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INTERPOLATION OF A REGULAR SUBSPACE
COMPLEMENTING THE SPAN OF A RADIALLY

SINGULAR FUNCTION

KONSTANTIN ZERULLA

Abstract. We analyze the interpolation of the sum of a subspace, con-
sisting of regular functions, with the span of a function with rα-type sin-
gularity. In particular, we determine all interpolation parameters, for
which the interpolation space of the subspace of regular functions is still
a closed subspace. The main tool is here a result by Ivanov and Kalton
on interpolation of subspaces. To apply it, we study the K-functional
of the rα-singular function. It turns out that the K-functional possesses
upper and lower bounds that have a common decay rate at zero.

1. Introduction

Many relevant problems in mathematics and physics demand for a thor-
ough study of functions that have a radial singularity of rα-type. Important
examples are elliptic boundary value problems on domains with irregular
boundary, or interface problems for an elliptic operator, see [12, 10, 21, 3,
16, 8, 9] for instance. These functions furthermore play an important role in
the analysis and numerical solution of Maxwell equations on homogeneous
and heterogeneous domains with irregular boundary, see [8, 9, 7, 2] among
others. The error in numerical approximations for problems involving sin-
gular functions of rα-type is also investigated in [4, 5, 6] for instance.

This paper is motivated by the regularity analysis of Maxwell equations
in heterogeneous cuboids, which is in preparation. Indeed, the below The-
orem 1.1 is essential to study the behavior of the electric field near interior
edges of the heterogeneous material, as the regularity of the electric field
can be expressed by means of the first interpolation space in Theorem 1.1.

We consider here the singular function

ω(r cosϕ, r sinϕ) = χ(r)rαψ(ϕ), r ∈ [0, 1], ϕ ∈ [0, 2π), (1.1)

on the open unit disc D. Definition (1.1) involves a smooth cut-off function
χ : [0,∞) → [0, 1] with χ = 1 on [0, 1/2] and support in [0, 3/4], a number
α ∈ (0, 1), and a piecewise C2-function ψ : [0, 2π] → R with ψ(0) = 1.
For simplicity, we assume that ψ is C2-regular on [0, π/2] and on [π/2, 2π].
Other partitions of [0, 2π] or restrictions to subintervals can be handled with
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2 KONSTANTIN ZERULLA

similar arguments. To have a short notation, we always write ω(r, ϕ) instead
of ω(r cosϕ, r sinϕ). The span of ω is denoted by

V := span{ω}. (1.2)

We next present the main result of this paper. The relevant notation of
the statement is introduced in Section 2. In particular, PHs(D) denotes the
space of piecewise Hs-regular functions on D for s > 0, see (2.1).

Theorem 1.1. The identities(
PH1(D),PH2(D)⊕ V

)
θ1,2 = PH1+θ1(D)⊕ V, θ1 ∈ (α, 1],(

PH1(D),PH2(D)⊕ V
)
θ2,2 = PH1+θ2(D), θ2 ∈ [0, α),

are valid. For the critical value α, the space PH1+α(D) is not closed in
(PH1(D),PH2(D)⊕ V )α,2.

We point out that the statements in Theorem 1.1 are of a sharp nature.
Note also that the space PH1+θ1(D)⊕ V from the first line in Theorem 1.1
is equipped with the sum of the norms in PH1+θ1(D) and V .

To the best of our knowledge, Theorem 1.1 is the first one to answer
the question, for which interpolation parameters θ the interpolation of the
closed subspace PH2(D) is still a closed subspace of the interpolation space
(PH1(D),PH2(D) ⊕ V )θ,2. This question has been investigated for other
spaces several times in the literature:

Consider an interpolation couple (X0, X1), and closed sub-
spaces Y0 in X0 and Y1 in X1. Is the interpolation space
(Y0, Y1)θ,p still a closed subspace of (X0, X1)θ,p?

