
Domain Knowledge Infusion in
Machine Learning for Digital Signal

Processing Applications

An in-depth case study on
table tennis stroke recognition

Master’s Thesis of

Christoph Ludwig Richard Wieland

At the Department of Informatics

Reviewer: PD Dr. Victor Pankratius
Second reviewer: Prof. Dr. Michael Beigl
Advisor: PD Dr. Victor Pankratius

Duration: December 10, 2020 – June 9, 2021

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association www.kit.edu

Karlsruher Institut für Technologie
Fakultät für Informatik
Postfach 6980
76128 Karlsruhe

I declare that I have developed and written the enclosed thesis completely by myself, and
have not used sources or means without declaration in the text.

I followed the rules for securing a good scientific pracise of the Karlsruhe Institute of
Technology (Regeln zur Sicherung guter wissenschaftlicher Praxis im Karlsruher Institut
für Technologie (KIT)).

Karlsruhe, June 9, 2021

Signed Wieland
. .

(Christoph Ludwig Richard Wieland)

Abstract

This work explores the infusion of domain knowledge as a way to improve machine learning
applications in signal processing. Table tennis stroke detection is used here as an in-depth
exemplary use case with signals collected from the sensors of a wrist-worn smartwatch. Do-
main knowledge is leveraged at various abstraction levels to improve stroke detection and
classification, ranging from low-level signal corrections, context-dependent sensor fusion,
stroke type characteristics, to valid gameplay state machines that allow self-correction of
misclassifications. An LSTM based prototype is shown to successfully distinguish between
play/no play, stroke/no stroke, length of stroke, eight types of strokes (drive, loop, block,
push for forehand/backhand), as well as to predict metrics of future strokes based on
past strokes. Training and validation was performed by two semi-professional table tennis
players using a table tennis robot serving 3770 precisely controlled shots.

v

Zusammenfassung

Diese Arbeit untersucht die Infusion von Domänenwissen als eine Möglichkeit zur Opti-
mierung von Anwendungen des maschinellen Lernens in der Signalverarbeitung. Als An-
wendungsbeispiel wird die Erkennung von Tischtennisschlägen anhand von Signalen detail-
liert analysiert. Die Signale stammen von Sensoren, die in einer am Handgelenk getragenen
Smartwatch integriert sind. Domänenwissen wird auf verschiedenen Abstraktionsebenen
verwendet, um die Schlagerkennung und -klassifikation zu verbessern. Diese reichen von
der Wahl und Fusion tischtennisrelevanter Sensoren, über Low-Level-Signalkorrekturen,
bis hin zu Zustandsautomaten, die basierend auf dem Wissen über gültige Schlagsequen-
zen eine Selbstkorrektur von Fehlklassifikationen ermöglichen. Die Evaluation des LSTM-
basierten Prototyps zeigt, dass er erfolgreich zwischen Spiel/kein Spiel, Schlag/kein Schlag,
und acht Schlagarten (Vorhand/Rückhand Konter, Topspin, Block, Unterschnitt) unter-
scheiden kann, sowie Metriken zukünftiger Schläge zur Analyse des Spielstils basierend auf
vergangenen Schlägen vorhersagen kann. Das System wurde basierend auf 3770 Schlägen
von zwei langjährigen Tischtennisspielern entwickelt und validiert. Die Daten wurden in
einer kontrollierten Umgebung unter Zuhilfenahme eines Tischtennisroboters gesammelt,
der Bälle präzise servieren kann.

vii

Contents

Abstract v

Zusammenfassung vii

1 Introduction 1

2 Related Work 3
2.1 Domain Knowledge Infusion . 3
2.2 Table Tennis Stroke Recognition . 4

2.2.1 Academic Context . 4
2.2.2 Patents . 6

2.3 Summary . 7

3 Technical Background 9
3.1 Long Short-Term Memory Network . 9
3.2 Finite State Machine . 11
3.3 Relevant Signal Processing Techniques . 12

3.3.1 Spline Interpolation . 12
3.3.2 Signal Energy . 12
3.3.3 Wavelet Transform . 13
3.3.4 Digital Filter . 15
3.3.5 Z-Score . 16
3.3.6 Linear Regression . 16

3.4 Summary . 16

4 Domain Knowledge 17
4.1 Terminology . 17
4.2 Table Tennis . 18

4.2.1 Stroke Phases . 18
4.2.2 Stroke Types . 19
4.2.3 Stroke Sequences . 20
4.2.4 Table Tennis Robot . 21

4.3 Influence of Domain Knowledge on Data Acquisition 21
4.4 Summary . 22

5 The Table Tennis Stroke Recognition System 23
5.1 Data Collection Environment . 23
5.2 Sensors . 25
5.3 Modules . 25

5.3.1 Data Collection Module . 25
5.3.2 Preprocessing Module . 25
5.3.3 Model Training Module . 26
5.3.4 Stroke Extraction & Classification Module 26

ix

x Contents

5.3.5 Stroke Analysis Module . 27

5.4 Apps . 27

5.4.1 Data Collection . 27

5.4.2 On-Device Inference . 32

5.5 Summary . 36

6 Internals of the Processing Pipeline 37
6.1 Preprocessing . 37

6.2 Machine Learning Models . 43

6.2.1 Early Stopping . 43

6.2.2 Sliding Window . 43

6.2.3 Classifier Architecture . 43

6.2.4 Forecaster Architecture . 44

6.3 Stroke Extraction and Classification . 45

6.3.1 Stroke and Non-Stroke Noise Inference 45

6.3.2 Stroke Extraction . 46

6.3.3 Stroke Classification . 50

6.4 Stroke Analysis . 51

6.5 Influence of Domain Knowledge on Processing 53

6.5.1 Preprocessing . 53

6.5.2 Stroke Recognition . 53

6.6 Summary . 54

7 Evaluation 55
7.1 Data . 55

7.1.1 Data Collection Process . 55

7.1.2 Data Sets . 56

7.2 Machine Learning Models . 57

7.2.1 Performance Metrics . 57

7.2.2 Classifiers . 58

7.2.3 Forecaster . 62

7.2.4 Mobile Device Optimization . 62

7.3 Player-Dependent Models . 63

7.4 Stroke Extraction . 64

7.5 Stroke Classification . 65

7.6 Stroke Analysis . 68

7.7 Excursus: Amateur Data . 69

7.8 Summary . 70

8 Discussion and Outlook 71
8.1 Edge Devices and the Machine Learning Models 71

8.2 Sensor Placement . 72

8.3 Individuality of Table Tennis . 73

8.4 Future Work . 73

8.4.1 Improvements . 73

8.4.2 Suggestions . 74

8.5 Summary . 75

9 Conclusion 77

Bibliography 79

Contents xi

Appendix 83
A Exemplary Stroke Signals . 83
B Exemplary Preprocessing Results . 88
C Stroke Execution . 93
D Transition Probabilities . 97
E Evaluation . 98

E.1 Stroke Extraction and Classification 98
E.2 Stroke Analysis . 100

List of Figures

3.1 A simple RNN with a one hidden unit A (input xt, output ht) and a recur-
rent weight matrix Whh (adapted from [13]). 9

3.2 An LSTM unit containing the cell state Ct, and the three gates ft, it, and
ot (adapted from [13]). 10

3.3 A highly simplified version of this work’s non-deterministic finite state ma-
chine. 12

3.4 A simple spline interpolation through the points (0,1), (1,4), (2,2), (3,5),
(4,1), and (5,3). The separate spline segments are colored differently. 13

3.5 The decomposition function (left) and the reconstruction function (right)
of the bior3.9-wavelet. 13

3.6 Two different signals composed of several sinusoids (1, 2, 5, and 10 Hz) and
their respective spectra after applying a Fourier transform (adapted from
[22]). 15

4.1 Backswing phase a forehand drive. 18

4.2 Stroke phase of a forehand drive. 18

4.3 Swing-out phase a forehand drive. 19

4.4 Return phase a forehand drive. 19

4.5 The shakehand grip in forehand and backhand. 20

4.6 Unrolled Stroke Sequence State Machine for the drill “Forehand, Middle,
Backhand”. 20

4.7 Donic Robo-Pong 2040. 21

4.8 Domain knowledge infused data collection tasks. 21

5.1 Custom illustration of a Fossil Gen 5E Carlyle HR with its coordinate sys-
tem and specifications. 23

5.2 The watch placements: In the left case, only one watch is placed on the
racket-holding wrist. In the right case, an additional watch is positioned
slightly above the right knee. 24

5.3 The temporal data collection and testing environment in the author’s base-
ment consists of a table tennis table and a training robot. 24

5.4 The five modules of the processing pipeline and their respective device
contexts. RD/PD: raw/preprocessed data, ES: extracted strokes, TC/TF:
trained classifiers/forecaster . 26

5.5 The IMU Logger prompts the user to select the usage mode (standalone/-
client) at its initial startup. 28

5.6 User interface of the standalone IMU Logger. 28

5.7 The process of scanning and connecting to a server if the smartwatch acts
as a client. 29

5.8 GATT Server UI with the abilities to start the server (here: already pressed),
start and stop logging, and to change the current configuration. 30

xiii

xiv List of Figures

5.9 Visualization of the interaction between user, server, and a client during a
data collection process. 31

5.10 Simplified view of the primary classes of the IMU Logger. The IMU Logger
only initializes the GattClient if it acts in client mode. 32

5.11 Simplified view of the GattServer class of the GATT Server app. 32

5.12 An exemplary on-device inference process. Images (a)–(j) show the UI of
the TT Classifier, while image (k) enlarges the plot of (j) for better readability. 33

5.13 Simplified class diagram of the TT Classifier containing its primary classes
and their relationships. 35

6.1 Activity diagram of the preprocessing workflow. For better distinction,
dashed paths indicate additional steps only required for training. Input:
raw data with labels. Output: preprocessed data. 38

6.2 The acceleration and pressure data of a time series containing eight forehand
drives. The raw pressure data does not show a trend. The preprocessed data
contains non-stroke noise actions (black) and the raw data (pale). 39

6.3 The pressure data of a time series containing eleven forehand drives. The
raw pressure data shows a trend. The preprocessed data contains non-stroke
noise actions (black) and the raw data (pale). 39

6.4 A sliding window of size 10 consecutive data points = 100 ms. 43

6.5 The classifier architecture. X: number of input features, Y : number of
output classes. 44

6.6 The architecture of the Stroke Forecaster. X: number of input features, Y :
number of output features. 45

6.7 The impact of the noise factor 1.5 on the decision space. The area under
each curve represents non-stroke noise actions, while the area above each
curve represents valid strokes. 46

6.8 A classified time series containing eight backhand loops. 46

6.9 Illustration of the three stroke extraction methods applied on a stroke se-
quence with eight forehand drives. For acceleration, it only visualizes FULL
strokes. The pressure curve is not smooth because its values are truncated
after five decimal places. 48

6.10 Stroke sequences containing eight forehand drives (left) compared to eight
backhand drives (right). The cumulative acceleration of each backhand
stroke shows strong fluctuations, while the forehand strokes are smooth. . . 49

6.11 The fully connected Stroke Sequence State Machine used to enrich the
LSTM stroke classifications with domain knowledge from typical table ten-
nis drill descriptions (see [18]). 50

6.12 The impact of tanh on the state machine probabilities. 51

6.13 Visualization of the delta calculation (see Equation 6.12). The delta between
both curves is positive for both positive forecasted values and negative ones. 52

6.14 Domain knowledge infused tasks in preprocessing and stroke recognition. . . 53

7.1 Training of player one’s Stroke, Noise, Stroke Future, and Combined Model. 61

7.2 Confusion matrices of player one’s Stroke and Combined Model on his test
set. 61

7.3 Comparison of the confusion matrices when mixing Stroke Models and test
data from two different players. 63

7.4 Confusion matrices of player two’s Stroke and Combined Model on his test
set. 64

List of Figures xv

7.5 Comparison of the classification of eight backhand blocks using the modular
approach with and without the state machine. Green: correct classifica-
tions, red: misclassifications. 67

7.6 An incorrect stroke extraction causes the second misclassification when us-
ing the modular approach. The Stroke Sequence State Machine could not
cure it. 67

7.7 Faulty stroke classifications using the non-modular approach. The Stroke
Sequence State Machine could not solve either misclassification. 67

7.8 The cumulative acceleration and angular velocity of a sequence containing
eight forehand drives compared to their forecasted values. 68

7.9 Inference of amateur data with pretrained Stroke Models. 69

8.1 Alternative sensor placement (Arduino Nano 33 BLE Sense) directly on the
racket handle. 72

8.2 The confusion matrices of the Stroke Models of both players on their respec-
tive test sets. In both cases, it is most difficult for the models to distinguish
drives and blocks. 73

A.1 Raw sensor data of eight forehand drives. 83
A.2 Raw sensor data of eight forehand loops. 84
A.3 Raw sensor data of eight forehand blocks. 84
A.4 Raw sensor data of eight forehand pushes. 85
A.5 Raw sensor data of eight backhand drives. 86
A.6 Raw sensor data of eight backhand loops. 86
A.7 Raw sensor data of eight backhand blocks. 87
A.8 Raw sensor data of eight backhand pushes. 88
B.9 Interim results of the preprocessing pipeline applied to a time series con-

taining eight forehand drives. The preprocessed data contains non-stroke
noise actions (black) and the raw data (pale). 88

B.10 Interim results of the preprocessing pipeline applied to a time series con-
taining eleven forehand drives. The preprocessed data contains non-stroke
noise actions (black) and the raw data (pale). 91

C.11 Execution of a forehand drive. 93
C.12 Execution of a forehand loop. 94
C.13 Execution of a forehand push. 94
C.14 Execution of a forehand block. 95
C.15 Execution of a backhand drive. 95
C.16 Execution of a backhand loop. 96
C.17 Execution of a backhand push. 96
C.18 Execution of a backhand block. 97
E.19 Exemplary stroke extraction and classification results on the test set of

player 1. Comparison of the modular and the non-modular output. 98

List of Tables

4.1 A selection of drill descriptions from [18]. 20

5.1 Sensors of the Fossil Gen 5E Carlyle HR. 25
5.2 List of time series parameters with their possible values in English and

German. 28

7.1 Total number of recorded strokes per stroke type and data set (player one
| player two). 56

7.2 Confusion matrix (adapted from [39, p. 92]). TP: true positives, FP: false
positives, TN: true negatives, FN: false negatives. 57

7.3 Performance metrics of various Stroke Models trained on several input fea-
ture combinations of player one’s data. L: loss, F1: F1-score. 59

7.4 Comparison of alternative models using player one’s accelerometer, gyro-
scope, and magnetometer data. L: loss, F1: F1-score. 60

7.5 The training results of the Stroke Future Model. L: loss, RMSE: root mean
squared error, MAE: mean absolute error. 62

7.6 Influence of model shrinking on model size, including the floating point
operations needed for inference (FLOPS). 62

7.7 Training results of player two’s machine learning models. 64
7.8 The stroke extraction results on the test sets of player one (P1) and player

two (P2). 65
7.9 The average number of windows containing non-stroke noise actions on the

test sets of player one (P1) and player two (P2). Pre Noise refers to windows
before and Post Noise to windows after a stroke sequence. 65

7.10 The stroke classification results on the test sets of player one (P1) and player
two (P2). 66

7.11 The average deviation in acceleration, angular velocity, velocity, and angle
on the test set strokes performed by player one (P1) and player two (P2). . 69

D.1 The transition probabilities of the Stroke Sequence State Machine derived
from [18]. Note that the transitions from the state X to the Waiting state
are not mentioned, because these transitions are only used at the end of a
time series to return to the Waiting state and therefore do not need to be
considered here. 97

E.2 The stroke analysis results of the strokes visualized in Appendix E.1. Only
the modular approach is considered. 100

xvii

Chapter 1

Introduction

Today’s mainstream machine learning techniques have gaps in explainability and traceabil-
ity of their inner workings [1]. Given the popularity of machine learning and its integration
into all kinds of decision processes, new regulations are pressing for more technical account-
ability. An example is the European right to not be subjected to an exclusively automated
decision-making process (Art. 22 GDPR, Recital 71). The inclusion of human domain
knowledge in machine learning is a promising complement to enhance the explainability of
processes that used to be black boxes. However, research on domain knowledge infusion in
this area is still sparse, which is why this thesis will conduct an in-depth case study to eval-
uate new research opportunities. It addresses the research question “Can machine learning
benefit from domain knowledge to compute more trustworthy and reliable outputs?”.

The automated detection of table tennis strokes in sensor signals serves as the basis for
this study. Concretely, this thesis explores ways to incorporate interdisciplinary domain
knowledge into different steps of the processing pipeline, ranging from the selection of
appropriate sensors and preprocessing techniques to result interpretation. This use case is
interesting, as human activity recognition “has gained significant interest from computer
scientists and researchers over the past decade because of its wide range of applications” [2].
So far, however, there is a lack of such monitoring systems in the context of table tennis.

This work presents a machine learning based table tennis stroke recognition system capable
of extracting, classifying, and analyzing strokes in fused sensor signals provided by an
accelerometer, a gyroscope, a magnetometer, and a pressure sensor integrated into a wrist-
worn smartwatch. All in all, the system considers eight stroke types: drive, loop, block,
and push, each in forehand and backhand. It explicitly leverages domain knowledge to
automatically self-verify and self-correct its machine learning based stroke classifications.
In addition to the classification of strokes, the system is able to detect non-stroke actions
in recorded time series. The complete processing can either run on a computer or directly
on a smartwatch. Players can use the system to classify and monitor stroke sequences in
a controlled environment where a table tennis robot serves balls precisely.

The thesis is structured as follows: The first chapter after this introduction discusses
related work in the areas of domain knowledge infusion in machine learning and table

1

2 1 Introduction

tennis stroke recognition (Chapter 2). The subsequent chapters present basic knowledge
relevant to this work, including technical fundamentals (Chapter 3) and table tennis related
knowledge (Chapter 4). Chapters 5 and 6 introduce the table tennis stroke recognition
system. The first presents a high-level view of the data acquisition environment, relevant
sensors, and system components. The second dives deeper into the system internals and
explains the complete processing pipeline. The subsequent chapter evaluates the system
components on data from two semi-professional table tennis players (Chapter 7). Chapter 8
discusses the use of machine learning models on edge devices, alternative embodiments,
and challenges due to the individuality of table tennis. It closes with possible future
advancements of the system. This thesis ends with a conclusion about the impact of
domain knowledge on machine learning (Chapter 9).

Chapter 2

Related Work

The major research topics of this thesis are the infusion of domain knowledge in machine
learning and the recognition of table tennis strokes. The following sections discuss projects
with similar subjects. In general, there is currently not much research on domain knowledge
infusion in machine learning for digital signal processing applications. This is especially the
case in the context of human activity recognition, such as table tennis stroke recognition.
For this reason, Section 2.1 only presents some general thoughts and ideas on domain
knowledge infusion along with exemplary use cases. The subsequent section discusses
related work from research and industry in the area of table tennis stroke recognition
(Section 2.2). The last part of this chapter briefly summarizes the differences between
related work and this work’s approach (Section 2.3).

2.1 Domain Knowledge Infusion

Islam et al. [3] introduced a system to detect network attacks such as DDoS or Web
Attacks based on a data set containing criteria for each attack type. They pursued the
goal of making the detection of such attacks more explainable. For this purpose, domain
knowledge represented by the CIA principle (confidentiality, integrity, availability), “a
popular network security principle” [3], is leveraged to reduce the feature space from 78
features per attack type to 22 more understandable domain features. They compared
these features with multiple classifiers, such as artificial neural networks, support vector
machines, or random forests. While the results for the domain features are slightly worse
than the results using the complete feature set, the domain knowledge infused approach
“provides better explainability” [3] and“better execution time and resiliency with unknown
attacks” [3].

Radovanović et al. [4] proposed a stacking logistic regression framework that integrates do-
main knowledge to reduce the impact of non-linear relationships between input attributes
on the final classification. They consider the binary prediction of thirty-day hospital
readmissions as an exemplary use case. Clinical Classification Software (CSS) provides
domain knowledge, more precisely, hierarchically arranged information on “costs, utiliza-
tion, and outcomes associated with particular diagnoses and medical procedures” [4]. First,

3

4 2 Related Work

Radovanović et al. cluster these multi-level data to create input features for the classifier.
Next, they apply linear regression stepwise based on these hierarchical groups instead of
considering all input attributes at once. Thus, the likelihood increases that a classification
step only considers features with linear relationships. This modification of the classical
linear regression approach leads to improved classification accuracy and precision. In ad-
dition, the decision process becomes easier to understand.

Kursuncu et al. [5] developed a concept to integrate domain knowledge directly into the
learning process of neural networks. For this purpose, they developed a neural network
layer that takes the previous hidden representation, the second-previous hidden represen-
tation, and a vector representing domain knowledge as an input. Here, knowledge graphs
contain these domain-specific concepts and their relationships. A custom embedding func-
tion turns knowledge into vectors. Kursuncu et al. developed two additional functions for
training: the Knowledge-Aware Loss Function decides “whether to infuse knowledge or not
at a particular stage in learning” [5], and the Knowledge Modulation Function merges “the
differential knowledge representation with the learned representation” [5]. The authors
hope that the combination of knowledge graphs and deep learning “will further enhance
the performance and accelerate the convergence of advanced learning processes” [5]. Fur-
thermore, infusing domain knowledge during learning could increase the explainability of
decision-making processes, reduce the need for large data sets for training, and“potentially
avoid social discrimination” [5] caused by automatic decisions.

The first two mentioned papers use domain knowledge for feature engineering and ex-
traction. Islam et al. use it to reduce the feature space and Radovanović et al. to
create a “deep feature extraction model” [4] whose structure relies on domain knowledge.
Kursuncu’s work, on the other hand, follows an entirely different approach. It integrates
domain knowledge directly into the learning process. All of them aim for more reliable and
explainable decision-making processes. In contrast, the thesis at hand takes the approach
of infusing domain knowledge after classification to make the system more reliable. The
developed system verifies its classification results based on domain knowledge and adjusts
them automatically as needed. In addition, this thesis discusses the influence of domain
knowledge on design decisions throughout the complete processing pipeline, from feature
selection to their preprocessing, classification, and the interpretation of final results.

2.2 Table Tennis Stroke Recognition

This section presents prior art in the field of stroke recognition in table tennis and other
racket sports, including findings from the academic context (Section 2.2.1) as well as from
patents (Section 2.2.2). None of them use domain knowledge to improve classification re-
sults or LSTM-networks for classification, even though this neural network architecture is
beneficial for classifying and analyzing time series. Except for one patent, they only pro-
vide stroke recognition capabilities, not stroke analysis. More differences are individually
discussed per publication.

2.2.1 Academic Context

Liu et al. [6] presented a system for table tennis stroke recognition based on human inertial
data. The system can detect five types of strokes: forehand drive, block shot, forehand
chop, backhand chop, and smash. It consists of a sensor network for data acquisition
(upper arm, lower arm, back) and a wireless module to send data via Wi-Fi to a computer
for further processing. The sensor network collects acceleration and angular velocity. The
system detects strokes if both properties exceed a threshold (twice the mean of the raw
data) in one-second sliding windows. It extracts the following features for classification

2.2 Table Tennis Stroke Recognition 5

purposes: mean, variance, kurtosis, covariance, correlation coefficient, skewness, energy,
and spectral entropy. PCA is applied to reduce the feature dimensions. The system uses an
SVM for stroke classification. In total, Liu et al. collected 270 samples from nine players.
The system achieved an accuracy of 97.41 % on the collected data. In contrast to this
thesis, Liu et al. consider fewer stroke types (only five compared to eight), collected data
from only two sensors instead of four (accelerometer, gyroscope, magnetometer, pressure
sensor), and use derived features rather than raw data for classification. Furthermore, Liu
et al. use a sliding window approach with fixed-sized windows to extract strokes. Thus,
each detected stroke lasts a multiple of one second, regardless of whether the movement is
actually shorter.

