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FOR SECOND-ORDER SEMILINEAR ODES∗
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Abstract. In this paper we consider the numerical solution of second-order semilinear differential
equations, for which the stiffness is induced by only a few components of the linear part. For such
problems, the leapfrog scheme suffers from severe restrictions on the step size to ensure stability.
We thus propose a general class of multirate leapfrog-type methods which allows to use step sizes
which are independent on the stiff part of the equation and also very efficient to implement. This
class comprises local time-stepping schemes [5, 7] but also locally implicit or locally trigonometric
integrators. Our main contribution is a rigorous error and stability analysis with special emphasis on
explicit multirate methods, which are based on stabilized leapfrog-Chebyshev polynomials introduced
in [4].
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1. Introduction. In this paper we consider the numerical solution of second-
order differential equations in Rd of the form

(1.1) Mq̈(t) = −Lq(t) + Mg
(
t,q(t)

)
, q(0) = q0, q̇(0) = p0,

where L ∈ Rd×d is a symmetric, positive definite or positive semidefinite matrix,
M ∈ Rd×d is symmetric, positive definite, and g is a sufficiently regular function.
This equation serves as a model for various applications, e.g., Hamiltonian equations
of motions occurring in astronomy or in molecular dynamics, as well as spatially
discretized wave-type partial differential equations.

The method of choice for approximating the solution of (1.1) is the leapfrog (LF)
scheme, also known as Störmer or Verlet scheme. It is explicit, easy to implement, very
efficient, of order two and it also has nice geometric properties such as symplecticity
and symmetry; cf. [9, 10] for many more details on its properties.

However, for stability the LF scheme requires step sizes which are smaller than
the period of the fastest oscillations arsing in the system (1.1). To be more precise,
for g ≡ 0, we need step sizes τ2 ≤ 4/‖M−1/2LM−1/2‖. Hence, in the past decades,
several variants of the LF scheme have been proposed to overcome this limitation.
Most of them are designed and motivated for particular applications such as multiple
time scales in molecular dynamics; cf., for example, the monographs [10, Chapters
VIII.4, XIII.1], [14, Chapter 4], and [15, Chapter 10].

Here, we are interested in situations where only a few components of the solution,
or, equivalently, a small principal submatrix of L is responsible for the high frequen-
cies. Then the step-size restriction of the classical LF method causes a significant
loss of efficiency. Such situations appear for instance for spatial discretizations of
wave-type equations on meshes, where only a small part of the mesh consists of tiny
elements whereas the majority of the mesh elements are significantly larger. For such
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applications, local time-stepping schemes were invented in [5]. A closely related situ-
ation appears in inhomogeneous materials if there is a scale separation in the material
coefficient such that the main stiffness is induced only by few mesh elements.

Recently, we proposed and analyzed leapfrog–Chebyshev methods (LFC) [4] which
rely on a splitting of the right-hand side of (1.1) into the “stiff” part Lq and the
“nonstiff” part g(t,q). The method is applicable to splittings where L is symmetric
and positive semidefinite.

However, if we want to split the components of the solution vector q, it seems
more appropriate to split L into

(1.2) L = LR + L(Id −R),

where Id denotes the identity matrix and R is a diagonal matrix with diagonal entries
being either zero or one, where the ones refer to the stiff components; cf. [5]. Here
we present a general class of two-step methods for semilinear problems which is based
on a splitting of the form (1.2), where the second term L(Id −R) is “nonstiff” and
treated together with the nonlinear part g. The general class comprises a variety of
options to deal with the “stiff” part LR of the operator L, ranging from local time-
stepping schemes to locally implicit or locally trigonometric integrators; cf. Section 2
for details. In particular, for g ≡ 0, the method contains the one by [5] as a special
case.

Our main contribution is to rigorously analyze the whole class of methods, al-
though we are mostly interested in methods based on Chebyshev polynomials. Such
methods have also been analyzed in [7] using discrete semigroup techniques. By using
generating functions as a main tool we are able to weaken their CFL condition and
regularity assumption on the exact solution (1.1). Moreover, our analysis includes the
case of positive semidefinite matrices L, to which the technique in [7] does not apply.

Outline of the paper. In Section 2 we introduce a general class of two-step meth-
ods for (1.1) based on the LF scheme and the matrix splitting of L in (1.2). Sections 3
and 4 are devoted to the stability and error analysis of these schemes, respectively. In
there, we prove stability under a step-size restriction and second-order convergence
of the scheme. In Section 5 we show that the LFC polynomials from [4] satisfy the
abstract assumptions made beforehand and give explicit formulas for all occurring
constants. Moreover, we discuss the implementation of these schemes and their ef-
ficiency compared to the LF scheme. We conclude our paper with some examples
in Section 6. After an analytical example illustrating the necessity of our abstract
assumptions for obtaining stability, we numerically show the benefit of the schemes
for two realistic examples.

2. General multirate leapfrog-type two-step schemes. We start by stating
the well-known LF scheme for the semilinear problem (1.1). For a step size τ > 0 we
denote by qn the approximation of the exact solution q(tn) at time tn = nτ . Then,
the LF scheme is given as two-step method by

qn+1 − 2qn + qn−1 = −τ2M−1Lqn + τ2gn, n = 1, 2, . . . ,(2.1a)

q1 = q0 + τp0 − 1
2τ

2M−1Lq0 + 1
2τ

2g0,(2.1b)

where gn = g(tn,qn).
For the sake of presentation, in the following we restrict ourselves to the case of

M = Id, since the general case can be transformed to this one; cf. Remark 2.5 below.



ON MULTIRATE LF-TYPE METHODS FOR SECOND-ORDER SEMILINEAR ODES 3

With
(
·, ·
)

we denote the standard Euclidean inner product in Rd and with ‖·‖ the
corresponding (matrix) norm.

Assumption 2.1. Let L be symmetric, positive semidefinite, and (possibly after
permutation) be partitioned as

(2.2) L =

(
S KT

K N

)
,

where the norms of the “ nonstiff” and “ stiff” submatrices N ∈ R(d−s)×(d−s) and
S ∈ Rs×s, respectively, satisfy ‖S‖ = r‖N‖ with r � 1 and d � s. For the coupling
matrix K ∈ R(d−s)×s it holds ‖K‖ = κ‖N‖ with 0 ≤ κ� r1/2.

With this assumption we guarantee that the stiffness of (1.1) is only induced by
the submatrix S. Clearly, the symmetry and positive semidefiniteness of L transfers
to the matrices S and N. The assumption κ � r1/2 originates from the positive
semidefiniteness of L. Note that the reordering of L in (2.2) is only for the ease of
representation and not necessary for the implementation.

Further, due to (2.2) we define the restriction matrix R ∈ Rd×d occurring in
(1.2), which maps to the “stiff” part of L, by

(2.3) R =

(
Is 0
0 0

)
and S̃ = RLR =

(
S 0
0 0

)
.

In order to propose a scheme with a step-size restriction depending only on N
and κ but not on S, we now modify the LF scheme by multiplying the right-hand side
by a suitable matrix function Ψ̂(τ2LR):

qn+1 − 2qn + qn−1 = τ2Ψ̂(τ2LR)
(
−Lqn + gn

)
, n = 1, 2, . . . ,(2.4a)

q1 = q0 + τp0 + 1
2τ

2Ψ̂(τ2LR)
(
−Lq0 + g0

)
.(2.4b)

Our interest is mainly in choosing Ψ̂ as a polynomial, a rational, or a trigonometric
function, since then the scheme results in an explicit, a locally implicit, or a locally
trigonometric integrator, respectively.

The consistency order two of the LF scheme is preserved if Ψ̂ fulfills the following
assumption.

Assumption 2.2 (Consistency). Ψ̂ : [0,∞) → R is sufficiently smooth and sat-

isfies Ψ̂(0) = 1.

This assumption implies that for R = 0 or Ψ̂ ≡ 1 the scheme (2.4) reduces to the LF
scheme (2.1).

