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The vascular function of a vessel can be qualitatively and intraoperatively checked

by recording the blood dynamics inside the vessel via fluorescence angiography (FA).

Although FA is the state of the art in proving the existence of blood flow during

interventions such as bypass surgery, it still lacks a quantitative blood flow measurement

that could decrease the recurrence rate and postsurgical mortality. Previous approaches

show that the measured flow has a significant deviation compared to the gold standard

reference (ultrasonic flow meter). In order to systematically address the possible sources

of error, we investigated the error in transit time measurement of an indicator. Obtaining in

vivo indicator dilution curves with a known ground truth is complex and often not possible.

Further, the error in transit timemeasurement should be quantified and reduced. To tackle

both issues, we first computed many diverse indicator dilution curves using an in silico

simulation of the indicator’s flow. Second, we post-processed these curves to mimic

measured signals. Finally, we fitted mathematical models (parabola, gamma variate,

local density random walk, and mono-exponential model) to re-continualize the obtained

discrete indicator dilution curves and calculate the time delay of two analytical functions.

This re-continualization showed an increase in the temporal accuracy up to a sub-sample

accuracy. Thereby, the Local Density RandomWalk (LDRW) model performed best using

the cross-correlation of the first derivative of both indicator curves with a cutting of

the data at 40% of the peak intensity. The error in frames depends on the noise level

and is for a signal-to-noise ratio (SNR) of 20dB and a sampling rate of fs = 60Hz at

f−1
s · 0.25(±0.18), so this error is smaller than the distance between two consecutive

samples. The accurate determination of the transit time and the quantification of the

error allow the calculation of the error propagation onto the flow measurement. Both can

assist surgeons as an intraoperative quality check and thereby reduce the recurrence

rate and post-surgical mortality.

Keywords: indicator dilution curve, mathematical fits, transit time, blood flow velocity, fluorescence angiography,

sub-frame rate accuracy
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1. INTRODUCTION

In the last two decades, optic-based medical systems were
introduced to intraoperatively visualize vascular structures via
fluorescence angiography (Raabe et al., 2003; Kamp et al., 2012).
Fluorescence angiography provides valuable spatial and temporal
information to the surgeon regarding a vessel’s patency or an
area’s perfusion. The vascular function is essential to the human
brain due to the brain’s low hypoxia tolerance (Silbernagl and
Despopoulos, 2003). The electroencephalography (EEG) shows
a ceased oscillation within seconds after cardiac arrest (Choi,
1990). Apoptosis and cognitive impairment are the inevitable
results of insufficient cerebral perfusion (Pulera et al., 1998;
Ortapamuk and Naldoken, 2006). Therefore, a rapid response is
needed in the operating theater where revascularization should
restore the vascular function (Lawton and Lang, 2019). However,
a subjective inspection of the patency by the surgeon may not
be sufficient for intraoperative decision making. Extracranial

to intracranial bypass surgery has a mortality of 10.2% within
1 month of the index date and a 5–9% recurrence rate after
surgery. These high rates can be traced back to inadequate blood
flow through the donor vessel (Chen et al., 2018). Therefore,
a quantitative approach for intraoperative blood volume flow

assessment is needed to check the quality of the procedure
(Kamp et al., 2012). A current clinical routine for blood volume
flow assessment involves the usage of an ultrasonic flow probe.
The accuracy of the latest state-of-the-art clinical flow probe is
±10% (Transonic, 2019). Increased operation time, equipment,

and an interruption of the surgical workflow by changing the
surgeon’s instrument are downsides of this method. Moreover,
the addedmechanical stress can compromise the vessel’s integrity
and thus poses a risk to the patient (Amin-Hanjani et al., 2006).
Additionally, narrow and deep working channels are a challenge
for the cumbersome probes. Hence, a method without tissue
contact would be advantageous. Intraoperative fluorescence
angiography is a non-invasive method and can be used in
combination with an intravenously injected indicator to observe
the blood’s dynamic (Raabe et al., 2003; Weichelt et al., 2013).
In general, two approaches are used to calculate the volume
flow. The first approach is a one-point measurement where the
temporal intensity signal in one point or ROI (mean value of
a region of interest) is analyzed. The flow is then calculated
following the fundamentals of the indicator dilution theory
(Saito et al., 2018). However, one drawback of this approach
is the dependency of the indicator dilution theory on absolute
measured concentrations that are not given in fluorescence
angiography. Concentrations cannot be simply calculated from
the backscattered fluorescence signals without solving an ill-
posed inverse problem. Additionally, no constancy of mass is
given since the injected bolus does not necessarily traverse the
vessel, which is measured due to the complex cerebrovascular
branching. The second approach is a two-point measurement.
The blood volume flow V̇ is calculated as shown in Equation (1),
where A is the vessel’s cross-sectional area, v̄ the mean blood flow
velocity, di the inner diameter of the vessel, and 1t is the transit
time of the indicator bolus to travel the distance s (Weichelt
et al., 2013). We base our method on the second approach since

FIGURE 1 | (Top) Sketch of a rigid pipe with an inner diameter of di containing

a fluid flow with a constant mean flow velocity v. Two measurement points A

and B with a distance of s are defined. (Bottom) Two indicator dilution curves

(IDCs) obtained at the locations A and B by optical measurement. The transit

time 1t is defined as the shift of the curves as indicated by the shift of the

maxima.

its preconditions are promising. The determination of di and
s is done by machine vision and will not be discussed in this
paper. To calculate 1t, two indicator dilution curves (IDCs)
are obtained by monitoring the spatiotemporal propagation of
the indicator bolus at two distinct locations along the vessel
of interest (see Figure 1). The transit time of the bolus can be
extracted as the temporal shift of the two IDCs.

V̇ = A · v̄ =
π · d2i · s
4 · 1t

(1)

The accuracy of the calculation of V̇ strongly depends on
the errors in measuring s, di, and 1t. The quantification of
these errors and their error propagation is necessary and not
sufficiently investigated yet (Cimalla et al., 2008; Weichelt et al.,
2013). The accuracy in the measurement of the distance s
(geodesic length of the vessel’s centerline) is of a magnitude of
3% but shall not be discussed in this paper (Naber et al., 2020a).

In this paper, we focus on evaluating the performance of
methods ascertaining the value of 1t and its quantitative
statistical error. Please note that this research paper only
investigates the statistical error in determining the transit time
(or delay of a signal). The systemic error of the optical transit
time measurement in fluorescence angiography is not the
focus of this paper but is part of our research (Naber et al.,
2020b). The systemic error will be shortly explained in the
following paragraph.
Equation (1) is derived from the general definition of volume
flow V̇ =

∫

v(r,φ) dA with the assumption that is the mean
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value of v over A. The measured flow velocity via fluorescence
angiography is not the mean value of v(r,φ) due to the limited
penetration depth of exciting and fluorescent photons. Flow
velocities that are close to the surface and closer toward the
direction of incidental excitation light are more likely to be
observed than photons in greater depth. Therefore, we propose
to introduce a spatial weighting factor w(r,φ) to calculate the
volume flow V̇ =

∫

v(r,φ) · w(r,φ) dA. The normalization of
the absolute flow velocity field v(r,φ) to v̄ is convenient since
v̄ can be set before the integral. Discretizing the integral results
in V̇ = A · v̄ ·

∑

vrelative(r,φ) · w(r,φ). During laminar flow,
vrelative is of parabolic shape and w(r,φ) can be obtained by
simulating the photon’s propagation in turbid fluorescent media
(see Naber et al., 2020b). The term in front of the sum (A · v̄) is the
calculated flow in Equation (1). Consequentially, the remaining
sum represents the systemic error mentioned earlier.