Dokic et al. [7] developed a system that can only distinguish between forehand and back-
hand strokes using a simple feedforward network. They do not consider different stroke
types. The data comes from an Arduino Nano 33 BLE Sense worn at the racket-holding
wrist. This device collects acceleration and angular velocity and sends it via BLE to a
computer responsible for preprocessing and training. The network is deployed directly
on the device to classify strokes. The system achieved an accuracy of 100 % on forehand
strokes and 96 % on backhand strokes, respectively. Compared to this thesis, the scope of
Dokic’s work is significantly smaller. The system only distinguishes between forehand and
backhand, which makes it somewhat unsuitable for real-world use.

Fu et al. [8] developed a table tennis stroke recognition system using a smartwatch to
gather sensor data and a CNN for classification. The system relies on acceleration, an-
gular velocity, and magnetic field. The smartwatch sends collected data to an Android
smartphone via BLE, which forwards it to a web server on a computer that performs stroke
detection. Strokes are extracted based on the variances in each data dimension within a
sliding window. If the summed variances are greater than a threshold, the system considers
the window as a stroke. Subsequently, the system combines all data within a time window
into one large vector and uses it as input for the CNN. The extraction and classification
process is completely done on the computer, not on the smartwatch itself. The system
considers a total of eight stroke types: forehand attack, forehand drive, forehand chop,
forehand pick, backhand dial, backhand drive, backhand chop, and backhand twist. Fu et
al. evaluated it on 2275 strokes from twelve different players, of which they used 1800 for
training and the remaining 475 strokes for testing. The system achieved a classification
accuracy of 95.46 % on the test set. In contrast to this thesis, Fu’s system cannot be used
directly on a smartwatch. Instead, a computer performs the processing steps. Further-
more, the need for three devices, a smartwatch for data collection, a smartphone solely
for data forwarding, and a computer for processing is not user-friendly compared to the
single-device solution of this work. Similar to Liu’s approach, stroke detection uses sliding
windows, which again create strokes with fixed lengths. Unfortunately, Fu et al. did not
provide performance metrics for their stroke extraction approach. They evaluated only
the classification of extracted strokes.

Blank et al. [9] developed a system, which is capable of detecting and classifying four
different stroke types per hand (forehand/backhand): topspin, drive, block, and push.
They use a miPod sensor attached to a table tennis racket to collect acceleration and
angular velocity. Blank et al. collected data from ten players with predefined two-player
exercises. An expert inspects the data and decides between valid strokes and random racket
movements, serves, or faulty strokes. He manually labeled 1982 of the 3004 collected
ball contacts as valid strokes. The system detects strokes by applying a Butterworth
high-pass filter to the energy of the accelerometer signals along with a threshold function
containing the mean and the standard deviation. Afterward, the researchers define each
stroke interval as [t − 600 ms, t + 400 ms], where t denotes the timestamp of a detected
peak in the energy signal. All in all, this algorithm detected 3097 ball contacts, of which

6 2 Related Work

the human expert manually marked 1971 as valid shots. Blank et al. used only the 1971
detected valid strokes for further evaluation of the classifier. Compared to the 1982 actual
valid strokes, the detection algorithm achieved a precision of 95.7 % and a recall of 98.2 %.
They tested stroke classification with several classical approaches, such as SVM and kNN.
For this purpose, they use a total of 60 features, e.g., mean, kurtosis and energy. The SVM
achieved the best result with an accuracy of 96.7 % for the 1971 detected valid strokes.
One major difference between Blank’s work and this thesis is the sensor placement. Blank
et al. attached a sensor directly to the racket. This likely results in more fine-grained
data compared to the smartwatch solution used in this thesis, as it allows the detection of
wrist movements important for some table tennis strokes, instead of arm movements, but
comes with the downsides of changed racket weight and balance, and the need of charging
the racket from time to time, which makes this solution less user-friendly. Furthermore,
stroke extraction solely relies on one characteristic, namely the energy of the acceleration.
However, table tennis is a highly individual sport, and sometimes accelerations are smaller
when performing the same stroke type. Hence, using more features for extraction would
probably result in better results.

2.2.2 Patents

Jin et al. [10] invented a system that is capable of extracting and classifying table tennis
strokes. Furthermore, it provides information about the strength and speed of a stroke.
The system collects acceleration and angular velocity data with a device that is worn at
the racket-holding wrist. This is explicitly not a smartwatch, but a device with a display,
Bluetooth module, and sensors specially made for this application. The system detects
motion by looking at the acceleration: it detects a stroke if the acceleration at a specific
time is greater than the average acceleration during the ten time steps before. The system
uses wavelet packet decomposition to compute feature vectors from the acceleration and
angular velocity energies. Before classification with a Kohonen neural network, also known
as Self-Organizing Map, it reduces these feature vectors by linear discriminant analysis.
In contrast to this thesis, Jin et al. use a custom device to collect data. This proprietary
solution is not as user-friendly as smartwatches because users must carry and maintain an
additional device. In addition, many users already use smartwatches daily, which makes
proprietary solutions less attractive. The stroke extraction based on the last ten time
steps is an inspiring approach that is probably suitable for real-time stroke recognition.
However, it could reach its limits if the strokes are continuously getting slower, e.g., due
to exhaustion. In addition, the use of wavelet coefficients for stroke classification likely
results in huge feature vectors and, thus, compared to the use of raw sensor data, a higher
computational cost for feature space reduction and classification.

Han et al. [11] developed a rally detection system for racket sports. They utilize a stroke
classifier that can distinguish between strokes and non-stroke actions. The data comes from
an IMU (accelerometer and gyroscope) which is directly attached to the racket. Data are
not getting processed directly on the smart racket. Instead, the sensor sends them to
a client device responsible for preprocessing data and detecting strokes and rallies. The
system detects strokes if the acceleration and the angular velocity in a sliding window are
greater than a threshold and uses an SVM for classification. The feature vector consists
of acceleration and rotation data in short time windows. In contrast to this thesis, Han et
al. did not specifically optimize their system for the domain table tennis, but they claim
that the system is suitable in this context.

Kim et al. [12] invented a system for racket sports that uses step and swing information,
such as step or swing acceleration, step width, and jump height, to analyze a player’s
motion and skills. They claim that the results are useful for comparing the athletic perfor-

2.3 Summary 7

mance of different players. These features are more general than the table tennis related
information considered in the thesis at hand.

2.3 Summary

This selection of previous work illustrates that current research primarily focuses on do-
main knowledge for feature engineering and extraction. Only a few attempts to explicitly
integrate domain knowledge into classification tasks exist. While this research yielded
promising results, there is still great potential to incorporate domain knowledge into
decision-making processes to make them more reliable and trustworthy.

The existing table tennis stroke recognition systems suffer from limited numbers of de-
tectable stroke types, proprietary sensor devices, unnatural sensor placements, high-di-
mensional feature spaces, or complex processing equipment that hinder daily use. Neither
of them explicitly uses domain knowledge to select appropriate sensor types, optimize pro-
cessing pipelines, or verify the machine learning based classifications. In addition, they
only consider stroke detection and do not provide stroke analysis capabilities. Therefore,
plenty of opportunities exist to further develop and improve these systems to make them
suitable for everyday use.

This work presents a table tennis stroke recognition system that leverages domain knowl-
edge explicitly to self-verify and automatically adjust machine learning based stroke classi-
fications. Moreover, it integrates domain knowledge implicitly into its system design as the
selection of appropriate sensor types, sensor placements, and processing techniques relies
heavily on table tennis related knowledge. This approach demonstrates the importance
of domain knowledge in interdisciplinary topics. Besides that, this thesis also differs from
prior art in terms of the sensors, processing techniques, considered stroke types, and the
test environment that includes a table tennis robot. The following chapters present the
system and highlight its distinctive features.

Chapter 3

Technical Background

This chapter introduces the theoretical principles that form the basis for the table tennis
stroke extraction and classification system developed in the practical part of this master
thesis. These include a special kind of recurrent neural networks, the so-called Long
Short-Term Memory networks (Section 3.1), finite state machines as behavioral models for
analyzing typical table tennis stroke sequences (Section 3.2), and various signal processing
techniques (Section 3.3). This chapter ends with a brief summary and an outlook on the
next chapter (Section 3.4).

3.1 Long Short-Term Memory Network

Traditional artificial neural networks, such as feed-forward networks, suffer from the prob-
lem that they are not able to put their inputs in a temporal context [13]. Therefore, they
are unable to use knowledge about previous events to classify the current input. Recur-
rent neural networks (RNNs) address this issue by adding loops to their hidden layers [13].
These loops describe weighted, recurrent connections between the hidden layers of the
current and previous time steps, enabling recurrent neural networks to process temporal
sequences of data [13]. Figure 3.1 shows an example of a simple RNN with such a loop.

xt A ht

Whh

Figure 3.1: A simple RNN with a one hidden unit A (input xt, output ht) and a recurrent
weight matrix Whh (adapted from [13]).

A drawback of traditional RNNs is that they suffer from vanishing or exploding gradients
the longer the time frames are, which makes learning long-term dependencies nearly im-
possible [14]. This behavior arises from the large number of multiplications of loop weights

9

10 3 Technical Background

during the calculation of the gradients when training with Backpropagation Through Time
(BPTT) [15]:

δht′

δht
=
∏
t′≥i>t

δhi
δhi−1

=
∏
t′≥i>t

W T
hh diag(σ′(hi−1)). (3.1)

This gradient vanishes if the largest eigenvalue λ of the recurrent weight matrix Whh is
less than 1 and explodes, when λ is greater than 1 [15].

Hochreiter and Schmidhuber introduced a special RNN-version, the so-called Long Short-
Term Memory Networks (LSTMs), which addresses vanishing gradients caused by long-
term dependencies. They developed complex hidden units that are maintaining their
current state in an additive way, instead of the RNNs’ simple hidden units with their mul-
tiplicatively linked outputs [14]. Typical use cases for LSTMs are time series classification
or forecasting. The following is a brief introduction to the behavior of LSTMs. For more
information, see [13, 14, 16].

LSTMs consist of multiple LSTM units (see Figure 3.2), containing a cell state Ct, which
includes information about the history of the unit, and three gates, namely the forget gate
ft, the input gate it, and the output gate ot, which are responsible for maintaining the cell
state and for calculating the output of each unit [13].

xt

σ σ tanh σ

×

+×

×

tanh

ht−1

Ct−1

ht

Ct

ht

C̃

itft
ot

Figure 3.2: An LSTM unit containing the cell state Ct, and the three gates ft, it, and ot
(adapted from [13]).

The forget gate uses a sigmoid layer to decide which information from the old cell state
to keep and which to discard by feeding the layer with the output of the previous hidden
unit ht−1 and the current input xt [13]:

ft = σ(Wf ∗ [ht−1, xt] + bf). (3.2)

The larger the calculated value, the more information should be retained.

The input gate is responsible for selecting the information to be added to the cell state
at a time step [13]: First, it uses a sigmoid layer similar to the one of the forget gate to

3.2 Finite State Machine 11

determine which values of the cell state to update [13]:

it = σ(Wi ∗ [ht−1, xt] + bi). (3.3)

Secondly, a tanh layer, which takes the same input ht−1 and xt, computes candidate values
for the updates [13]:

C̃t = tanh(WC ∗ [ht−1, xt] + bC). (3.4)

Lastly, the results of the first two steps are additively combined and the cell state is
updated accordingly [13]:

Ct = Ct−1 ∗ ft + it ∗ C̃t. (3.5)

The output gate is responsible for calculating the output of the unit ht at the current
point in time [13]. Again, this calculation takes multiple steps: First, a sigmoid layer
determines which parts of the updated cell state Ct to emit, following the same procedure
as the sigmoid layers of the forget and the input gates [13]:

ot = σ(Wo ∗ [ht−1, xt] + bo). (3.6)

Secondly, a tanh fits the values of the updated cell state Ct into the interval [−1, 1] [13].
Lastly, the output gate multiplies the results of the previous steps to calculate the final
output ht of the unit at this point in time [13]:

ht = ot ∗ tanh(Ct). (3.7)

As mentioned above, the cell state is responsible for maintaining long-term dependencies.
The derivative of its additive update procedure (Equation 3.5) is as follows [16]:

δCt′

δCt
=
∏
t′≥i>t

σ(vi), (3.8)

where vi denotes the input to the forget gate (Equation 3.2). The main difference be-
tween the gradient calculation of classical RNNs (Equation 3.1) and the LSTM-version
(Equation 3.8) is that the latter does not contain the factor Whh which causes the RNNs’
gradients to approach zero for long-term dependencies. Besides the fact that“this quantity
can certainly approach zero” [16], LSTMs do not suffer from vanishing gradients caused
by intrinsic factors, such as weight matrices [16].

3.2 Finite State Machine

A finite state machine consists of a finite set of states, an alphabet, a transition function,
a start, and an end state [17]. For deterministic finite state machines, the transition
function is unambiguous [17]. Non-deterministic state machines, on the other hand, allow
ambiguous state transitions so that they can reach several states with the same input [17].

This work uses a non-deterministic finite state machine to verify and, if necessary, to
adjust the outputs of the classification LSTM. Its states describe the different types of
strokes; its transition function represents common table tennis stroke sequences. Each
transition has a probability P based on its frequency in the drill descriptions of [18]. So-
called ε-transitions [17] allow transitions between states that are not actually connected
based on the drill descriptions. Examples are the connections between strokes and the
initial Waiting state in both directions. Figure 3.3 shows a simplified version of the finite
state machine used in this work. For simplicity, it only consists of three states: the initial
Waiting state, one state that subsumes all types of forehand strokes (Forehand), and
another one that combines all types of backhand strokes (Backhand).

12 3 Technical Background

Waiting

ForehandBackhand

ε

ε, Pf,fε, Pb,b

Pw,f

Pw,b ε

ε

Pf,b

Pb,f

Figure 3.3: A highly simplified version of this work’s non-deterministic finite state machine.

3.3 Relevant Signal Processing Techniques

Digital signal processing is an important task when using sensor signals in software ap-
plications. This also applies to the practical part of this thesis. The following sections
present signal processing techniques relevant to this work.

3.3.1 Spline Interpolation

Interpolation is the task of fitting a continuous curve to n supporting points. Various
interpolation techniques exist, such as polynomial interpolation or spline interpolation.
Whereas the polynomial interpolation suffers from oscillation in the resulting curves, the
spline interpolation provides smoother results [19, pp. 76 ff.]. The basic idea behind the
spline interpolation is to fit a polynomial function si(x) to each pair of supporting points
[(xi, yi), (xi+1, yi+1)] for i ∈ [1, n − 1] that is two times continuously differentiable [19,
pp. 76 ff.]. This results in n− 1 terms:

S(x) =

s1(x) , x ∈ [x1, x2]

s2(x) , x ∈ [x2, x3]

...

sn−1(x) , x ∈ [xn−1, xn]

, (3.9)

where the spline must match the points at the interval boundaries:

S(xi) = yi for i ∈ [1, n]. (3.10)

A spline is called “Cubic Spline” if it uses polynomials with rank three to interpolate two
points [19, pp. 76 ff.]:

si(x) = aix
3 + bix

2 + cix+ di. (3.11)

Figure 3.4 shows an example cubic spline interpolation. Please have a look at [19, pp. 76 ff.]
for more information about the construction of cubic splines.

3.3.2 Signal Energy

The area under the signal curve describes the signal’s energy. Because this work’s sensors
do not provide continuous but discrete values, the energy of a signal x corresponds to the
following expression [20, p. 7]:

Ex =
∞∑

n=−∞
|x(n)|2 . (3.12)

3.3 Relevant Signal Processing Techniques 13

Figure 3.4: A simple spline interpolation through the points (0,1), (1,4), (2,2), (3,5), (4,1),
and (5,3). The separate spline segments are colored differently.

This work adjusts the limits of the sum since table tennis strokes only occur in a short
period of time [t0, t1]. This results in the following equation:

Ex =

t1∑
n=t0

|x(n)|2 . (3.13)

3.3.3 Wavelet Transform

Wavelet transforms are commonly used in image compression, noise reduction, and pattern
recognition tasks [20, p. 311]. Wavelets are wavelike oscillations with specific frequencies,
finite energy, and zero mean. The wavelet transform shifts them through a signal to
transform it into the time-frequency domain [21, p. 10]. Several wavelet families exist that
represent wavelets with similar properties, such as biorthogonal wavelets, Daubechies, or
Coiflets [20, p. 342–350]. For instance, biorthogonal wavelets allow smooth reconstructions
of input signals due to their symmetry and biorthogonality properties [21, pp. 150 f.]. In
the context of this work, practical experiments have shown that the bior3.9-wavelet is
best suited for noise reduction of the accelerometer, gyroscope, and magnetometer signals
because it preserves their general signal shapes. Figure 3.5 visualizes bior3.9-wavelet.

(a) Decomposition function (b) Reconstruction function

Figure 3.5: The decomposition function (left) and the reconstruction function (right) of
the bior3.9-wavelet.

14 3 Technical Background

The general idea behind wavelet transforms is to pass multiple versions of a chosen mother
wavelet ψ(t) with different frequencies through a signal x(t), so that the wavelet transform
can analyze a signal at different frequencies [21, pp. 12 ff.]. The mother wavelet is defined
by the scaling factor a = 1 and a translation parameter b = 0 [21, p. 12]. The scaling factor
is responsible for squeezing or stretching the signal in time, which implies a change in the
frequency of the chosen wavelet [21, p. 12]. The translation parameter is responsible for
shifting the wavelet through the signal [21, p. 12]. The modification of these parameters
results in other version of the mother wavelet, the so-called daughter wavelets ψa,b(t) [22].
Mathematically expressed, the daughter wavelet function is defined as follows [21, p. 14]:

ψa,b(t) =
1√
a
ψ

(
t− b
a

)
, (3.14)

where the factor 1√
a

ensures that all daughter wavelets have the same energy.

With this knowledge, Addison [21, p. 14] defines the wavelet transform as:

T (a, b) =

∫ ∞
−∞

x(t)ψa,b(t) dt. (3.15)

In the discrete case, the parameter a is commonly sampled by a logarithmic discretization
of the scale and the parameter b is defined by a fixed step size [21, p. 93].

Noise can be reduced in three steps using wavelets [20, pp. 361 f.]:

1. Choose a wavelet, e.g., a biorthogonal one, and apply wavelet packet decomposition
to the input signal. This results in a series of n wavelet coefficients ci.

2. Low coefficients are essentially responsible for noise, while large coefficients carry
essential signal information. Therefore, modifying the resulting coefficients by ap-
plying a threshold function ε is a valid technique for removing high-frequency noise.
For example, this work replaces all coefficients smaller than a threshold with 0 and
move the others towards 0:

ĉi =

ci − ε , ci > ε

ci + ε , ci < −ε
0 , |ci| ≤ ε

. (3.16)

This technique is commonly known as soft thresholding [23]. Johnson [24] suggests
a threshold of

ε = σ ∗
√

2 ∗ log(n), (3.17)

where σ refers to the median absolute derivation of the wavelet coefficients c, and σ
to the noise level of the signal [24, 23].

3. Reconstruct the filtered signal using the wavelet’s reconstruction function.

Figure B.9c compares the completely preprocessed acceleration of an exemplary stroke se-
quence with its original shape. This includes smoothing with the above-mentioned bior3.9
wavelet.

One of the main advantages of wavelet transforms over Fourier transforms is their locality
in time and frequency, which makes them particularly useful for analysis of non-stationary,
non-periodic signals [22]. Fourier transforms do not offer this property because they always
consider the input signals as a whole [22]. Figure 3.6 compares the Fourier transforms of
two signals composed of different combinations of the same 1, 2, 5, and 10 Hz sinusoids.
The left signal 3.6a combines all the sine waves over the entire fifteen seconds, while the

3.3 Relevant Signal Processing Techniques 15

right signal 3.6b uses three different combinations of the sine waves at three five-second
intervals. Specifically, the first interval combines the sinusoids of all frequencies, the second
one combines the 1 with the 10 Hz sinus waves, and the third one uses the 2 and the 5 Hz
sinusoids. Although the left signal contains all frequencies at all times and the right signal
contains different compositions at three intervals, their spectra are very similar.

(a) Stationary, periodic signal composed of all
sinusoids (top) with its corresponding spec-
trum (bottom).

(b) Non-stationary, non-periodic signal com-
posed of three intervals containing different
sinusoids (top) with its corresponding spec-
trum (bottom).

Figure 3.6: Two different signals composed of several sinusoids (1, 2, 5, and 10 Hz) and
their respective spectra after applying a Fourier transform (adapted from [22]).

Another important advantage of the Wavelet transform is its linear computational com-
plexity O(n) when using the fast biorthogonal wavelet transform [25, p. 311] compared to
the Fast Fourier Transform which requires O(n log n) operations [20, p. 175].

3.3.4 Digital Filter

Another way to smooth signals is to apply a digital filter [26, p. 261]. One of the most
commonly known filters is the moving average filter [26, p. 277]. Despite its simplicity,
it is well suited for noise reduction tasks [26, p. 277]. As the name suggests, the moving
average filter calculates the average of all values in a fixed range around the current point
to be changed. The filter kernel is as follows:

1

N
∗ [1]N , with N : filter size. (3.18)

In mathematical terms, we can define the filtered version x′ of an input signal x as:

x′[n] =
1

N

N−1∑
i=0

x[n− i]. (3.19)

This equation is similar to the one proposed in [26, p. 277], but uses the values from the
left side of the point to calculate the moving average instead of its right side.

16 3 Technical Background

3.3.5 Z-Score

Barnett and Lewis define an outlier in a data set as “an observation (or subset of observa-
tions) which appears to be inconsistent with the remainder of that set of data” [27, p. 7].
They also make it clear that inconsistency is a subjective perception. Therefore, it is vital
to distinguish how to deal with outliers, i.e., whether they should be removed, adjusted,
or remain untouched [27, p. 7]. The analysis of this work’s data revealed that its outliers
mainly relate to unusually large values in the recorded data. This work adjusts them by
comparing the z-scores

z(x) =

{
x−µ
σ , σx 6= 0

0 , else
(3.20)

of each data point x in a time series to a predefined threshold t and clipping their values [28].
Here, µ denotes the mean and σ the standard deviation of the time series. If the absolute
z-score of a data point is greater than t, the data point is considered as an outlier and
adjusted. This work uses the following metric to calculate the adjusted values x̂:

x̂ =

µ+ t ∗ σ , z(x) > t

µ− t ∗ σ , z(x) < t

x , else

, (3.21)

with t = 3, because this is a value commonly used in literature [28].

3.3.6 Linear Regression

Robson [29] describes a trend in a time series as a progressive increase or decrease in its
values over time. Depending on the observed data, trends can occur for several reasons.
Some examples are problems with the data records or environmental factors, such as
variations in the climate [29]. Depending on the individual processing goals, scientists
must weigh which types of trends to address or tolerate. The analysis of this work’s data
revealed a trend in some pressure signals (cf. Figure B.10j) the system must treat to enable
pressure based stroke detection. As this image suggests, the trend can be considered linear.
Therefore, linear regression techniques, such as Least-Squares Fit, can approximate the
trend with a line

Y = A+BX (3.22)

optimized by minimizing the sum of squared residuals E [30, pp. 83 ff.]:∑
i

E2
i . (3.23)

Here, E denotes the distance between an actual data point and its corresponding value on
the approximated normalization line. The proposed system reduces trends by subtracting
the line from the original signal. Figure B.10k visualizes the pressure data of an exemplary
record after removing the linear trend.

3.4 Summary

This chapter introduced fundamental techniques relevant to this thesis, ranging from ma-
chine learning based classification methods and behavioral models to relevant signal pro-
cessing techniques. They form an essential pillar for the table tennis stroke recognition
system developed in this work. The next chapter introduces table tennis related domain
knowledge as the second pillar.

Chapter 4

Domain Knowledge

Automatic recognition of table tennis strokes in sensor signals is an interdisciplinary task
whose solving requires both technical know-how about sensors and processing algorithms
as well as knowledge about the domain table tennis. Therefore, it is important to clarify
the concept of “domain knowledge”. This chapter explains the term “domain knowledge”
(Section 4.1) and puts it in the context of table tennis (Section 4.2). It further discusses
the influence of domain knowledge on data acquisition (Section 4.3). The last section
briefly summarizes the importance of table tennis related knowledge (Section 4.4).