Definition 2.3. For Ψ̂ satisfying Assumption 2.2 we define functions Ψ, X as

(2.5) Ψ(z) = zΨ̂(z) and X (z) =
Ψ̂(z)− 1

z
, z > 0, X (0) = Ψ̂′(0).

Obviously, Assumption 2.2 implies

(2.6) Ψ(0) = 0, Ψ′(0) = 1.

Below, we will prove that

Ψ̂(τ2LR) =

(
Ψ̂(τ2S) 0

τ2KX (τ2S) Id−s

)
.
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Hence, the analysis and also the implementation rely only on matrix functions acting
on the small symmetric submatrix S. The actual implementation of this scheme
depends on the choice of Ψ̂; cf. Section 5.2 for a specific case. For the analysis,
working with Ψ turns out to be more convenient.

The modification (2.4) of the LF scheme is motivated by LF-based local time-
stepping schemes [5, 7] and locally implicit schemes, where the LF and the Crank–
Nicolson (CN) scheme are combined [11, 16]. However, it is worth mentioning that
the application of these schemes is not restricted to problems arising from spatially
discretized partial differential equations with local mesh refinements; cf. Section 6.2.

Remark 2.4. A variant to (2.4) is given by

qn+1 − 2qn + qn−1 = −τ2Ψ̂(τ2LR)Lqn + τ2gn, n = 1, 2, . . . ,(2.7a)

q1 = q0 + τp0 − 1
2τ

2Ψ̂(τ2LR)Lq0 + 1
2τ

2g0,(2.7b)

where Ψ̂(τ2LR) is only applied to the linear part but not to g. The analysis of this
scheme can be done analogously and leads to similar results under similar assumptions.

Remark 2.5. If the matrix M in (1.1) is not the identity but some arbitrary sym-
metric and positive definite matrix, then its Cholesky decomposition M = CMCT

M

exists. In this case, we rewrite (1.1) in terms of the transformed variable y = CT
Mq

equivalently as

ÿ(t) = −L̃y(t) + g̃
(
t,y(t)

)
, y(0) = CT

Mq0, ẏ(0) = CT
Mp0,

where L̃ = C−1
M LC−TM is again symmetric and positive semidefinite. Hence, one can

apply scheme (2.4) to this equation and transform the approximations back to the
original variables. This yields

(2.8) M
(
qn+1 − 2qn + qn−1

)
= τ2Ψ̂(τ2LC−TM RC−1

M )
(
−Lqn + Mgn

)
for n ≥ 1, and analogously for the starting value q1. Note that the structure of the
Cholesky factor yields

C−TM RC−1
M =

(
M−1

S 0
0 0

)
for M =

(
MS MT

K

MK MN

)
,

which makes the implementation of (2.8) very efficient. In particular, the evaluation

of Ψ̂ only requires the small dimensional matrix M−1
S and not the full Cholesky factor

of M.
We would like to emphasize that our analysis also applies to this more general

situation, if the standard norm ‖·‖ is replaced by ‖·‖2M =
(
· ,M ·

)
.

In this paper we pay special attention to Ψ being the LFC polynomials from [4]
given by

(2.9) Ψ(z) = Ψp(z) = 2− 2

Tp(ν)
Tp

(
ν − z

αp

)
, αp = 2

T ′p(ν)

Tp(ν)
,

where Tp denotes the pth Chebyshev polynomial of first kind (p ∈ N) and ν ≥ 1. Ob-
viously, Ψp is a polynomial of degree p ≥ 1 and satisfies Assumption 2.2 for arbitrary
ν ≥ 1. We abbreviate the combination of the general scheme (2.4) and the polyno-
mials (2.9) with sLFC schemes. We note that for g ≡ 0 the scheme (2.4a) equipped
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with (2.9) coincides with the stabilized local time-stepping scheme proposed in [7]
(with η2/2 replaced by η). Further, for R = Id the variant (2.7a) coincides with the
multirate LFC scheme in [4].

Other choices for Ψ fitting into the setting but not considered in this paper are
the rational functions

Ψ(z) =
z

1 + ν
4 z
, ν > 1,(2.10)

or the trigonometric functions

(2.11) Ψ(z) =

2− 2
cosh(η) cosh

((
η2 − z

α

)1/2)
, 0 ≤ z < αη2

2− 2
cosh(η) cos

((
z
α − η

2
)1/2)

, z ≥ αη2
, α =

sinhc(η)

cosh(η)
,

where sinhc(x) = sinh(x)/x and η > 0. Note that the choice (2.10) in (2.4) leads to a
scheme, which is implicit on the stiff and explicit on the nonstiff components of (1.1).

We conclude this section by stating the general scheme (2.4) in an equivalent
one-step formulation and some geometric properties. The one-step scheme of (2.4) is
given by

pn+1/2 = pn + 1
2τΨ̂(τ2LR)

(
−Lqn + gn

)
,(2.12a)

qn+1 = qn + τpn+1/2, n = 0, 1, 2, . . . ,(2.12b)

pn+1 = pn+1/2 + 1
2τΨ̂(τ2LR)

(
−Lqn+1 + gn+1

)
.(2.12c)

Here, pn can be interpreted as an approximation to q̇(tn).

Corollary 2.6. The scheme (2.4a) and thus also the equivalent one-step version
(2.12a)–(2.12c) are symmetric and symplectic.

Proof. The scheme (2.4a) is equivalent to the LF scheme (2.1a) applied to the
modified equation

q̈ = Ψ̂(τ2LR)
(
−Lq + g(·,q)

)
.

Hence, it inherits the properties of the LF method.

3. Stability analysis. In this section we show stability of the scheme (2.4) for
linear and semilinear problems under some general conditions for the function Ψ.

3.1. Properties and further assumptions on Ψ. So far, the only restrictions
on Ψ are the consistency conditions (2.6). For stability, it was already shown in [4]
that 0 ≤ Ψ(z) ≤ 4 for z in a suitable interval [0, β] is not sufficient to ensure stability
for multirate methods. In fact, we need Ψ(z) ∈ (0, 4) for z ∈ (0, β). The precise
conditions are stated in the following definition.

Definition 3.1. For given m1, m̃1, m̃2 ∈ (0, 1) with m̃1 ≤ 1 − m1 we define

β̂ = β̂(m1, m̃1, m̃2) ∈ (0,∞) as the maximal value such that

(3.1) min{m̃2z, 4m̃1} ≤ Ψ(z) ≤ 4(1−m1) for all z ∈ [0, β̂2],

and β̂ = ∞, if (3.1) holds for all z ≥ 0. Moreover, we define m3 as the smallest
constant such that for X defined in (2.5) holds

(3.2) |X (z)| ≤ 1
2m3 for all z ∈ [0, β̂2] ∩ R.
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The existence of such a β̂ > 0 and m3 is guaranteed by (2.6) and (2.5), respectively. If

β̂ is finite, the lower bound in (3.1) can be replaced by Ψ(z) ≥ m̃2z for all z ∈ [0, β̂2].
In practice, the values for the constants m1, m̃1, m̃2 for a specific function Ψ are

chosen such that β̂ is as large as possible, since β̂ (but also m1) will enter the step-size
restriction for the scheme (2.4). Moreover, m1 also enters the error constant. For the

polynomials (2.9) explicit values for m1, m̃1, m̃2, and β̂ are given in Section 5.
As a direct consequence of (3.1) we have

(3.3) Ψ̂(z) ≥ min{m̃2, 4m̃1/z} > 0 for all z ∈ [0, β̂2] ∩ R.

Hence, the inverse Ψ̂(z)−1 exists for all z ∈ [0, β̂2]∩R and the following bound holds.

Lemma 3.2. There exists a constant ccs > 0 such that

(3.4) |Ψ̂(z)−1X (z)| ≤ ccs for all z ∈ [0, β̂2] ∩ R.

Proof. The statement follows directly from (3.3) and Definition 2.3.

Additionally to the consistency conditions (2.6) we assume for Ψ the following.

Assumption 3.3. For Ψ satisfying (2.6) we have

(3.5) Ψ(z) ≤ z for all z ∈
[
0, β̂2

]
∩ R.