Data sets containing two corresponding indicator dilution
curves with a ground truth of the transit time 1t are needed
to investigate the statistical error of 1t. Although in vivo IDCs
are monitored frequently in clinical routines and are thus widely
available, they lack a sufficient and trustworthy ground truth of
the transit time (Reuter et al., 2010). Additionally, they contain
temporally correlated and uncorrelated noise that cannot be
separated from the desired signal [described by the additive
noise model m(t) = s(t) + n(t) with m(t) as measured, s(t) as
desired signal and n(t) as noise]. Therefore, making the analysis
of the influence of the noise is impossible. The state-of-the-art
surgical microscopes have a maximum sampling frequency of
fsampling = 60Hz, which is sufficient to discretize the continuous
IDC (Nyquist Shannon sampling theorem). Simply shifting an
in vivo IDC would result in identical samples having identical
noise, which is unintended. Artificially creating sub-samples
(reasonable samples in between the measured ones) would be
a simple method to increase the number of samples and allow
shifting of one IDC. To obtain uncorrelated sub-samples a
mathematical model is used, which interpolates the signal. The
model applies bias to the performance of methods ascertaining
the time shift which is undesirable. Consequentially, a credible
performance evaluation of methods ascertaining the transit
time 1t based on in vivo IDCs cannot be assured by merely
duplicating and delaying an IDC for these three main reasons.

Therefore, we propose a method to compute highly adaptable
data sets of two corresponding and differently sub-sampled IDCs
with a ground truth of the transit time using an in silico model.
Even though an in vitro flow phantom could provide a similar
data set, in silico generated data sets are low cost, accurate, and
easily configurable to the desired field of application (Kung et al.,
2011). Subsequently, these data sets will be used to evaluate
and enhance current methods ascertaining the transit time 1t,
thereby increasing its temporal accuracy that is not yet suitable
for clinical studies (Cimalla et al., 2008; Weichelt et al., 2013).
Achieving a higher temporal accuracy by increasing the sampling
rate of the measuring device is possible. In a noise-free signal, the
maximum error of an ideal measurement is equal to half of the
quantization interval, in our case, equal to 1

2·fsampling
. In a noisy

signal, the accuracy will decrease drastically with a decreasing
signal-to-noise ratio (SNR). Furthermore, an increase in the

sampling rate is limited since the noise level is often coupled
reciprocally to the integration time. Therefore, we propose to
fit mathematical models to the data points to interpolate the
signal. This can enhance the accuracy in the temporal detection
of events (Ellis et al., 2015). The proposed models are commonly
used in the IDC-basedmeasurement of blood volume and cardiac
output to suppress noise, artifacts, and increase the accuracy of
the measurement (Hamilton et al., 1932; Meier and Zierler, 1954;
Zierler, 2000; Mischi et al., 2003, 2008).
Two hypotheses were set up as follows:

1. Using mathematical models to re-continualize the
dilution curves, there is a decrease in the error in
transit time measurements compared to using the
raw data.

2. A sub-frame rate accuracy can be accomplished by combining
a suitable configuration of a mathematical model, extracted

features, and pre-processing of raw data.

2. METHODS

The overarching goal is to correctly obtain the indicator bolus
transit time. The accuracy is limited by the frame rate and a sub-
frame rate accuracy is required. This can be solved by fitting

an appropriate analytical function to the measured curves and
obtain the time delay of two IDCs from the time delay of both fits.

Methods to determine the most appropriate analytical function
are described in section 2.2. The missing ground truth is a

major problem to properly perform the proposed investigation.
Therefore, IDCs are simulated, shifted by a defined time as the

ground truth for the bolus transit time, and superposed with
Gaussian noise. The methodology for the generation of the data
set containing the ground truth is described in section 2.1. We

are not seeking to perfectly model in vivo IDCs but rather
to compute similar curves. Multiple assumptions are set. First,

the bolus transit time equals the mean blood volume transit
time. Second, the real fluorescence intensity curve equals the

simulated indicator bolus curve. Finally, the simulated indicator

bolus curve equals the realistic indicator solution curve in a
cerebral vessel.

All computation is done on a computer with an Intel
i7-6500U processor.

2.1. IDC Generation
The following requirements were set for the data sets of two
corresponding IDCs:

• The computed curves should mimic indicator dilution curves.
• The curves’ morphology should be highly configurable.
• The ground truth transit time of the two curves in a data set

must be known.
• The samples of the curves should be shifted relative to each

other (so using two curves with not identical samples ensuring
the depiction of two curves taken at two different locations).

• Different noise levels should be applicable.

The finite element-based software COMSOL Multiphysics
(version 5.4) with the packages Computational Fluid Dynamics
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(laminar flow) and Chemical Reaction Engineering (transport of
concentrated species and transport of diluted species) was used
for this in silico model. The .mph file to reproduce the results
is presented in the Supplementary Materials. The calculation of
the motion of the fluid is based on the Navier–Stokes equations
and the continuity equation (see Equations 2 and 3 with u as
the fluid velocity, p the pressure, ρ the density, µ the dynamic
viscosity, and F external forces). The nabla operator in Equations
(2) to (6) indicates the coverage of all spatial dimensions (which is
comparable to the analytical solution of the convection-diffusion
of a liquid by Taylor–Aris; Aris, 1956).

ρ

(

∂u

∂t
+u·∇u

)

= −∇p+∇·
(

µ(∇u+(∇u)T)−
2

3
µ(∇·u)I

)

+F

(2)

∂ρ

∂t
+ ∇ · (ρu) = 0 (3)

Assuming laminar flow, an incompressible fluid and no external
forces (such as gravity) the continuity equation yields

∇ · u = 0, (4)

the term− 2
3µ(∇ · u)I = 0 and F = 0.

The dye will spatially diffuse due to its concentration gradient.
Hence, the direction of the diffusive flux can be normal to the
fluid flow direction. This is expressed by the convection-diffusion
equation (Equation 5 with c being species concentration, JDiff

being the diffusive flux and R describing sources or sinks of
c). The diffusive flux can be approximated by Fick’s first law
(Equation 6 with D being the diffusion coefficient). Since no
sources or sinks are present, R = 0.