4.1 Terminology

The Oxford University Press defines the terms “domain” and “knowledge” as follows:

� A domain is “an area of knowledge or activity; especially one that somebody is
responsible for” [31].

� Knowledge is “the information, understanding and skills that you gain through edu-
cation or experience” [32].

Consequently, domain knowledge refers to information about a specific topic that an indi-
vidual (or machine) has acquired, making him or her an expert in that field.

Croft summarizes this by defining domain knowledge as “information about the important
topics or concepts in a particular domain and how they relate to each other” [33].

Chiesi et al. give a similar definition. They define “knowledge of a domain as an under-
standing of its basic concepts, as well as its goals, rules, and/or principles” [34], where
“concept involves not simply the definition of the concept but its relations and usage” [34].

These are just a few example definitions of the term “domain knowledge”. However, they
provide a useful overview of domain knowledge aspects relevant to this thesis.

17

18 4 Domain Knowledge

4.2 Table Tennis

Table tennis is one of the most popular sports in the world with approximately 250 million
players worldwide [35, p. 19]. There are numerous ways to play table tennis with countless
individual variations possible [35, p. 194]. This section mainly focuses on basic table
tennis concepts, which are necessary for understanding this work. These include table
tennis related knowledge about the different phases of a table tennis stroke (Section 4.2.1)
and typical stroke types (Section 4.2.2). In addition, more than 100 descriptions of typical
table tennis drills from [18] guide this work (Section 4.2.3). This section ends with a brief
presentation of a table tennis robot that helps players practice their stroke techniques and
allows us to create a controlled research environment (Section 4.2.3).

4.2.1 Stroke Phases

A typical stroke movement consists of three phases: the backswing phase, the stroke phase,
and the swing-out phase, plus an additional return phase [35, pp. 74 ff.]:

1. Backswing phase: The player moves the racket backward to initialize the next stroke.
Depending on the stroke type to be played, the backswing movement is smaller or
larger. For example, the backswing motion is much larger when playing a loop than
when playing a push.

(a) (b) (c)

Figure 4.1: Backswing phase a forehand drive.

2. Stroke phase: This phase denotes the actual stroke movement, including the ball
impact point. The player moves the racket forward until it hits the ball. This phase
is crucial to the success of the stroke.

(a) (b) (c) Ball impact point

Figure 4.2: Stroke phase of a forehand drive.

3. Swing-out phase: The racket-holding arm swings out forward after playing a stroke.
This phase is an extension of the stroke phase. Similar to the backswing phase, the
length of the outswing differs depending on the stroke type. The faster the played
stroke is, the longer lasts its swing-out phase.

4.2 Table Tennis 19

(a) (b) (c)

Figure 4.3: Swing-out phase a forehand drive.

4. Return phase: The final phase describes the motion back to the base position to get
ready for the next stroke. This phase may merge into the backswing phase of the
subsequent stroke.

(a) (b) (c)

Figure 4.4: Return phase a forehand drive.

4.2.2 Stroke Types

Table tennis is a complex stroke sport in which a ball can be played with numerous stroke
techniques and individual variations [35, ch. 3]. The following is a brief introduction to the
stroke types relevant to this work. All in all, this work considers four basic stroke types
per racket side (forehand/backhand). This results in eight different stroke types:

� Forehand/Backhand Drive (ger.: Vorhand/Rückhand Konter) [35, p. 95]: A drive is
a stroke with minimal forward spin that hits the ball almost centered on the slightly
closed racket face with a short upward motion.

� Forehand/Backhand Loop (ger.: Vorhand/Rückhand Topspin) [35, pp. 112 f.]: A
loop is a versatile, offensive stroke that pulls the ball tangentially from the bottom
to the top. Many variations of this stroke type exist to react individually to the
incoming ball. They differ in speed, spin, and racket angle. Simply put: The more
the player moves the racket forward, the higher the speed. The more he pulls the
racket up, the higher the spin.

� Forehand/Backhand Block (ger.: Vorhand/Rückhand Block) [35, p. 144]: A block
is a stroke with a short movement that enables the player to position or, if desired,
to slightly accelerate the ball. The primary purpose of a block is to respond to an
incoming, offensive ball.

� Forehand/Backhand Push (ger.: Vorhand/Rückhand Unterschnitt) [35, p. 81]: A
push is a controlled stroke where the racket is pushed under the ball to create back-
spin. The spin’s intensity changes depending on the ball impact point, the accelera-
tion, and the wrist movement.

Appendix C provides demonstrations of each considered stroke type.

There are many variations of these strokes. In addition, each player can individually alter
the speed, spin, racket angle, and ball positioning and can also use different racket grips.

20 4 Domain Knowledge

This work considers the shakehand grip, a grip technique commonly used by Europeans
(Figure 4.5). Here, the hand completely encloses the racket handle, with the index finger
resting on the lower edge of the racket face. However, individual variations are possible
here as well [35, ch. 2.2]. For more details on the different techniques and other stroke
types, see [35, ch. 3].

(a) Forehand (b) Backhand

Figure 4.5: The shakehand grip in forehand and backhand.

4.2.3 Stroke Sequences

In training sessions, players usually play drills to improve their technique or prepare for
upcoming matches. These exercises range from simple warm-ups to stroke sequences based
on real game situations. [18] contains more than 100 typical table tennis drill descriptions
with various levels of complexity and difficulty. Table 4.1 lists some examples. They
vary in stroke types to be played, spin, speed, ball placement, and ball frequencies. This
thesis considers these drill descriptions as valid gameplay knowledge. We can represent
this knowledge using a finite state machine by converting these stroke sequences into state
sequences, where each stroke describes a state. Moreover, we can determine the frequencies
of different stroke type sequences and calculate transition probabilities accordingly. This
thesis refers to this state machine as Stroke Sequence State Machine (cf. Figure 6.11). As
an example, Figure 4.6 shows the unrolled state sequence for exercise “Forehand, Middle,
Backhand” (cf. Table 4.1). Each stroke sequence starts in the Waiting state, in which
the player is in his base position. The state machine returns to Waiting after the player
completes the drill.

Waiting
FH

Loop
FH

Loop
BH

Loop
Waiting

Figure 4.6: Unrolled Stroke Sequence State Machine for the drill “Forehand, Middle, Back-
hand”.

Table 4.1: A selection of drill descriptions from [18].

Drill Name Stroke Sequence

Backhand Game Situation BH Push – BH Loop on backspin – BH Loop

Forehand, Middle, Backhand FH Loop – FH Loop – BH Loop

Short Backhand, Deep Forehand BH Push – FH Loop

In-And-Out Footwork FH Push – FH Loop – BH Push – BH Loop

4.3 Influence of Domain Knowledge on Data Acquisition 21

4.2.4 Table Tennis Robot

We use a table tennis robot (Donic Robo-Pong 2040) to create a controlled data collection
environment. The robot can serve balls repeatedly with high precision and configurable
speed, frequency, and rotation. Table tennis players can use such a device to practice their
technique with consistently and regularly played balls. This makes it perfectly suitable to
create a research environment with minimized risk of unexpected disruptions. Figure 4.7
shows an image of the robot.

Figure 4.7: Donic Robo-Pong 2040.

4.3 Influence of Domain Knowledge on Data Acquisition

Before collecting training and test data, we must answer some essential questions (cf.
Figure 4.8): Where should we place the sensors to capture meaningful data? Which
sampling rate is required to capture valuable data? Which sensor types are sufficient to
meet the system goals?

Sensor
Positioning

Sampling
Rate

Sensor
Types

Data Acquisition

Figure 4.8: Domain knowledge infused data collection tasks.

Depending on the context, system developers or machine learning engineers cannot ade-
quately answer these questions. In table tennis stroke recognition, domain experts hold
general knowledge about existing stroke types, stroke execution, and typical game situa-
tions (stroke sequences). Table tennis experts know which body parts are mainly involved
in stroke movements. Of course, the arm holding the racket provides vital information
about stroke movements, but footwork also plays an important role in table tennis. In
addition to sensors on the racket-holding arm, sensors attached to the thigh or other body
parts could also provide valuable results.

Furthermore, expert knowledge helps to determine the most suitable sampling rate. Table
tennis strokes are executed very quickly and only last for a short period of time. Hence,
higher sampling rates are necessary to capture essential movement characteristics.

22 4 Domain Knowledge

Lastly, domain knowledge helps to select the most appropriate sensor types. Besides
the acceleration or the angular velocity, which are crucial in table tennis to accelerate
the ball and create spin, other data sources may also be of interest for stroke detection
systems. For instance, a domain expert could argue that the height of a table tennis racket
changes during a swing, with different strokes having different height variations. Therefore,
capturing height differences using a pressure sensor could provide information about the
stroke motion from an entirely new perspective. In addition, system developers must also
consider the circumstances of the movements when selecting the sensors. An expert could
argue that a stroke is not performed in one dimension only; instead, the racket can move
freely in space. Consequently, it is worth considering three-dimensional data.

4.4 Summary

Table tennis is a versatile and complex sport with various stroke techniques and opportuni-
ties to react to incoming balls. Small nuances in racket angle and speed determine whether
a stroke succeeds or fails. Coaches have the important task of analyzing the playing style
and technique of their protégés to improve their skills and reduce the likelihood of stroke
failures. The automatic analysis of strokes can help players to gain initial insights into
their daily performance, identify mistakes, and solve them while they are playing.

This table tennis related knowledge guides the development and design of a table tennis
recognition system. For example, it helps select proper sensor types and placements to
collect relevant data and provides guidance on what information stroke analysis should
provide to players.

The following chapter presents this work’s table tennis stroke recognition system.

Chapter 5

The Table Tennis Stroke Recognition
System

This work aims to explore the impact of domain knowledge on machine learning appli-
cations based on a system capable of extracting and classifying table tennis strokes from
sensor data. The presented system acts on signals collected from several smartwatches
in a controlled environment. This chapter starts with an overview of the data collection
environment (Section 5.1) and the used sensors (Section 5.2). Afterward, it introduces the
system and its components from a high-level perspective (Sections 5.3 and 5.4). This chap-
ter ends with a brief overview of the table tennis stroke recognition system (Section 5.5).

5.1 Data Collection Environment

The system uses four devices to recognize table tennis strokes: two smartwatches (Fossil
Gen 5E Carlyle HR) to collect sensor signals, a smartphone to coordinate the data collec-
tion, and a table tennis robot to control the data collection environment. The following
sections describe these devices and their configurations.

x

y

z
CPU:

Qualcomm® Snapdragon�
Wear 3100 (4x1.2 GHz)

RAM: 1 GB (400 MHz LPDDR3)

Figure 5.1: Custom illustration of a Fossil Gen 5E Carlyle HR with its coordinate system
and specifications.

A player can either use the watches standalone to collect data and classify movements
on-device or set up a sensor network consisting of several smartwatches as clients and a
smartphone as a master. The sensor network is capable of collecting data from multiple
sensor devices synchronously. The client devices (two Fossil Gen 5E Carlyle HR smart-
watches) connect to the master (a Xiaomi Redmi 9A smartphone) via Bluetooth Low

23

24 5 The Table Tennis Stroke Recognition System

Energy (BLE). Afterward, the master initiates and stops the data collection process on
its clients. Players must wear the clients on their bodies. Figure 5.2 shows the two sensor
placement variants considered in this work. In both cases, players wear a smartwatch at
their racket-holding wrist. The second variant adds a smartwatch shortly above their right
knee. The wrist location naturally provides plenty of information about stroke movements.
Because table tennis is a sport in which footwork plays an important role, the hope was
that the second position provides insights about a player’s body movements.

(a) One watch (b) Two watches

Figure 5.2: The watch placements: In the left case, only one watch is placed on the racket-
holding wrist. In the right case, an additional watch is positioned slightly
above the right knee.

Initially, we wanted to collect data from players of the local table tennis club and test the
system with them. Unfortunately, we had to discard this plan due to the global pandemic
(Covid-19), its accompanying contact restrictions, and the closure of the gyms. Therefore,
improvisation was necessary. For this reason, we set up a temporal training facility in our
private basement consisting of a ping pong table, the training robot, and some table tennis
balls (see Figure 5.3).

Figure 5.3: The temporal data collection and testing environment in the author’s basement
consists of a table tennis table and a training robot.

5.2 Sensors 25

5.2 Sensors

The system relies on pre-calibrated signals from four different sensor types: a three-axis
accelerometer that captures acceleration data in m s−2 including gravity, a three-axis gy-
roscope that captures the angular velocity in rad s−1 with automatic gyro-drift compen-
sation, a three-axis magnetometer that captures changes in the geomagnetic field in µT
with hard iron calibration, and a pressure sensor that captures the atmospheric pressure
in hPa. Table 5.1 lists the specifications of these sensors. The given sensor ranges are
read directly from the sensors of a Fossil Gen 5E Carlyle HR through built-in Android
functions. More information on their built-in calibrations can be found in the Android
WearOS documentation [36].

Table 5.1: Sensors of the Fossil Gen 5E Carlyle HR.

Sensor Axes Sensor Range/Full Scale Sampling Rate

Accelerometer LSM6DSO x, y, z ±156.906 m s−2 ≈ ±16 g 50 Hz

Gyroscope LSM6DSO x, y, z ±34.906 rad s−1 ≈ ±2000 dps 50 Hz

Magnetometer AK0991X x, y, z ±4912.0µT 50 Hz

Pressure ICP101XX 25.0− 1150.0 hPa 25 Hz

According to the Android documentation, accelerometers, gyroscopes, and magnetometers
in Android devices are using a coordinate system which “is defined relative to the device’s
screen when the device is held in its default orientation” [36]. Figure 5.1 illustrates the
coordinate system on a Fossil Gen 5E Carlyle HR.

5.3 Modules

The table tennis stroke extraction and classification system consists of several Python
scripts packed into five main components: the Data Collection Module, the Preprocessing
Module, the Model Training Module, the Stroke Extraction & Classification Module, and
the Stroke Analysis Module. Figure 5.4 visualizes the interaction between these modules
and gives an overview of which modules run on which devices. All modules operate se-
quentially and pass their computed output to the next (or multiple upcoming) stages. The
following sections present the high-level purposes of these modules. For more details on
the internals of the processing pipeline, see Chapter 6.

5.3.1 Data Collection Module

The Data Collection Module manages the acquisition of sensor data. It captures ten
raw data streams from four different sensors and transfers them to the Preprocessing
Module. These include three acceleration time series, three angular velocity time series,
three magnetic field time series, and one air pressure time series. The Data Collection
Module must run on smartwatches, as these are the only devices in the system capable of
collecting sensor data.

5.3.2 Preprocessing Module

The Preprocessing Module prepares the raw data for further processing and transfers its
results to the Model Training Module, the Stroke Extraction & Classification Module,
and the Stroke Analysis Module. Preprocessing includes the temporal alignment of the
various data streams, potentially coming from multiple smartwatches placed in different
locations, spline interpolations, and the application of noise reduction, outlier removal,
and trend analysis techniques. For training purposes only, the module also extracts non-
stroke actions, such as random movements at the beginning and the end of a time series.
The Preprocessing Module can run either directly on a smartwatch for on-device stroke
inference or on an external computer, e.g., to validate the system on multiple data sets.

26 5 The Table Tennis Stroke Recognition System

Data
Collection
Module

Preprocessing
Module

Stroke
Extraction &
Classification

Module

Model
Training
Module

Stroke
Analysis
Module

RD

PD

PD

TC

TF

ES

PDSmartwatch

Smartwatch / Computer

Computer

Figure 5.4: The five modules of the processing pipeline and their respective device con-
texts. RD/PD: raw/preprocessed data, ES: extracted strokes, TC/TF: trained
classifiers/forecaster

5.3.3 Model Training Module

The Model Training Module is responsible for training four Keras models (see [37]) based
on the preprocessed accelerometer, gyroscope, and magnetometer signals. Three of them
act as classifiers and one as a forecaster.

� The Stroke Classifier distinguishes between the eight different types of strokes fore-
hand/backhand loop, drive, push, and block. This classifier operates on the Stroke
Model.

� The Noise Classifier extracts time slices from the beginning and the end of a time
series containing data unrelated to valid strokes, e.g., small movements while waiting
for the first ball to play or other random non-stroke actions. This classifier operates
on the Noise Model.

� The Combined Classifier unites the responsibilities of the Stroke and the Noise Model
as an alternative classification approach. This classifier operates on the Combined
Model.

� The Stroke Forecaster predicts the stroke motion in the next time step based on its
learned stroke movement patterns. This forecaster operates on the Stroke Future
Model.

After training, the Model Training Module passes the classifiers to the Stroke Extraction
& Classification Module and the Stroke Forecaster to the Stroke Analysis Module. Due to
the limited amount of processing power in current edge devices, this module runs off-device
on a computer.

5.3.4 Stroke Extraction & Classification Module

The Stroke Extraction & Classification Module detects strokes in preprocessed time series
in the following way: First, the classifiers label the data. Then, the module compares
the results to cut non-stroke actions from the data. Lastly, it extracts stroke intervals
using metrics, such as cumulative acceleration or pressure, and labels them with stroke

5.4 Apps 27

types based on the classification results and domain knowledge. The Stroke Extraction &
Classification Module forwards the labeled stroke intervals to the Stroke Analysis Module
for further analysis. The Stroke Extraction & Classification Module can run either directly
on a smartwatch for on-device stroke inference or on an external computer for faster
inference or to validate the system on multiple data sets.

5.3.5 Stroke Analysis Module

The Stroke Analysis Module forms the last module in the processing pipeline. It takes the
preprocessed accelerometer, gyroscope, and magnetometer data as an input for the Stroke
Forecaster that predicts future stroke movements based on learned stroke patterns. The
module analyzes current strokes by comparing their actual signal data with the forecasted
values. This analysis provides information about differences in the average acceleration,
speed, angular velocity, and racket angle during a stroke. These results allow the user to
infer possible improvements to his stroke movements. In addition, he can gain insights into
why a stroke failed, e.g., “the ball fell into the table tennis net because the racket angle
was too small” or “the ball flew too far and did not touch the table because acceleration
was too high”. Again, this module can run either directly on a smartwatch for on-device
stroke inference or on an external computer for faster inference or to validate the system
on multiple data sets.

5.4 Apps

This work presents a total of three mobile apps: two for data collection (Section 5.4.1)
and one for on-device inference (Section 5.4.2).

5.4.1 Data Collection

This work provides two methods to collect the data needed to train the machine learning
models of the table tennis stroke recognition system. The first one records data from
only one body location using a single smartwatch, and the second one uses a network of
several smartwatches distributed over the entire body. The standalone case requires only
one application, namely the IMU Logger. This app collects data from the four different
sensors accelerometer, gyroscope, magnetometer, and pressure sensor. Although inertial
measurement units (IMUs) usually do not include pressure sensors, the name sufficiently
clarifies the purpose of the app: the collection of sensor data. On the other hand, the
sensor network requires two applications to record signals from multiple locations. The
first app serves as a client responsible for data acquisition, while the other one acts as a
server that coordinates the data collection on all connected devices. Regardless of whether
one device (standalone) or several devices (sensor network) collect sensor signals, the data
collection process stays the same. For this reason, the same IMU Logger can either be
used standalone or as a client as needed. The user can set the IMU Logger’s usage mode
at its startup (see Image 5.5).

The second app, namely the GATT Server, turns a smartphone into a master that coor-
dinates data collection on each connected client device. Its name comes from the GATT
protocol used for communication between the clients and the server (see [38] for more
details on this protocol). Both apps together, the IMU Logger and the GATT Server, rep-
resent the Data Collection Module. The following sections describe both the standalone
and the sensor network based data collection.

28 5 The Table Tennis Stroke Recognition System

Figure 5.5: The IMU Logger prompts the user to select the usage mode (standalone/client)
at its initial startup.

Standalone

A user can collect data from a single body location, such as the racket-holding wrist, using
a smartwatch with a standalone IMU Logger installed. Figure 5.6 shows the user interface
of the standalone IMU Logger. The user can start data collection directly on the device by
pressing the button START LOGGING. Afterward, the button changes its value to STOP
LOGGING and offers the functionality to stop the current data acquisition. After the
user stopped logging, the IMU Logger saves the collected data in a .csv file. Additionally,
it offers the possibility to change various parameters before recording a time series. These
include the smartwatch location, the stroke type with its corresponding racket hand, and
the number of strokes to be played. The logger stores the values in the filename of the
.csv file using the pattern YYMMdd HH.mm.ss Location Hand Type #Strokes log.csv. By
maintaining these parameters, the user reduces the data preparation effort before the
actual processing tasks, as he labels the collected data directly during data collection.
Consequently, recorded signals must not be labeled manually afterward. The maintenance
of these parameters is only possible because of the controlled environment created by the
configurable table tennis robot. Table 5.2 lists these parameters with their possible values.

Figure 5.6: User interface of the standalone IMU Logger.

Table 5.2: List of time series parameters with their possible values in English and German.

Parameter Values (en.) Values (ger.)

Location {Wrist, Right Thigh} {Handgelenk, Rechter Oberschenkel}
Hand {FH, BH} {VH, RH}

Type
{Base Position, Drive,

Loop, Block, Push}
{Grundstellung, Konter,

Topspin, Block, Unterschnitt}
#Strokes {1, 2, ..., 9}

5.4 Apps 29

Sensor Network

To collect data from multiple body locations, the user must initialize a sensor network con-
sisting of several smartwatches as clients and a smartphone as a server. The smartwatches
run the IMU Logger in client mode, and the server runs the GATT Server application.
The devices communicate via Bluetooth Low Energy (BLE). The connection process is as
follows. For simplicity, this description considers only one client.

1. The user starts the server on the smartphone by pressing START SERVER. The
server offers two GATT characteristics that connected clients can read: the LOG-
GING characteristic initializes and stops data collection, whereas the LOGGING -
PARAMS characteristic manages the parameters of each data collection operation,
e.g., stroke type, number of strokes, or racket hand.

2. The user configures the smartwatch as a GATT client by pressing CLIENT.

3. The client automatically searches for a GATT server for up to 60 seconds. The
button CONNECT TO SERVER becomes available if it found a server; else, the
scan stops. The user can restart it manually by pressing the button SCAN.

4. The user presses the button CONNECT TO SERVER. After that, the client estab-
lishes a BLE connection between the GATT client and the GATT. This step includes
a subscription to both characteristics offered by the server. Connected clients listen
to the characteristics and can thus react to changing values. If the connection fails
at any point in time, the client tries to reconnect automatically.

Figure 5.7 visualizes the connection process from a client’s point of view. After the client
found a server, the user can connect the client by pressing the now enabled button CON-
NECT TO SERVER.

(a) Start scan (b) GATT Server discovered (c) Connect to GATT Server

Figure 5.7: The process of scanning and connecting to a server if the smartwatch acts as
a client.

Compared to the standalone mode, the client mode offers fewer modifiable logging pa-
rameters. The device location is still changeable directly on a client, but the rest of the
parameters are moved to the GATT Server to be set globally (see Figure 5.8). The server
notifies the clients if the user changes the global parameters. This ensures that all clients
store their collected data under the same filename. Furthermore, the server is responsible
for initializing and stopping the collection of sensor data on the clients. The sequence dia-
gram in Figure 5.9 visualizes the consecutive steps involved in data gathering. First of all,
the user sets the logging parameters of the next data collection process on the smartphone.
The server changes the values of its LOGGING PARAMS characteristic and notifies the
clients of the updated configuration. The clients adjust their local parameters. Secondly,
the user initializes data collection by pressing the button START LOGGING on the GATT

30 5 The Table Tennis Stroke Recognition System

Server (see Figure 5.8). The button switches its text to STOP LOGGING, and the server
updates the value of the LOGGING characteristic. Subsequently, it notifies the clients
about the changed characteristic. The clients read its value and start data collection. The
info section beneath the SCAN button indicates the start of the logging process (“Logging
started”). The user stops data collection after completing the training exercise by pressing
the button STOP LOGGING. The button changes its text back to START LOGGING,
and the server updates the value of the LOGGING characteristic one more time. The
clients stop the data collection process after reading the updated characteristic. Finally,
each client saves the recorded data in a .csv file. Please note that both BLE operations,
the notifications about changed characteristics and reading their values, do not happen
instantaneous due to varying latencies. Therefore, the player must wait until all clients
have started recording before playing an exercise to ensure that no data are lost.