The issue is addressed in Problem 18.5 in Chapter 1 of [17]. Remark 11.4
in Chapter 1 of [17] yields that the answer is no, in general. In Satz 5 of [22],
Triebel gives an example for Hilbert spacesH0, H1, H2 withH1 ↪→ H0, H2 ⊆
H1 being closed with (arbitrary) finite codimension, and (H0, H2)1/2,2 not
being closed in (H0, H1)1/2,2. Wallstén analyzes this issue for a codimension
one subspace M in L1, and interpolates to L∞. Depending on the choice
of M and the interpolation parameter, the interpolation space between M
and L∞ is a closed subspace of the interpolation space between L1 and L∞.
Note that it can also happen that the above statement is not fulfilled for
any interpolation parameter in (0, 1), see [23].

Ivanov and Kalton study Banach spaces X0, X1 and Y0, with Y0 being a
closed subspace of codimension one in X0, and (X0, X1) being an interpo-
lation couple. They derive formulas for numbers σ0 ≤ σ1 with (Y0, X1)θ,p
being a closed subspace of (X0, X1)θ,p for θ ∈ (0, σ0)∪(σ1, 1), p ∈ [1,∞), see
Theorem 2.1 in [13]. Note that some of the statements in [13] have earlier
been obtained in [18]. Theorem 2.1 from [13] is the essential tool in the
proof of Theorem 1.1 in this paper. In [1], the findings of [13] are general-
ized. In particular, the closed subspace Y0 is allowed to have arbitrary finite
codimension in X0.

The major difficulty in the proof of Theorem 1.1 is to obtain a sharp
lower bound for the K-functional of the singular function ω. To that end,
we study the modulus of smoothness of ω. It then turns out that a subtle
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analysis of the singular function ω near zero is needed to provide estimates
for the modulus of smoothness of ω, see the proof of Lemma 3.1.

The paper is organized in the following way. In the next section, we
fix a common notation for the occurring objects from interpolation theory,
and we introduce the relevant (broken) Sobolev spaces of fractional order.
In Section 3, we derive the crucial upper and lower estimates for the K-
functional of the singular function ω. Finally, we conclude Theorem 1.1 in
Section 4 by combining our results from Section 3 with Theorem 2.1 from
[13].

As a byproduct of our preparations in Section 3, we also obtain a precise
regularity statement for the singular function ω in terms of interpolation
spaces, see Corollary 3.3. To the best of our knowledge, only parts of the
statement are available in the literature, see [4] for instance.

2. Analytical preliminaries

We first recall basic constructions from real interpolation theory via the
K-method. Our presentation follows Section 1.1 in [19]. Let (X, ‖·‖X) and
(Y, ‖·‖Y ) be two real Banach spaces, which both embed into a common
Hausdorff space. The K-functional is given by the formula

K(t, z,X, Y ) := inf
z=x+y,

x∈X, y∈Y

(
‖x‖X + t‖y‖Y

)
for z ∈ X + Y and t > 0. It is used to define the real interpolation spaces

(X,Y )θ,p :=
{
z ∈ X + Y | ‖z‖p(X,Y )θ,p :=

∫ ∞
0

t−1−θpK(t, z,X, Y )p dt <∞
}
,

for θ ∈ (0, 1), and p ∈ [1,∞). The spaces

(X,Y )θ :=
{
z ∈ X + Y | lim

t→0
t−θK(t, z,X, Y ) = lim

t→∞
t−θK(t, z,X, Y ) = 0

}
,

(X,Y )θ,∞ :=
{
z ∈ X + Y | t 7→ t−θK(t, z,X, Y ) ∈ L∞(0,∞)

}
,

also arise in this paper. Both are complete with respect to the norm

‖z‖(X,Y )θ,∞ := ‖t−θK(t, z,X, Y )‖L∞(0,∞), z ∈ (X,Y )θ,∞.

We next recall the definition of fractional order Sobolev spaces. Let O ⊆
R2 be a bounded domain with compact Lipschitz boundary. We denote the
standard Sobolev space of order k ∈ N by Hk(O), and set

Hs(O) :=
(
L2(O),H2(O)

)
s/2,2, s ∈ [0, 2].