∂c

∂t
+ ∇ · JDiff + u · ∇c = R (5)

JDiff = −D∇c (6)

The equations are fully coupled and solved by the PARDISO
(PARallel DIrect SOlver) solver which is based on the LU
decomposition (Lower-Upper). The relative tolerance in the
calculation of each measuring point is set to 0.1%.

The modeling in this paper is performed using COMSOL
Multiphysics as a tool for numerical simulation. Alternatively,
other software can be used analogously (Ansys, OpenFOAM,
or similar). Analytical approaches can be used as well for
this investigation such as the Taylor–Aris approach. The
numerical approach via COMSOL enables the implementation
and calculation of more complex geometries and the ability to
calculate spatially resolved concentrations. This is advantageous
for future applications. In this paper, the used geometry and
properties are simplified and not realistic representatives of the
circulatory system and therefore merits of the methods used for
computing are irrelevant.

The fluid was modeled as a homogeneous liquid. In contrast,
blood is a cell suspension containing the liquid plasma and
the solid cells. Since the indicator of interest (Indocyanine

FIGURE 2 | Sketch of the rotationally symmetric geometry with a section

containing a homogeneously distributed indicator (green area) and a blood

analog (yellow area). After applying a laminar flow, concentration curves are

obtained as the mean concentration at the pipe’s cross-sectional area at the

three marked locations (blue, red, and orange). The corresponding dilution

curves are shown in Figure 3. Please note that the scale of the figure does not

represent the scale used in the in silico model.

Green—ICG) binds primarily to the proteins in the blood
plasma, it will be affected by a heterogeneous distribution of
cells (Alander et al., 2012). To reduce the computational effort
in our model, this heterogeneous distribution was not taken
into account and simplified to a homogeneous distribution.
A rotationally symmetric geometry was defined. It is divided
into a section containing blood analog (water with glycerol
and protein powder) and a section containing a homogeneous
concentration of the indicator (ICG) dissolved in the blood
analog (see Figure 2, the used geometry mimics an in-house
flow phantom. The geometry, COMSOL settings and the
defined parameters are attached in the Supplementary Material,
section 1.1). Consequentially, the indicator concentration is
a rectangular function at t = 0 and mimics an abrupt
injection. Finally, multiple lateral locations were defined where
the mean indicator concentration across the cross-sectional
area was measured. Thereby, different morphologies were
computed depicting increasing degrees of dilution. We used
a distance of 50 cm between the three different measurement
locations. The distance from the heart to the brain is
∼50 cm, which would mimic an injection via a central
venous catheter and the other distances peripheral (e.g., arm
of the patient) injections (Arieli and Marmur, 2017). The
following input parameters, properties, and boundary conditions
were defined:

• Inner radius: ri = 2mm
• Outer radius: ro = ri
• Rigid vessel wall: E = 0

• Applied volume flow: V̇ = 150 ml
min

• Inflow modeled as a ramp function reaching the designated
volume flow in 1 s.

• Open outlet with: p = 1 atm
• Laminar fluid flow and convection (Re - Reynolds number):

Re ≈ 600 < Recritical
• Incompressible fluid: ρ = constant
• Non-Newtonian fluid behavior modeled by the Casson model

(see Supplementary Material, section 1.1)
• No wall slip: u(r = ri) = 0
• No external pressure or hydrostatic pressure
• No gravitational force.

The volume flow is chosen based on reports on physiological
values of cerebral arteries of this size. Thereby, a linear regression
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FIGURE 3 | The three indicator dilution curves obtained from the fluid flow

model with a sampling rate of 1,200 Hz. The relative concentration is

normalized to the input concentration cICG. The blue, red, and orange curves

show the dilution curves in a distance of 50, 100, and 150 cm to the injection

side as shown in Figure 2, respectively.

of the weighted average (weighted on the sample size of each
report) is performed and the value for the chosen diameter is
rounded to the closest multiple of 25 ml

min (Nakayama et al., 2001;
Chen et al., 2004; Mujagic, 2013; MacDonald and Frayne, 2015;
Zarrinkoob et al., 2015). The modeled volume flow is continuous
and not pulsatile. This simplification can be assumed as valid in
distal arteries. It was shown that the Gosling pulsatility index
is significantly reduced from proximal to distal measurements
of volume flow in cerebral arteries (Gosling and King, 1974;
Zarrinkoob et al., 2016).

For the simulation of the flow and the evaluation of the
mean indicator concentration, a mesh with 175,176 elements
was built. Each mesh element consisted of triangles with a
radially decreasing side length ranging from 10−4 to 10−6m.
To obtain the three IDCs with different morphologies, the time
frame of the simulation was set from 0 to 12 s with a sampling
rate of fsampling = 1, 200Hz. Therefore, each computed data
set consisted of 1, 200 · 12 = 14, 400 samples. The sampling
frequency is related to the frame rate of common surgical
microscopes of 25 and 60Hz. As a result of this sampling process
with 1, 200Hz, we obtained 1,200

25 = 48 different sub-samples at

25Hz and 1,200
60 = 20 different sub-samples at 60Hz. This held

the advantage that it also increases the variability in shifting the
curve. The raw IDCs are shown in Figure 3. After computing
the raw IDCs, the data sets were imported into MathWorks
MATLAB R2019b.

The following steps were applied to fulfill the requirements:

• Duplication of one IDC (see Figure 4A).
• Temporal shift of one IDC by a known value (ground truth)

ranging from 1 to 4 frames in the case of 25 fps (2 frames to
eight frames in case of 60 fps; see Figure 4A).

• Different sub-sampling to the desired sampling rate (e.g., 25 or
60 fps; see Figure 4B).

• Application of white Gaussian noise to both curves to
represent Johnson–Nyquist noise (SNR ranges from 8 to 20 dB;
see Figure 4C).

The motivation of duplicating one IDC is strongly linked to
the expected temporal shift. The field of view in cerebrovascular
surgery is ∼3 × 3 cm2, the mean flow velocity is about ∼10 −
50 cm

s and a typical exposed length of a vessel is 1–2 cm (Cieslicki
and Ciesla, 2005; Ebner et al., 2011;MacDonald and Frayne, 2015;
Zarrinkoob et al., 2015). The expected morphological changes of
the IDCs is negligible; in the Supplementary Material (section
3.6), the magnitude of change is shown. Therefore, the computed
IDCs are duplicated and shifted by the proposed range, which
relies on the expected clinical circumstances.

Different sources of noise will appear in measurements, e.g.,
thermal noise from the recording device and patient-related noise
such as the heart rate. We chose to represent the Johnson–
Nyquist noise in our data set by additive white Gaussian noise
due to its similar characteristic. Additive white Gaussian noise is
described by the probability density function shown in Equation
(7) with µ as the mean value and σ as the standard deviation.

f (n) =
1

√
2πσ 2

e
− (n−µ)2

2σ2 (7)

µ was set to zero and σ is calculated using the definition of the
SNR (Equation 8).