Figure 5.8: GATT Server UI with the abilities to start the server (here: already pressed),
start and stop logging, and to change the current configuration.

App Architectures

The following sections present the most relevant aspects of the architectures of the IMU
Logger and the GATT Server.

Figure 5.10 visualizes the primary classes of the IMU Logger in a simplified manner:

� The SensorHandler coordinates the data logging process of a particular sensor (ac-
celeration, gyroscope, magnetometer, or pressure sensor). It is capable of starting
(startLogging()) and stopping (stopLogging()) the data collection. Furthermore, it
acts as an event listener which stores incoming sensor data in its private variable
mData using the onSensorChanged() method. stopLogging() returns the collected
data.

� The Logger takes all data recorded by all SensorHandlers and stores it in a .csv file
via the method logDataAsCSV().

� The GattClient handles the connection between a client and the GATT Server using
the mBluetoothGattCallback. It handles a wide variety of BLE related functions,
such as scanning for and connecting to BLE devices, reconnecting in case of connec-
tion failures, and reacting to changed characteristics (LOGGING and LOGGING -
PARAMS). The IMU Logger only initializes the GattClient if the user presses the
button CLIENT.

� The MainActivity acts as a manager that coordinates data collection from various
sensors using four SensorHandlers (one per sensor), storage of the collected data us-
ing a Logger, and instantiates a GattClient if the IMU Logger is in client mode. This
class starts and stops data collection from each sensors using the SensorHandlers,
merges the collected data, and sends them to the Logger, which then stores them in
a .csv file.

5.4 Apps 31

User Server Client

set params

notify clients

read LOGGING PARAMS

params

update params

START LOGGING

notify clients

read LOGGING

start

collect data

STOP LOGGING

notify clients

read LOGGING

stop

stop

save data

Figure 5.9: Visualization of the interaction between user, server, and a client during a data
collection process.

32 5 The Table Tennis Stroke Recognition System

GattClient

- mBluetoothGattCallback

+ startScan()
+ stopScan()
+ connect()

Logger

+ createLogFile(name)
+ logDataAsCSV(sensorData,
params)

SensorHandler

- mData

+ SensorHandler(sensor)
+ startLogging()
+ stopLogging()
+ onSensorChanged(event)

MainActivity

+ startLogging()
+ stopLogging()
+ scanForServer()
+ connectClientToServer()

Figure 5.10: Simplified view of the primary classes of the IMU Logger. The IMU Logger
only initializes the GattClient if it acts in client mode.

One of the most interesting parts of the GATT Server app is its GattServer, which is
responsible for updating the two characteristics LOGGING and LOGGING PARAMS
and for notifying connected clients about the changes. Figure 5.11 contains a simplified
diagram of this class. The methods changeStatus() and changeParameters() are designed
to change the values of the two characteristics. Both methods call the private method
notifyConnectedDevices(characteristic) with a modified characteristic as input to notify
connected clients on changed characteristic values.

GattServer

- status

+ startServer()
+ changeStatus(newStatus)
+ changeParameters(newParams)
- notifyConnectedDevices(characteristic)

Figure 5.11: Simplified view of the GattServer class of the GATT Server app.

5.4.2 On-Device Inference

The third app, namely the TT Classifier, collects and processes sensor signals directly on
a single smartwatch. It combines the Data Collection Module, the Preprocessing Module,
the Stroke Extraction & Classification Module, and the Stroke Analysis Module in one
application. Training machine learning models on edge devices with limited processing
resources is difficult to realize. Therefore, the Model Training Module is the only module
that does not run in this application. The app only uses data from a single smartwatch
worn at the racket-holding wrist because there are no significant performance gains that
would justify the increased computational overhead when using data from many locations
(see Section 7.2.2). The following paragraph describes the workflow of this app. Figure 5.12
visualizes the workflow exemplary during the execution of three backhand pushes.

1. The user initializes the data collection process by pressing the button START (Fig-
ure 5.12a). The button changes its text to CLASSIFY and the info section states
that data gets collected (Figure 5.12b). This part of the app runs the Data Collection
Module.

5.4 Apps 33

(a) Start (b) Collecting data (c) Preparing data

(d) Preprocessing data (e) Handling data (f) Inference

(g) Calculating strokes (h) Results (part 1) (i) Results (part 2)

(j) Plotted results (k) Plot

Figure 5.12: An exemplary on-device inference process. Images (a)–(j) show the UI of the
TT Classifier, while image (k) enlarges the plot of (j) for better readability.

34 5 The Table Tennis Stroke Recognition System

2. After completing an exercise, the user presses the button CLASSIFY to stop data
collection. The TT Classifier processes the data. This includes preprocessing, stroke
extraction and classification, and the analysis of extracted strokes. The user receives
textual feedback about the currently executed part of the processing pipeline:

a) The TT Classifier (Java) prepares the collected data for use in Python. Then,
a Python script executed by a Python interpreter within the TT Classifier pre-
processes the collected data. Afterward, the TT Classifier converts the prepro-
cessing results from Python to Java for further processing. Figures 5.12c–5.12e
illustrates these steps. The Preprocessing Module runs in this part of the app.

b) The TT Classifier uses the Stroke and the Noise Model (resp. the Combined
Model) to infer the preprocessed data. Afterward, it extracts strokes from
the time series and categorizes them based on the classification results (Fig-
ure 5.12f). Furthermore, it compares the calculated and categorized strokes to
learned patterns of previously executed strokes represented by the Stroke Fu-
ture Model (Figure 5.12g). The Stroke Extraction & Classification Module and
the Stroke Analysis Module run in this part of the TT Classifier.

3. The TT Classifier displays the results on the smartwatch (Figures 5.12h–5.12j), in-
cluding information about the number of detected strokes and their corresponding
stroke types. Moreover, it presents percentage deviations in acceleration a and angu-
lar velocity r between the forecasted stroke motion and the actually executed strokes,
as well as absolute differences in movement speed v and racket angle θ. Below that,
the app visualizes the entire time series along with the extracted stroke intervals.
Figure 5.12k shows the plot in large for better readability.

This approach cannot perform stroke classifications in real-time because it always considers
time series as a whole. For this reason, we developed a second version of the TT Classifier,
which is capable of semi-real-time stroke classifications by considering sliding intervals of
2.5 seconds. However, we discarded this approach due to limited processing resources built
into current generation smartwatches, such as the Fossil Gen 5E Carlyle HR.

Figure 5.13 visualizes the primary parts of the TT Classifier. The AbstractTFLiteRun-
ner is an abstract superclass responsible for instantiating a TensorFlow Lite interpreter
with a TensorFlow Lite model which is specified in its subclasses by implementing the
getModelPath() method. The abstract classes AbstractClassifier and AbstractForecaster
inherit from the AbstractTFLiteRunner and extend its functionality with methods for the
classification and prediction of given time windows of sensor data. In case of the Abstract-
Classifier, this includes the definition of stroke type labels. Finally, the StrokeClassifier,
NoiseClassifier, and StrokeFutureForecaster inherit from their corresponding abstract su-
perclasses and specify the paths to their model and label files by concretizing the methods
getModelPath() and getLabelPath(). The SensorHandler manages the data collection pro-
cess of a given sensor. It operates in the same way as the SensorHandler of the IMU
Logger. The MainActivity coordinates the complete workflow of the TT Classifier, from
data collection to stroke extraction and classification, up to stroke analysis: First of all,
data are gathered by means of the four sensor handlers. The end user initializes and
terminates this step. Afterward, the mClassifyingRunnable automatically performs data
processing in a background task. This involves the following steps:

1. The mClassifyingRunnable prepares the data for preprocessing and passes them to
the mPreprocessingObj, an object which represents several Python scripts for prepro-
cessing running in an independent Python environment. After the mPreprocessin-
gObj finished preprocessing, it passes its results back to the Android WearOS app.

5.4 Apps 35

<<abstract>>
AbstractTFLiteRunner

- tfliteModel
tfliteInterpreter

getModelPath()

<<abstract>>
AbstractClassifier

- labels

+ classifiy(window)
getLabelPath()

<<abstract>>
AbstractForecaster

+ forecast(window)

StrokeClassifier

+ getModelPath()
+ getLabelPath()

NoiseClassifier

+ getModelPath()
+ getLabelPath()

StrokeFutureForecaster

+ getModelPath()

SensorHandler

- mData

+ SensorHandler(sensor)
+ startLogging()
+ stopLogging()
+ onSensorChanged(event)

MainActivity

- mPreprocessingObj
- mPostprocessingObj
- mClassifyingRunnable

- startLogging()
- stopLogging()
- handlePreprocessingResult
(preprocessingResult)
- infer(accGyroMagneto)
- visualizeStrokes (postpro-
cessingResult)

Figure 5.13: Simplified class diagram of the TT Classifier containing its primary classes
and their relationships.

36 5 The Table Tennis Stroke Recognition System

2. The method handlePreprocessingResult() prepares the preprocessed data for infer-
ence with the StrokeClassifier, NoiseClassifier, and the StrokeFutureForecaster. Sub-
sequently, the mClassifyingRunnable performs inference via infer().

3. The mClassifyingRunnable passes the sensor data, the classifier results, and the
forecaster results to the mPostprocessingObj, which again represents a collection of
Python scripts capable of extracting and analyzing strokes.

4. Lastly, the mClassifyingRunnable executes the method visualizeStrokes() to visualize
the final results calculated by the mPostprocessingObj.

5.5 Summary

The table tennis stroke recognition system is designed for use in a controlled environment
with a table tennis robot. It can detect, classify, and analyze strokes in sensor signals from
an accelerometer, gyroscope, magnetometer, and pressure sensor either on a computer or
directly on a smartwatch. The ability to analyze stroke movements directly on an edge
device allows players to monitor and refine their strokes during a practice session. The
following chapter explains the system’s internals, including preprocessing steps, stroke
extraction, classification, and analysis.

Chapter 6

Internals of the Processing Pipeline

This chapter explores technical aspects of the developed table tennis stroke extraction and
classification system. It first describes the preprocessing workflow (Section 6.1) and the
architecture of the machine learning models (Section 6.2). The following parts address
stroke extraction, classification, and analysis (Sections 6.3 and 6.4). The chapter ends
with a reflection on the influence of domain knowledge on the development of the table
tennis stroke extraction and classification system (Section 6.5) and a short summary of its
internals (Section 6.6).

6.1 Preprocessing

Preprocessing data is an essential task in machine learning to ensure the learning and
generalization capabilities of the system under development. Figure 6.1 visualizes the
complete preprocessing workflow used by the table tennis stroke recognition system. The
solid paths mark the primary preprocessing steps needed for inference, while the dashed
paths denote additional steps needed only for training purposes. The following paragraphs
explain each step in detail. Actions that occur multiple times are only considered once.
The Figures B.9 and B.10 in the appendix visualize the complete preprocessing process
exemplarily for time series containing eight and eleven forehand drives.

Data Preparation

First, the Preprocessing Module must prepare the raw sensor data for further processing.
Data preparation consists of two major tasks: temporal alignment of signals and normal-
ization. Alignment is not only necessary when multiple devices collect sensor data in a
sensor network, where different recording times may occur due to delays in the Bluetooth
connection, but even if only a single smartwatch acts as a data provider. The reason for
that is the sequential sensor initialization and termination, which causes the sensors not to
start collecting data at the same time. The Preprocessing Module aligns the data in time
by finding the least and the greatest common logging time across all sensor signals and
truncating any overflowing data point. When using a sensor network, the Preprocessing
Module first needs to merge corresponding time series based on the time stamp in their

37

38 6 Internals of the Processing Pipeline

Data
Preparation

A D

Non-Stroke
Noise

Calculation

Spline
Interpolation

B
Outlier

Removal

Noise
Reduction
(Wavelet)

Trend
Analysis
(Linear)

Outlier
Removal

Noise
Reduction

(Filter)

Spline
Interpolation

Trend
Analysis
(Custom)

C
Non-Stroke

Noise
Removal

Save Prepro-
cessed Data

[Inference]

[Training]

[Stroke]

[Accel. ∨
Gyro. ∨

Magneto.] [Pressure]

[Training]

[Inference]

[Base
Position]

Figure 6.1: Activity diagram of the preprocessing workflow. For better distinction, dashed
paths indicate additional steps only required for training. Input: raw data
with labels. Output: preprocessed data.

6.1 Preprocessing 39

(a) Raw acceleration (b) Preprocessed acceleration

(c) Raw pressure (d) Preprocessed pressure

Figure 6.2: The acceleration and pressure data of a time series containing eight forehand
drives. The raw pressure data does not show a trend. The preprocessed data
contains non-stroke noise actions (black) and the raw data (pale).

(a) Raw pressure (b) Preprocessed pressure

Figure 6.3: The pressure data of a time series containing eleven forehand drives. The raw
pressure data shows a trend. The preprocessed data contains non-stroke noise
actions (black) and the raw data (pale).

40 6 Internals of the Processing Pipeline

file names before the alignment. Afterward, it normalizes each data point into the interval
[−1, 1] by dividing the values by the maximum of their corresponding sensor range (see
Table 5.1).

Decisions A and C — Preprocessing Purpose

The preprocessing steps differ depending on the currently considered use case. Data prepa-
ration for training includes additional activities (dashed paths) in addition to the steps for
inference.

Spline Interpolation

Different sensors differ not only in their sensor ranges but also in their respective sampling
rates. In the case of the sensors used in this thesis, the sampling rate of the pressure sensor
is half the sampling rate of the accelerometer, gyroscope, and magnetometer. Thus, the
pressure sensor collects only half as many values as the other sensors in the same time
series. Since the Android sensor framework [36] does not offer the possibility to change
the sampling rate and instead uses a fixed sampling rate for each sensor, the Preprocessing
Module must adjust the collected values. For this purpose, it first interpolates the gathered
time series of each sensor with cubic splines. Then, it evaluates these splines with a
fixed sampling rate of 100 Hz, i.e., every 10 ms, which is twice the sampling rate of the
accelerometer, the gyroscope, and the magnetometer, and four times the sampling rate of
the pressure sensor. Consequently, this method provides an approximate solution to the
problem of varying sampling rates.

Decision B — Sensor Type

Different sensors require different preprocessing due to individual characteristics in their
provided signals. For example, acceleration, angular velocity, and magnetic field only
require outlier removal and noise reduction. Pressure data additionally requires trend
removal to enable pressure based stroke extraction as some pressure time series show a
trend.

Outlier Removal

The collected sensor data occasionally contains unexpected outliers. The Preprocessing
Module detects them using the z-score and removes them by simply clipping the erroneous
values that are higher than the threshold t = 3, which is commonly used in literature [28].
A disadvantage of this method is that unnaturally sharp edges occur at the points where
outliers have been detected and removed. A moving average filter of size 3 is applied to
the neighborhood of a detected outlier to smooth the data to overcome this issue. The
neighborhood has a size of 100 ms, 50 ms in each direction, which corresponds to ±5 data
points.

Noise Reduction

Noise, such as unwanted modifications or jitter, can harm the analysis and interpretation
of data. Reducing this noise while preserving the general signal shape is essential for the
developed table tennis stroke recognition system. However, this noise should be handled
with care, as overly aggressive smoothing can eliminate significant characteristic peaks
indicating strokes. Due to the different shapes of the signals acquired by different sensors,
this work uses two techniques to reduce noise while preserving the general signal shape.
On the one hand, practical experiments have shown that a wavelet transform with a
biorthogonal wavelet (bior3.9) is best suited for reducing noise in the acceleration, the

6.1 Preprocessing 41

angular velocity, and the magnetic field while retaining the general signal shape and its
characteristic peaks. Section 3.3.3 describes the noise removal process using wavelets. On
the other hand, a simple moving average filter of size 30 data points = 300 ms is adequate
to reduce the noise in the pressure data and to generate well-formed peaks. We chose the
filter size experimentally. Larger filters might suppress peaks or merge nearby peaks, while
smaller filters might not provide enough smoothing, leaving too much variation untouched.

Trend Analysis

Some collected pressure signals show a linear trend. The Preprocessing Module must
handle the trend by applying the linear trend removal technique described in Section 3.3.6
to the pressure data. Otherwise, it would complicate the pressure based stroke extraction.
After that, the data occasionally show a curved progression, which we also refer to as
a trend in the context of this work (see Figure B.10k). This kind of trend is nonlinear,
which linear trend analysis techniques cannot handle. Therefore, this thesis presents a
simple custom trend analysis method that can deal with this nonlinear progression. The
Preprocessing Module applies it after the initial linear trend analysis, the outlier removal,
and the noise reduction to fit the data to the x-axis by calculating stepwise linear functions:

1. Detect all lows in a signal by looking at the surrounding data points of each data
point. The algorithm detects a low if the left and the right data points are larger
than the currently considered data point pi. Logically expressed:

pi−1 > pi ∧ pi+1 > pi =⇒ pi is a low. (6.1)

2. Remove detected lows that are greater than the mean of the positive portion of the
pressure data.

3. Compute a normalization line f(x) = m ∗ x+ c for each pair of consecutive lows.

4. Evaluate the normalization line for each data point in the interval spanned by the
corresponding lows and substitute this value from the original pressure value at this
point in time.

Examples of this process can be found in Figures B.9m and B.10m. Step 2 is necessary to
remove the influence of minor jumps close to the peak values of the pressure data as they
could lead to erroneous normalization lines. This approach is certainly not perfect as it
assumes that the data are perfectly smoothed and does not contain relevant lows above the
mean of the positive portion of the data. Moreover, if a peak is lower than this threshold,
jitter could result in the annihilation of a pressure peak (see Figure B.10m). Nevertheless,
the approach works fine in the vast majority of strokes recorded during this work. This
custom trend analysis is a necessary adjustment to enable the stroke extraction based on
pressure data.

Save Preprocessed Data

The last step of the preprocessing workflow is to save the preprocessed data for further
processing in .csv files. For inference, the Preprocessing Module generates only one file
containing the fully preprocessed signals of all sensors. It creates two additional files for
training purposes. The first one only contains the portion of the time series, which contains
actual strokes, while the second one represents non-stroke noise actions at the beginning
and end of a time series. The Stroke Model and the Stroke Future Model rely on the
actual stroke data, the Noise Model learns from non-stroke noise data, and the Combined
Model uses both data types.

42 6 Internals of the Processing Pipeline

Additional: Decision D — Base Position

A user labels each time series either as stroke data by selecting a stroke type prior to
data collection or as base position data. Base position data requires less preprocessing
than stroke data, because the Preprocessing Module considers them as non-stroke noise
actions.

Additional: Non-Stroke Noise Calculation

The Preprocessing Module semi-automatically analyzes time series which do not contain
base position data to determine when their first strokes happen (PRE NOISE INDEX)
and when their last strokes end (POST NOISE INDEX). This analysis relies on the cu-
mulative acceleration that we define as the sum of the prepared acceleration values in each
direction x, y, and z at each point in time i minus the mean µ of this sum:

summed acci = xacci + yacci + zacci, (6.2)

cumulative accelerationi = summed acci − µ(summed acc), (6.3)

The Preprocessing Module automatically computes candidates for stroke start and end
indices. The calculation is similar to the z-score calculation used for outlier detection.

1. The algorithm calculates two thresholds:

tupper = 2 ∗ σ
(
cumulative acceleration+

)
(6.4)

and tlower = −2 ∗ σ
(
cumulative acceleration−

)
, (6.5)

where σ describes the standard deviation of the supplied data. The + indicates
that tupper only considers the positive values of the cumulative acceleration and the
− that tlower only considers the negative values. This distinction allows a more
accurate calculation of the non-stroke noise.

2. The algorithm initializes the PRE NOISE INDEX with 50 representing 50∗10 ms =
500 ms. The user usually interacts with the logging devices in the first half second of
a time series. Hence, this initialization is feasible because this part does not contain
relevant information about table tennis strokes. For the same reason, we initially set
the POST NOISE INDEX to n− 50, where n denotes the length of the time series.

3. Starting at these initial non-stroke noise indices, the algorithm traverses the cumu-
lative acceleration forward in case of the PRE NOISE INDEX and backward for
the POST NOISE INDEX. In each step, it compares the traversed values to the
previously calculated thresholds. If the current value is greater than tupper or less
than tlower, it sets the PRE NOISE INDEX (resp. POST NOISE INDEX) to the
current index and the respective traversal stops.

Finally, a human analyst inspects the automatically calculated indices and can further
adjust these suggestions if necessary.

Additional: Non-Stroke Noise Removal

The penultimate step splits the fully preprocessed data into stroke data and non-stroke
noise data based on the calculated PRE NOISE INDEX and POST NOISE INDEX. It
then passes the fully preprocessed data, the stroke sequences, and the non-stroke noise
parts to the final preprocessing step, which stores them in .csv files.

6.2 Machine Learning Models 43

6.2 Machine Learning Models

As mentioned in Section 5.3.3, this work uses four machine learning models. Three of
them are responsible for classifying input data, while the third one predicts the racket
movement in the next time step 10 ms later. This section introduces early stopping and
the sliding window approach that the Model Training Module uses to train these mod-
els (Sections 6.2.1 and 6.2.2). It then highlights the architectural characteristics of the
classifiers and the forecaster (Sections 6.2.3 and 6.2.4).

6.2.1 Early Stopping

Early stopping is a simple regularization technique that prevents models from overfitting
[39, pp. 141 f.]. It stops training early if the validation loss of the model has not improved
for a given number of training epochs m [39, pp. 141 f.]. As a result, this technique can
stop training before it reaches the specified maximum number of epochs. This work uses a
threshold of m = 10 and a maximum number of epochs of 50. It considers a weight update
as an improvement if the change of the validation loss is greater than 0.01. For inference,
the models restore the network weights that produced the minimal validation loss during
training.

6.2.2 Sliding Window

The Model Training Modules applies a sliding window approach with a stride of 1 data
point = 10 ms to split the preprocessed data into chunks of 10 consecutive data points
= 100 ms. This results in n − 9 windows per n-element time series. Each time step
contains data from multiple sensors, such as accelerometer, gyroscope, and magnetic field.
The machine learning models use these windows for training and inference. This approach
allows models to learn from multiple time steps rather than solely relying on data from
a single point in time. The knowledge about the stroke history embedded in a window
improves the learning possibilities of the machine learning models because it allows them
to put their inputs in a temporal context. Figure 6.4 illustrates a sliding window on the
cumulative acceleration of an exemplary time series.

Figure 6.4: A sliding window of size 10 consecutive data points = 100 ms.

6.2.3 Classifier Architecture

All classifiers use the same underlying architecture (see Figure 6.5). The first layer is an
LSTM layer consisting of fifty LSTM units. This layer takes a window of 10 data points as

44 6 Internals of the Processing Pipeline

input and computes one output per LSTM unit. Each data point consists of X = 9 input
features representing the three three-dimensional signals of the accelerometer, gyroscope,
and magnetometer. This input layer manages the temporal stroke context and merges the
two-dimensional input matrix into a one-dimensional output vector. During training, this
layer passes the resulting data to a Dropout layer. This layer type is commonly used in
artificial neural networks to prevent them from overfitting by randomly setting 50 % of its
inputs to zero in each training step. Inference skips this layer so that no values are lost.
Afterward, two sequential feedforward layers (Dense) calculate the final output. The first
one consists of fifty hidden units activated with the ReLU function. In case of the Stroke
Model, the latter consists of eight output units representing the likelihoods of each stroke
category. This layer calculates these probabilities using the softmax activation function.
The Stroke and the Combined Model solely differ in their number of output nodes. The
Combined Model includes an additional output node which represents the probability of
non-stroke noise actions. In contrast, one output node activated by the sigmoid function
is sufficient for the Noise Model’s binary decisions. Please check the official Keras API [40]
for more details about these layer types and their activations.

LSTM
input:

output:

(None, 10, X)

(None, 50)

Dropout
input:

output:

(None, 50)

(None, 50)

Dense
input:

output:

(None, 50)

(None, 50)

Dense
input:

output:

(None, 50)

(None, Y)

Figure 6.5: The classifier architecture. X: number of input features, Y : number of output
classes.

