
showed no difference between GTT and PN (Figure 4c).
Therefore, we conclude that H1.3 is true.

Since this was the first experiment, some bias points
existed. We observed that some of the participants were not
used to the IEC 61131‐3 language. Although the imple-
mentation was comparably simple, this biased the result. Also,
the delay between training and evaluation affected the con-
trolling of attendance of the participants. Splitting the training
session and evaluation, and non‐compulsive evaluation resul-
ted in a smaller number of valid participants. Besides, the fact
that each group was given different tasks makes the compari-
son harder, especially due to the small number of subjects.
Task1 and task2 were planned to see the effect of the scaled
problem; however, the result could not be compared directly
due to the low number of participants, which led to dependent
results in the participants’ profiles.

6.2.2 | Comparing effectiveness (Exp‐2)

In this experiment, each participant had to solve two tasks
(GTT and PN specification). The tasks are balanced and
validated by transforming each specification from one language

to the other. Scores are presented to be normalised to ease the
comparison.

There were two points targeted in the understanding task:
one was understanding the overall behaviour (allotted 8 points)
and the other was tracking of variable value set changes
(allotted 3 points). For both, GTT showed a statistically
meaningful improvement (5.1% and 7.7%, respectively) and
5% for the overall score in comparison, supporting H1.1 to be
true (Figure 5‐a). In this task, it was required to describe the
condition of the state change and the result of variables. Faults
were mainly observed as the answer missed some necessary
variables for some conditions and the results. It seemed that
the variable names and the corresponding values are explicit in
GTT for each state so that students missed less than in PN
description where not all the variables are visible in all states
and the condition descriptions.

Specification creating task was focussed on representing
the repetition of certain behaviour. The block repetition
notation of GTT was to be compared with that of PN. In
the case of PN, two options were given: using a counter
variable (easy) and adding places and corresponding edges
(hard). It is hypothesised that participants would get higher
scores by using a counting variable than by adding more PN
notation elements (i.e. places and transitions) and thus was
proved to be true as seen in the scores received by the
students (Figure 5b). Comparing GTT with PN, students
obviously got more points with the repetition block notation
in GTT than by changing the net structure and slightly
more than using the variable. Therefore, H1.2 is true. The

F I GURE 2 Profiles of the participants: (a)‐(c) for Exp‐1 and (d) for Exp‐3

F I GURE 3 Exercise score comparison of Exp‐
1 (normalised mean value with error bars of the
standard error): (a)–task1 (understanding), (b)–task2
(understanding, scaled), and (c)–task3 (creating)

CHA ET AL. - 9

simplicity of notation usages that are to be used to imple-
ment the required change might be affected. To indicate the
repetition of the partial behaviours, GTT allows a specific
block repetition notation with a repetition number indication
simply in the duration column while the PN requires a
proper notation usage of multiple elements, that is, places,
transitions, and edges, to be a valid PN; and this difference
could turn out to be the difference of the result.

The score of PN and GTT was related to the overall
score, assuming that the total score indicates their back-
ground knowledge regarding software engineering. If one
specification language required higher knowledge, the slope
would be proportional to the overall score. As seen in
Figure 5(c), GTT shows a more gradual slope than PN,
which means that GTT has less correlation with the
knowledge or background regarding software engineering.
This supports H1.3 to be true.

6.2.3 | Subjective user satisfaction (Exp‐3)

The focus of the third evaluation concerned the subjective
perception of GTT. After the tutorial, participants were asked
to solve exercise tasks and then to answer the questionnaire.
The exercises were similar to the understanding task of Exp‐2
but were simplified choice questions considering the different
student levels. The score of the understanding task was 0.84
(normalised mean with standard deviation σ = 1.53 and
skewness γ1 = −1.4), which is slightly less than Exp‐2 but
could be an indication that the participants were following the
concept successfully. The creating task was also adapted to the
level by providing the table and filling the blanks. The mean
score of the creating task was 0.78 (σ = 3.57, γ1 = −1.2).