SNR = 10 · log10
(

PSignal

PNoise

)

dB (8)

With the correlation

PNoise = 2σ 2 (9)

of the noise power PNoise, the standard deviation σ and the
approximated signal power

PSignal =
∑

|s(t)|2 (10)

of the noise-free IDC samples s(t), the standard deviation σ can
be calculated as

σ =

√

∑

|s(t)|2

2 · 10
SNR
10·dB

(11)

We did not add any other noise due to the lack of information
on its characteristic since mostly the separation of desired
signal and noise is not possible. In addition to Johnson–Nyquist
noise, we could consider to include shot noise. The quantum
fluctuation of the photons hitting the detector are dependent
on the scattering, absorption, and fluorescence events in a tissue
slab, which are stochastically determined processes. Hence, they
can be interpreted as shot noise. Following the central limit
theorem, the uncertainties of the interaction of a photon relies on
the superposition of multiple randomized events and therefore
shot noise can be assumed as normally distributed and modeled
by additive white Gaussian noise (Wohland et al., 2001). Other
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FIGURE 4 | (A) IDC1 in blue without any manipulations. In green, the same curve delayed by a transit time 1t = 160ms. Both are sampled with 1,200 Hz. (B)

Sub-sampling of the two curves from (A). Both curves are sub-sampled to 25Hz. (C) Final data set containing two differently sub-sampled curves; one of them

temporally shifted by the ground truth transit time 1t. White Gaussian noise is applied to both IDCs (SNR = 20dB).

influences of noise are excluded in this investigation. Additive
white Gaussian noise tests the robustness of the proposed
mathematical models against disturbance. This is rather in focus
of the investigation than the ideal realistic representation of all
sources of noise.

The application of noise is done for each data set
independently, so each time a new noise set is generated and
added to the signal. The application of noise on the signal
assumes that the error in transit time measurement is linked to
amplitude noise and is therefore an appropriate representation
of disturbing influences on the measurement.

The pipeline is shown in Figures 4A–C.
In summary, different raw indicator dilution curves

were simulated in COMSOL Multiphysics and imported to
MathWorks MATLAB to compute different sub-samples,
applying a temporal shift and noise. In total, 12,096 data sets
were computed:

• 3 raw IDCs with different morphology;
• 2 sampling rates: fsampling, 1 = 25 fps & fsampling, 2 = 60 fps;
• 12 different sub-sampling combinations;
• 7 different SNR levels (8–20 dB in 2 dB steps);
• 6 independent realizations for each noise level;
• 4 different temporal shifts (transit times).

As a result, a large amount of diverse data sets, each containing
two corresponding IDCs [c1(t) and c2(t)] with a known ground

truth transit time, are given and ready for the following
evaluation of different methods ascertaining the transit time 1t.
In the case that methods are applied to both curves, only a c(t) is
used for better intelligibility.

2.2. Evaluation of Methods Ascertaining
the Transit Time 1t
MathWorks MATLAB R2019b was used for the following
evaluation and analysis.

Typical analysis of transit time is based on feature-based
methods such as peak to peak distances or using the cross-
correlation of both signals as a tool to determine the transit
time (Cimalla et al., 2008). Using artificial up-sampling, these
methods are able to compute sub-frame rate transit times.
However, artificial up-sampling does not add information to the
data and can provoke artifacts that manipulate the analysis in a
negative manner.

We propose to fit a mathematical model to the data sets of
both IDCs c1(t) and c2(t) and then compute the transit time as the
shift of those two mathematical functions. This paper takes four
models into consideration: A parabola function, the local density
random walk function (LDRW), the gamma variate function,
and the mono-exponential function. The parabola function is
chosen due to its simplicity and robustness of fitting; it takes
only the data points around the peak into account. The LDRW
function is based on the theory of diffusion of the indicator by
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drift models. It regards the indicators movement as a longitudinal
diffusion superimposed on a linear convection and is valid for
an instantaneous injection, which fits our problem (Wise, 1966;
Norwich and Zelin, 1970). The gamma variate function is derived
from modeling a unidirectional constant flow as a series of
multiple mixings in sequential compartments of the same volume
with only one input and output, which fits our problem as
well (Schlossmacher et al., 1967; Davenport, 1983). Both the
LDRW and gamma variate function take the whole curve into
account. However, both are not able to represent recirculation.
The mono-exponential function describes the washout of the
indicator and only takes the descending arm of the curve into
account. It was developed to extrapolate the dilution curves
on the descending arm to estimate the curves course without
recirculation (Hamilton et al., 1932).

Different features will be used to extract the transit time 1t
from two fitted mathematical functions. Each feature is function
specific and will be described in detail in the following section.

2.2.1. Cutting the Data Set
Before fitting mathematical models to the two curves of a data
set, a pre-processing step is needed. Each IDC needs to be cut to
ensure a robust fitting. Two examples are as follows: First, prior
to the arrival of the indicator zeros are recorded. Including them
into the fitting algorithm does not make any sense and can cause
problems. Second, fitting the parabola model to the whole signal
does not make sense either, therefore the peak is detected and
only data points surrounding it are considered for fitting.

Addressing the problem of the first example, the data points
prior to the appearance of the indicator should be removed
since they contain no information and are basically zeros
with noise applied to it. Equation (12) has shown to be
empirically appropriate to find this cut point tcut1 on the abscissa
representing the appearance of the indicator despite of the impact
of noise before the peak of the IDC (cmax is the maximum
concentration, tup only considers the data points left of the peak,
and tdown only considers the data points right of the peak). To
determine the elements of the equation, a moving average with a
window length of 20 samples is used to reduce the impact of noise
on the signal. To ensure unambiguity, the search for the elements
on the up slope is performed from left to right and on the down
slope from right to left. This pre-processing is applied on all data
sets independently to the further processing.

tcut1 = tup(0.2·cmax)−0.1·[tdown(0.5·cmax)−tup(0.5·cmax)] (12)

Addressing the problem of the second example, it is reported that
cutting the data as a pre-processing step enhances the robustness
and accuracy of the fit. Seven different levels of cutting are
introduced: they range from t(0.2 · cmax) to t(0.8 · cmax) in steps
of 0.1. Further, it is reported that an unequal cutting to the left
compared to the right of the peak is favorable due to different
information content in the data (e.g., exclusion of recirculation;
Borges et al., 2012). For this purpose, 3 cutting methods are
additionally introduced and depicted in Figure 5.

1. No further cutting left of the peak and variable cutting levels
right of the peak.

FIGURE 5 | Visualization of the three different pre-processing (cutting)

methods on the data. The cut level is set to 40% of the maximum. After

applying cut method 3, the purple curve remains. Applying cut method 2

results in the curve consisting of purple and red. Application of cut method 1

results in the curve of all three colors purple, red, and blue.

2. Cutting left of the peak at half the value of the variable cutting
to the right of the peak.

3. Variable but identical cutting left and right of the peak.

In summary, 21 different variations (7 cut levels times 3 cut
methods) to cut the IDC as a pre-processing step are possible and
will be evaluated in this analysis.