From this assumption we immediately obtain with (2.5)

(3.6) |Ψ̂(z)| ≤ 1, X (z) ≤ 0 for all z ∈
[
0, β̂2

]
∩ R.

We note that Assumption 3.3 could theoretically be weakened to Ψ(z) ≤ c∗z for all

z ∈
[
0, β̂2

]
∩R and a constant c∗ > 1. However, this would lead to a stronger step-size

restriction, since then |Ψ̂(z)| ≤ c∗ for all z and X > 0 for some z; cf. the proof of
Lemma 3.6. In particular, (3.5) is fulfilled for the polynomials (2.9); see Lemma 5.1.

In the remaining part of this paper, let Assumptions 2.1, 2.2, and 3.3 hold without
mentioning it explicitly everywhere. Moreover, we define

(3.7) LΨ,τ = Ψ̂(τ2LR)L,

and, if L is positive definite, we have a constant c inv > 0 such that

(3.8) ‖L−1‖ ≤ c2inv.

3.2. Stability estimates. In this section we show some bounds on the matrix
LΨ,τ under a step-size restriction which are necessary for proving stability of the
scheme (2.4). More precisely, our step-size restriction depends on S, N, κ defined in
Assumption 2.1, and m1 given in Definition 3.1.

Definition 3.4 (CFL condition). For fixed ϑ ∈ (0, 1] let τCFL(ϑ) be the maximal
step size τ > 0 such that the step-size restriction(s)

τ2‖S‖ ≤ β̂2,(3.9a)

τ2‖N‖ ≤ 4γϑ2, γ =
2

1 + (1 + 4κ2m−1
1 )1/2

,(3.9b)

hold for all 0 ≤ τ ≤ τCFL(ϑ). Further, we define τCFL = τCFL(1).
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Observe that γ ≤ 1 for all κ and m1 > 0. Further, the second CFL condition
(3.9b) becomes stronger with increasing κ. On the other hand, for κ = 0 (implying
K = 0) we have γ = 1. In this case, (3.9b) corresponds to the (standard) CFL
condition for the LF scheme applied to (1.1) with S = K = 0 as one would expect.
We emphasize that in our numerical experiments the CFL condition (3.9b) turns out
to be rather pessimistic; cf. Section 6.

We start by deriving an explicit block formula for LΨ,τ . In there we make use of
the following identity

(3.10) f(τ2LR) LR = f(τ2LR2) LR2 = LR f(τ2RLR) R = LR f(τ2S̃)R

with S̃ defined in (2.3), which holds for a sufficiently smooth function f due to R = R2.

Lemma 3.5. For LΨ,τ defined in (3.7) with L defined in (2.2) we have

(3.11) τ2LΨ,τ =

(
Ψ(τ2S) τ2Ψ̂(τ2S)KT

τ2KΨ̂(τ2S) τ2N + τ4KX (τ2S)KT

)
.

Moreover, LΨ,τ is symmetric.

Proof. The symmetry immediately follows from the definition of LΨ,τ . Further,
we get from Definition 2.3 and (3.10)

Ψ̂(τ2LR) = Id + τ2X (τ2LR) LR = Id + τ2LRX (τ2S̃)R

= Id + τ2

(
S 0
K 0

)(
X (τ2S) 0

0 0

)
=

(
Ψ̂(τ2S) 0

τ2KX (τ2S) Id−s

)
.

(3.12)

Using (3.7) and again Definition 2.3 completes the proof.

We emphasize that the symmetry of LΨ,τ is crucial for our stability analysis and
used at several points in the following. For the polynomials (2.9) a different proof
of (3.11) was given in [7]. In there, similar estimates as in the following lemma are
shown for κ = 1, however, under a stronger step-size restriction than ours.

Lemma 3.6. Let ϑ ∈ (0, 1] and τ ≤ τCFL(ϑ). Then we have for all q ∈ Rd

(3.13) 0 ≤ τ2
(
LΨ,τq,q

)
≤ 4
(
1−m1 +m1ϑ

2
)
‖q‖2.

In particular, we have τ2‖LΨ,τ‖ ≤ 4
(
1−m1 +m1ϑ

2
)
≤ 4.

Proof. We start with the upper bound. For this we write

(3.14) q =

(
qS
qN

)
∈ Rd with qS ∈ Rs, qN ∈ Rd−s.

By Lemma 3.5 we then have

(3.15)
τ2
(
LΨ,τq,q

)
=
(
Ψ(τ2S)qS ,qS

)
+ τ2

(
Ψ̂(τ2S)KTqN ,qS

)
+ τ2

(
KΨ̂(τ2S)qS ,qN

)
+ τ2

(
(N + τ2KX (τ2S)KT )qN ,qN

)
.

For the first term, the CFL condition (3.9a) together with (3.1) yields(
Ψ(τ2S)qS ,qS

)
≤ 4(1−m1)‖qS‖2.
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For the second and third term in (3.15) we have ‖Ψ̂(τ2S)‖ ≤ 1 because of As-
sumption 3.3 under the CFL condition (3.9a). Hence, we get with the Cauchy-Schwarz
inequality, the scaled Young’s inequality and Assumption 2.1

τ2
(
Ψ̂(τ2S)KTqN ,qS

)
≤ τ2‖K‖‖qN‖‖qS‖
≤ 1

2τ
2κ‖N‖

(
γ∗‖qN‖2 + γ−1

∗ ‖qS‖2
)

with a parameter γ∗ > 0, which is yet to be determined.
The last term in (3.15) can be bounded by

τ2
(
NqN ,qN

)
+ τ4

(
X (τ2S)KTqN ,K

TqN
)
≤ τ2‖N‖‖qN‖2,

since by (3.9a) the second bound in (3.6) holds.
Combining these estimates yields with γ∗ = κm−1

1 γ and (3.9b)

τ2
(
LΨ,τq,q

)
≤ 4
(
1−m1 +m1ϑ

2
)
‖qS‖2 + (1 + κ2m−1

1 γ)4γϑ2‖qN‖2

≤ 4
(
1−m1 +m1ϑ

2
)(
‖qS‖2 + ‖qN‖2

)
= 4
(
1−m1 +m1ϑ

2
)
‖q‖2,

where we used that 1 + κ2m−1
1 γ = γ−1 and ϑ2 ≤ 1−m1 +m1ϑ

2.
For the lower bound in (3.13) we exploit that a symmetric, positive semidefinite

matrix L admits a block decomposition of the form

L = CCT with C =

(
S

1
2 0

KS+S
1
2 A

1
2

)
,

where S+ denotes the Moore-Penrose inverse of S, A = N −KS+KT is a positive
semidefinite matrix, and KS+S = K; see [1] and also [12, Theorems 1.19, 1.20]. Then
we obtain

LΨ,τ = Ψ̂(τ2CCTR)CCT = CΨ̂(τ2CTRC)CT = CΨ̂(τ2S̃)CT .

Thus, we get with (3.3) and the CFL condition (3.9a) for all q ∈ Rd

τ2
(
LΨ,τq,q

)
= τ2

(
Ψ̂(τ2S̃)CTq,CTq

)
≥ 0,

which finishes the proof.

Remark 3.7. If β̂2 ≥ 4 and τ2‖L‖ ≤ 4, which is the step-size restriction of the LF
scheme (2.1), we have with (3.6)

τ2
(
q,LΨ,τq

)
= τ2

(
CTq, Ψ̂(τ2S̃)CTq

)
≤ τ2

(
CTq,CTq

)
= τ2

(
q,Lq

)
≤ 4‖q‖2,

where L = CCT is given as in the previous proof. Thus, with a sensible choice of Ψ
the scheme (2.4) is stable for at least all step sizes for which the LF scheme is.

Further, we need properties of Ψ̂(τ2LR) for the stability of the scheme (2.4) and
for proving the positive definiteness of LΨ,τ , if L is positive definite. Note that we
cannot directly employ (3.6) because LR is non-symmetric.