The scores were related to the grade of the participants
assuming that the higher grade implies a higher knowledge
level of software engineering. Consistent to the results of the

TABLE 3 Task and specification complexity comparison in Exp‐1a

Group Task I/O
Specification
size Programme size Score

(a) GTT

Group1 Task1 2 IN/1 OUT 3 rows 18 lines 0.67

Group2 Task2 6 IN/4 OUT 7 rows 53 lines 0.50

(b) PN

Group1 Task2 6 IN/4 OUT 5 places, 8 edges 53 lines 0.80

Group2 Task1 2 IN/1 OUT 5 places, 18 edges 18 lines 0.44

aThe number of rows for Generalised Test Tables (GTT), and the number of places and edges for Petri Nets (PN) as specification size.

F I GURE 4 Correlation (based on Exp‐1) of
(a) score versus grade, (b) score versus internship
experience, and (c) score versus working experience

10 - CHA ET AL.

previous experiments, the result of this experiment also sup-
ports the uncorrelated relationship between the score of the
exercises and the overall grade (Figure 6), supporting H1.3.

For qualitative questions, each choice is rated as 1–most
negative (i.e., strongly disagree), 2–negative (i.e., disagree),
3–neutral, 4–positive (agree), 5–most positive (i.e., strongly
agree). The result of the negative tone question is presented as
reversed in this paper for intuitive visualisation placing posi-
tives and negatives on each side. For example, for questions
like ‘Remembering the syntax was difficult,’ disagreeing is
actually positive. So the answer choices are reordered as five to
one so that positive answers are always shown on the right side
while negative answers are shown on the left.

The majority of the participants (81%) accept the language
as an understandable concept for them (Figure 7a). Although
the rate of comprehending the given task is lower than the un-
derstanding rate of the concept, more than half (58%) agreed
that comprehending the specification in GTT is easy. In the case
of remembering syntaxes, although the rating is spread some-
what more than with the others, the mean value is still above
three, and the positive answer rate (44%) is higher than negative
(25%). Therefore, the conclusion is still positive. Overall, as seen
in the graph of the blue area and the skewness values, under-
standability can be deemed positive. Thus, H2.1 is true.

For creating (Figure 7b), more than half of the participants
(56%) answered that they could apply GTT concepts to
creating specifications. The result is lower than the under-
standing result, but it can still be considered as positive feed-
back. The participants answered that the given exercise tasks
were not easy to create specifications (mean = 3.03), although
they agreed that they could mostly understand the given task
(39% positive, 31% neutral). The collected answers with dif-
ficulty points were mostly in writing Boolean expressions (15
out of 27 collected answers). Nevertheless, the participants
agreed that they could create a specification in GTTs overall.
Therefore, H2.2 is true.

Almost 65% of participants answered positively to us-
ability of the GTT being easy (mean = 3.63, σ = 0.63,
γ1 = −0.73, Figure 7c). This is consistent with the result of
the question regarding the perceived complexity in number
5, which was answered positively by 80% of participants. So,

in general, the satisfaction rate seems to be high, which
leads to H2.4 to be true. For learning, 77% of participants
answered positive to the question that an application engi-
neer can learn GTT in a reasonable time (a day or less)—
strongest positive (mean = 3.89, σ = 0.67, γ1 = −0.2),
supporting H2.3 being true. However, the answer to the
question regarding future usage is comparably lower than to
the other questions, although the result is still positive with
the mean of 3.33 (σ = 0.62) with γ1 as 0.05. This supports
H2.5 to be true.

7 | SUMMARY OF THE RESULT AND
VALIDITY ANALYSIS

We have investigated the usability of the developed specifica-
tion language, that is, GTT, through the execution of user
evaluation and its analysis with regard to the RQs (summarised
in Table 4).

For RQ1, we have hypothesised that users can understand
the system behaviour with GTT similar to or better than with
another conventional language (H1.1). In Exp‐1 and Exp‐2,
the control language was chosen as PN. Although it was not
revealed in Exp‐1, GTT showed better results than PN
regarding understanding the overall behaviour and variable
value change tracking; and the explicit variable value repre-
sentation in a structured format seemed to aid the under-
standability. Therefore, the result could be considered valid.
For creating the specification, Exp‐1 showed at least similar
results in both languages, and Exp‐2 showed the superiority of
GTT with respect to representing the repetition of some
specific block. This seemed to be supported by the simpler
notations, especially for the repetition aspect. However, Exp‐1
did not have a large enough number of participants that were
not biased by differences of each and Exp‐2 focussed on a
specific notation only. Therefore, the validity level could be
said to be weak, and the hypothesis should be investigated
with a wider range of notation usages to support the hy-
pothesis more strongly. Also, the correlation between usability
and background of the user was also examined in the three
experiments (H1.3). As seen consistently in the results, we