The mathematical models are described in the following
sections as well as the initial estimation of their parameters pinit =
(p1,init , p2,init , ... , pn,init). The initial estimation is needed to run a
least squares optimization algorithm to determine the function’s
parameters p which fit the data best. Since indexed variables are
easier to handle the input data c(t) is described as the set of data
points [t(k), c(k)] with ∀k ∈ [1,K] (K being the number of data
points). Therefore, we solve the problem

minp{Ffit(p)} = minp|pi∈[plb ,pub]{
∑K

k=1
|fmodel(p, t[k])− c[k]|2}

(13)
with plb being the lower bound and pub the upper bound of
the respective parameters pi. To solve Equation (13), different
algorithms like the “trust-region-reflective” or the “Levenberg–
Marquardt” algorithms are suitable. The “trust-region-reflective”
algorithm is used in our study (More and Sorensen, 1983).

The time shift of the functions can be determined after
fitting the mathematical models to the pre-processed (cut) input
data (two IDCs). The features used to determine the time shift
are specific to the mathematical models and described in the
corresponding following sections.

2.2.2. Parabola Model
The parabola model is defined as shown in Equation (14). This
model is fitted to the data points around the peak (according to
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the cutting method specified in section 2.2.1) of the IDC.

fParabola(p, t) = −p1 · (t − p2)
2 + p3 (14)

The parabola has a distinct morphology that facilitates setting up
p. Therefore, the input c(t) was smoothed by a sliding rectangular
window with a window size of 20 samples and p determined as
shown in the following equations:

p1,init =
c(tn)− cmax

(tn − t(cmax))2
(15)

p2,init = t(cmax) (16)

p3,init = cmax (17)

No boundaries are needed for the optimization of the parameters
p of the parabola.

To determine the shift of the two fitted parabolas of one data
set, the maximum of each parabola is used as feature.

2.2.3. Local Density Random Walk Model
The LDRWmodel function is defined as shown in Equation (18).
This model can be fitted to the whole IDC.

fLDRW(p, t) = p1 ·
(

ep2

p3

)

·
√

p2 · p3
2π(t − p4)

· e−
p2
2 ·( p3

t−p4
+ t−p4

p3
)
(18)

According to the approach of Mischi et al. (2003) and Bogaard
et al. (1984) the parameters are calculated as shown in the
following equations. p1,init represents the total amount of injected
dye. Consequentially, it can be expressed as the integral of c(t)
or in the discrete case as a sum of the products (Equation 19).
p2,init represents the slope of the ascending arm. p3,init represent
the abscissa coordinate of the maximum. p4,init represents the
zero time of the distribution and in our case it is slightly shifted
away from the distributions maximum to be sure to not prune
the distribution at the beginning because our function is defined
only for positive values of t − p4 and therefore optimization will
be only performed for t > p4.

p1,init =
1

2
·

N
∑

i=0

(ti+1 − ti) · [c(ti)+ c(ti+1)] (19)

p2,init =
1

2
·
|t(cmax)− t0|

cmax
(20)

p3,init =
1

2
· (tn − t0) (21)

p4,init = t0 −
1

5
· |t(cmax)− t0| (22)

The boundaries for p were set as (p1, p2, p3, p4) ∈
([0,∞), [0,∞), [

p3,init
100 ,∞), [0, t0]).

To determine the shift of two fitted LDRW functions, the
maximum as well as the maximum and minimum of the first and
second derivative of each LDRW function are used as features.
Further, the cross-correlation of the two LDRW functions is
used to determine the time shift. It is applied to the two LDRW
functions and their first derivative, as well as to the functions
and their first and second derivative with an additional linear
temporal interpolation with a factor of 100 (the functions are
continuous but MATLAB is a vector and matrix based software
and the calculation of the cross-correlation requires a discrete
input and therefore the functions are sampled with a sampling
rate 100 times higher than the input sampling rate for the fitting,
e.g., fsampling = 25Hz, then the input for the calculation had an
fsampling = 2, 500Hz. We assume this accuracy with maximum

error of 1
50 frame is sufficient).

2.2.4. Gamma Variate Model
The gamma variate model is defined as shown in Equation (23).
This model can be fitted to the whole IDC.

fGamma(p, t) = p1 · (t − p4)
p2 · e−

t−p4
p3 (23)

According to the approach of Madsen (1992) and Mischi et al.
(2008) the parameters are calculated as shown in the following
equations. p1 and p2 represent the coordinates of the maximum
(obtained by differentiating the function and setting it equal
to zero). p3 represents the slope of the decreasing arm of the
function. p4 represents the zero time of the distribution and
in our case it is slightly shifted away from the distribution’s
maximum to avoid syntax errors.

p1,init =
ep2,init · cmax

(p2,init · p3,init)p2,init
(24)

p2,init =
t(cmax)− p4,init

p3,init
(25)

To calculate p3,init , an additional step is needed. Therefore, a
moving average with a window size of 20 samples is applied and
the endpoint [tSW,n, c(tSW,n)] is used to calculate p3,init .

p3,init = −
tSW,n − t(cmax)

ln(c(tSW,n))− ln(cmax)
(26)

p4,init = t0 −
1

5
· |t(cmax)− t0| (27)

The boundaries for p were set as (p1, p2, p3, p4) ∈
([0,∞), [0,∞), [

p3,init
100 ,∞), [0, t0]).

To determine the shift of two gamma variate functions, the
same features and methods are used as for the LDRW function.

2.2.5. Mono-Exponential Model
The mono-exponential model is defined as shown in Equation
(28). This model is fitted to the descending arm of the data
set. Thereby, the descending arm is defined as the data points
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t > t(cmax) after running amoving average on c(t) with a window
size of 20 samples.

fMonoEx(p, t) = p1 · ep2·(t−p3) (28)

According to Brands et al. (2011) the parameters are calculated
as shown in the following equations. To determine p1,init and
p3,init , the smoothed data are used. p1,init and p3,init represent
the coordinates of the maximum of the function, hence the start
of the defined sector of the mono-exponential function. p2,init
represents the slope of the function.

p1,init = cmax (29)

p2,init =
1

tn − p3,init
· ln
(

c(tn)

p1,init

)

(30)

p3,init = t(cmax) (31)

No boundaries are needed for the parameter optimization p of
the mono-exponential model.
Determining the shift of two Mono-Exponential functions is not
trivial since their maxima and minima depend solely on the
sections of c(t) to which they are fitted to. So, no maximum
or minimum of the function can be used. Therefore, a feature
is introduced that describes the Euclidean distance of the
normalized function to a defined point. Both axes are normalized,
c(t) to cmax and t to tn − t(cmax). Finally, the cost function fc (see
Equation 32) is minimized to obtain a time stamp teucl for each
IDC. The transit time can be calculated as the difference of both
time stamps teucl of one data set.

fc(teucl) =

√

(

fmodel(teucl)

cmax

)2

+
(

teucl − t(cmax)

tend − t(cmax)

)2

(32)

2.2.6. Control Group
A control group is added to enable the assessment of the
performance of the proposed methods. Using the peak of the
raw data relies on a single sample point in each IDC and is
very noise sensitive. The cross-correlation of the IDCs relies on
a larger set of sample points is less noise sensitive and therefore
used for this performance assessment. The cross-correlation is
applied to the raw input data c(t), its first derivative 1c(t)
(discrete sample to sample difference), the linear interpolated
input data cinterpolate(t), and to the interpolated first derivative
1cinterpolate(t). A linear interpolation with a factor of 100 is
applied to enhance the accuracy.