Lemma 3.8. Let ϑ ∈ (0, 1] and τ ≤ τCFL(ϑ). Then the inverse of Ψ̂(τ2LR) exists
and

(3.16)
∥∥Ψ̂(τ2LR)

∥∥ ≤ cΨ̂, cΨ̂ = 1 + 2m3κγϑ
2.
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Proof. By (3.3) and the CFL condition (3.9a) all eigenvalues of Ψ̂(τ2S) are posi-
tive. Hence, the inverse exists by the block structure of (3.12).

For the estimate of Ψ̂(τ2LR) we use (3.12), the Cauchy-Schwarz inequality, the
CFL condition (3.9a), (3.6), and Young’s inequality to obtain for all q ∈ Rd∥∥Ψ̂(τ2LR)q

∥∥2
=
∥∥Ψ̂(τ2S)qS

∥∥2
+
∥∥τ2KX (τ2S)qS

∥∥2

+ 2
(
τ2KX (τ2S)qS ,qN

)
+ ‖qN‖2

≤ ‖qS‖2 + ρ2‖qS‖2 + 2ρ‖qS‖‖qN‖+ ‖qN‖2

≤ (1 + ρ)2‖q‖2,

where ρ ≤ 1
2m3τ

2‖K‖ ≤ 2m3κγϑ
2 by (3.9), (3.2), and Assumption 2.1.

With this lemma we are able to show the positive definiteness of LΨ,τ for a positive
definite L.

Lemma 3.9. Let τ ≤ τCFL and L be positive definite. Then the inverse of LΨ,τ

exists and we have(
LΨ,τq,q

)
≥
(
c2inv + τ2ccs

)−1‖q‖2 for all q ∈ Rd.(3.17)

Proof. The existence of the inverse of LΨ,τ follows from positive definiteness of L
and Lemma 3.8. Further, we obtain with the definition of X in (2.5) and (3.10)

L−1
Ψ,τ = L−1Ψ̂(τ2LR)−1 = L−1 + L−1

(
Ψ̂(τ2LR)−1 − Id

)
= L−1 − τ2L−1Ψ̂(τ2LR)−1 X (τ2LR) LR

= L−1 − τ2R Ψ̂(τ2S̃)−1 X (τ2S̃) R.

Using this identity we get with (3.8) and (3.4) under the CFL condition (3.9a)(
L−1

Ψ,τq,q
)

=
(
L−1q,q

)
+ τ2

(
−Ψ̂−1(τ2S̃

)
X (τ2S̃)Rq,Rq

)
≤ c2inv‖q‖2 + τ2ccs‖Rq‖2

≤ (c2inv + τ2ccs)‖q‖2,

which yields (3.17).

3.3. Stability of the scheme. After we have shown estimates for LΨ,τ in the
last section, we will use these for showing stability. We first start with a representation
formula of the numerical solution of the scheme (2.4).

Theorem 3.10. Let τ ≤ τCFL. Then the approximations of (2.4) are given by

(3.18a) qn = cos(nΦ)q0 + τSnp0 + τ2
n−1∑
`=0

χ` Sn−`Ψ̂(τ2LR) g`, Sk =
sin(kΦ)

sin Φ
,

for n = 0, 1, 2, . . ., where χ0 = 1
2 and χ` = 1, ` ≥ 1, and the symmetric matrix

Φ ∈ Rd×d with spectrum in [0, π] is uniquely defined by

(3.18b) cos Φ = Id − 1
2τ

2LΨ,τ and sin Φ = τ
(
LΨ,τ (Id − 1

4τ
2LΨ,τ )

)1/2
.
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Proof. The proof can be done as in [4, Theorem 3.3], since LΨ,τ is symmetric
and the spectrum of LΨ,τ is contained in [0, 4] under the CFL conditions (3.9) by
Lemma 3.6. Hence, we obtain for the two-step scheme (2.4a)

(3.19) qn = cos(nΦ)q0 + Sn
(
q1 − cos Φ q0

)
+ τ2

n−1∑
`=1

Sn−`Ψ̂(τ2LR) g`.

Inserting the definition of the starting value (2.4b) leads to (3.18a).

Finally, in order to prove stability of the numerical solution qn, n ∈ N, we have
to provide bounds for the trigonometric functions occurring in (3.18a).

Lemma 3.11. (a) Let τ ≤ τCFL. Then we have for n ∈ N

(3.20a) ‖cos(nΦ)‖ ≤ 1, ‖sin(nΦ)‖ ≤ 1, ‖Sn‖ ≤ n.

(b) Let ϑ ∈ (0, 1) and τ ≤ τCFL(ϑ). Then we have for L positive definite

(3.20b) τ ‖(sin Φ)−1‖ ≤ cstb with cstb =
(c2inv + τ2ccs

m1(1− ϑ2)

)1/2

.

For ϑ = 1 or L positive semidefinite we formally set cstb =∞.

Proof. (a) Since the spectrum of Φ is in [0, π] and |sin(nζ)/ sin ζ | ≤ n for ζ ∈ R
and n ∈ N, the estimates follow immediately.

(b) From (3.18b) and the symmetry of LΨ,τ we obtain with (3.17), (3.13) for q ∈ Rd∥∥(sin Φ) q
∥∥2

=
(
τ2LΨ,τ (Id − 1

4τ
2LΨ,τ )q,q

)
≥ τ2

(
c2inv + τ2ccs

)−1
m1(1− ϑ2)‖q‖2.

Hence, the inverse of sin Φ exists for τ > 0 and replacing q by (sin Φ)−1q completes
the proof.

We are now in the position to state the stability results. For the semilinear case
this additionally requires Lipschitz continuity of the function g.

Assumption 3.12. The function g : [0, T ]× Rd → Rd is (globally) Lipschitz con-
tinuous in the second argument, i.e.,

(3.21) ‖g(t,q)− g(t, q̂)‖ ≤ Lg‖q− q̂‖ for all q, q̂ ∈ Rd, t ∈ [0, T ].

It is well-known that under this assumption the exact solution of (1.1) is unique
and exists for all t ≥ 0.

Remark 3.13. It is sufficient to require that g is locally Lipschitz continuous in
a strip around the exact solution, i.e., in a neighborhood of {q(t) : 0 ≤ t ≤ T} with
T smaller than the maximal existence time of the exact solution. This can be seen
from the error bounds in Theorem 4.4 below. For the sake of presentation we omit
the details.

Theorem 3.14. Let Assumptions 2.1, 2.2, and 3.3 and Assumption 3.12 on g
hold. Further, let ϑ ∈ (0, 1], τ ≤ τCFL(ϑ), and denote by qn and q̂n the approx-
imations obtained by (2.4) with initial values q0,p0 and q̂0, p̂0. Then we have for
tn ≤ T

(3.22) ‖qn − q̂n‖ ≤
(
‖q0 − q̂0‖+ min{T, cstb}‖p0 − p̂0‖

)
e(cΨ̂Lg)1/2T .
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Clearly, for ϑ = 1 or L positive semidefinite we have min{tn, cstb} = tn, since then
cstb =∞; cf. Lemma 3.11.

Proof. From the representation formula (3.18a) and the Lipschitz condition (3.21)
we obtain

‖qn − q̂n‖ ≤‖cos(nΦ)‖‖q0 − q̂0‖+ τ‖Sn‖‖p0 − p̂0‖

+ τ2Lg

n−1∑
`=0

‖Sn−`‖
∥∥Ψ̂(τ2LR)

∥∥‖q` − q̂`‖.

Employing Lemmas 3.8 and 3.11 yields

‖qn − q̂n‖ ≤ ‖q0 − q̂0‖+ min{tn, cstb}‖p0 − p̂0‖+ τ2LgcΨ̂

n−1∑
`=0

(n− `)‖q` − q̂`‖,

which finishes the proof by using tn ≤ T and applying the Gronwall-type inequality
in [4, Lemma 3.8].

In the linear case, i.e., g(t,q) = g(t), we obtain the following result.