F I GURE 5 Score comparison of generalised
Test Tables (GTT) and Petri Nets (PN) from Exp‐2.
(a) Understanding task, (b) Creating task, and
(c) Correlation of score to the total score

CHA ET AL. - 11

found that the language is accepted comparably well with re-
gard to the participants’ grades and internship experiences.
Although the examined result shows as hypothesised, it is
under the assumption of the implying relationship between the
background knowledge levels and the academic grades or
internship experiences. Thus, the validity of this relationship
should be clarified to validate the correlation analysis fully. The
final hypothesis of RQ1 is the sensitivity of the specification
scale (H1.4). We have concluded this to be true comparing the
results from the tasks; however, the direct comparison be-
tween the groups in Exp‐1 was not entirely sound. This is
because on the one hand, the results are from different groups,
and on the other hand, the groups lack representativeness due

to the limited number of participants. Also, the scale of the
specifications and of the established problem, including the
described system, was not well enough managed to be able to
verify the hypothesis. Thus, the result cannot be regarded as
valid.

Speculating about the subjective perception levels of the
language users for RQ2, we have hypothesised a positive user
perception level for understanding and creating activities
(H2.1, H2.2). As the result shows, we got a high rate of
positive feedback on both (higher in understanding). Users
also regarded the language to be reasonably learnable (H2.3).
However, for this point, additional evaluation regarding
learning would be necessary to measure the precise level of

F I GURE 6 Correlation of the score and the
grade from Exp‐3

F I GURE 7 Qualitative evaluation result in Exp‐3

12 - CHA ET AL.

learnability. While the overall user perception regarding its
complexity and satisfaction was also positive (H2.4), we also
found that almost half of the participants were still wavering
over whether to use it in practice in spite of positive feedback
on the average (also observable as γ1 = −0.20–the lowest
among all the questions). Therefore, performing successive
work to figure out the main reason for this phenomenon and
the corresponding adaptation of the language would be
necessary. In addition, to make the results of the qualitative
assessment stronger, a further survey comparing other formal
specification languages with a promising number of partici-
pants should be conducted.

Through the evaluation, some potential improvement
points were also revealed. Although it is easy to follow the
tabular structure, some value changes are misread or over-
looked when cells are filled with text values. This could be
improved by putting a change indication notation (e.g. bold
font or colouring in the text or cell). Also, as seen in Exp‐1,
and between Exp‐1 and Exp‐2, scaling affected the degrada-
tion of the score. Scaling should be supported further by, for
example, additional notation or restructuring so that the more
variable or longer behaviour could be comprehended easier;

and this might allow representing some conditional branching
which is not possible through the current GTT notations by
nature of the tabular structure.

8 | CONCLUSION AND OUTLOOK

Domain‐specific languages are being developed to solve or
ease the problems in system engineering activities and are
definitely helpful for their target problem‐solving. However,
not all of the developed languages are widely used, and one of
the main reasons is the absence of proof of their functionality
and usability, which can be obtained through appropriate
studies and evaluations. Targeting the prevalence of formal
verification in aPS engineering, a formal specification language
based on industry practices has been developed, namely
generalised test tables. We studied its functional applicability
previously in parallel with developing its applications in several
methods, and this is followed by the usability study as pre-
sented in this paper.

By answering the RQs with hypotheses and verifying
them through experiment evaluations, various usability

TABLE 4 Evaluation of the research question (RQ) and hypotheses—summary

RQ Related hypothesis
Result
(validity)

Related
experiment

RQ1: Is the target language effective for the
purpose?

H1.1: A user can understand a system behaviour through the
specification in GTTs similar to or better than through the
conventional language (Petri Nets [PN]).

True (valid) Exp‐1
(Figure 3a,
3b),

Exp‐2
(Figure 5a)

H1.2: A user can create a specification regarding a system behaviour in
Generalised Test Tables (GTTs) similar to or better than in the
conventional language (PN).