In total, 22 combinations of mathematical models and features
as well as 4 control groups are used to assess the transit time error
on all 12,096 in silico generated data sets.

2.2.7. Performance Parameter
The performance parameter used to compare different methods
ascertaining the transit time was defined as the absolute
difference between the measured transit time 1tcalc of two IDCs
of one data set and the ground truth transit time 1t. It will be

represented as εframes in frames to emphasize whether a sub-
frame rate accuracy is accomplished or not. The calculation of
the error in frames εframe is shown in Equation (34).

ε = |1tcalc − 1tGround truth| (33)

εframe = |1tcalc − 1tGround truth| · fsampling (34)

The mean value µ and standard deviation σ of εframe will be
used for the evaluation. The µ and σ are calculated using 12,096
data sets

• 3 morphologically different IDCs;
• 7 different SNR levels;
• 6 cycles for each SNR level;
• 4 different transit times 1t;
• 2 different sampling rates fsampling ;
• 12 different combinations of sub-sampling.

for each combination of methods and pre-processing
(546 in total)

• 26 combinations of different mathematical models, features,
and control group;

• 3 methods of cutting the data;
• 7 levels of cutting the data.

The absolute error at a certain SNR ε(SNR) should decrease with
an increasing sampling rate. The ratio of decrease in ε(SNR) is
the same as the ratio of the increase in sampling rate. An aspect
that is not considered in this evaluation is the increasing effect
of noise on the measured signal due to a shortened integration
time (exposure time) at higher sampling rates at the detector.
This effect can be simulated by correcting the SNR bymultiplying
it with the square root of the ratio of the two sampling rates.
This approach assumes uncorrelated noise and a linear decrease
in integration time with increasing sampling rate.

3. RESULTS

The following two sections show the results for the generation of
the data sets containing two corresponding IDCs with a ground
truth of the transit time 1t (section 3.1) and their analysis
(section 3.2) separately.

3.1. Results Generation
An example of the results of the data generation is shown in
Figure 6A. The generated IDC has a similar morphology as
the clinically obtained in vivo IDC in Figure 6B. The Pearson’s
correlation coefficient is 0.93. Since the in silico model does
not include a circulatory flow, no recirculation appears in the
generated data set compared to the in vivo data set. Figure 7
shows the power spectral density for the in vivo and in silico data
set. The frequency is cut off after 5Hz because it does not contain
any significant changes. The in vivo data are obtained during an
EC-IC bypass installation by a surgical fluorescence microscope
in high definition resolution, with a sampling frequency of 60 fps.
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FIGURE 6 | (A) An example of a synthetically computed data set. It shows two indicator dilution curves with an delay of 1.5 s and a SNR of 37dB. (B) An in vivo

indicator dilution curve obtained from a cerebrovascular EC-IC bypass surgery by indocyanine green fluorescence angiography. The signal is obtained by averaging an

area of 10 × 10 pixel which corresponds to one-third of the vessel’s diameter.

FIGURE 7 | Power spectral density of the in vivo and in silico data in the

spectral rang of up to 5Hz.

3.2. Results Analysis
The mean computation time from the input of two IDCs to
the output of the transit time error was ∼0.298 s. This includes
the initial estimation of the mathematical functions’ parameters
pinit for both IDCs, the optimization of the parameters and
finally the determination of the temporal delay tcalc as well as the
comparison to the ground truth transit time 1t to evaluate the
temporal accuracy ε and εframe.

Visualizing all 8,036 combinations of methods ascertaining
the shift of two IDCs is not appropriate. To facilitate the
visualization of the results, a 7 × 7 matrix is used to show
the mean εframe. The values for the mean εframe are determined
for the values labeled at the axis, the space in between is
interpolated. Each matrix is specific for a combination of a
mathematical function, feature, cutting method, and sampling
frequency fsampling and shows the mean εframe in dependency of
the preformed cutting levels as a pre-processing step and the

SNR. The color code in Figures 8–11 represents εframe and errors
larger than 1 are presented in yellow. The performance of the
cross-correlation on the raw data set with fsampling = 25 fps is
shown in Figure 8A as benchmark for the proposed methods.
The linear interpolation of the raw data already shows a decrease
of the error (Figures 8A,B). The best performance from the
control group at fsampling = 25 fps was the cross-correlation
of the linearly interpolated data set with the cutting method 2
(cutting at half the value left of the peak compared to the variable
cutting to the right of the peak) and is shown in Figure 8B. The
results of the three best combinations of mathematical functions
and features ascertaining the transit time with the data set at
fsampling = 25 fps are shown in Figures 9A–C. They all perform
equally well and show a strong decrease in error compared to the
usage of the raw data (Figure 8B). The results at fsampling = 60 fps
are shown in Figures 10, 11 and show a similar performance
compared to the lower sampling frequency. The methods that
perform best at 25 fps also tend to perform best at 60 fps.
In Supplementary Material (sections 2, 3), you can find the
corresponding values for µ and σ in tabular form used to
compute Figures 8A–11C.

4. DISCUSSION AND CONCLUSION

Obtaining the ground truth transit time of two corresponding
indicator dilution curves is a challenge. We have proposed and
implemented amethod to simulate adjustable IDCs with a known
ground truth of the transit time in a statistical relevant quantity.
Thereby, a high degree of freedom in the variation of the signal’s
morphology, sampling rate, sample positioning, transit time, and
noise level is given. This allows a versatile use of the in silico
model to mimic different signals obtained from different organs.
As an alternative to COMSOL Multiphysics, other numerical
simulation tools can be used as well to simulate the presented
IDCs. Without depending on advanced simulation software,
analyticmethods such as the Taylor–Aris approach exist and need
be adapted to the setup by introducing additional perturbation
terms as presented by Alizadeh et al. (1980) and Aris (1956).
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FIGURE 8 | (A) Mean εframes using the raw data sets (fsampling = 25Hz) with no mathematical fits. To obtain the transit time, the cross-correlation is computed after

applying the cut method 3. (B) Mean εframes using the linearly interpolated data sets (fsampling = 25 · 100Hz) with no mathematical fits. To obtain the transit time, the

cross-correlation is computed after applying the cut method 2.

FIGURE 9 | (A) Mean εframes using the gamma variate model on the data sets (fsampling = 25Hz). Before fitting the model, cut method 3 is applied to the data set. To

obtain the transit time, the cross-correlation is computed. (B) Mean εframes using the gamma variate model on the data sets (fsampling = 25Hz). Before fitting the model,

cut method 1 is applied to the data set. To obtain the transit time, the cross-correlation of the first derivative is computed. (C) Mean εframes using the LDRW model on

the data sets (fsampling = 25Hz). Before fitting the model, cut method 1 is applied to the data set. To obtain the transit time, the cross-correlation of the first derivative is

computed.