6.2.4 Forecaster Architecture

The Stroke Forecaster takes a window as input and predicts the stroke motion in the next
time step based on learned motion patterns. The system can use this information to ana-
lyze the player’s stroke movements. Following the principle of simplicity, the architecture
of its underlying Stroke Future Model is kept very light. It contains only a single LSTM
layer with fifty LSTM units, the same amount the classifiers use in their recurrent parts.
Figure 6.6 visualizes the architecture of the Stroke Future Model. For consistency, this
network operates on the same combination of accelerometer, gyroscope, and magnetome-
ter data as the classifiers. Therefore, the number of input features (X = 9) also stays the
same. The forecaster does not classify input sequences. Instead, it acts as a regression

6.3 Stroke Extraction and Classification 45

model and predicts future values of a time series. Consequently, it emits the same number
of output features Y as there are input features X.

LSTM
input:

output:

(None, 10, X)

(None, Y)

Figure 6.6: The architecture of the Stroke Forecaster. X: number of input features, Y :
number of output features.

6.3 Stroke Extraction and Classification

One of the main tasks of the developed system is the detection of stroke intervals in
preprocessed time series and their assignment of stroke types. The procedure consists of
the three main steps stroke and non-stroke noise inference (Section 6.3.1), stroke extraction
(Section 6.3.2), and stroke classification (Section 6.3.3).

6.3.1 Stroke and Non-Stroke Noise Inference

Before inferring a preprocessed time series, the Stroke Extraction & Classification Module
must split it into windows of length 100 ms using sliding windows. Afterward, it feeds the
machine learning models with these windows to calculate the start and the end point of
a stroke sequence in a given time series and to assign each window a stroke type. The
Noise Model estimates the probability Qw that a window w contains a non-stroke noise
action. The Stroke Model outputs the probability Pw(t) per stroke type t that the window
contains a specific stroke type. Then, the module compares the outputs of the two models
to identify when a stroke sequence begins and when it ends. It considers a window to
contain a stroke s if the probability of any stroke type in that window is greater than 1.5
times the probability of having a non-stroke action in the same window:

s ∈ w ⇔ ∃ t : Pw(t) > 1.5 ∗Qw. (6.6)

The factor 1.5 increases the weighting of the output of the Noise Model. Therefore, a
stroke can only be detected if the non-stroke noise probability is less than 66 percent.
Without this factor, it would be possible to detect a stroke despite a high non-stroke noise
probability. Figure 6.7 visualizes the factor’s impact on the non-stroke noise detection.
Based on Equation 6.6, the Stroke Extraction & Classification Module detects the start
of a stroke sequence if ten consecutive windows contain strokes. The module applies the
same rule backward to find the end of the stroke sequence.

Figure 6.8 shows the classification result of a stroke sequence containing eight backhand
loops. The blue areas at the beginning and the end of the time series represent detected
non-stroke noise actions. Please refer to Appendix E.1 for more examples.

The non-stroke noise detection is more straightforward if the Stroke Extraction & Classi-
fication Module uses the non-modular approach with the Combined Model instead of the
combination of the Stroke and the Noise Model. In this case, there is no need to com-
pare the outputs from two different models because the Combined Model classifies both
stroke types and non-stroke noise actions. Hence, the Equation 6.6 is obsolete for the
non-modular approach.

46 6 Internals of the Processing Pipeline

Figure 6.7: The impact of the noise factor 1.5 on the decision space. The area under
each curve represents non-stroke noise actions, while the area above each curve
represents valid strokes.

Figure 6.8: A classified time series containing eight backhand loops.

6.3.2 Stroke Extraction

The next step is the extraction of stroke intervals from a detected stroke sequence. Stroke
extraction is not trivial, as each stroke type has its own peculiarities. To extract strokes,
this work applies thresholding techniques to the three features cumulative acceleration
(cf. Equation 6.3), its energy gradients, and the pressure data. Each step is described
below.

Stroke Extraction (Cumulative Acceleration)

The Stroke Extraction & Classification Module must perform several steps to calculate
stroke intervals based on the cumulative acceleration:

1. Divide the classified stroke sequence into ranges based on the most probable racket
hand at each point in time. The Stroke Model (resp. the Combined Model) provides
the probabilities. This preliminary step is important since investigations in this work
have shown that forehand and backhand strokes are characterized by different high
and low point sequences in the cumulative acceleration: A low point followed by

6.3 Stroke Extraction and Classification 47

a high point denotes a forehand stroke. In contrast, the reverse order (high point
before low point) indicates a backhand stroke.

2. Calculate the high and low points of the cumulative acceleration. The approach
considers a data point as a high point if it exceeds the standard deviation of the
positive part of the cumulative acceleration and as a low point if it is less than
the standard deviation of the negative part of the cumulative acceleration. The
thresholds correspond to the Equations 6.4 and 6.5, using the factor 1 instead of 2
for stroke extraction. This procedure results in a list of consecutive ranges labeled as
highs or lows. Due to fluctuations in the time series, two highs may be close together
without a low in between them. In cases where this distance is less than 100 ms, the
approach assumes that both highs belong to the same stroke and combines them.
The same applies to consecutive lows.

3. Create one set per hand (forehand, backhand) and categorize the highs and lows
based on the hand ranges calculated in Step 1. If a high or a low overlaps with the
ranges of two different hands, sort it into both sets.

4. In the forehand set, search for low-high combinations, since they denote forehand
strokes, and in the backhand set, find high-low combinations because they denote
backhand strokes. Label intervals that span such sequences as FULL stroke. Do not
discard lows or highs, which are not part of a FULL stroke, since sometimes one of
the peaks of a stroke is missing or does not exceed tupper or tlower. Instead, consider
them as stroke candidates, i.e., HALF strokes.

Stroke Extraction (Energy Gradients)

The second approach to extract stroke intervals from stroke sequences relies on the gradi-
ents of the energy of the cumulative acceleration. We define the energy of the cumulative
acceleration as the sum of its absolute squared values (see Equation 3.13). Strong increases
in the energy correlate to significant changes in the acceleration, which indicate the execu-
tion of strokes. The easiest way to capture such energy changes to calculate its derivative
and to compare the resulting gradients to the threshold

tdetection = µ(energy′) + σ(energy′), (6.7)

where µ denotes the mean and σ the standard deviation. Intervals in which the gradients
exceed this threshold form stroke candidate. Since the energy does not provide any infor-
mation about the shape of a signal, it is not possible to distinguish with certainty whether
these intervals represent strokes or random arm movements. Hence, the resulting intervals
are not considered as FULL strokes and instead labeled as HALF strokes. It is natural
for the energy gradients of fast movements that their peaks are of short duration. For this
reason, the approach expands energy strokes that exceed tdetection with a second, softer
threshold function:

texpand = µ(energy′). (6.8)

Stroke Extraction (Pressure)

The third stroke extraction variant uses a threshold function to identify stroke intervals in
pressure signals:

t = µ(pressure) + σ(pressure), (6.9)

where µ denotes the mean and σ the standard deviation. Pressure intervals that exceed
this threshold form stroke candidates. Like the energy gradients, pressure data do not
contain any information about the shape of the arm movement. Random arm movements
or, even worse, environmental aspects such as changes in air pressure caused by opening a

48 6 Internals of the Processing Pipeline

window may lead to pressure changes. Hence, this approach labels pressure stroke intervals
as HALF strokes.

Figure 6.9 visualizes the results of each extraction step using a time series with eight
forehand drives as an example.

(a) FULL acceleration strokes (b) Gradient strokes

(c) Pressure strokes

Figure 6.9: Illustration of the three stroke extraction methods applied on a stroke sequence
with eight forehand drives. For acceleration, it only visualizes FULL strokes.
The pressure curve is not smooth because its values are truncated after five
decimal places.

Final Stroke Intervals

The last stroke extraction step aggregates the resulting stroke candidates into the final
stroke intervals. In an ideal world with sinusoidal cumulative accelerations not containing
any unexpected jumps and well-defined pressure data, it would probably be convenient to
simply combine all calculated stroke candidates by extending FULL strokes with overlap-
ping HALF strokes and consolidating overlapping HALF strokes combined FULL strokes.
The resulting FULL strokes would then form the final stroke intervals. In reality, how-
ever, the signals are not shaped perfectly. Unexpected jumps between highs and lows can
occur in the cumulative acceleration due to individual movements, sensor uncertainties, or
the summation of the three acceleration dimensions. Figure 6.10 compares strokes with
and without such fluctuations. For more examples, see Appendix E.1. In addition, the
pressure data may show strange shapes due to occasionally occurring jumps in the data.

6.3 Stroke Extraction and Classification 49

For instance, the time series visualized in Figure 6.2d contains two peaks instead of one
at about 5500 ms. For this reason, this work uses a more complex approach that treats
various edge cases:

1. Enrich pressure strokes with acceleration information in the following way:

a) Intersect pressure stroke intervals with the FULL acceleration strokes, the
HALF acceleration strokes, and the energy gradients strokes.

b) Join intervals that form an intersection into larger intervals. Discard intervals
that are not part of an intersection.

c) Label intervals that were created by merging pressure intervals with FULL
strokes as FULL strokes. Consider the others as HALF strokes.

These enriched pressure intervals coupled with the FULL acceleration strokes form
the set of stroke candidates.

2. Sort the stroke candidates by their start and end indices and combine overlapping
intervals into larger intervals. Afterward, inspect the 200 ms neighborhoods of the
stroke intervals: If the union of adjacent intervals contains at most one pressure
stroke and one FULL acceleration stroke, then they are joined. Merged intervals are
defined as FULL if they contain a FULL stroke, otherwise as HALF.

3. Remove the first detected stroke if it is a HALF stroke, since leading HALF strokes
likely relate to movements associated with starting the IMU Logger or faulty reac-
tions if the table tennis robot failed to serve the first ball. In addition, treat short,
arbitrary movements by removing HALF strokes shorter than 100 ms.

4. Finally, inspect strokes that last longer than 1.5 seconds. If such a stroke interval
contains more than one FULL acceleration stroke, split it into these FULL acceler-
ation intervals. This is necessary because sometimes, Step 2 merges several FULL
strokes due to overlapping pressure peaks.

Section 7.4 discusses the stroke extraction capabilities of this approach.

(a) Forehand drives without fluctuations (b) Backhand drives with strong fluctuations

Figure 6.10: Stroke sequences containing eight forehand drives (left) compared to eight
backhand drives (right). The cumulative acceleration of each backhand stroke
shows strong fluctuations, while the forehand strokes are smooth.

50 6 Internals of the Processing Pipeline

6.3.3 Stroke Classification

Finally, the Stroke Extraction & Classification Module labels the stroke intervals. It first
averages the Stroke Model’s (resp. the Combined Model’s) classification results Pt in a
stroke interval with respect to the stroke type t. This results in a vector Pt. After that,
it consults the Stroke Sequence State Machine (cf. Figure 6.11) to enrich the averaged
stroke type probabilities with domain knowledge.

Waiting

FH
Drive

BH
Drive

FH
Loop

BH
Loop

FH
Block

BH
Block

FH
Push

BH
Push

Figure 6.11: The fully connected Stroke Sequence State Machine used to enrich the LSTM
stroke classifications with domain knowledge from typical table tennis drill
descriptions (see [18]).

Each of the states represents one of the eight considered stroke types. If the player has
not yet executed a stroke, the state machine resides in the so-called Waiting state, where
all following strokes (states) are equally probable. After a stroke sequence has finished,
the state machine returns to the Waiting state. Each state transition denotes the prob-
ability Qt that one stroke type follows another in a typical game of table tennis (domain
knowledge). More than 100 table tennis drill descriptions from [18], which are close to real
game situations, form the ground truth of this automata. Table D.1 lists its transition
probabilities. It is important to improve the state machine per player for two reasons: On
the one hand, the given drill descriptions tend to favor stroke sequences in which the same
stroke types follow each other. On the other hand, different players have different playing

6.4 Stroke Analysis 51

styles. Hence, the probabilities of stroke sequences likely differ between two players. The
system can individually improve this state machine over time by collecting stroke data of
a player and updating its underlying stroke sequence database. The state machine keeps
the stroke type executed immediately before the current stroke interval to be classified
and returns the tanh of its transition probabilities Qt. The tanh slightly increases the
impact of stroke sequences with smaller transition probabilities compared to those with
higher transition probabilities. This normalization is important for several reasons: The
state machine relies on drill descriptions, in which the stroke types relevant to this work
do not occur with equal frequency. In addition, the drill descriptions model typical stroke
sequences in a controlled training environment. Since table tennis is a highly individual
sport, an opponent’s response during a rally is assessable but by no means predictable
(e.g., a sudden change from forehand to backhand). The tanh counters these concerns by
transforming the state machine probabilities into the interval [0, 0.7632) and flattening the
curve towards the end. Figure 6.12 visualizes the tanh-behavior.

Figure 6.12: The impact of tanh on the state machine probabilities.

Finally, the Stroke Extraction & Classification Module multiplies the classifier vector P
with the state transition vector Q element by element to determine the final probabilities
per stroke type:

t = index of max
(
P � tanh(Q)

)
, (6.10)

where t represents the index of the stroke type with the highest probability and � denotes
the element-wise vector multiplication. The domain knowledge based state machine intro-
duces a self-verification and self-correction mechanism to the otherwise machine learning
based classification process. It allows the readjustment of the outputs of the Stroke Model
(resp. the Combined Model) in case of unrealistic stroke sequences. Section 7.5 discusses
the classification results on the test.

6.4 Stroke Analysis

The classification of strokes is not the only way to postprocess extracted stroke intervals.
In addition, the developed table tennis stroke extraction and classification system provides
hints on acceleration, velocity, angular velocity, and racket angle deviations in extracted
stroke intervals. For this purpose, the Stroke Analysis Module compares these values
between actually played strokes and the predictions of the Stroke Forecaster. The module
can directly compare the actual cumulative acceleration a with its forecasted values by
calculating their average deviation in a stroke interval:

∆a =
1

n

n∑
m=1

∆am, (6.11)

52 6 Internals of the Processing Pipeline

with

∆am =

{
aactualm − aforecastedm , aforecastedm ≥ 0

aforecastedm − aactualm , aforecastedm < 0
. (6.12)

∆am denotes the difference between the forecasted and the actual value at a given point
in time. The reason for its partial definition is simple: For a positive forecasted value, the
actual acceleration is higher if its value is greater than the forecasted acceleration, and for
a negative forecasted value, the actual acceleration is higher if its value is less than the
predicted acceleration. Figure 6.13 visualizes this behavior with two sinusoidal curves.

Figure 6.13: Visualization of the delta calculation (see Equation 6.12). The delta between
both curves is positive for both positive forecasted values and negative ones.

With the same considerations, we define the average deviation of the cumulative angular
velocity ω as follows:

∆ω =
1

n

n∑
m=1

∆ωm, (6.13)

where ∆ω follows the same definition as ∆a (see Equation 6.12). The cumulative angular
velocity follows the definition of the cumulative acceleration (see Equation 6.3).

On the other hand, the Stroke Analysis Module must first calculate a stroke’s velocity and
racket angle to compute its deltas. It estimates the integral over the deltas between the
actual and forecasted acceleration in a given stroke interval with the trapezoidal rule to
calculate the average deviation of the velocity v [19, p. 98]:

∆v =
1

n− 1
∆t

n−1∑
m=1

∆am + ∆am+1

2
(6.14)

where ∆t = 10 ms denotes the temporal distance between two data points. The Stroke
Analysis Module uses the same approach to compute the average deviation of the racket
angle ϕ between the absolute and forecasted angular velocity:

∆ϕ =
180°

π

1

n− 1
∆t

n−1∑
m=1

∆ωm + ∆ωm+1

2
, (6.15)

where the initial factor converts radians into degrees.

Human coaches or virtual trainers could use the calculated average deltas in acceleration,
angular velocity, speed, and racket angle to analyze a player’s form or why a shot failed.
For example, a decrease in speed or acceleration over time could be an indication of
exhaustion.

6.5 Influence of Domain Knowledge on Processing 53

6.5 Influence of Domain Knowledge on Processing

The following sections discuss the influence of domain knowledge on design decisions at
different processing stages. Figure 6.14 gives an overview of the tasks which rely on domain
knowledge.

Signal
Smoothing

Non-Stroke
Noise

Preprocessing

Stroke
Extraction

Stroke
Classification

Stroke
Analysis

Stroke Recognition

Figure 6.14: Domain knowledge infused tasks in preprocessing and stroke recognition.

6.5.1 Preprocessing

Preprocessing raw sensor data is an essential step in many machine learning pipelines.
Selecting appropriate preprocessing techniques is crucial for the success of a system. On
the one hand, unfavorably chosen methods can weaken or even eliminate information-
bearing signal parts, while on the other hand, they can amplify irrelevant aspects. To
minimize these risks, the preprocessing techniques used in this work were selected based
on two leading questions: Which signal properties are important for table tennis? Which
parts of a signal contain strokes? Knowledge about the signal shape in the domain table
tennis is helpful to answer these questions.

Most table tennis experts do not have such knowledge unless they happen to have cap-
tured and analyzed table tennis data from the same modalities before. Nevertheless, their
fundamental knowledge on stroke phases and executions can help system developers and
data analysts isolate important signal features that should not be smoothed away by pre-
processing.

Furthermore, the expertise of table tennis experts is beneficial if the system developers
decide to apply wavelet transforms to reduce jitter in the input data, as unsuitable mother
wavelets could distort the signal shape. Moreover, this type of domain knowledge is needed
to distinguish whether strokes or non-stroke noise actions are present in the data under
consideration.

6.5.2 Stroke Recognition

In addition to data acquisition and preprocessing, domain knowledge also plays an im-
portant role when selecting proper stroke recognition techniques. In this work, stroke
extraction is optimized based on table tennis-specific knowledge about the signal shape
and the information provided by the different sensors. The analysis of the cumulative
acceleration revealed that highs following lows characterize forehand strokes, while back-
hand strokes follow the reverse order. Unfortunately, these characteristic peaks sometimes
vanish. For this reason, stroke extraction also takes energy gradients and pressure data
into account. However, since pressure does not contain any information about the stroke
motion itself, it must be enriched with acceleration data.

54 6 Internals of the Processing Pipeline

Furthermore, game knowledge gained from typical table tennis drill descriptions can in-
crease the stroke classification reliability and trustworthiness. The Stroke Sequence State
Machine fulfills this verification task by comparing the machine learning based stroke
classifications with typical stroke sequences and adjusts them if necessary. In doing so,
the state machine explicitly introduces profound expert knowledge into the classification
system to make its outputs more reliable in the context of table tennis. The output verifi-
cation also alerts developers to potential misconfigurations in the machine learning models
or incorrectly labeled training data in case of significant discrepancies between machine
learning based predictions and domain knowledge based state machine outputs. Thus,
game knowledge can help improve the classification capabilities of the system and assist
developers in designing a robust system and interpreting its intermediate and final results.

Lastly, domain knowledge is essential for the selection of meaningful and understandable
metrics for stroke analysis. The basic table tennis knowledge includes that stroke speed
and racket angle are crucial for the success of a stroke. For this reason, metrics based on
the accelerometer and gyroscope data are suitable to help players (and coaches) to analyze
and improve their playing style by reflecting faulty strokes.

6.6 Summary

The table tennis stroke recognition system uses various signal processing techniques to
amplify characteristic signal features. We leveraged table tennis related domain knowledge
to decide which properties are relevant and select appropriate preprocessing steps. Stroke
extraction uses two data dimensions: acceleration and pressure. Acceleration naturally
provides important details on stroke movements. By adding pressure information, the
system can also account for height differences of the racket during the stroke motion. Stroke
classification relies on machine learning based classifiers and valid gameplay knowledge
represented by a finite state machine. This domain knowledge allows the system to self-
verify and self-correct its outputs. Stroke analysis provides insights into the acceleration,
angular velocity, speed, and racket angle of extracted strokes, enabling players to analyze
and perfect their stroke techniques. We chose these values based on the domain knowledge
that speed and racket angle have a significant impact on the success of a stroke.

The next chapter analyzes and evaluates various aspects of the presented table tennis
stroke recognition system based on data of two long-time table tennis players.

Chapter 7

Evaluation

This chapter evaluates the stroke extraction, classification, and analysis capabilities of the
developed system using data from semi-professional players. Its first part describes the data
collection process and the collected data (Section 7.1). Afterward, it presents the Stroke
Model, the Noise Model, the Combined Model, and the Stroke Future Model, including
important information on architectural decisions, training, and mobile device optimization
(Section 7.2). Subsequently, it discusses the need for player-dependent machine learning
models (Section 7.3). The following sections analyze each system part separately using
goal-question-metric (GQM) plans (Sections 7.4–7.6). The penultimate section briefly
analyzes and discusses the system qualities on data from some casual players (Section 7.7).
This chapter ends with a short summary of the evaluation findings (Section 7.8).

7.1 Data

Data collection with the IMU Logger is an essential part of the developed system. This
section describes the collection of training and test data for the design and evaluation of
the stroke recognition system. Furthermore, it presents the data sets derived from the
collected data.

7.1.1 Data Collection Process

Our initial plan was to collect an even number of data from multiple players of the local
table tennis club and merge them into one common data set, which we would then use to
train comprehensive baseline models. Unfortunately, we had to discard this plan due to the
global pandemic (Covid-19) and its associated restrictions on public life. It was necessary
to improvise since it was neither allowed to play sports in the local sports hall nor to
meet in larger groups. We set up a temporary training facility in our own basement and
collected data mainly from two semi-professional table tennis player with many years of
experience. The first player’s data serves as the basis for system design and development.
The evaluation covers both players. The data collection process is as follows:

55

56 7 Evaluation

1. Set up the smart devices. Standalone: the player wears only a single smartwatch at
the racket-holding wrist. Sensor network: the player wears multiple smartwatches
(clients) distributed over its entire body and connects them to a smartphone (server).

2. Choose a stroke type and set up the table tennis robot accordingly.

3. Select adequate logging parameters for the stroke sequences to be performed and start
the data collection process either on the smartphone or on a standalone smartwatch.

4. Wait until all sensors have started collecting data and then start the robot.

5. Stop the robot and the data acquisition process after the player played five to fifteen
strokes. We targeted the recording of approximately eight strokes per data set but
tolerated deviations since stroke sequences do not have fixed lengths in real game
situations.

All in all, we collected 496 stroke sequences with a total of 3770 strokes from the two
players. Player one performed the majority of these stroke sequences (436). Table 7.1
contains details on the stroke type distribution. Appendix A provides exemplary time
series of the accelerometer, gyroscope, magnetometer, and pressure sensor for each stroke
type. All of them contain characteristic peaks which indicate strokes. These peaks are
clearer and more consistent for acceleration and angular velocity than for magnetic field
and pressure. Depending on the stroke type, some directions of the magnetic field barely
show such peaks (see Figure A.3c and A.7g). For the pressure, the data are sometimes a big
mess (see Figure A.2d). Furthermore, some pressure peaks can merge (see Figure A.7h).
The plots also show characteristic properties of each stroke type. For example, loops
usually have higher accelerations than blocks or drives.

Table 7.1: Total number of recorded strokes per stroke type and data set (player one |
player two).

Stroke Type Training Set Test Set Validation Set Total

FH Drive 302 | 35 72 | 16 64 | 8 438 | 59

FH Loop 278 | 39 64 | 16 64 | 8 406 | 63

FH Block 294 | 33 64 | 8 64 | 8 422 | 49

FH Push 254 | 33 64 | 16 56 | 8 374 | 57

BH Drive 285 | 33 64 | 16 64 | 8 413 | 57

BH Loop 292 | 40 64 | 16 64 | 8 420 | 64

BH Block 273 | 33 64 | 8 56 | 8 393 | 49

BH Push 311 | 35 72 | 16 64 | 8 447 | 59

Total 2289 | 281 528 | 112 496 | 64 3313 | 457

7.1.2 Data Sets

For each player, we divided the recorded data into three subsets using a 70/15/15 rule:
the training set, the test set, and the validation set. This means that we added 70 percent
of a player’s data to his training set while distributing the remaining 30 percent evenly
between his other two sets. The training set directly affects the weight updates during
training [41]. The validation set assists the training process by inspecting the state of the
model and tuning its hyperparameters after each training iteration [41]. The test set is
isolated from the training process. The final model evaluation happens on these entirely
unseen data [41].