True (weakly
valid)

Exp‐1
(Figure 3c),

Exp‐2
(Figure 5b)

H1.3: Understanding and creating specifications in GTTs is less
related to the background knowledge of the user regarding
software engineering than conventional language (PN).

True (weak
valid)

Exp‐1
(Figure 4),

Exp‐2
(Figure 5c),

Exp‐3 (Figure 6)

H1.4: The score of understanding task is less sensitive to the scale of
the specification in the target language than the conventional
language (PN).

True (not
valid)

Exp‐1 (Table 3)

RQ2: Is the target language satisfactory to
automation engineers?

H2.1: Users have confidence in understanding a specification in GTTs. True (valid) Exp‐3
(Figure 7a)

H2.2: Users have confidence in creating a specification in GTTs. True (valid) Exp‐3
(Figure 7b)

H2.3: Users think the language, that is GTTs, is reasonably learnable. True (valid) Exp‐3 (Figure 7c
#2)

H2.4: Users are satisfied with the language, that is GTTs, as a behaviour
specification representation method in general.

True (valid) Exp‐3
(Figure 7c)

H2.5: Users would like to use the language, that is GTTs, as a behaviour
specification representation method in the future.

True (weakly
valid)

Exp‐3 (Figure 7c
#6)

CHA ET AL. - 13

aspects of the developed language have been declared.
However, since one of the major motivations of the lan-
guage was the ease of the user who would be the main
control software developer and tester, a more precise us-
ability study and the corresponding evolution of the lan-
guage would be mandatory for it to be more powerful.
Based on the result of the experiments, a comparative
subjective assessment would be beneficial to position the
relative perception level. Also, usability studies with industry
personnel, who would need and use the language for their
daily activities, are compulsory to accelerate usage of the
language aimed at the ultimate prevalence of formal
verification.

To obtain additional eligibility, a more specific evaluation
with regard to the standard such as [63] would be necessary to
discover the points to be developed and elaborated to a sound
specification language. Since everyday usage of the language
would be with a corresponding tool, such as an integrated
development environment or a testing tool, a tool‐based us-
ability study should also be conducted to assess usability of the
language with the tool as well as the tool usability itself.

ACKNOWLEDGEMENT
This work was supported by the German Research Foundation
(DFG) under the Priority Programme 1593: Design For Future
—Managed Software Evolution (grant number: VO 937/28‐2,
BE2334/seven to two and UL 433/1‐2).

ORCID
Suhyun Cha https://orcid.org/0000-0001-7477-8008
Birgit Vogel‐Heuser https://orcid.org/0000-0003-2785-
8819

REFERENCES
1. Vogel‐Heuser, B., et al.: Evolution of software in automated production

systems: challenges and research directions. J. Syst. Software. 110, 54–84
(2015)

2. Vogel‐Heuser, B., Hess, D.: Guest editorial industry 4.0‐prerequisites and
visions. IEEE Trans. Automat. Sci. Eng. 13(2), 411–413 (2016)

3. Thramboulidis, K.: The 3+1 SysML view‐model in model integrated
mechatronics. JSEA. 03(2), 109–118 (2010)

4. Vogel‐Heuser, B., Ocker, F.: Maintainability and evolvability of control
software in machine and plant manufacturing–an industrial survey. Contr.
Eng. Pract. 80(September), 157–173 (2018)

5. Zonnenshain, A., Kenett, R.S.: Quality 4.0‐the challenging future of
quality engineering. Qual. Eng. 32(4), 614–626 (2020)

6. Ulewicz, S., et al.: Proving equivalence between control software variants
for programmable logic controllers. In: Proceedings of IEEE Interna-
tional Conference on Emerging Technologies & Factory Automation, pp.
1–5 (2015)

7. Rösch, S., Vogel‐Heuser, B.: A light‐weight fault Injection approach to
test automated production system PLC software in industrial practice.
Contr. Eng. Pract. 58(Jan.), 12–23 (2017)

8. Cha, S., et al.: Applicability of generalized test tables: a case study using
the manufacturing system demonstrator xPPU. Automatisierungstechnik.
66(10), 834–848 (2018)

9. Frey, G., Litz, L.: Formal methods in PLC programing. In: Proceedings
of IEEE International Conference on Systems, Man and Cybernetics
(SMC), pp. 2431–2436 (2000)