Theorem 3.15. Let Assumptions 2.1, 2.2, and 3.3 hold as well as g(t,q) = g(t).
Further, let ϑ ∈ (0, 1] and τ ≤ τCFL(ϑ). Then we have for the approximation qn
obtained by the scheme (2.4)

(3.23) ‖qn‖ ≤ ‖q0‖+ min{tn, cstb}‖p0‖+ min{tn, cstb} cΨ̂τ
n−1∑
`=0

‖g`‖.

Proof. Similarly to the proof for the semilinear case, we obtain the assertion by
the representation formula (3.18a) and Lemmas 3.8 and 3.11.

4. Error analysis. The aim of this section is to provide an error analysis for
the scheme (2.4). More precisely, we will show a convergence result in the standard
norm ‖·‖ for the linear as well as for the semilinear problem.

Let us denote the error of the scheme (2.4) by

(4.1) en = q̃n − qn, q̃n = q(tn),

where q(t) is the exact solution of (1.1) at time t. We denote bounds on the kth
derivative of q by

(4.2) B(k)
n = max

0≤t≤tn
‖q(k)(t)‖.

Moreover, it is well-known that for q ∈ Ck([0, T ]) the remainder terms

(4.3) δ
(k)
n,± = τk−1

∫ tn±1

tn

κ
(k−1)
n,± (t) q(k)(t) dt, κ

(`)
n,±(t) = (tn±1 − t)`/(`!τ `),

of the (k − 1)st-order Taylor expansion of q̃n±1 at tn are bounded by

(4.4) ‖δ(k)
n,+‖ ≤ τk 1

k! max
tn≤t≤tn+1

‖q(k)(t)‖, ‖δ(k)
n,−‖ ≤ τk 1

k! max
tn−1≤t≤tn

‖q(k)(t)‖.

As for the stability analysis, we will utilize a representation formula for en to show
the error bounds. For this we first derive an error recursion for the scheme (2.4).
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Lemma 4.1. For q ∈ C4([0, T ]) the error en of the scheme (2.4a) satisfies for
n ≥ 1 the recursion

(4.5a) en+1 − 2en + en−1 = Ψ̂(τ2LR)
(
−τ2Len + rn

)
+ dn,

where

dn = ∆n + δ(4)
n , ∆n = −τ4X (τ2LR)LR q̈(tn), δ(4)

n = δ
(4)
n,+ + δ

(4)
n,− ,(4.5b)

and

rn = τ2
(
g(tn, q̃n)− g(tn,qn)

)
.(4.5c)

Proof. Inserting the exact solution q̃n into the scheme (2.4a) yields

(4.6) q̃n+1 − 2q̃n + q̃n−1 = τ2Ψ̂(τ2LR)
(
−Lq̃n + g(tn, q̃n)

)
+ dn

with a defect dn. Subtracting the recursion (2.4a) from (4.6) leads to (4.5a). In order
to determine dn we use Taylor expansion to obtain

q̃n+1 − 2q̃n + q̃n−1 = τ2q̈(tn) + δ
(4)
n,+ + δ

(4)
n,−.

Subtracting this relation from (4.6), using the differential equation (1.1), and the
definition (2.5) of X completes the proof.

Next, we compute the error of the starting value q1 defined in (2.4b).

Lemma 4.2. For q ∈ C3([0, T ]) the error e1 of the scheme (2.4b) satisfies

(4.7) e1 = 1
2∆0 + δ

(3)
0,+,

with ∆0 given in (4.5b) and δ
(3)
0,+ in (4.3).

Proof. Similarly to the previous lemma we first insert the exact solution into
(2.4b) and obtain

q̃1 = q0 + τp0 + 1
2τ

2Ψ̂(τ2LR)
(
−Lq0 + g0

)
+ d0 = q1 + d0

with a defect d0 = e1. A Taylor expansion of q̃1 shows (4.7) with the same arguments
as before.

With the previous two lemmas we are now in the position to state a representation
formula for the error en, n ∈ N. Assume τ ≤ τCFL. Then we can show for (4.5a) as
in the proof of Theorem 3.10, cf. (3.19),

en = cos(nΦ)e0 + Sn
(
e1 − cos Φ e0

)
+

n−1∑
`=1

Sn−`
(

Ψ̂(τ2LR) r` + d`

)
.

Since e0 = 0, we have with (4.7)

(4.8) en =

n−1∑
`=1

Sn−`
(

Ψ̂(τ2LR) r` + δ
(4)
`

)
+ Snδ(3)

0,+ + 1
2Sn∆0 +

n−1∑
`=1

Sn−`∆` .

Before we continue with the error analysis, we first have a closer look at ∆n

defined in (4.5b). We obtain ‖∆n‖ ≤ τ4c ‖LR q̈(tn)‖, since similarly to the proof of
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Lemma 3.8 we have ‖X (τ2LR)‖ ≤ c. However, to avoid the loss of consistency if L is
a discretized differential operator, we want the bounds to depend only on derivatives
of q or Lq; cf. [11, Lemma 2.8].

This can be achieved by combining the defects ∆` of three successive time steps. A
similar trick is used in the error analysis of one-step methods for (spatially discretized)
partial differential equations; see, e.g., [3] or [13, Lemma II.2.3]. In the context of
locally implicit schemes this approach was employed in [11, 16] for Maxwell’s equation.

Lemma 4.3. Let τ ≤ τCFL.Then we have

(4.9)

1
2Sn∆0 +

n−1∑
`=1

Sn−`∆` =

n−1∑
`=1

Sn−`
(
∆̃`+1 − 2∆̃` + ∆̃`−1

)
− ∆̃n + Sn(∆̃1 − ∆̃0) + cos(nΦ)∆̃0

with

(4.10) ∆̃n = τ2R Ψ̂(τ2S̃)−1X (τ2S̃)R q̈(tn).

Proof. Let ` ∈ {0, 1, . . . , n− 1}. For ∆` given in (4.5b) we have with Lemma 3.8,
(3.10), and definition (3.7) for LΨ,τ

∆` = −τ4 Ψ̂(τ2LR) Ψ̂(τ2LR)−1X (τ2LR) LR q̈(t`)

= −τ4 Ψ̂(τ2LR)L R Ψ̂(τ2S̃)−1X (τ2S̃)R q̈(t`)

= −τ2LΨ,τ∆̃`.

Hence, we obtain with (3.18b)

(4.11) 1
2Sn∆0 = −Sn 1

2τ
2LΨ,τ∆̃0 = Sn cos Φ ∆̃0 − Sn∆̃0.

Further, again (3.18b) and a trigonometric identity yield

Sn−`∆` = Sn−` 2 (cos Φ− Id) ∆̃` =
(
Sn−`+1 − 2Sn−` + Sn−`−1

)
∆̃`,

which implies

n−1∑
`=1

Sn−`∆` =

n−2∑
`=0

Sn−`∆̃`+1 − 2

n−1∑
`=1

Sn−`∆̃` +

n∑
`=2

Sn−`∆̃`−1

=

n−1∑
`=1

Sn−`
(
∆̃`+1 − 2∆̃` + ∆̃`−1

)
− ∆̃n + Sn∆̃1 − Sn−1∆̃0.

Combining this equation with (4.11) and applying a trigonometric identity finishes
the proof.

We can now state the error bound for the semilinear problems.

Theorem 4.4. Let Assumptions 2.1, 2.2, 3.3, and 3.12 hold and let ϑ ∈ (0, 1],
τ ≤ τCFL(ϑ). Further, the solution q of (1.1) satisfies q ∈ C4([0, T ]). Then we have
for the error en = qn − q(tn) of the scheme (2.4) and tn ≤ T

(4.12) ‖en‖ ≤
(
min{T, cstb}(C1T + C2) + C3

)
e(LgcΨ̂)1/2T τ2,

with

C1 = ( 1
12 + ccs)B

(4)
n , C2 = ( 1

6 + ccs)B
(3)
1 , C3 = ccs

(
‖q̈(0)‖+ ‖q̈(tn)‖

)
.
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Proof. With Lemma 4.3 the representation formula (4.8) can be written as

(4.13)

en =

n−1∑
`=1

Sn−`
(

Ψ̂(τ2LR) r` + δ
(4)
`

)
+ Snδ(3)

0,+

+

n−1∑
`=1

Sn−`
(
∆̃`+1 − 2∆̃` + ∆̃`−1

)
− ∆̃n + Sn(∆̃1 − ∆̃0) + cos(nΦ)∆̃0 .