Table 7.1 lists the total number of collected strokes per data set sorted by stroke types on
a per-player basis. Note that the 15/15 part of the split rule is not based on the number

7.2 Machine Learning Models 57

of strokes but on the number of time series per stroke type. That explains the slightly
higher number of strokes in the test sets compared to the validation sets.

7.2 Machine Learning Models

This section evaluates the performance of the four machine learning models using a variety
of performance metrics. It only considers data from the first player since this data serves
as the basis for the development and design of the stroke extraction and classification
techniques.

This section first introduces some performance metrics, such as the F1-score or the root
mean squared error (Section 7.2.1). It then examines the discrimination capabilities of
various Stroke Models with different input feature combinations (Section 7.2.2). This
section also includes a comparison of alternative model architectures. The next section
discusses the performance of the Stroke Future Model (Section 7.2.3). For simplicity,
this model relies on the same input features as the classification models. This part of
the evaluation concludes with a brief description of optimization techniques for mobile
devices, as this thesis aims to use the models on mobile devices with limited resources
(Section 7.2.4).

7.2.1 Performance Metrics

Many performance metrics exist for evaluating machine learning models. This thesis ana-
lyzes the classifiers using precision, recall, and the harmonic mean between these two called
F1-score. These metrics can be derived from the confusion matrix shown in Table 7.2. It
compares the predicted outputs with their actual labels.

Table 7.2: Confusion matrix (adapted from [39, p. 92]).
TP: true positives, FP: false positives, TN: true negatives, FN: false negatives.

Predicted
Pos Neg

Actual
Pos TP FN
Neg FP TN

The precision [39, pp. 91 ff.]

p =
TP

TP + FP
(7.1)

answers the question of how much of the predicted positive labels are actually positive.
Only relying on this metric is not helpful since it only considers the samples predicted as
positives. It reaches its limits when only a small fraction of the actual positive labels are
recognized at all [39, pp. 91 ff.]. For this reason, we need a second metric. The recall [39,
pp. 91 ff.]

r =
TP

TP + FN
(7.2)

answers the question of how much of the actual positive labels the model predicted correctly
[39, pp. 91 ff.]. Again, it is not useful to rely solely on this metric, as it does not perform well
when the model predicts all samples as positives. The F1-score solves the disadvantages
of both metrics and allows better comparisons between two different models. It is defined
as the harmonic mean between the precision and the recall [39, pp. 91 ff.]:

F1 =
2 ∗ r ∗ p
r + p

. (7.3)

58 7 Evaluation

This thesis evaluates the forecaster using the root mean squared error [39, pp. 39 ff.]

RMSE(X) =

√√√√ 1

n
∗

n∑
i=1

(ŷ(xi)− yi)2 (7.4)

and the mean absolute error [39, pp. 39 ff.]

MAE(X) =
1

n
∗

n∑
i=1

|ŷ(xi)− yi| . (7.5)

Both of them calculate deviations between the calculated output Ŷ and the expected
output Y and are therefore suitable for the evaluation of regression models [39, pp. 39 ff.].
According to Géron, the root mean squared error is the preferred metric as it weights
larger errors more heavily [39, pp. 39 ff.].

7.2.2 Classifiers

The classifiers assign categories to each sliding window. The Stroke Model categorizes the
data into eight stroke types, while the Noise Model decides whether a window contains
a stroke or a non-stroke noise action. The Combined Model distinguishes between stroke
types and non-stroke noise.

Training

We trained the classifiers on the first player’s data using early stopping. During training,
the categorical cross-entropy loss function computes the loss between the predicted and
the actual class of a window. This loss function is a common choice for classification
models which calculate class membership probabilities [39, p. 295]. The Stroke Classifier
is trained on 319,535 randomly selected windows, validated on 69,039 windows, and tested
on 74,554 windows. All these windows together represent the first player’s stroke sequence
data. The Noise Classifier, on the other hand, is trained on 496,450, validated on 99,351,
and tested on 106,940 randomly selected windows. It additionally uses the non-stroke
noise data to distinguish between strokes and non-stroke actions. The Combined Model is
optimized and evaluated on the same training, validation, and test windows as the Noise
Model. However, it additionally distinguishes between the individual stroke types.

Feature Selection

Each smartwatch collects a total of ten features per time step. Three features each for
the accelerometer, the gyroscope, and the magnetometer, and one feature for the pressure
sensor. Table 7.3 shows a comparison of ten Stroke Models based on different feature sets.
The following paragraphs analyze the results with a focus on the losses and F1-scores on
the test set of player one.

It is immediately apparent that the models relying solely on the data from one sensor per-
form significantly worse than the other models with larger feature combinations. The ac-
celerometer, the gyroscope, and the magnetometer models suffer from relatively high losses
around 30 percent and only achieve F1-score in the mid to high eighties. The pressure
model performs even worse. These results make them four not suitable for stroke classifi-
cation. Moreover, we tested three combinations, each consisting of two of the three sensors
accelerometer, gyroscope, and magnetometer. We omitted pressure because its standalone
results were insufficient. These three models perform significantly better than the single
sensor solutions with F1-scores of up to 0.955 and losses in the interval [0.127, 0.179]. The
top three models rely on more input features. One uses the entire feature space spanned

7.2 Machine Learning Models 59

Table 7.3: Performance metrics of various Stroke Models trained on several input feature
combinations of player one’s data. L: loss, F1: F1-score.

X Input Features Params Epochs Training Validation Test

20
acc, gyr, mag, pres
wrist + right thigh

17,158 15
L: 0.0435

F1: 0.9859
L: 0.1774

F1: 0.9594
L: 0.1280

F1: 0.9552

10
acc, gyr, mag, pres

wrist
15,158 26

L: 0.0526
F1: 0.9815

L: 0.1277
F1: 0.9711

L: 0.0990
F1: 0.9664

9
acc, gyr, mag

wrist
14,958 37

L: 0.0419
F1: 0.9848

L: 0.1360
F1: 0.9659

L: 0.0840
F1: 0.9727

6
acc, gyr

wrist
14,358 30

L: 0.0755
F1: 0.9728

L: 0.1346
F1: 0.9563

L: 0.1277
F1: 0.9544

6
acc, mag

wrist
14,358 30

L: 0.1179
F1: 0.9579

L: 0.3245
F1: 0.9074

L: 0.1789
F1: 0.9388

6
gyr, mag

wrist
14,358 23

L: 0.0962
F1: 0.9648

L: 0.2114
F1: 0.9440

L: 0.1604
F1: 0.9453

3
acc

wrist
13,758 36

L: 0.2473
F1: 0.9135

L: 0.2762
F1: 0.9064

L: 0.3011
F1: 0.8920

3
gyr

wrist
13,758 32

L: 0.2489
F1: 0.9177

L: 0.2816
F1: 0.9050

L: 0.3059
F1: 0.8931

3
mag
wrist

13,758 43
L: 0.3384

F1: 0.8687
L: 0.6158

F1: 0.8552
L: 0.3561

F1: 0.8592

1
pressure

wrist
13,358 18

L: 2.0036
F1: 0.0042

L: 2.0101
F1: 0.0013

L: 2.0054
F1: 0.0040

by the two locations wrist and right thigh, while the second one uses all features collected
from the wrist. Both of them achieve an F1-score higher than 95 percent. The best per-
forming model uses the acceleration, angular velocity, and magnetic field recorded at the
racket-holding wrist. It achieves an F1-score of more than 97 percent and a loss of 0.084.
Compared to the usable models with fewer features, its number of parameters increases
by only about 4.2 percentage points, resulting in only a minor additional computational
effort for inference. The main findings from this analysis are:

1. The classifier that operates on the accelerometer, the gyroscope, and the magne-
tometer data are the best performing one.

2. Pressure data are not particularly meaningful, neither solely nor in combination with
other sensor types.

3. The use of additional data taken from the right thigh does not really help the clas-
sification. The good results are rather attributable to the influence of the wrist
data.

Based on these findings, the Stroke Classifier uses the combination of acceleration, angular
velocity, and magnetic field data (each in x-, y-, and z-direction) for stroke classification.
The Noise Classifier, the Combined Classifier, and the Stroke Forecaster leverage the same
nine features for consistency.

Models and Alternatives

This work considers bidirectional LSTMs as alternative architectures for the Stroke and
the Noise Model. In short, bidirectional LSTMs consist of two separate LSTM units with
a shared output layer [42]. One of them considers the input data in a forward path, while
the other one looks at the reverse input data [42]. This modification enables classifiers

60 7 Evaluation

to look at a bigger picture of the context but doubles the number of learning parameters
in the recurrent part of their neural network architectures. Nevertheless, bidirectional
LSTMs achieved significant performance gains in sequence processing tasks such as nat-
ural language processing [42]. For this reason, we wanted to check whether bidirectional
LSTMs can also improve motion detection tasks. For this purpose, we trained and eval-
uated bidirectional versions of the Stroke and the Noise Model using the same training,
validation, and test sets as for the unidirectional approaches. Table 7.4 lists the resulting
performance metrics. The unidirectional and bidirectional models perform quite similarly.
The deviations are within the margin of error. Hence, the bidirectional versions do not
offer an improvement over the unidirectional models. Especially not in the context of mo-
bile device usage, where the associated doubling of parameters can harm inference speed
and battery life.

Table 7.4: Comparison of alternative models using player one’s accelerometer, gyroscope,
and magnetometer data. L: loss, F1: F1-score.

Model Y Params Epochs Training Validation Test

Stroke Model 8 14,958 37
L: 0.0419

F1: 0.9848
L: 0.1360

F1: 0.9659
L: 0.0840

F1: 0.9727

Stroke Model
Bidirectional

8 29,458 22
L: 0.0539

F1: 0.9812
L: 0.1343

F1: 0.9646
L: 0.0811

F1: 0.9693

Noise Model 1 14,601 25
L: 0.0915

F1: 0.9502
L: 0.1260

F1: 0.9362
L: 0.1435

F1: 0.9175

Noise Model
Bidirectional

1 29,101 20
L: 0.1027

F1: 0.9428
L: 0.1287

F1: 0.9309
L: 0.1424

F1: 0.9164

Combined Model 9 15,009 27
L: 0.1337

F1: 0.9562
L: 0.2588

F1: 0.9339
L: 0.2122

F1: 0.9314

Lastly, we tested the Combined Model which combines the responsibilities of the Stroke and
the Noise Model. It achieves an F1-score slightly higher than the noise F1-score on the test
set but more than four percentage points lower than the Stroke Model. Furthermore, the
Combined Model’s loss on the test set is significantly larger than the other models’ losses.
This could be due to short waiting times between strokes, which the Combined Model
recognizes as non-stroke noise actions even though the semi-automatic non-stroke noise
calculation process of the preprocessing labeled these parts with stroke types. Figure 6.8
shows an exemplary time series, where a short waiting time occurs between the second
and the third stroke.

The main advantage of the non-modular, combined approach over two separate classifiers
is its low parameter count and the associated energy efficiency. In absolute numbers, it
requires 14,550 fewer parameters and still achieves decent results on the test set. The
number of floating point operations (FLOPS) required for inference also reflect this trend.
Although the modular approach using the Stroke and the Noise Model requires approxi-
mately twice as many FLOPS as the Combined Model (cf. Table 7.6), it also comes with
some non-negligible advantages. For example, modularity eases the identification of rea-
sons for inconsistent classifications and the maintenance of the models. The evaluation
considers both the modular and non-modular approaches but neglects the bidirectional
variants because they suffer from high weight counts and offer no particular advantages.

Figure 7.1 illustrates the training of the Stroke, the Noise, and the Combined Model.
Early stopping terminates training after validation loss has not changed significantly for
ten consecutive epochs. The graphs also plot the final test results for reference. Figure 7.2
shows the confusion matrices of the Stroke and the Combined Model on the test set. In

7.2 Machine Learning Models 61

general, both models classify the input windows with high probabilities. As a result of the
addition of the non-stroke noise class to the Combined Model, this model tends to be less
accurate with slightly lower classification results per stroke type than the Stroke Model.
In both cases, the backhand drive and block achieve the worst results with probabilities of
true predictions in the low nineties for the Stroke Model or high eighties for the Combined
Model. As a result of the similarity of these stroke types, the models often confuse them
with probabilities between four and eight percent.

(a) Stroke Model (b) Noise Model

(c) Stroke Future Model (d) Combined Model

Figure 7.1: Training of player one’s Stroke, Noise, Stroke Future, and Combined Model.

(a) Stroke Model (b) Combined Model

Figure 7.2: Confusion matrices of player one’s Stroke and Combined Model on his test set.

62 7 Evaluation

7.2.3 Forecaster

The Stroke Future Model is trained on a total of 319,534 windows, validated on 69,038
windows, and tested on 74,553 windows representing stroke data only. Again, this model
solely relies on player one’s data. Note that exactly one window per set is missing compared
to the Stroke Classifier, even though the training of both models relies on the same stroke
data. The reason for this is that the classifiers assign class labels to each window, while
the forecaster always predicts the next time step. Therefore, the last window of a time
series cannot be mapped to a subsequent time step because it simply does not exist. Thus,
the number of windows per set is reduced by one. During training, the forecaster uses
the mean squared error as loss function to validate the current model’s performance. The
performance of the Stroke Future Model is measured based on the root mean squared
error and the mean absolute error. Table 7.5 lists the training results. Both metrics show
impressive numbers on the test set with values smaller than one percent. Therefore, it
seemed appropriate not to compare the model with any other architectures. Figure 7.1c
visualizes the training progress.

Table 7.5: The training results of the Stroke Future Model. L: loss, RMSE: root mean
squared error, MAE: mean absolute error.

Params Epochs Training Validation Test

684 11
L: 9.803e-06

RMSE: 0.0031
MAE: 0.0012

L: 8.963e-06
RMSE: 0.0030
MAE: 0.0012

L: 5.036e-05
RMSE: 0.0071
MAE: 0.0033

7.2.4 Mobile Device Optimization

Inference can either run on a computer or on a smartwatch. We converted the Keras [37]
models into TensorFlow Lite [43] models to enable mobile device inference. We also applied
float16 quantization to further reduce the model size. This optimization step shrinks the
network weights from 32 bits to 16 bits. According to [44], performance remains nearly
identical with this optimization compared to the original Keras models. A comparison of
the performance metrics of both model representations confirms this statement. Table 7.6
compares the model sizes before and after the downsizing process and lists the performance
metrics of the final models. The size of the classifiers shrinks by approximately 80 percent
when comparing their Keras models with their quantized TensorFlow Lite models. The
forecaster achieves a size reduction of 37.5 %.

Table 7.6: Influence of model shrinking on model size, including the floating point opera-
tions needed for inference (FLOPS).

Model Keras TF Lite
TFLite + float16

quantization
FLOPS Test Results

Stroke Model 211 KB 69.1 KB 41.6 KB 49,413 F1: 0.9727

Noise Model 207 KB 67.7 KB 40.9 KB 48,710 F1: 0.9175

Stroke Future
Model

31.3 KB 12.0 KB 12.0 KB 1,950
RMSE: 0.0071
MAE: 0.0033

Combined Model 211 KB 69.3 KB 41.7 KB 49,513 F1: 0.9314

At this point, it is worth mentioning again that the modular approach consisting of sep-
arate Stroke and Noise Models requires a significantly larger number of floating point op-
erations than the non-modular approach. Nevertheless, this separation of concerns makes
it easier to understand the modular approach. From the energy perspective, which is very

7.3 Player-Dependent Models 63

important in the mobile sector, the non-modular approach with the Combined Model is
the better choice since it drastically decreases the number of required floating point oper-
ations. Another advantage of the lower FLOPS is its associated decreased inference time
end users will certainly appreciate.

7.3 Player-Dependent Models

We also collected data from a second semi-professional table tennis player with long years
of experience to evaluate the system’s performance. This data set contains much fewer
strokes than the one from the first player (cf. Table 7.1). Since both players have a similar
playing strength, we decided to investigate how the models of the first player behave on the
data of the second player. Figure 7.3a visualizes the results using a confusion matrix. As we
can see, player one’s Stroke Model classifies player two’s forehand strokes and backhand
pushes with decent probabilities but struggles extremely with the remaining backhand
strokes. These findings prove that table tennis is a highly individual sport, where even
players with similar skill levels can have different stroke techniques.

(a) Player one’s Stroke Model, player two’s data (b) Player one’s data, player two’s Stroke Model

Figure 7.3: Comparison of the confusion matrices when mixing Stroke Models and test
data from two different players.

With this in mind, we decided to train separate models for player two for further evaluation
of the table tennis stroke recognition system. Table 7.7 lists their performance metrics.
A comparison of his Stroke and Noise Models with his Combined Model reveals similar
trends as the player one’s models: Again, the Stroke Model achieves the best performance
on the test set, while the Noise and the Combined Models show lower F1-scores. Like the
Combined Model of player one, the Combined Model of player two generates the highest
loss. The training results of player two are overall slightly worse than those of player
one. We can explain these observations with player two’s significantly smaller amount of
training data.

Figure 7.4 shows the confusion matrices of the Stroke and the Combined Models of player
two. They indicate that the second player executes forehand drives and forehand blocks
similarly with misclassification rates ranging from five to twenty percent. In addition,
the Combined Model reveals that there are relatively high similarities between strokes
and non-stroke noise actions. This is especially the case for backhand blocks (25 %) and
backhand pushes (13 %). Possible reasons for these similarities are the small amount of
data and the non-stroke noise calculation of the preprocessing pipeline, which only treats
non-stroke noise actions at the beginning and at the end of a time series but not between
strokes.

64 7 Evaluation

Table 7.7: Training results of player two’s machine learning models.

Model Epochs Training Validation Test

Stroke Model 22
L: 0.0202

F1: 0.9938
L: 0.4966

F1: 0.9238
L: 0.2429

F1: 0.9430

Noise Model 18
L: 0.0642

F1: 0.9694
L: 0.3115

F1: 0.8841
L: 0.2557

F1: 0.8860

Stroke Future Model 11
L: 2.683e-05

RMSE: 0.0052
MAE: 0.0024

L: 2.051e-05
RMSE: 0.0045
MAE: 0.0022

L: 7.648e-05
RMSE: 0.0087
MAE: 0.0045

Combined Model 15
L: 0.1432

F1: 0.9481
L: 0.4191

F1: 0.8869
L: 0.3348

F1: 0.8837

(a) Stroke Model (b) Combined Model

Figure 7.4: Confusion matrices of player two’s Stroke and Combined Model on his test set.

Out of interest, we inferred the first player’s test data with the second player’s Stroke
Model. Figure 7.3b shows the resulting confusion matrix. While the model can distinguish
loops and pushes surprisingly well, it fails miserably with blocks and drives. These results
emphasize the individuality of table tennis even further.

7.4 Stroke Extraction

The first part of this evaluation inspects the stroke extraction capabilities of the system
using the following GQM plan:

G1: Detection of strokes in time series

Q1: How effective is the developed stroke extraction approach at extracting strokes?

M1: Mean Squared Error (MSE), False Extraction Rate (FER)

The mean squared error corresponds to the root mean squared error without the square
root (see Equation 7.4). In the context of stroke extraction, we calculate the MSE be-
tween the number of extracted strokes and the actual number of strokes in a time series.
Furthermore, we define the false extraction rate (FER) as:

FER =
Missing +Additional

Strokes
, (7.6)

where Missing is the number of falsely not extracted strokes, Additional is the number
of falsely extracted strokes, and Strokes is the actual number of strokes.

7.5 Stroke Classification 65

To answer Q1, we executed the system twice on each player’s test data. Once with the
modular classification approach using the Stroke and the Noise Model, and another time
with the non-modular approach (Combined Model). In both cases, the system extracted
three additional strokes for player one and missed zero. This results in a FER of less than
one percent and an MSE of less than 5 percent. For player two, on the other hand, the
system neither detected additional strokes on the randomly chosen test set nor missed any
strokes. All in all, only three errors occurred in a total of 640 strokes from both players.
Table 7.8 contains detailed evaluation results.

Table 7.8: The stroke extraction results on the test sets of player one (P1) and player two
(P2).

Model Strokes Missing Additional FER MSE

Stroke Model
+ Noise Model

P1: 528
P2: 112

P1: 0
P2: 0

P1: 3
P2: 0

P1: 0.0057
P2: 0.0

P1: 0.0455
P2: 0.0

Combined Model
P1: 528
P2: 112

P1: 0
P2: 0

P1: 3
P2: 0

P1: 0.0057
P2: 0.0

P1: 0.0455
P2: 0.0

Stroke extraction relies on thresholding techniques that use the mean and standard de-
viation of a stroke sequence. It heavily depends on the results of the non-stroke noise
detection since non-stroke noise parts impact the mean and standard deviation of a time
series. Moreover, stroke classification affects stroke extraction, as the latter relies on the
observation that different high and low point sequences represent forehand and backhand
strokes. For this reason, it is fascinating that the stroke extraction results of the modular
and the non-modular approach are identical. Table 7.9 lists the average number of win-
dows classified as non-stroke noise actions per player and approach. Despite the different
noise detection mechanisms, the results are pretty similar.

Table 7.9: The average number of windows containing non-stroke noise actions on the test
sets of player one (P1) and player two (P2). Pre Noise refers to windows before
and Post Noise to windows after a stroke sequence.

Model Non-Stroke Noise Pre Noise Post Noise

Stroke Model
+ Noise Model

P1: 203.61
P2: 242.79

P1: 339.18
P2: 316.57

P1: 68.05
P2: 169.00

Combined Model
P1: 214.91
P2: 231.89

P1: 350.18
P2: 287.14

P1: 79.64
P2: 176.64

These results show that the developed stroke extraction approach can effectively de-
tect strokes in recorded time series with truncated non-stroke noise actions. Both the
engineering-friendly modular approach and the energy-efficient non-modular approach
achieve good scores. Appendix E.1 provides exemplary outputs of the modular and non-
modular approach for each stroke type.

7.5 Stroke Classification

The table tennis stroke recognition system uses multiple classifiers to categorize extracted
strokes into eight stroke types. Furthermore, it leverages a state machine to enrich the
classifier results with domain knowledge about typical table tennis stroke sequences. The
second part of this evaluation explores the system’s classification capabilities using the
following GQM plan:

G2: Classification of extracted strokes

66 7 Evaluation

Q2: Can domain knowledge improve the classification?

M2: False Classification Rate (FCR)

Here, we define the false classification rate (FCR) as:

FCR =
Misclassified

ExtractedStrokes
, (7.7)

where Misclassfied is the number of falsely classified strokes, and ExtractedStrokes is
the number of strokes extracted by the stroke extraction mechanism. This formula uses the
number of extracted strokes instead of the actual number of strokes because the classifiers
can only assign stroke types to extracted stroke intervals. They do not know if strokes are
falsely extracted or missing.

To answer Q2, we executed the system four times on each player’s test data. Two times
using the modular approach (Stroke and Noise Model) and two times using the non-
modular approach (Combined Model). In both cases, once with and once without the
Stroke Sequence State Machine.

The modular approach misclassified only one of the extracted strokes from player one
when we enriched the classifier’s outputs with domain knowledge. In contrast, the sys-
tem misclassified two stroke intervals when it relied solely on the machine learning based
classifier. The false classification rates also reflect these results: the FCR without domain
knowledge (0.0038) is twice as large as the FCR with domain knowledge (0.0019). Thus,
adding the Stroke Sequence State Machine resulted in a small classification improvement.
Nevertheless, the false classification rates are minimal in both cases. Table 7.10 lists the
complete classification results for both players. For player two, there are no incorrect
stroke classifications for both classification approaches. Neither with nor without domain
knowledge.

Table 7.10: The stroke classification results on the test sets of player one (P1) and player
two (P2).