10. Sinha, R., et al.: A survey of static formal methods for building
dependable industrial automation systems. IEEE Trans. Ind. Inf. 15(7),
3772–3783 (2019)

11. Ljungkrantz, O., et al.: An empirical study of control logic specifications
for programmable logic controllers. Empir. Software Eng. 19(3), 655–677
(2014)

12. Pang, C., et al.: A study on user‐friendly formal specification languages
for requirements formalisation. In: Proceedings of IEEE International
Conference on Industrial Informatics, pp. 676–682 (2016)

13. Adiego, B.F., et al.: Applying model checking to industrial‐sized PLC
programs. IEEE Trans. Ind. Informatics. 11(6), 1400–1410 (2015)

14. Holzmann, G.J.: The logic of bugs. SIGSOFT Softw. Eng. Notes. 27,
81–87 (2002)

15. Pakonen, A., et al.: User‐friendly formal specification languages–
conclusions drawn from industrial experience on model checking. In:
Proceedings of IEEE International Conference on Emerging Technol-
ogies & Factory Automation, pp. 1–8 (2016)

16. Weigl, A., et al.: Generalized test tables: a powerful and intuitive
specification language for reactive systems. In: Proceedings of IEEE
International Conference on Industrial Informatics, pp. 875–882
(2017)

17. Beckert, B., et al.: Generalised test tables: a practical specification lan-
guage for reactive systems. In: Proceedings of International Conference
on integrated Formal Methods, pp. 129–144 (2017)

18. Rösch, S.: Model‐based testing of fault scenarios in production auto-
mation. PhD thesis. Technische Universität München, Munich, Germany
(2016)

19. Ulewicz, S., Vogel‐Heuser, B.: Automatisiertes Testen von Sonderma-
schinen – von der Modulbibliothek bis zur Anlage (en: automated testing
of special purpose machines–from the module library to the plant). pp.
53–65.Tagungsband Automation Symposium, Dusseldorf, Germany
(2015)

20. Barišic, A., et al.: Evaluating the usability of domain‐specific languages
formal and practical aspects of domain‐specific languages, pp. 386–407.
IGI Global, Hershey, USA (2014). https://doi.org/10.4018/978‐1‐4666‐
2092‐6

21. van Deursen, A., Klint, P.: Domain‐specific language design requires
feature descriptions. J. Comput. Inform. Tech. 10(1), 1–17 (2002)

22. Rodrigues, I.P., Campos, D.B.: Usability evaluation of domain‐specific
languages: a systematic literature review, Human‐Computer Interaction.
User Interface Design, Development and Multimodality, pp. 522–534.
Springer, Cham (2017)

23. Challenger, M., Kardas, G., Tekinerdogan, B.: A systematic approach to
evaluating domain‐specific modelling language environments for multi‐
agent systems. Software Qual. J. 24(3), 755–795 (2016)

24. Coursaris, C.K., Kim, D.J.: A qualitative review of empirical mobile us-
ability studies. In: Association for Information Systems 12th Americas
Conference on Information System (AMCIS), January 2006, vol. 2006(5),
pp. 2873–2879 (2006)

25. International Organization for Standardization (ISO): ISO 9241‐
210:2010 Ergonomics of human‐system interaction—Part 210: human‐
centred design for interactive systems (2010)

26. Schalles, C.: A framework for usability evaluation of modelling languages.
Usability evaluation of modelling languages: an empirical research study,
pp. 43–68, Springer Gabler, Wiesbaden (2013)

27. International Organization for Standardization (ISO): ISO/IEC 25010
Systems and software engineering—systems and software Quality Re-
quirements and Evaluation (SQuaRE) — system and software quality
models (2011)

28. Bevan, N.: Measuring usability as quality of use. Software Qual. J. 4(2),
115–130 (1995)

29. Moon, I., et al.: Automatic verification of sequential control systems
using temporal logic. AIChE J (1992)

30. Shatrov, V., Vyatkin, V.: Formal verification of IEC 61499 enhanced with
timed events. In: Proceedings of Advanced Doctoral Conference on
Computing, Electrical and Industrial Systems, pp. 168–178 (2020)

31. Bauer, N., et al.: Verification of PLC programs given as sequential
function charts. In: Integration of Software Specification Techniques for
Applications in Engineering: Priority Program SoftSpez of the German
Research Foundation (DFG), Final Report, pp. 517–540. Springer Berlin
Heidelberg (2004)