Lemmas 3.8 and 3.11, (4.5c), and the Lipschitz continuity of g then give

‖en‖ ≤ Lgτ2
n−1∑
`=1

(n− `)cΨ̂‖e`‖+ min{tn, cstb}
(n−1∑
`=1

1
τ ‖δ

(4)
` ‖+ 1

τ ‖δ
(3)
0,+‖

)

+ min{tn, cstb}
(n−1∑
`=1

1
τ

∥∥∆̃`+1 − 2∆̃` + ∆̃`−1

∥∥+ 1
τ ‖∆̃1 − ∆̃0‖

)
+ ‖∆̃0‖+ ‖∆̃n‖.

We bound the single terms separately.

(a) The remainder terms of the Taylor expansion arising in (4.5b) and (4.7) can be
bounded with (4.4) by

n−1∑
`=1

1
τ ‖δ

(4)
` ‖+ 1

τ ‖δ
(3)
0,+‖ ≤ τ2tn

1
12B

(4)
n + τ2 1

6B
(3)
1 .

(b) For ∆̃0 and ∆̃n defined in (4.10) we have by (3.4) and the CFL condition (3.9a)

‖∆̃0‖+ ‖∆̃n‖ ≤ τ2ccs

(
‖q̈(0)‖+ ‖q̈(tn)‖

)
.

(c) For the central difference quotient of ∆̃` we first use again (3.4) and (3.9a) and
afterwards Taylor expansion to obtain

n−1∑
`=1

1
τ ‖∆̃`+1 − 2∆̃` + ∆̃`−1‖ ≤

n−1∑
`=1

τccs‖q̈(t`+1)− 2q̈(t`) + q̈(t`−1)‖

≤
n−1∑
`=1

τ3ccs max
t`−1≤t≤t`+1

‖q(4)(t)‖

≤ τ2ccs tnB
(4)
n .

(d) Finally, with the same arguments as in the previous step we have

1
τ ‖∆̃1 − ∆̃0‖ ≤ τ2ccsB

(3)
1 .

Collecting the estimates and using the Gronwall-type inequality from [4, Lemma 3.8]
finishes the proof.

For linear problems we have Lg = 0 (and r` = 0 for all ` = 1, . . . , n), which leads
to the following result.

Corollary 4.5. Let Assumptions 2.1, 2.2, and 3.3 hold and let ϑ ∈ (0, 1], τ ≤
τCFL(ϑ). Further, let g(t,q) = g(t) and the solution q of (1.1) satisfies q ∈ C4([0, T ]).
Then we have for the the error en = qn − q(tn) of the scheme (2.4) and tn ≤ T

(4.14) ‖en‖ ≤
(
min{tn, cstb}(C1tn + C2) + C3

)
τ2,

with C1, C2, and C3 defined as in Theorem 4.4.



ON MULTIRATE LF-TYPE METHODS FOR SECOND-ORDER SEMILINEAR ODES 15

5. sLFC schemes – constants, implementation, and efficiency. After we
have derived abstract stability and error results for the scheme (2.4) in the last two
sections, we now focus on the sLFC scheme, i.e., scheme (2.4) equipped with the
polynomials (2.9). We first show that these polynomials satisfy Assumption 3.3 and
state explicit values for the constants arising in Section 3.1. Afterwards we show how
the sLFC scheme can be implemented efficiently and make a heuristic comparison of
the efficiency with the LF scheme.

5.1. Constants for sLFC schemes. For the polynomials (2.9), most of the

constants have already been computed in [4, 7] for a specific choice of β̂. Adopting
this choice yields the following.

Lemma 5.1. For the LFC polynomials (2.9) we have for ν > 1 and

(5.1a) m1 = m̃1 =
1

2

(
1− 1

Tp(ν)

)
, m̃2 =

4m̃1

αp(ν − 1)
=

Tp(ν)− 1

T ′p(ν)(ν − 1)

that β̂2 = β̂2
p = αp(ν + 1) ≤ 4p2. Moreover, Assumption 3.3 is satisfied and we have

(5.1b) m3 = −Ψ′′p(0) = 2
T ′′p (ν)

α2
pTp(ν)

, ccs =
1

4m̃1
.

Proof. Assumption 3.3 and the constants for m1, m3 arising in Definition 3.1 are
proven in [4, Theorems 5.1 and 5.2(b)].

Next, we show the lower bounds in (3.1) and abbreviate σp,ν = αp(ν − 1). For

σp,ν ≤ z ≤ β̂2 the constant m̃1 in (3.1) can be shown similarly to m1; see also
[7, Lemma A.4]. For 0 ≤ z ≤ σp,ν the function Ψp is concave and monotonically
increasing. Thus, we have

Ψp(z) ≥
Ψp(σp,ν)

σp,ν
z = m̃2z.

It remains to show (3.4). First, we note that Ψ̂(z)−1X (z) ≤ 0 for z ∈ [0, β̂2].

Further, we have for σp,ν ≤ z ≤ β̂2

Ψ̂(z)−1X (z) =
1

z
− 1

Ψ(z)
> − 1

Ψ(z)
≥ − 1

4m̃1
.

For 0 ≤ z ≤ σp,ν a tedious calculation shows that Ψ̂(·)−1X (·) is monotonically de-
creasing. This yields

Ψ̂(z)−1X (z) ≥ Ψ̂(σp,ν)−1X (σp,ν) ≥ − 1

Ψ(σp,ν)
= − 1

4m̃1
,

which concludes the proof.

If we set ν = 1+η2/(2p2) with a parameter η > 0, then all constants in Lemma 5.1

except β̂2 can be chosen independent of the polynomial degree p. The choice is
motivated by stabilized/damped Runge–Kutta–Chebyshev methods [13, 17], where a
similar scaling of the parameter also leads to bounds which are independent of p.

Corollary 5.2. If ν = νp = 1 + η2/(2p2) with η > 0, we have for the LFC
polynomials (2.9)

4p2

cosh(η)
≤ β̂2 ≤ 4p2 for m1 = m̃1 =

η2

4 + 2η2
, m̃2 =

1

sinhc(η)
,(5.2a)
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and

m3 =
cosh(η)

2

cosh(η)− sinhc(η)

η2
, ccs =

2 + η2

2η2
.(5.2b)

Note that the bounds hold for all η > 0 and p ∈ N.

Proof. The proofs of these constants rely on Lemma 5.1 and the estimates

T (k)
p (νp) ≥ T (k)

p (1) + T (k+1)
p (1)(νp − 1),

dk

dxk
Tp

(
1 +

x

2p2

)
≤ dk

dxk
cosh(

√
x)

for p ∈ N, k ∈ N0, and x ≥ 0, which can be seen by Taylor expansion.

5.2. Implementation. Next, we turn towards the implementation of the sLFC
scheme. For the sake of readability we focus on the implementation of the two-
step scheme (2.4). The same strategy can be applied to the corresponding one-step
formulation (2.12). Moreover, the dominant parts of the computational cost coincide
for both schemes. We emphasize that the algorithm can be easily adapted to the case
M 6= Id, if we are in the setting of Remark 2.5.

An efficient implementation of one time step of the sLFC scheme is based on the
representation (3.12) for Ψ̂(τ2LR). Details are given in Algorithm 5.1, in which the
notation from (3.14) is used, i.e., for b ∈ Rd we denote by bS ∈ Rs and bN ∈ Rd−s the
subvectors of b belonging to the stiff and the nonstiff part of the differential equation.
The starting value (2.4b) can be computed via a similar strategy.