Fractional Sobolev spaces can also be defined by means of weighted dif-
ference quotients, see Section 2.3.8 in [20] for instance. Note that both
definitions are equivalent in the current setting. (This well known fact is for
instance verified by combining the main theorem in Section 1 of [15] with
Corollary 6.8 in [11].)

Having the choice of the function ψ in (1.1) in mind, we introduce the
open disc segments

D1 := {(r cosϕ, r sinϕ) | r ∈ (0, 1), ϕ ∈ (0, π2 )},
D2 := {(r cosϕ, r sinϕ) | r ∈ (0, 1), ϕ ∈ (π2 , 2π)},
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using polar coordinates (r, ϕ) on D. To study functions that are only regular
on D1 and D2, but not on D, we use the broken fractional order Sobolev
spaces

PHs(D) := {f ∈ L2(D) | f |Di ∈ Hs(Di), i ∈ {1, 2}}, s ∈ [0, 2], (2.1)
being complete with respect to the norm

‖f‖PHs(D) :=
( 2∑
i=1
‖f |Di‖2Hs(Di)

)1/2
, f ∈ PHs(D).

We also note the interpolation property(
L2(D),PH2(D)

)
s/2,2 = PHs(D), s ∈ [0, 2].

An essential part of the proof for Theorem 1.1 consists in the derivation of
sharp upper and lower estimates for the functional K(·, ω,L2(D),PH2(D)),
see Lemmas 3.1 and 3.2. By sharp we mean that the upper and lower bounds
have the same decay rate near zero. To obtain the inequalities, it is useful to
analyze the second modulus of smoothness for the singular function ω on an
appropriately chosen open subset D0 of D1. To define the second modulus
of smoothness, we use the set

D0(h) = {v ∈ D0 | v + th ∈ D0 for all 0 ≤ t ≤ 1}

for h ∈ R2. Denoting the characteristic function of a set O ⊆ R2 by 1O, the
second modulus of smoothness of ω on D0 is defined as

m2(t, ω) := sup
0<|h|≤t

‖1D0(2h)(ω − 2ω(·+ h) + ω(·+ 2h))‖L2(D0), (2.2)

for t > 0, see Section 1 in [14] for instance. Lemma 1 in [14] and the
definition of the K-functional then provide the inequality
K(t2, ω,L2(D0),H2(D0))

≥ inf
g∈H2(D0)

(
‖ω − g‖L2(D0) + t2 sup

k1+k2=2
‖∂k1

x ∂
k2
y g‖L2(D0)

)
≥ Cm2(t, ω), t > 0,

with a uniform constant C > 0. We then infer the useful estimate
K(t2, ω,L2(D),PH2(D)) = inf

ω=f+g,
f∈L2(D), g∈PH2(D)

(
‖f‖L2(D) + t2‖g‖PH2(D)

)
≥ inf

ω=f̃+g̃,
f̃∈L2(D0), g̃∈H2(D0)

(
‖f̃‖L2(D0) + t2‖g̃‖H2(D0)

)
= K(t2, ω,L2(D0),H2(D0)) ≥ Cm2(t, ω) (2.3)

for t > 0, that comes into play in the proof of Lemma 3.1.

3. Estimates for the K-functional

In this section, we derive upper and lower estimates for the K-functional
of the singular function ω from (1.1). The inequalities are crucial for the
proof of Theorem 1.1 in Section 4. In particular, it turns out that it is
important to have upper and lower bounds for the K-functional that have
the same decay rate near zero.
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In the next lemma, we start with the desired lower estimate.

Lemma 3.1. The inequality
K(t2, ω,L2(D),PH2(D)) ≥ Cltα+1, t ∈ (0, 1],

is valid with a uniform constant Cl = Cl(ω) > 0.

Proof. 1) We consider the problem in cartesian coordinates (x, y) on the
open subset

D0 := {(x, y) | 0 < x2 + y2 < 1
16 , 0 < y < x}

of D1. Note that the cut-off function χ from (1.1) is then equal to one on
D0. As a result, ω has the representation

ω(x, y) = ψ(arctan( yx))|(x, y)|α, (x, y) ∈ D0.