14 - CHA ET AL.

https://orcid.org/0000-0001-7477-8008
https://orcid.org/0000-0001-7477-8008
https://orcid.org/0000-0003-2785-8819
https://orcid.org/0000-0003-2785-8819
https://orcid.org/0000-0003-2785-8819
https://orcid.org/0000-0001-7477-8008
https://orcid.org/0000-0003-2785-8819

32. Biallas, S., Brauer, J., Kowalewski, S.: Arcade.PLC: a verification platform
for programmable logic controllers. In: Proceedings of IEEE/ACM
International Conference on Automated Software Engineering, pp.
338–341 (2012)

33. Wardana, A.N.I., Folmer, J., Vogel‐Heuser, B.: Automatic program veri-
fication of continuous function chart based on model checking. In:
Proceedings of 35th Annual Conference on Industrial Electronics, pp.
2422–2427 (2009)

34. Ren, H., et al.: Verification using counterexample fragment based spec-
ification relaxation: case of modular/concurrent linear hybrid automata.
IET Cyber‐phys. Syst. 2(2), 65–74 (2017)

35. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifi-
cations for finite‐state verification. Proc. Work. Form. Methods Softw.
Pract. 411–420 (1999)

36. Campos, J.C., Machado, J.: Pattern‐based analysis of automated pro-
duction systems. IFAC Proc. 13(1), 972–977 (2009)

37. Fockel, M., et al.: Formal, model‐ and scenario‐based requirement pat-
terns. In: Proceedings of International Conference on Model‐Driven
Engineering and Software Developement, pp. 311–318 (2018)

38. DIN:DIN EN 60848: GRAFCET specification language for sequential
function charts (2014)

39. Julius, R., et al.: A meta‐model based environment for GRAFCET
specifications. In: Proceedings of International Systems Conference, pp.
1–7 (2019)

40. Vyatkin, V., Bouzon, G.: Using visual specifications in verification of
industrial automation controllers. EURASIP J. Embed. Syst. 2008(1), 1–9
(2008)

41. Darvas, D., MajzikIstván, I., Viñuela, E.B.: Well‐formedness and
invariant checking of PLCspecif specifications. In: Proceeding of the
23rd PhD Mini‐Symposium of the Budapest University of Technology
and Economics, Department of Measurement and Information Systems,
pp. 10–13 (2017)

42. Przigoda, N., et al.: Verifying the structure and behavior in UML/OCL
models using satisfiability solvers. IET Cyber‐phys. Syst. 1(1), 49–59
(2016)

43. Ruiz, J., Serral, E., Snoeck, M.: Evaluating user interface generation ap-
proaches: model‐based versus model‐driven development. Softw. Syst.
Model. 18(4), 2753–2776 (2019)

44. Teruel, M.A., et al.: A CSCW requirements engineering CASE tool:
development and usability evaluation. Inf. Software Technol. 56(8),
922–949 (2014)

45. Snook, C.F., Harrison, R.: Experimental comparison of the compre-
hensibility of a Z specification and its implementation in Java. Inf.
Software Technol. 46(14), 955–971 (2004)

46. Carew, D., Exton, C., Buckley, J.: An empirical investigation of the
comprehensibility of requirements specifications. In: Proceedings of In-
ternational Symposium on Empirical Software Engineering, pp. 256–265
(2005)

47. Razali, R., et al.: Experimental comparison of the comprehensibility of a
UML‐based formal specification versus a textual one. In: Proceedings of
International Conference on Evaluation and Assessment in Software
Engineering, pp. 1–11 (2007)

48. Bitsch, F.: Safety patterns ‐ the key to formal specification of safety re-
quirements. Comput. Safety, Reliab. Secur. (1064), 176–189 (2001)

49. Tenbergen, B., Weyer, T., Pohl, K.: Hazard Relation Diagrams: a dia-
grammatic representation to increase validation objectivity of
requirements‐based hazard mitigations. Requirements Eng. 23(2),
291–329 (2018)

50. Khalajzadeh, H., et al.: BiDaML: a suite of visual languages for sup-
porting end‐user data analytics. In: Proceedings of the 2019 IEEE In-
ternational Congress on Big Data, pp. 93–97 (2019)