Algorithm 5.1 One time step of the sLFC scheme ((2.4a) with (2.9))

1: b = −Lqn + gn
2: b̃S = X (τ2S)bS
3: b̂S = bS + τ2Sb̃S
4: b̂N = bN + τ2Kb̃S
5: qn+1 = 2qn − qn−1 + τ2b̂

For the computation of X
(
τ2S

)
bS one can employ the recurrence relation in

Lemma 5.3, because X = Xp,p. This is advantageous over a computation via Horner’s
method, since it is more stable and the factors of the polynomial X (which change
with varying p and ν) need not to be precomputed. Only the scalar values Tk(ν),
T ′k(ν), and αk for k = 1, . . . , p have to be known in advance, but they are easy to
compute. An algorithm for the computation of X

(
τ2S

)
bS can be derived from [4,

Algorithm 6.1], in which a similar recursion is computed.

Lemma 5.3. The polynomials

Xk,p(z) =
Rk,p(z)

z2
, Rk,p(z) = 2− 2

Tk(ν)
Tk

(
ν − z

αp

)
− αk
αp
z, 1 ≤ k ≤ p,

satisfy the recursion

X1,p(z) = 0, X2,p(z) = − 4

α2
pT2(ν)

,

Tk+1(ν)Xk+1,p(z) = −2Tk(ν)
αk
α2
p

+ 2
(
ν − z

αp

)
Tk(ν)Xk,p(z)− Tk−1(ν)Xk−1,p(z),

for k = 2, . . . , p− 1.
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Table 5.1: Effort in matrix-vector multiplications (MVM) and evaluations of g for the LF
scheme (2.1a) with M = Id and the sLFC scheme (2.4a),(2.9). p denotes the degree of the
polynomial Ψp.

LF scheme (2.1a) sLFC scheme (2.4a) + (2.9)
1 MVM with L 1 MVM with L

1 evaluation of g 1 evaluation of g
p− 1 MVMs with S

1 MVM with K

Proof. The result follows from the recursion of Chebyshev polynomials and its
derivatives.

5.3. Efficiency. The efficiency of the sLFC scheme (Algorithm 5.1) is now com-
pared to the classical LF scheme (2.1). The main cost in terms of matrix-vector
multiplications and evaluations of g for one time step of each of the schemes are given
in Table 5.1. As one observes, the additional (main) effort for the sLFC scheme con-
sists of p− 1 matrix-vector multiplications with S and one with K. For s� d this is
comparatively cheap.

For the total cost we now compare the maximal step sizes for which the schemes
are stable. Under Assumption 2.1 we have for the LF scheme

τ2
CFL,LF =

4

‖L‖
≈ 4

‖S‖
=

4

r‖N‖
.

For the step-size restriction of the sLFC scheme we recall (3.9) with ϑ = 1

τ2
CFL = min

{ β̂2

‖S‖
,

4γ

‖N‖
}

=
1

‖N‖
min

{ β̂2

r
, 4γ
}
, γ =

2

1 + (1 + 4κm−1
1 )1/2

.

With Corollary 5.2 we then obtain for κ = 1

(5.3) min
{

4p2

r cosh(η) ,
8η

η+
√

9η2+16

}
≤ τ2

CFL,sLFC‖N‖ < min
{

4p2

r , 2
}
.

If we now choose p ∈ N such that p2 ≈ r we get a step-size restriction which depends
only on η and the submatrix N but is independent of the stiff part. Hence, with an
appropriately chosen η we can use almost as large step sizes as for the LF scheme
applied to the nonstiff problem (1.1) with S = K = 0.

Remark 5.4 (Choice of η). For p2 = r the maximal value of the lower bound in
(5.3) is attained for η ≈ 1.556 and takes an approximate value of 1.6. However, our
numerical experiments indicate that the choice η ∈ [0.4, 1] is sufficient if κ ≤ 1. For
smaller values of η instabilities can occur for certain step sizes; cf. Section 6.1. If η
is chosen too large, the value for β̂ deteriorates rapidly; see Corollary 5.2 and also [4,
Fig. 5.2].

We finally note that in our applications we observed the following weaker step-size
restriction

(5.4) τ2
CFL,sLFC‖N‖ ≈ min

{
β̂2

r , 4
}
≈ min

{
4p2

r cosh(η) , 4
}
,
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if η ∈ [0.4, 1]; see, e.g., Sections 6.2 and 6.3. Besides the fact that κ is often smaller
than 1 (which increases γ), the influence of the coupling matrix K to the (largest)
eigenvalues of S, N is often – although not neglectable – rather small.

6. Examples. In this last section we present some examples confirming our
theoretical results and showing possible applications. We start with a simple example
for d = 2 verifying the necessity of the bounds (3.1) in Definition 3.1 and, hence, the
use of stabilization parameters in (2.9). Afterwards we turn towards more realistic
numerical examples. The codes for reproducing the numerical results are available on
https://doi.org/10.5445/IR/1000133907.

6.1. A two-dimensional problem. We consider the simple linear problem

(6.1) q̈(t) = −Lq(t) = −
(
r κ
κ 1

)
q(t)

with r � 1 and 0 ≤ κ ≤ r1/2, i.e., S = r, N = 1, and K = κ in (2.2).

Applying the scheme (2.4) yields with Lemma 3.5 and the definitions of Ψ̂ and X

(6.2) τ2LΨ,τ =

(
Ψ(τ2r) Ψ(τ2r)ρ
Ψ(τ2r)ρ τ2(1− κρ) + Ψ(τ2r)ρ2

)
, ρ = κr−1 ∈ [0, r−1/2].

For the eigenvalues of τ2LΨ,τ

λ± = 1
2Ψ(τ2r)(1 + ρ2) + 1

2τ
2(1− κρ)

± 1
2

(
Ψ(τ2r)2(1 + ρ2)2 − 2Ψ(τ2r)τ2(1− ρ2)(1− κρ) + τ4(1− κρ)2

)1/2

an easy computation shows that the larger eigenvalue is bounded by

λ+ ≥ Ψ(τ2r)(1 + ρ2) if τ2 ≤ Ψ(τ2r)
1 + ρ2

1− κρ
.

Hence, the existence of a β > β̂ such that Ψ(z) ≤ 4 for all z ∈ [0, β2] is in general not
sufficient to guarantee λ+ ≤ 4 for τ2 ≤ min{β2/r, 4} as it would be true for K = 0.
This confirms that condition (3.1) with m1 > 0 is indeed necessary to ensure λ+ ≤ 4
and, thus, at least linear stability. A similar behavior occurs for (multirate) LFC
schemes; cf. [4]. Moreover, note that the stronger the coupling, i.e., the greater κ,
the greater λ+ can become, since ρ = κ/r.

In Figure 6.1 we illustrate this by plotting the eigenvalues of (6.2) with the LFC
polynomials (2.9) for different stabilization parameters η ≥ 0. We choose κ = 2, r = 9,
and, hence, p = 3 as polynomial degree for the LFC polynomial; cf. Section 5.3.

As one can clearly see the eigenvalues λ+ with the unstabilized polynomial Ψ3

are larger than 4, if the polynomial is equal or too close to 4. At the roots of Ψ3 the
polynomial leads only to a linear growth of the approximations qn in time, whereas
the exact solution is uniformly bounded for all t ≥ 0. We further observe that with a
sufficiently large η the eigenvalues are bounded away from 0 and 4. The price to pay
is a slightly smaller β̂, hence, a (slightly) stronger step-size restriction.

6.2. A modified Fermi–Pasta–Ulam–Tsingou problem. As a second ex-
ample we choose a modification of the famous Fermi–Pasta–Ulam–Tsingou (FPUT)
β-problem [6], where a chain of d + 2 mass points (with mass 1 for all points) are
connected via nonlinear springs. The first and the last point at the end are fixed.

https://doi.org/10.5445/IR/1000133907
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Fig. 6.1: Eigenvalues λ± of (6.2) with r = 9, κ = 2, and Ψ = Ψp (LFC polynomials)
plotted over step sizes τ2. For Ψp we use polynomial degree p = r1/2 = 3 and stabilization
parameters η = 0, η = 0.2, η = 0.5, η = 0.8, and η = 1. The dash-dotted lines indicate, where
the polynomials Ψ3(τ2r) leave the interval [0, 4].