FIGURE 10 | (A) Mean εframes using the raw data sets (fsampling = 60Hz) with no mathematical fits. To obtain the transit time, the cross-correlation is computed after

applying the cut method 2. (B) Mean εframes using the linearly interpolated data sets (fsampling = 60 · 100Hz) with no mathematical fits. To obtain the transit time, the

cross-correlation is computed after applying the cut method 2.

Frontiers in Physiology | www.frontiersin.org 11 May 2021 | Volume 12 | Article 588120

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Naber et al. Transit Time Measurement in IDCs

FIGURE 11 | (A) Mean εframes using the gamma variate model on the data sets (fsampling = 60Hz). Before fitting the model, cut method 3 is applied to the data set. To

obtain the transit time, the cross-correlation is computed. (B) Mean εframes using the LDRW model on the data sets (fsampling = 60Hz). Before fitting the model, cut

method 3 is applied to the data set. To obtain the transit time, the cross-correlation is computed. (C) Mean εframes using the LDRW model on the data sets

(fsampling = 60Hz). Before fitting the model, cut method 1 is applied to the data set. To obtain the transit time the cross-correlation of the first derivative is computed.

The presented dilution curves were simulated by an in
silico model that took the properties of a fluid flow and
occurring chemical interactions such as diffusion of the used
indicator into account, so the model should be transferable to
mimic different non-diffusible indicator types. Note, diffusion
occurs in non-diffusible indicators within the solvent media,
but not with the surrounding tissue (e.g., a thermal indicator
diffuses into the surrounding tissue and is therefore a diffusible
indicator, Indocyanine Green remains intravascularly, has nearly
no diffusion into surrounding tissue and is therefore a non-
diffusible indicator). The chosen diffusion coefficient for ICG
DICG (see Supplementary Material, section 1.1) is set equal to
the diffusion coefficient of the protein. Since ICG binds to the
proteins and is at the initial state of the study in equilibrium, we
assume it will have the same diffusion coefficient. The proposed
in silico model uses a laminar flow of a homogeneous liquid in
a rigid vessel. Blood is in contrast a cell suspension and vessels
are elastic. Assuming blood as a homogeneous fluid influences
the dynamics of most fluorophores since most are bound either
to the cells or to the plasma. This aspect is not included in
the present study. Generally, a transfer to different recording
modalities should be handled with care. Assuming a continuous
volume flow is motivated by a significantly decreasing Gosling
pulsatility index from measurements taken proximal and distal
on certain cerebral vessels (Gosling and King, 1974; Zarrinkoob
et al., 2016). This significant decrease does not imply the
disappearance of the pulsatility and therefore limits the results
of this study to distal cerebral arteries. The geometry of the setup
represents the in vitro flow phantom build in our facility (details
to this phantom are given in the Supplementary Material).
The generated IDCs match well the measured IDC in the
phantom (Pearson’s correlation coefficient of 0.98–0.99, see
Supplementary Material, section 3.7). This proves its validity in
predicting the IDC for this configuration and also validates the
second assumption given in section 2. An extensive comparison
with in vivo data is not possible due to the lack of data.
Nonetheless, the presented case shows a high accordance with the
simulated data (Pearson’s correlation coefficient of 0.93). Both, in

vivo and in vitro comparisons prove the similarity of the IDCs
(see Supplementary Material, sections 3.1, 3.7). The in silico
setup represents the vessel with an open end and no recurrence
of the bolus, thus limiting the reliability of data points on the
curve’s descending side where recirculation does not appear (in
Figure 6A, no bump is present after the peak as in Figure 6B).
Nevertheless, in most methods ascertaining the transit time
1 t, the dilution curve is cut off after its concentration has
decreased to 30–50% of the respective peak, which excludes most
influences by the recirculation (Millard, 1997; Mischi et al., 2003;
Reuter et al., 2010). Furthermore, in the measurement of blood
volume flow in cerebrovascular bypass surgery, the distance of
both measurement location is very short (< 2 cm). Thus, the
influence by recirculation will be nearly identical in both signals,
equally influencing the two mathematical fits and thereby not
influencing the transit timemeasurement.Modeling the injection
as a rectangular input function assumes an ideal abrupt injection.
In clinical practice, the anesthetist will inject the indicator and
an inter- and intra-individual variability will occur. The injection
will deviate from the modeled input function. Still, the indicator
will be homogenized in the hearts chamber and afterward
ejected into the aorta as a rectangular input function with each
heartbeat. Choosing the rectangular input function facilitates
and standardizes the study design to ensure a comparability
of the results. White Gaussian noise (WGN) is applied to
the data set’s two corresponding IDCs to represent Johnson–
Nyquist noise. However, WGN only approximates Johnson–
Nyquist noise and as well does not cover all sources of noise
and/or artifacts observed in in vivomeasurements. Adding other
noise sources such as shot noise and artifacts such as the spatial
exclusion of the dye by blood cells requires a more profound
investigation on in vivo data. Nonetheless, the robustness of
the proposed algorithms can be evaluated using WGN. The
example in Figure 6B shows distinctive noise/artifacts in the area
of the peak concentration, which seems to be not reproduced
by WGN. The presented in vivo signal is an average of an
area of 10 × 10 pixel uncorrelated noise, such as WGN, is
reduced. Correlated noise and artifacts will remain present in

Frontiers in Physiology | www.frontiersin.org 12 May 2021 | Volume 12 | Article 588120

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Naber et al. Transit Time Measurement in IDCs

the signal. The ripples on the signal shown in Figure 6B are at
a frequency of approximately 1Hz and might be the patient’s
pulse, which is a correlated noise source. This cannot be verified
since no vital monitoring data are available. Nevertheless, the
simulated curves and their power spectral density (Figure 7)
show a high accordance with the clinically obtained in vivo data
from intraoperative fluorescence angiography measurements.
Performing an objective comparison is possible but is not
expedient since the morphology of the available in vivo data is
limited. The transfer function from the dye’s concentration to
the optically measured fluorescence is not known and has an
influence on the optically measured signal since it affects the
signals morphology. In this paper, we focus on the measurement
error and assume the effect of the transfer function as negligible.
The presence of a transfer function would induce a systematic
error to the measurement, which can be separated from the
investigation performed in this paper. Therefore, we suppose
these data sets are suitable for the evaluation of methods
ascertaining the transit time of optically measured indicator
dilutions curves.