Model
Stroke Sequence
State Machine

Extracted
Strokes

Misclassified FCR

Stroke Model
+ Noise Model

Yes
P1: 531
P2: 112

P1: 1
P2: 0

P1: 0.0019
P2: 0.0

No
P1: 531
P2: 112

P1: 2
P2: 0

P1: 0.0038
P2: 0.0

Combined Model
Yes

P1: 531
P2: 112

P1: 2
P2: 0

P1: 0.0038
P2: 0.0

No
P1: 531
P2: 112

P1: 2
P2: 0

P1: 0.0038
P2: 0.0

Figure 7.5 compares the classification in the faulty case. Domain knowledge infusion could
not cure the second misclassification because the probability of the incorrect stroke type
was simply too high for the Stroke Sequence State Machine to handle (cf. Figure 7.6). To
make matters worse, the system incorrectly extracted this stroke interval even though it
does not contain a stroke but an intermediate movement. Fortunately, this misclassification
did not propagate, and the subsequent stroke was classified correctly. The non-modular
approach achieved similar results for player one: The misclassifications occur in the same
time series (cf. Figure 7.7). However, the addition of domain knowledge could not eliminate
them as the classifier probability is simply too high.

7.5 Stroke Classification 67

(a) Classification with domain knowledge (b) Classification without domain knowledge

Figure 7.5: Comparison of the classification of eight backhand blocks using the modular
approach with and without the state machine. Green: correct classifications,
red: misclassifications.

Figure 7.6: An incorrect stroke extraction causes the second misclassification when using
the modular approach. The Stroke Sequence State Machine could not cure it.

(a) Eight backhand blocks (b) Eight backhand blocks

Figure 7.7: Faulty stroke classifications using the non-modular approach. The Stroke Se-
quence State Machine could not solve either misclassification.

68 7 Evaluation

These results show that the developed approach is well suited for classifying extracted
stroke intervals. However, to answer Q2, we must not consider the FCRs exclusively
but must also analyze the domain knowledge infusion technique itself. The output of
the Stroke Sequence State Machine depends on the last stroke classification. On the one
hand, this reduces the likelihood of an incorrect stroke classification following a correct
classification (cf. Figure 7.5). On the other hand, the state machine could conversely
hinder the classification process of an interval following a misclassification. This could
especially be a pitfall if the Stroke Model (resp. the Combined Model) is unsure and
computes similar probabilities for multiple stroke types.

To answer Q2, this kind of domain knowledge infusion has the potential to improve the
classification of strokes (cf. Figure 7.5). Nevertheless, this approach has some weaknesses
and should be further optimized to make it more robust. See Appendix E.1 for more
exemplary extraction and classification results of the modular and non-modular approach
for each stroke type.

7.6 Stroke Analysis

The last aspect of the table tennis stroke extraction and classification system is the analysis
of extracted strokes. Since the quality of the analysis results depends mainly on the
individual subjective perception, it cannot be quantified. For this reason, we do not
provide a GQM plan for evaluation. Instead, we present some facts about the results of
the stroke analysis on the test data of the two players.

All in all, there are no significant deviations between performed strokes and their corre-
sponding predictions for both players (see Figure 7.8 as an example). In both cases, the
acceleration and the velocity are slightly higher on average than the predictions made by
the forecaster. Hence, the players executed the strokes slightly faster than expected. The
angular velocity and the racket angle, on the other hand, are slightly lower on average
than the forecasted values. These numbers indicate that the racket angles of both players
are slightly smaller on the test sets compared to the learned patterns.

(a) Acceleration (b) Angular velocity

Figure 7.8: The cumulative acceleration and angular velocity of a sequence containing eight
forehand drives compared to their forecasted values.

There is a tendency for the differences to be larger for player two than for player one.
Hence, player two probably played the strokes with less consistency than player one. Ac-
cordingly, player two presumably played the strokes with less consistency than player one.
However, it is also possible that the higher differences are related to the smaller amount

7.7 Excursus: Amateur Data 69

of training data of player two and thus somewhat poorer generalizability of the Stroke
Future Model. Table 7.11 lists the averaged stroke analysis results on the test data of both
players. Appendix E.2 contains some detailed examples.

Table 7.11: The average deviation in acceleration, angular velocity, velocity, and angle on
the test set strokes performed by player one (P1) and player two (P2).

Acceleration Angular Velocity Velocity Angle

P1 0.0452 % −0.0282 % 0.0013 m s−1 −0.0248°

P2 0.4652 % −0.0247 % 0.0050 m s−1 −0.0402°

7.7 Excursus: Amateur Data

The intention behind the table tennis stroke recognition system is that semi-professional
players or players above a certain skill level can use it to monitor their strokes and analyze
their play. Players must at least know the differences between the considered stroke types
and be able to execute them.

For interest, we tested the system on data of two amateurs who have not played table
tennis in years and have never trained with a table tennis robot. Although they used to
play table tennis, they needed a brief explanation of the eight considered stroke types.
Consequently, their executions were sometimes difficult to distinguish, even to the trained
eye. This was especially the case with amateur one.

All in all, we collected 3 × 8 = 24 strokes per stroke type from both amateurs and used
them to test the performance of the Stroke Models of the two semi-professional players.
Figure 7.9 presents the resulting confusion matrices. For both amateurs, the discrepancies
between model predictions and performed strokes are tremendous. The stroke type classi-
fications are mostly random. These results show that the models and the system are not
suitable for hobby players. A distinction between forehand and backhand or offensive and
defensive strokes would probably be sufficient for such casual players.

(a) Amateur one’s data, player one’s Stroke Model(b) Amateur one’s data, player two’s Stroke
Model

Figure 7.9: Inference of amateur data with pretrained Stroke Models.

70 7 Evaluation

(c) Amateur two’s data, player one’s Stroke Model(d) Amateur two’s data, player two’s Stroke
Model

Figure 7.9 (cont.): Inference of amateur data with pretrained Stroke Models.

7.8 Summary

We evaluated the table tennis stroke recognition system with data from two semi-profes-
sional players. Although both have similar playing strengths, their stroke executions have
shown to be dissimilar. This finding confirms the statement from Section 4.2 that table
tennis is a highly individual sport where each player has his own playing style.

Another interesting finding is that the Stroke Model trained on acceleration, angular ve-
locity, and magnetic field from the racket-holding wrist achieved the best performance
on the test set compared to feature combinations with fewer data sources. Furthermore,
neither pressure nor data from the right thigh improved model performance. The use of
bidirectional LSTMs instead of unidirectional LSTMs brought no improvements either.

The evaluation of the system’s stroke extraction and classification mechanisms shows
promising results with only three faulty stroke extractions and only two misclassifications.
The addition of game knowledge through the Stroke Sequence State Machine further re-
duced the number of misclassifications.

The following chapter discusses some findings of this work and alternative embodiments.
Moreover, it presents ways to improve the system in the future.

Chapter 8

Discussion and Outlook

This chapter discusses essential findings on mobile device usage, sensor placement, and
the individuality of table tennis (Sections 8.1–8.3). Afterward, it gives an outlook on
possible extensions and optimizations of the developed table tennis stroke extraction and
classification system (Section 8.4). This chapter ends with a brief summary of these
considerations (Section 8.5).

8.1 Edge Devices and the Machine Learning Models

Stroke recognition systems must be practical and portable for everyday use. Edge devices
such as smartwatches or fitness trackers are particularly suitable for this purpose as many
people wear them anyway. According to [45], more than two million smartwatches were
sold annually in Germany between 2018 and 2020 with a clear upward trend. Unlike
proprietary solutions, using traditional, widely available edge devices eliminates the need
to carry, charge, and maintain additional devices.

This work considers two different classification approaches. The modular approach uses
two machine learning models, namely the Stroke and the Noise Model, to distinguish
between the eight considered stroke types and non-stroke noise actions. The Stroke Ex-
traction & Classification Module merges the outputs of the two models to separate a time
series into stroke and non-stroke parts. The non-modular approach, on the other hand,
relies on one single model, which removes the need for the comparison step.

Although the non-modular approach shows the disadvantage of slightly poorer classifica-
tion performance on the test sets, it has some significant advantages, especially when using
edge devices for inference. It requires nearly half the FLOPS for inference and nearly half
the storage space compared to the two separate models. Furthermore, there is no need to
perform a merging step to compute the final output, which further reduces the computa-
tional requirements of this approach. These properties make the non-modular approach
more attractive to edge devices with their typical resource and energy constraints. As edge
devices become more and more powerful, they could be used in the future to individually
retrain and optimize the machine learning models on a per-player basis. Since table tennis

71

72 8 Discussion and Outlook

is a highly individual sport with many players having their unique playing style, this per-
sonalization would probably improve the individual classification results. Also, this would
probably help to determine and analyze a player’s fitness level with its daily fluctuations.

8.2 Sensor Placement

Choosing appropriate and meaningful sensor locations is important in many human ac-
tivity recognition applications. Domain knowledge about body parts involved in typical
movements can assist the selection of appropriate sensor placements. In this work, we
tested two sensor locations: the racket-holding wrist and the right thigh. While the wrist
provides meaningful data, the data collected at the right thigh carry rather little informa-
tion in the controlled environment. The racket-holding wrist provides important features
about (fore-) arm movements. However, the wrist is not rigid during table tennis strokes,
as wrist movements are essential for creating more spin or acceleration. Sensors attached
to the racket handle or the racket-holding hand can detect such wrist movements and,
therefore, likely provide more precise data. This additional information on movement
characteristics would presumably positively affect the discrimination of individual stroke
types.

Image 8.1 shows a provisional placement of an Arduino Nano 33 BLE Sense on a racket
handle. This board includes all necessary sensors and can collect more fine-grained data
than wrist-worn smartwatches due to its placement, but has some non-negligible draw-
backs: power supply and weight. Because the board does not contain a battery, it requires
an external power source, e.g., a power bank carried in a pocket. Even if this board
contained a battery or an embedded solution existed, players would need to charge their
rackets from time to time, making the system less attractive to end users. Also, adding
sensors to a racket changes its weight and balancing, affecting the player’s playing style.
Players might not accept such solutions. These considerations show that this approach is
not suitable for real-world use and only sufficient for testing purposes.

Furthermore, we could also explore totally different sensor placements. For example, we
could place sensors on the upper body to measure table tennis-specific rotational move-
ments that are particularly important during loops to generate higher accelerations. Like-
wise, we could place sensors on the forehead to analyze the player’s field of view. While
all of these rankings could provide some intriguing insights about the player’s strokes and
physique, they have the disadvantage wearing multiple devices on different parts of the
body is rather inconvenient and not user-friendly. Furthermore, the usage of multiple
sensors requires a sensor network for data collection and a central unit responsible for
preparation and processing. Hence, the user must maintain and carry more devices at
unusual body parts, making this variant less friendly to the average table tennis player.

Figure 8.1: Alternative sensor placement (Arduino Nano 33 BLE Sense) directly on the
racket handle.

8.3 Individuality of Table Tennis 73

8.3 Individuality of Table Tennis

As stated in Section 4.2, table tennis is a highly individual sport. Besides interindivid-
ual differences, which manifest themselves in different arm movement speeds or racket
angles that are attributable to different playing strengths, playing styles, or preferences,
intraindividual deviations can also occur. For instance, the subtle nuances in stroke move-
ments can differ depending on a player’s daily form, current fitness level and fatigue, or
longer training breaks (e.g., due to Covid-19). Furthermore, a player’s stroke execution
can change and evolve over time. Such deviations in the stroke movements can lead to
differences in detected sensor signals. Therefore, it is essential to continuously improve the
machine learning models based on new data to capture such evolving stroke executions.

Moreover, the execution of some stroke types can be similar. Boundaries between stroke
types are not always obvious and sometimes blurred. For instance, the backhand drive
and backhand block examples shown in Figures C.15 and C.18 seem pretty similar. While
the depicted strokes differ in their movement lengths, their racket angles are quite similar.
For this reason, different stroke types are sometimes hard to distinguish. This behavior
is also evident in the confusion matrices of the individually trained Stroke Models of
the two players (see Figure 8.2): For player one, there is about 5 % overlap between
backhand blocks and backhand drives. For player two, the classifier labels forehand blocks
as forehand drives in more than 20 % of the test windows. Furthermore, it misclassifies
slightly more than 5 % of player two’s forehand drives as forehand loops and another 5 %
of the test windows as forehand blocks.

(a) Player one (b) Player two

Figure 8.2: The confusion matrices of the Stroke Models of both players on their respective
test sets. In both cases, it is most difficult for the models to distinguish drives
and blocks.

8.4 Future Work

This section presents some ideas for improving the developed table tennis stroke extraction
and classification system. In addition, it makes some general suggestions for extending the
functional scope and considers alternative approaches.

8.4.1 Improvements

In general, the system performs well on the collected data sets. However, sometimes
problems occur with the pressure based stroke extraction as a result of the custom trend
analysis technique. This method relies on the assumption that the linear filter smooths

74 8 Discussion and Outlook

pressure data perfectly. This assumption does not always hold in reality and is the reason
for occasionally disappearing peaks after preprocessing. Hence, we must further optimize
the custom trend analysis by refining the data smoothing or improving the technique itself.

The developed machine learning models show good performance on the test sets with F1-
scores in the higher nineties for the classification models and an RMSE of less than one
percent for the regression model. While early stopping and dropout layers are used during
training to reduce the likelihood of overfitting, there is still a great need to fine-tune the
hyperparameters of the networks to improve stroke and non-stroke noise classification and
stroke analysis. However, optimization should not be aimed exclusively at improving the
general performance of the models as players use the system on low-power, resource-limited
devices. Therefore, the number of network weights also plays an essential role and must
not be too large.

In addition to the machine learning models, the explicit infusion of domain knowledge
using the Stroke Sequence State Machine is also important for the system’s classification
approach. We could consider long-term dependencies to improve its reliability and reduce
the impact of single misclassifications on subsequent classifications. The currently used
drill descriptions can serve as the basis for a prototype since most of them contain rallies
of more than two strokes. Because table tennis is a highly individual sport with differ-
ent players having different playing styles, individual adjustments of the state transition
probabilities are important to make more accurate statements about the specific player.
This optimization can be done based on the collected player data. Furthermore, the ma-
chine learning based classification and the Stroke Sequence State Machine are currently
in a one-to-one relationship. Even if the classifiers have high confidence, this relationship
potentially leads to misclassifications in free game situations due to imbalances in the
ground truth of the state machine. To overcome such issues, the output of the state ma-
chine could be incrementally weighted using the following rule: The lower the confidence
of the machine learning approach, the higher the impact of the domain knowledge based
state machine.

Currently, we trained and evaluated the system separately on data from two long-term ta-
ble tennis players. Although this proves the principal correctness of the developed concept,
it does not allow generalized statements about it. For this reason, it is crucial to collect
data from numerous players and train comprehensive models that are hopefully able to
generalize well. The data should include not only stroke data but also a wide variety of
random movements to improve non-stroke noise detection as well.

8.4.2 Suggestions

Currently, stroke extraction and stroke classification form the core of the developed stroke
recognition system. These two parts are mostly separated. While stroke extraction uses
a more algorithmic approach, stroke classification relies on the outputs of the Stroke or
the Combined Model and the Stroke Sequence State Machine. Nevertheless, the two com-
ponents are interlocked in a certain way. On the one hand, stroke extraction uses the
output of the classification models to distinguish whether forehand or backhand strokes
are present in the data under consideration and to select the appropriate cumulative accel-
eration pattern (high-low for forehand, low-high for backhand). On the other hand, stroke
classification uses the output of the classification models to label extracted stroke inter-
vals. Therefore, it would be interesting to investigate whether a joint neural network can
extract stroke intervals and discriminate between stroke types and non-stroke noise actions
simultaneously. This idea requires an additional preprocessing step that extracts and la-
bels individual stroke actions instead of the entire stroke sequence. This improved labeling
technique could also improve the current classification approach, as waiting times between
strokes would no longer be incorrectly labeled as strokes but as non-strokes actions.

8.5 Summary 75

Stroke recognition in real-time would be another exciting feature. Currently, stroke extrac-
tion uses thresholding techniques that consider each time series as a whole. This approach
is not applicable in real-time scenarios because it executes all computations after the user
has stopped data collection. Further research is needed to optimize it for real-time stroke
extraction and classification.

8.5 Summary

The table tennis stroke recognition system runs on edge devices with severe resource con-
straints. This makes it important to keep the machine learning models small and their
computational operations minimal. In addition, it is equally important for usability that
the system is as minimally invasive as possible. This work’s single-smartwatch solution ful-
fills this usability goal by requiring only one common device. Proprietary or multi-device
solutions are somewhat counterintuitive as they increase the maintaining overhead for the
user.

Playing styles and stroke techniques can differ from player to player. Moreover, a player’s
technique can evolve and change over time. Continuous training of the models based on
individual player data is important to ensure the quality of the classifications and forecasts.

The remaining chapter highlights the main findings of this thesis and discusses their po-
tential implications for future research in machine learning.

Chapter 9

Conclusion

This chapter marks the conclusion of this thesis. It gives an overview of the work, its inten-
tion, and its findings. Moreover, it answers the research question “Can machine learning
benefit from domain knowledge to compute more trustworthy and reliable outputs?”.

This work investigates the impact of domain knowledge on machine learning in signal
processing applications in the context of table tennis stroke recognition. It presents a
machine learning based system capable of extracting, classifying, and analyzing eight table
tennis strokes within fused sensor signals from accelerometer, gyroscope, magnetometer,
and pressure. The strokes comprise drive, loop, block, and push in forehand and backhand.
The system can distinguish between non-stroke actions, such as random arm movements,
and actual strokes. This feature allows the system to recognize stroke sequences within
time series. The additional stroke analysis gives players indications of inaccurate stroke
executions that may lead to stroke failures. These hints allow players to improve their
stroke techniques accordingly. This monitoring and coaching ability sets the system apart
from existing approaches that focus only on the classification of strokes. In the future, this
ability can be further enhanced so that the system acts as a virtual coach who gives players
textual suggestions on how to improve their playing style instead of simple numerical
values.

The system can run either on wrist-worn smartwatches at the network edge or on com-
puters. While other sensing solutions, such as sensors attached directly to a racket, would
likely provide more accurate and fine-grained data, the smartwatch solution offers some
non-negligible advantages over proprietary or embedded devices. First, the popularity of
smartwatches is rapidly increasing in recent years. This wide distribution makes them the
perfect candidate for such a system, as there are already plenty of smartwatch users who
probably do not want to carry and maintain an additional, highly specialized device. Fur-
thermore, a wrist-worn smartwatch does not change the weight and balance of the racket,
which is crucial for the acceptance of such a system.

The presented approach infuses domain knowledge into the table tennis stroke recognition
system implicitly during system design and explicitly during its execution to improve its
stroke recognition capabilities. Implicit domain knowledge assists many planning and

77

78 9 Conclusion

processing stages, including the selection of proper sensors and their placements, signal
processing, and stroke extraction techniques. Explicit domain knowledge, on the other
hand, equips the system with self-verification and self-correction abilities. This kind of
domain knowledge infusion leverages a state machine to evaluate machine learning outputs
and to adjust them as necessary. This Stroke Sequence State Machine holds valid gameplay
knowledge on typical table tennis stroke sequences.

We evaluated the system in a controlled environment with a ball-serving table tennis
robot on stroke data from two semi-professional, long-time table tennis players. Since
table tennis is a highly individual sport, we evaluated the system separately for both
players. The system achieved promising results with only three false extractions and two
misclassifications on the 640 test strokes when relying solely on the outputs of the machine
learning models. After enriching the classification approach with game knowledge about
typical table tennis stroke sequences, the number of misclassifications shrank to one. These
results proof that the explicit incorporation of domain knowledge into the classification
process can help to compute more trustworthy and reliable classifications.

This thesis aimed to explore the infusion of domain knowledge as a way to improve ma-
chine learning applications in signal processing using table tennis stroke recognition system
as an exemplary use case. The evaluation of the developed system showed that domain
knowledge has the potential to make machine learning based systems more reliable and
trustworthy if the knowledge contains information about realistic state sequences. In ad-
dition, interdisciplinary knowledge helps in the selection of meaningful and user-friendly
sensor placements. These considerations suggest that both domain knowledge implicitly
consulted during system design and explicit domain knowledge provided during system
execution can significantly impact the performance of a system. Therefore, domain knowl-
edge should be considered more frequently when developing machine learning based appli-
cations. Further research is needed to find more general solutions for incorporating domain
knowledge into machine learning applications. An example of this is the adaptation of the
Stroke Sequence State Machine to other domains where several step sequences with differ-
ent probabilities are possible. Other exciting research topics are, for example, the direct
infusion of domain knowledge into the learning process of machine learning algorithms or
the preparation of domain knowledge in a suitable way to enable automatic processing and
maintenance.

Bibliography

[1] A. Holzinger, “Explainable AI (ex-AI),” Informatik-Spektrum, vol. 41, no. 2, pp. 138–
143, Apr 2018.

[2] S. Pandya, “Understanding The Connection: Human Activity Recognition,
Safety And Productivity,” Jan 2021, accessed: 2021-04-01. [Online]. Avail-
able: https://www.forbes.com/sites/forbestechcouncil/2021/01/27/understanding-
the-connection-human-activity-recognition-safety-and-productivity/

[3] S. R. Islam, W. Eberle, S. K. Ghafoor, A. Siraj, and M. Rogers, “Domain Knowledge
Aided Explainable Artificial Intelligence for Intrusion Detection and Response,” 2020.

[4] S. Radovanović, B. Delibašić, M. Jovanović, M. Vukićević, and M. Suknović, “Frame-
work for integration of domain knowledge into logistic regression,” in Proceedings of
the 8th International Conference on Web Intelligence, Mining and Semantics, ser.
WIMS ’18. New York, NY, USA: Association for Computing Machinery, 2018.

[5] U. Kursuncu, M. Gaur, and A. Sheth, “Knowledge Infused Learning (K-IL): Towards
Deep Incorporation of Knowledge in Deep Learning,” 2020.

[6] R. Liu, Z. Wang, X. Shi, H. Zhao, S. Qiu, J. Li, and N. Yang, “Table Tennis Stroke
Recognition Based on Body Sensor Network,” in Internet and Distributed Computing
Systems, R. Montella, A. Ciaramella, G. Fortino, A. Guerrieri, and A. Liotta, Eds.
Cham, Switzerland: Springer International Publishing, 2019, pp. 1–10.

[7] K. Dokic, T. Mesic, and M. Martinovic, “Table Tennis Forehand and Backhand Stroke
Recognition Based on Neural Network,” in Advances in Computing and Data Sciences.
Singapore: Springer Singapore, 2020, pp. 24–35.

[8] Z. Fu, K.-I. Shu, and H. Zhang, “Ping Pong Motion Recognition based on Smart
Watch,” in Proceedings of the 3rd International Conference on Mechatronics Engi-
neering and Information Technology (ICMEIT 2019). Atlantis Press, Apr 2019, pp.
617–625.

[9] P. Blank, J. Hoßbach, D. Schuldhaus, and B. M. Eskofier, “Sensor-Based Stroke De-
tection and Stroke Type Classification in Table Tennis,” in Proceedings of the 2015
ACM International Symposium on Wearable Computers, ser. ISWC ’15. New York,
NY, USA: Association for Computing Machinery, 2015, pp. 93––100.

[10] P. Jin, B. Li, and W. Zhaohui, “Low-power-consumption high-precision table tennis
movement identification method and device,” Dec 2018, patent no.: CN109011505A,
Applicants: Univ South China Tech.

[11] Z. Han, S. Guobin, and X. Dai, “Automatic rally detection and scoring,” Oct 2020,
patent no.: US10751601B2, Applicants: Beijing Shunyuan Kaihua Tech Limited.

[12] M. W. Kim, M. H. Kim, and J. Y. Park, “System for analyzing sport exercise
by club device based on complex motion detecting senssor,” Mai 2017, patent no.:
KR101736489B1, Applicants: Korea Inst Footwear & Leather Tech.

79

https://www.forbes.com/sites/forbestechcouncil/2021/01/27/understanding-the-connection-human-activity-recognition-safety-and-productivity/
https://www.forbes.com/sites/forbestechcouncil/2021/01/27/understanding-the-connection-human-activity-recognition-safety-and-productivity/

80 Bibliography

[13] C. Olah, “Understanding LSTM Networks,” 2015, accessed: 2021-03-24. [Online].
Available: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

[14] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Computation,
vol. 9, pp. 1735–1780, Dec 1997.