In contrast to the original problem we choose springs whose elastic constants can be
different for each spring. By qi we denote the displacement of the ith mass point
from its equilibrium and with pi = q̇i the velocities, i = 1, . . . , d. The Hamiltonian
describing the motion of the mass points is then given by

H(p,q) =
1

2

d∑
i=1

p2
i +

1

2

d∑
i=0

ω2
i+1(qi+1 − qi)2 +

βFPU

4

d∑
i=0

(qi+1 − qi)4,

where q = (q1, . . . , qd), p = (p1, . . . , pd), and q0 = qd+1 = 0. Deriving the differential
equations leads to (1.1) with M = Id, a tridiagonal matrix

L = tridiag
(
ω−,ω+,ω−

)
∈ Rd×d, ω− = (−ω2

i )di=2, ω+ = (ω2
i + ω2

i+1)di=1,

and g = (g1, . . . , gd) with

gi(q) = βFPU

(
(qi+1 − qi)3 − (qi − qi−1)3

)
, i = 1, . . . , d.

In our example we set d = 100, βFPU = 2,

ωi = 110, i = 1, 2, 3, ωi = 20, i = 4, . . . , d+ 1,

as well as the starting values

q0 =

{
0.25, i ∈ {1, 8},

0, else,
p0 =

{
−0.1, i ∈ {1, 8},

0, else.

By choosing S = (Li,j)
3
i,j=1 we have ‖S‖ ≈ 39332, ‖N‖ ≈ 1599.6, and ‖K‖ = 400.

Thus, we obtain r ≈ 24.6 and κ ≈ 0.25.
In Figure 6.2 we apply the LF scheme (2.1) and the sLFC scheme (2.4), (2.9) with

η = 0.5 and p = 3, 5, 6 to the FPUT β-problem. As reference solution for computing
errors we apply the LF scheme with step size τ = 10−5 to the problem.
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Fig. 6.2: Error (left) and relative error of Hamiltonian (right) for the numerical solution of
the FPUT β-problem. For Ψ = Ψp we use polynomial degrees p = 3, p = 5, p = 6 and as
stabilization parameter η = 0.5. The blue lines represents the LF scheme. In the left plot the
dash-dotted line indicates order two, the dotted lines correspond to the ”maximal stable”
step size for the LF scheme applied to the stiff system (1.1) and to the the nonstiff problem
(1.1) with S = K = 0. In the right plot the relative error of the Hamiltonian is plotted only
at every 200th time step for the sake of clarity.

In the error plot on the left one can observe that with the sLFC scheme the step
size can be chosen approximately p times larger than for the LF scheme until p = 5. A
further increase of the polynomial degree has no positive effect on the step size, which
is consistent with Section 5.3 since r1/2 ≈ 5. Moreover, for the same step size the error
for the sLFC scheme is significantly smaller than the error for the LF scheme. This is
due to the fact that the polynomials (2.9) are for small z a better approximation to
the exact solution than the LF scheme; cf. [4]. In general, the difference in the errors
of the LF and sLFC schemes strongly depends on the initial values and in many cases
there is no visible difference between them.

The plot on the right confirms that the Hamiltonian is nearly conserved for long
times, which is due to the symplecticity of the scheme (2.4); cf. Corollary 2.6. The
relative error of the Hamiltonian is defined via

errH(n) =
|H(pn,qn)−H(p0,q0)|

H(p0,q0)
.

6.3. Wave equation. Last, we consider a differential equation stemming from
the spatial discretization of the inhomogeneous wave equation with homogeneous
Dirichlet boundary conditions on the unit square Ω = (0, 1)2,

(6.3a)

q̈(t, x) = ∇ ·
(
c(x)∇q(t, x)

)
+ f(t, x), x ∈ Ω, t ∈ [0, T ],

q(t, x) = 0, x ∈ ∂Ω, t ∈ [0, T ],

q(0, x) = q0(x), q̇(0, x) = q̇0(x), x ∈ Ω,

with

c(x) =

{
8.5, x ∈ [0.75, 1]2,
0.73, x ∈ [0, 1]2 \ [0.75, 1]2.
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As initial data and for the inhomogeneity we choose the smooth functions

(6.3b) q0(x) = h(x; 3, 0.25, ( 0.4
0.4 )), q̇0(x) = 0, f(t, x) = h(x; 4, 0.1, ( 0.875

0.875 )) e−t,

where

h(x; a, r0, x0) = 1‖x−x0‖≤r0 a exp
(
−
(
1− ‖x− x0‖2/r2

0

)−1
)
.

For the spatial discretization of (6.3) we employ a symmetric interior penalty
discontinuous Galerkin method [2, 8] using piecewise polynomials of degree three on
the unstructured mesh illustrated in Figure 6.3(a). This results in (1.1) with g only
depending on time t and a symmetric, positive definite L. The mass matrix M is
block diagonal, where the blocks contain the degrees of freedom (dofs) of one mesh
element. Thus, solving with or inversion of M can be done at low cost. For the
implementation, we used (2.8) instead of (2.4a); cf. Remark 2.5.

The stiffest part of the differential equation consists of these dofs belonging to
the mesh elements, where c is larger, and its adjacent elements because of the flux
terms at faces; cf. dotted area in Figure 6.3(a). Hence, after a possible reordering, S
corresponds to the part of L with the dofs belonging to the dotted area. A numerical
computation of the largest eigenvalues yields r ≈ 9.036 and κ ≈ 0.215.

In Figure 6.3(b) we apply the LF scheme (2.1) and the sLFC scheme (2.4), (2.9)
with p = 2, 3, 4, η = 0.5 as well as p = 3, η = 0.1 to this equation. The errors are
computed at time tN = 2.7, where we use the LF scheme with step size τ = 10−5

on the same mesh as reference solution. We clearly observe second-order convergence
for all applied schemes. Moreover, if stable, the errors between the LF scheme and
the sLFC schemes are almost identical. Further, one can observe that, in accordance
with Section 5.3, p = 3 ≈ r1/2 is optimal in the sense of efficiency, since p = 4 leads
to (almost) no further increase of the maximal step size, where the scheme is stable.
In the magnified image section we again see that an insufficient stabilization leads to
a stricter step-size restriction than for a larger value for η.

Acknowledgments. We thank Benjamin Dörich for his careful reading of this
manuscript.
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Press (1965), pp. 978-988; and Nonlinear wave motion, A. C. Newell (Ed.), Lect. Appl.
Math. 15, AMS, Providence, RI (1974), pp. 143-156.

[7] M. J. Grote, S. Michel, and S. A. Sauter, Stabilized leapfrog based local time-stepping
method for the wave equation, 2020, https://arxiv.org/abs/2005.13350. to appear in Math.
Comp.

https://doi.org/10.1137/0117041
https://doi.org/10.1137/0719052
www.numdam.org/item/M2AN_1982__16_1_5_0/
www.numdam.org/item/M2AN_1982__16_1_5_0/
https://doi.org/10.1137/18M1209453
https://doi.org/10.1137/070709414
https://doi.org/10.1137/070709414
https://doi.org/10.2172/4376203
https://arxiv.org/abs/2005.13350


22 C. CARLE AND M. HOCHBRUCK

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

(a) Triangulation of Ω.

3 · 10−4 10−3 3 · 10−3

10−4

10−3

10−2

τ
‖e

N
‖ M

(b) Error for t = 2.7.

Fig. 6.3: Mesh and error of the numerical solution of the (spatially discretized) wave equation
(6.3). For Ψ = Ψp we use polynomial degrees p = 2, p = 3, p = 4 with stabilization parameter
η = 0.5 as well as p = 3,η = 0.1. The blue lines represents the LF scheme. The dash-dotted
line indicates order two, the dotted lines correspond to the ’maximal stable’ step size for
the LF scheme applied to the stiff system (1.1) and to the the nonstiff problem (1.1) with
S = K = 0.

[8] M. J. Grote, A. Schneebeli, and D. Schötzau, Discontinuous Galerkin finite element
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