51. CODESYS GmbH: CODESYS store international ‐ CODESYS test
manager. https://store.codesys.com/codesys‐test‐manager.html?
___store=en. Accessed February 2021

52. Zeiss, B., Vega, D.: Applying the ISO 9126 quality model to test speci-
fications. Softw. Eng. 2007(105), 231–244 (2007)

53. Ludewig, J.: Languages, methods, and tools for software specification’.
Hardware and software for real time process control, pp. 225–256 (1989)

54. Brooke, J.: SUS‐A quick and dirty usability scale. Usability Eval. Ind.
189(194), 4–7 (1996)

55. David, R., Alla, H.: Petri nets and grafcet: tools for modelling discrete
event systems. Prentice Hall, Upper Saddle River, USA (1992)

56. Vogel‐Heuser, B., et al.: Fault handling in PLC‐based industry 4.0
automated production systems as a basis for restart and self‐
configuration and its evaluation. J. Softw. Eng. Appl. 09(1), 1–43 (2016)

57. Spindler, M., et al.: Erstellung von steuerungssoftware für automatisierte
materialflusssysteme per drag & drop (en: engineering the control soft-
ware of automated material handling systems via drag & drop). Logist J
2017, 9–14 (2017)

58. Shanahan, T., Lomax, R.: A developmental comparison of three theo-
retical models of the reading‐writing relationship. Res. Teach. English.
22(2), 196–212 (1988)

59. Davis, F., D.: Perceived usefulness, perceived ease of use, and user
acceptance of information technology. MIS Q. 13(3), 319 (1989)

60. Wong, N., Rindfleisch, A., Burroughs, J.E.: Do reverse‐worded items
confound measures in cross‐cultural consumer research? The case of the
material values scale. J. Consum. Res. 30(1), 72–91 (2003)

61. U.S. Bureau of Labor Statistics: Mechanical engineers–occupational
outlook handbook. https://www.bls.gov/OOH/architecture‐and‐
engineering/mechanical‐engineers.htm. Accessed July 2020

62. Studying in Germany: ‘German grading system’, https://www.studying‐
in‐germany.org/german‐grading‐system/. Accessed July 2020

63. IEEE: IEEE 1850‐2010 ‐ standard for property specification language
(PSL) (2010)

How to cite this article: Cha, S., et al.: Table‐based
formal specification approaches for control engineers—
empirical studies of usability. IET Cyber‐phys. Syst.,
Theory Appl. 1–15(2021). https://doi.org/10.1049/
cps2.12017

CHA ET AL. - 15

https://store.codesys.com/codesys-test-manager.html?___store=en
https://store.codesys.com/codesys-test-manager.html?___store=en
https://www.bls.gov/OOH/architecture-and-engineering/mechanical-engineers.htm
https://www.bls.gov/OOH/architecture-and-engineering/mechanical-engineers.htm
https://www.studying-in-germany.org/german-grading-system/
https://www.studying-in-germany.org/german-grading-system/
https://doi.org/10.1049/cps2.12017
https://doi.org/10.1049/cps2.12017

	Table‐based formal specification approaches for control engineers—empirical studies of usability
	1 | INTRODUCTION
	2 | RELATED WORKS
	2.1 | Formal languages used in formal verification of aPS control software
	2.2 | Usability study of specification languages

	3 | TARGET LANGUAGE
	4 | RESEARCH QUESTIONS AND HYPOTHESES
	5 | EVALUATION EXPERIMENT
	5.1 | Comparing the effectiveness of GTT and PN concerning understanding and creating with separated participant groups (Ex ...
	5.2 | Comparing the effectiveness of GTT and PN concerning understanding and creating with balanced tasks (Experiment 2)
	5.3 | Evaluating subjective user satisfaction (Experiment 3)

	6 | EXPERIMENT RESULTS
	6.1 | Participants’ profiles
	6.2 | Experiment results and discussion
	6.2.1 | The preliminary experiment (Exp‐1)
	6.2.2 | Comparing effectiveness (Exp‐2)
	6.2.3 | Subjective user satisfaction (Exp‐3)

	7 | SUMMARY OF THE RESULT AND VALIDITY ANALYSIS
	8 | CONCLUSION AND OUTLOOK
	ACKNOWLEDGEMENT