[15] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training recurrent neu-
ral networks,” in Proceedings of the 30th International Conference on International
Conference on Machine Learning - Volume 28, ser. ICML’13. JMLR.org, 2013, p.
III–1310–III–1318.

[16] J. Bayer, “Learning Sequence Representations,” Dissertation, Technische Universität
München, München, 2015.

[17] M. Gaertler, D. Handke, and S. Wagner, “Theoretische Grundlagen der Informatik:
Vorläufiges Skript zur Vorlesung von Prof. Dr. Dorothea Wagner WS 11/12,”pp. 7–25.

[18] Newgy Industries, Inc., Robo-Pong 3050XL Owner’s Manual, accessed: 2021-03-
22. [Online]. Available: https://cdn.shopify.com/s/files/1/2677/3302/files/3050XL
Owners Manual 1.5.21.pdf?v=1609863688

[19] D. Weiß, “Numerische Mathematik für die Fachrichtungen Informatik und Ingenieur-
wesen,” Karlsruhe Institute of Technology, 2017.

[20] A. Mertins, Signaltheorie: Grundlagen der Signalbeschreibung, Filterbänke, Wavelets,
Zeit-Frequenz-Analyse, Parameter- und Signalschätzung, 4th ed. Wiesbaden:
Springer Vieweg, 2020.

[21] P. S. Addison, The illustrated wavelet transform handbook: introductory theory and
applications in science, engineering, medicine and finance, 2nd ed. Boca Raton, FL:
CRC Press, Taylor & Francis Group, 2016.

[22] J. P. Bravo, S. Roque, R. Estrela, I. C. Leão, and J. R. De Medeiros, “Wavelets:
a powerful tool for studying rotation, activity, and pulsation in Kepler and CoRoT
stellar light curves,” Astronomy & Astrophysics, vol. 568, p. A34, Aug 2014.

[23] D. L. Donoho and I. M. Johnstone, “Ideal spatial adaptation by wavelet shrinkage,”
Biometrika, vol. 81, no. 3, pp. 425–455, 09 1994.

[24] C. Johnson, “Using PyWavelets To Remove High Frequency Noise,” Jan 2016,
accessed: 2021-04-12. [Online]. Available: https://connor-johnson.com/2016/01/24/
using-pywavelets-to-remove-high-frequency-noise/

[25] S. Mallat, A Wavelet Tour of Signal Processing: The Sparse Way, 3rd ed. Elsevier
Science, 2008.

[26] S. W. Smith, The scientist and engineers guide to digital signal processing, 2nd ed.
San Diego, CA: California Technical Publishing, 1999.

[27] V. Barnett and T. Lewis, Outliers in Statistical Data, 3rd ed. New York: Wiley,
1994.

[28] E. Schubert, A. Zimek, and H.-P. Kriegel, “Generalized Outlier Detection with Flex-
ible Kernel Density Estimates,” in Proceedings of the 14th SIAM International Con-
ference on Data Mining (SDM), 2014.

[29] A. J. Robson, “Evidence for Trends in UK Flooding,” Philosophical Transactions:
Mathematical, Physical and Engineering Sciences, vol. 360, no. 1796, pp. 1327–1343,
2002.

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://cdn.shopify.com/s/files/1/2677/3302/files/3050XL_Owners_Manual_1.5.21.pdf?v=1609863688
https://cdn.shopify.com/s/files/1/2677/3302/files/3050XL_Owners_Manual_1.5.21.pdf?v=1609863688
https://connor-johnson.com/2016/01/24/using-pywavelets-to-remove-high-frequency-noise/
https://connor-johnson.com/2016/01/24/using-pywavelets-to-remove-high-frequency-noise/

Bibliography 81

[30] J. Fox, Applied Regression Analysis and Generalized Linear Models, 3rd ed. SAGE
Publications, 2015.

[31] Oxford University Press, “domain,” accessed: 2021-03-28. [Online]. Available:
https://www.oxfordlearnersdictionaries.com/definition/english/domain?q=domain

[32] Oxford University Press, “knowledge,” accessed: 2021-03-28. [Online]. Avail-
able: https://www.oxfordlearnersdictionaries.com/definition/english/knowledge?q=
knowledge

[33] W. B. Croft, “User-Specified Domain Knowledge for Document Retrieval,” in Pro-
ceedings of the 9th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, ser. SIGIR ’86. New York, NY, USA: Asso-
ciation for Computing Machinery, 1986, pp. 201—-206.

[34] H. L. Chiesi, G. J. Spilich, and J. F. Voss, “Acquisition of domain-related information
in relation to high and low domain knowledge,” Journal of Verbal Learning and Verbal
Behavior, vol. 18, no. 3, pp. 257–273, 1979.

[35] B.-U. Groß, Tischtennis Basics : [alle Grundschlagtechniken in 30 Bildreihen;
Aufschläge, Beinarbeit und Stellungsspiel; Praxis- und Trainingstipps von Richard
Prause], 6th ed. Aachen: Meyer & Meyer, 2015.

[36] Google Developers, “Sensors Overview,” Dec 2019, accessed: 2021-03-22. [Online].
Available: https://developer.android.com/guide/topics/sensors/sensors overview

[37] Keras SIG, “Keras Simple. Flexible. Powerful.” accessed: 2021-04-16. [Online].
Available: https://keras.io/

[38] M. Afaneh, “Bluetooth GATT: How to Design Custom Services & Characteristics
[MIDI device use case],” Jun 2017, accessed: 2021-04-03. [Online]. Available:
https://www.novelbits.io/bluetooth-gatt-services-characteristics/

[39] A. Géron, Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow :
concepts, tools, and techniques to build intelligent systems, 2nd ed. Beijing: OReilly,
Sep 2019.

[40] Keras SIG, “Keras layers API,” accessed: 2021-04-13. [Online]. Available:
https://keras.io/api/layers/

[41] V. Pankratius, “Edge-AI in Software and Sensors Applications: 5 - Neural Networks
Practice: How-to, Dos & Don’ts,” Karlsruhe Institute of Technology, May 2020.

[42] A. Graves and J. Schmidhuber, “Framewise phoneme classification with bidirectional
LSTM and other neural network architectures,” Neural Networks, vol. 18, no. 5, pp.
602–610, 2005, iJCNN 2005.

[43] TensorFlow, “Get started with TensorFlow Lite,” Jan 2021, accessed: 2021-04-07.
[Online]. Available: https://www.tensorflow.org/lite/guide/get started

[44] TensorFlow, “Post-training float16 quantization,” Mar 2021, accessed: 2021-04-
16. [Online]. Available: https://www.tensorflow.org/lite/performance/post training
float16 quant

[45] Bitkom, “Absatz von Smartwatches in Deutschland in den Jahren 2018 bis 2020
(in Millionen Stück),” Statista GmbH, Aug. 2020, accessed: 2021-05-15. [Online].
Available: https://de.statista.com/statistik/daten/studie/459093/umfrage/absatz-
von-smartwatches-in-deutschland/

https://www.oxfordlearnersdictionaries.com/definition/english/domain?q=domain
https://www.oxfordlearnersdictionaries.com/definition/english/knowledge?q=knowledge
https://www.oxfordlearnersdictionaries.com/definition/english/knowledge?q=knowledge
https://developer.android.com/guide/topics/sensors/sensors_overview
https://keras.io/
https://www.novelbits.io/bluetooth-gatt-services-characteristics/
https://keras.io/api/layers/
https://www.tensorflow.org/lite/guide/get_started
https://www.tensorflow.org/lite/performance/post_training_float16_quant
https://www.tensorflow.org/lite/performance/post_training_float16_quant
https://de.statista.com/statistik/daten/studie/459093/umfrage/absatz-von-smartwatches-in-deutschland/
https://de.statista.com/statistik/daten/studie/459093/umfrage/absatz-von-smartwatches-in-deutschland/

Appendix

A Exemplary Stroke Signals

(a) Acceleration (b) Angular Velocity

(c) Magnetic Field (d) Pressure

Figure A.1: Raw sensor data of eight forehand drives.

83

84 Appendix

(a) Acceleration (b) Angular Velocity

(c) Magnetic Field (d) Pressure

Figure A.2: Raw sensor data of eight forehand loops.

(a) Acceleration (b) Angular Velocity

Figure A.3: Raw sensor data of eight forehand blocks.

A Exemplary Stroke Signals 85

(c) Magnetic Field (d) Pressure

Figure A.3 (cont.): Raw sensor data of eight forehand blocks.

(e) Acceleration (f) Angular Velocity

(g) Magnetic Field (h) Pressure

Figure A.4: Raw sensor data of eight forehand pushes.

86 Appendix

(a) Acceleration (b) Angular Velocity

(c) Magnetic Field (d) Pressure

Figure A.5: Raw sensor data of eight backhand drives.

(a) Acceleration (b) Angular Velocity

Figure A.6: Raw sensor data of eight backhand loops.

A Exemplary Stroke Signals 87

(c) Magnetic Field (d) Pressure

Figure A.6 (cont.): Raw sensor data of eight backhand loops.

(e) Acceleration (f) Angular Velocity

(g) Magnetic Field (h) Pressure

Figure A.7: Raw sensor data of eight backhand blocks.

88 Appendix

(a) Acceleration (b) Angular Velocity

(c) Magnetic Field (d) Pressure

Figure A.8: Raw sensor data of eight backhand pushes.

B Exemplary Preprocessing Results

(a) Raw acceleration (b) Acceleration without outliers

Figure B.9: Interim results of the preprocessing pipeline applied to a time series containing
eight forehand drives. The preprocessed data contains non-stroke noise actions
(black) and the raw data (pale).

B Exemplary Preprocessing Results 89

(c) Preprocessed acceleration (d) Raw angular velocity

(e) Angular velocity without outliers (f) Preprocessed angular velocity

(g) Raw magnetic field (h) Magnetic field without outliers

Figure B.9 (cont.): Interim results of the preprocessing pipeline applied to a time series
containing eight forehand drives. The preprocessed data contains non-
stroke noise actions (black) and the raw data (pale).

90 Appendix

(i) Preprocessed magnetic field (j) Raw pressure

(k) Pressure without outliers and linear trend (l) Filtered pressure

(m) Trend Analysis (custom) pressure (n) Preprocessed pressure

Figure B.9 (cont.): Interim results of the preprocessing pipeline applied to a time series
containing eight forehand drives. The preprocessed data contains non-
stroke noise actions (black) and the raw data (pale).

B Exemplary Preprocessing Results 91

(a) Raw acceleration (b) Acceleration without outliers

(c) Preprocessed acceleration (d) Raw angular velocity

(e) Angular velocity without outliers (f) Preprocessed angular velocity

Figure B.10: Interim results of the preprocessing pipeline applied to a time series contain-
ing eleven forehand drives. The preprocessed data contains non-stroke noise
actions (black) and the raw data (pale).

92 Appendix

(g) Raw magnetic field (h) Magnetic field without outliers

(i) Preprocessed magnetic field (j) Raw pressure

(k) Pressure without outliers and linear trend (l) Filtered pressure

Figure B.10 (cont.): Interim results of the preprocessing pipeline applied to a time series
containing eleven forehand drives. The preprocessed data contains
non-stroke noise actions (black) and the raw data (pale).

C Stroke Execution 93

(m) Trend Analysis (custom) pressure (n) Preprocessed pressure

Figure B.10 (cont.): Interim results of the preprocessing pipeline applied to a time series
containing eleven forehand drives. The preprocessed data contains
non-stroke noise actions (black) and the raw data (pale).

C Stroke Execution

Figure C.11: Execution of a forehand drive.

94 Appendix

Figure C.12: Execution of a forehand loop.

Figure C.13: Execution of a forehand push.

C Stroke Execution 95

Figure C.14: Execution of a forehand block.

Figure C.15: Execution of a backhand drive.

96 Appendix

Figure C.16: Execution of a backhand loop.

Figure C.17: Execution of a backhand push.

D Transition Probabilities 97

Figure C.18: Execution of a backhand block.

D Transition Probabilities

Table D.1: The transition probabilities of the Stroke Sequence State Machine derived from
[18]. Note that the transitions from the state X to the Waiting state are not
mentioned, because these transitions are only used at the end of a time series
to return to the Waiting state and therefore do not need to be considered here.

FH Drive BH Drive FH Push BH Push

FH Drive 0.42857 0.22449 0.08163 0.02041

BH Drive 0.07576 0.5 0.01515 0.06061

FH Push 0.04225 0.02817 0.28169 0.16901

BH Push 0.03125 0.04688 0.125 0.3125

FH Loop 0.05556 0.01587 0.06349 0.00794

BH Loop 0.05618 0.06742 0.02247 0.06742

FH Block 0.07273 0.03636 0.01818 0.01818

BH Block 0.02041 0.10204 0.04082 0.02041

Waiting 0.125 0.125 0.125 0.125

FH Loop BH Loop FH Block BH Block

FH Drive 0.18367 0.02041 0.02041 0.02041

BH Drive 0.15152 0.15152 0.0303 0.01515

FH Push 0.1831 0.07042 0.14085 0.08451

BH Push 0.09375 0.125 0.125 0.14062

FH Loop 0.57937 0.19048 0.02381 0.06349

BH Loop 0.24719 0.50562 0.02247 0.01124

FH Block 0.21818 0.09091 0.30909 0.23636

BH Block 0.16327 0.20408 0.16327 0.28571

Waiting 0.125 0.125 0.125 0.125

98 Appendix

E Evaluation

E.1 Stroke Extraction and Classification

(a) Forehand Drive (modular) (b) Forehand Drive (non-modular)

(c) Forehand Loop (modular) (d) Forehand Loop (non-modular)

(e) Forehand Block (modular) (f) Forehand Block (non-modular)

Figure E.19: Exemplary stroke extraction and classification results on the test set of player
1. Comparison of the modular and the non-modular output.

E Evaluation 99

(g) Forehand Push (modular) (h) Forehand Push (non-modular)

(i) Backhand Drive (modular) (j) Backhand Drive (non-modular)

(k) Backhand Loop (modular) (l) Backhand Loop (non-modular)

Figure E.19 (cont.): Exemplary stroke extraction and classification results on the test set
of player 1. Comparison of the modular and the non-modular output.

100 Appendix

(m) Backhand Block (modular) (n) Backhand Block (non-modular)

(o) Backhand Push (modular) (p) Backhand Push (non-modular)

Figure E.19 (cont.): Exemplary stroke extraction and classification results on the test set
of player 1. Comparison of the modular and the non-modular output.

E.2 Stroke Analysis

Table E.2: The stroke analysis results of the strokes visualized in Appendix E.1. Only the
modular approach is considered.

Stroke Type-Index Acceleration Angular Velocity Velocity Angle

Forehand Drive-0 +0.44 % +0.00 % +0.00679 m/s +0.003 deg

Forehand Drive-1 +1.29 % -0.00 % +0.00792 m/s -0.003 deg

Forehand Drive-2 -0.60 % -0.01 % +0.00821 m/s -0.019 deg

Forehand Drive-3 -1.05 % -0.01 % +0.00886 m/s -0.015 deg

Forehand Drive-4 -0.67 % -0.03 % +0.00491 m/s -0.036 deg

Forehand Drive-5 -1.47 % -0.01 % +0.00331 m/s -0.006 deg

Forehand Drive-6 -0.68 % -0.01 % +0.00717 m/s -0.030 deg

Forehand Drive-7 -0.45 % -0.00 % +0.00855 m/s -0.003 deg

Forehand Loop-0 +0.21 % -0.09 % -0.00531 m/s -0.134 deg

Forehand Loop-1 +0.23 % -0.07 % +0.00595 m/s -0.206 deg

Forehand Loop-2 +0.03 % -0.03 % +0.00174 m/s -0.132 deg

Forehand Loop-3 -0.02 % -0.05 % -0.00210 m/s -0.237 deg

E Evaluation 101

Table E.2 (cont.): The stroke analysis results of the strokes visualized in Appendix E.1.
Only the modular approach is considered.

Stroke Type-Index Acceleration Angular Velocity Velocity Angle

Forehand Loop-4 +0.05 % -0.05 % +0.00320 m/s -0.192 deg

Forehand Loop-5 +0.04 % -0.03 % +0.00345 m/s -0.170 deg

Forehand Loop-6 +0.17 % -0.02 % +0.02048 m/s -0.099 deg

Forehand Loop-7 +0.03 % -0.03 % +0.00287 m/s -0.133 deg

Forehand Block-0 -0.04 % +0.02 % +0.00084 m/s +0.006 deg

Forehand Block-1 -0.09 % +0.01 % +0.00082 m/s +0.004 deg

Forehand Block-2 -0.22 % +0.02 % +0.00193 m/s +0.018 deg

Forehand Block-3 -0.21 % +0.01 % +0.00188 m/s +0.010 deg

Forehand Block-4 -0.08 % +0.02 % +0.00143 m/s +0.014 deg

Forehand Block-5 -0.11 % +0.01 % +0.00063 m/s +0.009 deg

Forehand Block-6 -0.13 % -0.01 % +0.00151 m/s -0.003 deg

Forehand Block-7 -0.12 % +0.01 % +0.00147 m/s +0.010 deg

Forehand Push-0 +0.14 % -0.01 % -0.00812 m/s +0.010 deg

Forehand Push-1 +0.15 % -0.02 % -0.00889 m/s +0.016 deg

Forehand Push-2 +0.09 % -0.04 % -0.00473 m/s +0.032 deg

Forehand Push-3 +0.15 % -0.01 % -0.00831 m/s +0.015 deg

Forehand Push-4 +0.10 % -0.02 % -0.00556 m/s +0.017 deg

Forehand Push-5 +0.17 % -0.05 % -0.01044 m/s +0.039 deg

Forehand Push-6 +0.15 % -0.00 % -0.00664 m/s -0.000 deg

Forehand Push-7 +0.24 % -0.01 % -0.01095 m/s +0.017 deg

Backhand Drive-0 +0.02 % +0.08 % -0.00076 m/s +0.029 deg

Backhand Drive-1 -0.02 % +0.03 % +0.00038 m/s +0.015 deg

Backhand Drive-2 -0.02 % +0.05 % +0.00044 m/s +0.028 deg

Backhand Drive-3 -0.01 % +0.05 % +0.00028 m/s +0.031 deg

Backhand Drive-4 -0.03 % +0.04 % +0.00076 m/s +0.021 deg

Backhand Drive-5 -0.00 % +0.04 % +0.00003 m/s +0.025 deg

Backhand Drive-6 +0.03 % +0.04 % -0.00035 m/s +0.021 deg

Backhand Drive-7 +0.04 % +0.05 % -0.00046 m/s +0.025 deg

Backhand Loop-0 +2.22 % +0.04 % +0.00390 m/s +0.028 deg

Backhand Loop-1 +17.97 % +0.07 % +0.00366 m/s +0.076 deg

Backhand Loop-2 +0.23 % +0.03 % +0.00862 m/s +0.028 deg

Backhand Loop-3 +0.35 % +0.01 % +0.01496 m/s +0.007 deg

Backhand Loop-4 +0.23 % +0.06 % +0.00661 m/s +0.086 deg

Backhand Loop-5 +0.38 % +0.11 % +0.01153 m/s +0.126 deg

Backhand Loop-6 +0.14 % +0.01 % +0.00582 m/s +0.007 deg

Backhand Loop-7 +0.22 % +0.08 % +0.01986 m/s +0.116 deg

Backhand Block-0 +0.04 % +0.00 % -0.00105 m/s +0.000 deg

Backhand Block-1 +0.13 % -0.02 % -0.00373 m/s -0.005 deg

Backhand Block-2 +0.04 % -0.05 % -0.00083 m/s -0.016 deg

Backhand Block-3 +0.10 % -0.10 % -0.00301 m/s -0.036 deg

Backhand Block-4 +0.08 % -0.02 % -0.00281 m/s -0.009 deg

Backhand Block-5 +0.02 % -0.10 % -0.00039 m/s -0.063 deg

Backhand Block-6 +0.19 % -0.10 % -0.00112 m/s -0.068 deg

Backhand Block-7 -1.32 % -0.09 % -0.00469 m/s -0.091 deg

Backhand Push-0 +0.07 % -0.03 % +0.00361 m/s +0.025 deg

Backhand Push-1 +0.07 % -0.35 % +0.00420 m/s +0.042 deg

Backhand Push-2 +0.13 % -0.10 % +0.00878 m/s +0.064 deg

102 Appendix

Table E.2 (cont.): The stroke analysis results of the strokes visualized in Appendix E.1.
Only the modular approach is considered.

Stroke Type-Index Acceleration Angular Velocity Velocity Angle

Backhand Push-3 +0.13 % -0.16 % +0.00995 m/s +0.097 deg

Backhand Push-4 +0.08 % -0.04 % +0.00502 m/s +0.027 deg

Backhand Push-5 +0.16 % -0.11 % +0.01038 m/s +0.072 deg

Backhand Push-6 +0.09 % -0.17 % +0.00558 m/s +0.051 deg

Backhand Push-7 +0.14 % -0.07 % +0.00755 m/s +0.036 deg

	Abstract
	Zusammenfassung
	Contents
	1 Introduction
	2 Related Work
	2.1 Domain Knowledge Infusion
	2.2 Table Tennis Stroke Recognition
	2.2.1 Academic Context
	2.2.2 Patents

	2.3 Summary

	3 Technical Background
	3.1 Long Short-Term Memory Network
	3.2 Finite State Machine
	3.3 Relevant Signal Processing Techniques
	3.3.1 Spline Interpolation
	3.3.2 Signal Energy
	3.3.3 Wavelet Transform
	3.3.4 Digital Filter
	3.3.5 Z-Score
	3.3.6 Linear Regression

	3.4 Summary

	4 Domain Knowledge
	4.1 Terminology
	4.2 Table Tennis
	4.2.1 Stroke Phases
	4.2.2 Stroke Types
	4.2.3 Stroke Sequences
	4.2.4 Table Tennis Robot

	4.3 Influence of Domain Knowledge on Data Acquisition
	4.4 Summary

	5 The Table Tennis Stroke Recognition System
	5.1 Data Collection Environment
	5.2 Sensors
	5.3 Modules
	5.3.1 Data Collection Module
	5.3.2 Preprocessing Module
	5.3.3 Model Training Module
	5.3.4 Stroke Extraction & Classification Module
	5.3.5 Stroke Analysis Module

	5.4 Apps
	5.4.1 Data Collection
	5.4.2 On-Device Inference

	5.5 Summary

	6 Internals of the Processing Pipeline
	6.1 Preprocessing
	6.2 Machine Learning Models
	6.2.1 Early Stopping
	6.2.2 Sliding Window
	6.2.3 Classifier Architecture
	6.2.4 Forecaster Architecture

	6.3 Stroke Extraction and Classification
	6.3.1 Stroke and Non-Stroke Noise Inference
	6.3.2 Stroke Extraction
	6.3.3 Stroke Classification

	6.4 Stroke Analysis
	6.5 Influence of Domain Knowledge on Processing
	6.5.1 Preprocessing
	6.5.2 Stroke Recognition

	6.6 Summary

	7 Evaluation
	7.1 Data
	7.1.1 Data Collection Process
	7.1.2 Data Sets

	7.2 Machine Learning Models
	7.2.1 Performance Metrics
	7.2.2 Classifiers
	7.2.3 Forecaster
	7.2.4 Mobile Device Optimization

	7.3 Player-Dependent Models
	7.4 Stroke Extraction
	7.5 Stroke Classification
	7.6 Stroke Analysis
	7.7 Excursus: Amateur Data
	7.8 Summary

	8 Discussion and Outlook
	8.1 Edge Devices and the Machine Learning Models
	8.2 Sensor Placement
	8.3 Individuality of Table Tennis
	8.4 Future Work
	8.4.1 Improvements
	8.4.2 Suggestions

	8.5 Summary

	9 Conclusion
	Bibliography
	Appendix
	A Exemplary Stroke Signals
	B Exemplary Preprocessing Results
	C Stroke Execution
	D Transition Probabilities
	E Evaluation
	E.1 Stroke Extraction and Classification
	E.2 Stroke Analysis