We have evaluated the performance of different methods
ascertaining the transit time with varying complexity. Thereby,
the transit time was calculated according to the systemic mean
transit time theorem for single input and single output systems as
defined by Perl et al. (1975). This theorem can be used since the
shape of the curve does not change significantly due to the short
distance between the measurement sites. The first hypothesis that
using a mathematical model decreases the error in ascertaining
the transit time can be verified with some limitations. Obviously,
not all combinations of mathematical models and features are
suitable for the enhanced measurement of the transit time of
an indicator bolus. Especially the mono-exponential function
showed a bad performance, probably due to a complex feature-
based metric measuring the delay. The gamma variate and the
LDRWmodel performed equally well. Both are suitable to verify
the hypothesis especially using the cross-correlation that takes all
data points into account and not solely the peak to peak distance.
Verification of the second hypothesis that a sub-frame rate
accuracy can be accomplished by using a suitable configuration
of mathematical function and pre-processing in combination
with a feature is also limited. For a sampling frequency of 25Hz
the configuration: gamma variate, cross-correlation of the first
derivative using an up-sampling factor of 100 and cut method 1
performed best. It showed a mean value for εframe of <0.85 for all
SNR (8–20 dB) and cut levels (see Figure 9B). The Figures 12A,B
also underline its robustness. Please note that the line like artifacts
are a visualization issue of this plot. In case of a fsampling = 25 fps,
a sub-frame rate accuracy was accomplished in all cases as soon as
the noise level was above a SNR ≥ 14 dB. Accomplishing a sub-
frame rate accuracy with a higher sampling frequency is harder
since the absolute time tolerance decreases. The appearance
of a lower performance in case of a higher sampling rate is
misleading. The reduction of the absolute time error ε(SNR)
has a mean value of ∼26% lower at 60 fps than in 25 fps (see
Table 1). Assuming no noise the accuracy should increase by the
ratio of the sampling rates, here 1 − 25

60 = 60.3%. This shows
that noise has a clear influence on the sampling rate dependent

decrease of ε. Nevertheless, the influence of a decrease of SNR
with increasing sampling rate (so decreasing integration time) is
not included in this evaluation and therefore the reduction of the
error by 26% is an optimistic calculation. The evaluation of more
and different mathematical models, such as the log-normal and
lagged-normal model, is possible and could reveal more suitable
models (Strouthos et al., 2010).

Maintaining and restoring a sufficient blood flow is a
crucial aspect in preventing post-surgical complications such
as cognitive impairment (Lawton and Lang, 2019). Optic-
based contact free blood volume flow measurement have
distinctive advantages and disadvantages in their handling and
performance compared to other techniques. Providing surgeons
multiple different blood flow measurement techniques would
most probably have a positive impact on the mortality and
recurrence rate in revascularization surgery since the quality of
the procedure can be checked intraoperatively and worsening
of the flow/perfusion can be prevented (Chen et al., 2018).
The transit time of a bolus is one of the measured parameters
needed for the calculation of the volume flow (Equation 1).
Knowing the limits of the measurement quantitatively is key to
ensure a safe handling and proper quality of the results. Now,
the findings of this paper allow a quantification and reduction
of the absolute statistical error in transit time measurement in
dependency of the noise level and sequentially its propagation
on the volume flow calculation. Assuming a transit time of four
frames and a determined error of 0.25 frames for a sampling rate
of 25 fps and a SNR of 8 dB would result in an error in transit
time measurement of ∼6%, the error in geodesic measurements
(according to Equation 1) would be added to this value (Naber
et al., 2020a). This error seems to be acceptable in comparison
with the accuracy of the state-of-the-art clinical flow probes
(Transonic, 2019). The systemic error in optical transit time
measurement is not included in this paper but it is an important
aspect, which is in focus of our research (Naber et al., 2020b). Its
influence in optical blood volume flow measurement is not yet
revealed. Nevertheless, this is a large step toward an accurate and
intraoperative optical assessment of blood volume flow with the
possibility to provide an uncertainty level to the measurement
to each case individually. Furthermore, the transit time can be
used solely for the relative assessment of the flow before and
after an intervention in the cases where no vessel is attached for
revascularization (such as in aneurysm clipping).

5. OUTLOOK

The proposed hypotheses are verified with some limitations
regarding the methods used and present noise level in the signal.
The investigated mathematical models and features represent a
fraction of the possible methods. Therefore, more mathematical
models and features can be implemented and tested on the
generated data set. The investigated noise levels are chosen
reasonably according to our experience but could be expanded
to a larger range and finer gradation. A reduction of the noise
has a large impact on the accuracy ascertaining the transit time,
so different noise reduction techniques should be considered
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FIGURE 12 | (A) The relative error of all data sets (fsampling = 25 fps) is shown in relation to the signal-to-noise ratio (SNR). The red line indicates the relative error of

one frame. The blue dots show the single results obtained by the fitting the Local Density Random Walk (LDRW) model to the data cut at 40% by the cut method 1

and using its first derivative as input for the cross-correlation. The distribution of the dots within a column is irrelevant. All data sets had a relative error of less than one

frame for SNR larger than 12dB. (B) The relative error of all data sets (fsampling = 60 fps) is shown in relation to the SNR. The red line indicates the relative error of one

frame. The blue dots show the single results obtained by the fitting the LDRW model to the data cut at 40% by the cut method 1 and using its first derivative as input

for the cross-correlation. The distribution of the dots within a column is irrelevant. All data sets had a relative error of less than one frame for SNR larger than 18dB.

TABLE 1 | Mean absolute error ε and its standard deviation for two sampling

frequencies fsample in dependency of the signal-to-noise ratio (SNR).

SNR 25 fps 60 fps

20 dB 10.0 ± 7.1 ms 7.2 ± 5.3 ms

18 dB 12.1 ± 7.9 ms 8.3 ± 6.4 ms

16 dB 13.9 ± 9.5 ms 10.7 ± 8.8 ms

14 dB 16.8 ± 12.1 ms 11.4 ± 9.4 ms

12 dB 19.9 ± 15.1 ms 15.3 ± 12.0 ms

10 dB 23.9 ± 18.5 ms 18.5 ± 13.7 ms

8 dB 31.3 ± 22.9 ms 23.5 ± 16.9 ms

The ground truth transit time was evenly distributed ranging from 40ms to 160ms for

fsample = 25 fps and from 33 to 133ms for fsample = 60 fps.

and evaluated. Nevertheless, care should be taken since the
cross-correlation is depending on the data sets’ morphology and
obviously the morphology is affected by temporal filtering and
thereby might affect clinical decision making (Lenis et al., 2017).
The absolute error ε in transit time measurement decreased
with increasing sampling frequency. So, increasing the frame
rate increases the accuracy, but at some point, the benefit
will be eliminated by an increased noise level (noise is mostly
coupled reciprocally with the integration time). Therefore, we
hypothesize that there is a recording modality and purpose
specific optimum of the sampling rate with regard to the error
in transit time measurement. Additionally, it was assumed that
the transfer function from the dyes concentration to the optical
measurement is negligible. This transfer function should be
obtained and added to the error propagation assessment as a

source for a systemic error. Finally, the investigation of methods
on in silico data is linked to assumptions, which reduce the
complexity of in vivo data to a manageable level. Therefore, in
vivo data should be obtained to check the robustness of these
methods in real-life scenarios.
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