On D0, we then calculate
∂xω(x, y) = −yψ′(arctan( yx))|(x, y)|α−2 + αxψ(arctan( yx))|(x, y)|α−2,

∂2
xω(x, y) =

(
y2ψ′′(arctan( yx))− 2(α− 1)yxψ′(arctan( yx))

+ α(α− 2)x2ψ(arctan( yx))
)
|(x, y)|α−4

+ αψ(arctan( yx))|(x, y)|α−2.

We next derive a lower estimate for the function −∂2
xω on an appropriate

part of D0. For convenience, we denote the piecewise C2-norm of ψ by
‖ψ‖C2 (meaning the supremum of the C2-norms on D1 and D2). Recall that
ψ satisfies the condition ψ(0) = 1, see Section 1. By continuity, there hence
is a number δ ∈ (0, π/2) with ψ(ϕ) ≥ 1/2 for ϕ ∈ [0, δ]. Let furthermore
x ∈ (0, 1

4
√

10) and 0 < y ≤ γx with γ := min{tan δ, (1−α)α
12‖ψ‖C2

}. Note that
γ < 1, as ψ(0) = 1 and α < 1. The choice of γ then in particular implies the
fact arctan( yx) ∈ (0, δ]. In view of the assumption α ∈ (0, 1), the relations(

α(2− α)x2ψ(arctan( yx))− y2ψ′′(arctan( yx))

− 2(1− α)yxψ′(arctan( yx))
)
|(x, y)|α−4

≥
(

1−α−2γ
2−α α(2− α)x2ψ(arctan( yx)) + 1+2γ

2−α α(2− α)x2ψ(arctan( yx))

− y2‖ψ‖C2 − 2yx‖ψ‖C2

)
|(x, y)|α−4

≥
(

1
2(1− α− 2γ)αx2 + (1 + 2γ)αx2ψ(arctan( yx))

− 3γx2‖ψ‖C2

)
|(x, y)|α−4 (3.1)

then follow. We next use the inequalities γ ≤ (1−α)α
12‖ψ‖C2

< 1−α
4 to conclude

the estimates(
1
2(1− α− 2γ)αx2+(1 + 2γ)αx2ψ(arctan( yx))−3γx2‖ψ‖C2

)
|(x, y)|α−4

≥
(

1
4(1− α)αx2+(1 + 2γ)αx2ψ(arctan( yx))−3γx2‖ψ‖C2

)
|(x, y)|α−4

≥ (1 + 2γ)αx2ψ(arctan( yx))|(x, y)|α−4. (3.2)
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Combining (3.1)–(3.2) and using again the relation y ≤ γx, we then infer
the useful inequalities
−∂2

xω(x, y)
≥ −αψ(arctan( yx))|(x, y)|α−2 + (1 + 2γ)αx2ψ(arctan( yx))|(x, y)|α−4

= α
(
− (x2 + y2) + (1 + 2γ)x2)ψ(arctan( yx))|(x, y)|α−4

≥ α
(
− (1 + γ) + 1 + 2γ)x2ψ(arctan( yx))|(x, y)|α−4

= αγx2ψ(arctan( yx))|(x, y)|α−4. (3.3)

2) We now bound the second modulus of smoothness m2(·, ω) for ω on
D0 from below, see (2.2). To that end, we choose t < 1

12
√

10 and h = (h1, 0)
with h1 = t in (2.2). Combining the choice of h1 and γ < 1, the inequalities

m2(t, ω)2 ≥
∫ h1

0

∫ γx

0

(
ω(x, y)− 2ω(x+ h1, y) + ω(x+ 2h1, y)

)2 dy dx

=
∫ h1

0

∫ γx

0

( ∫ h1

0
−∂xω(x+ s, y) + ∂xω(x+ h1 + s, y) ds

)2
dy dx

=
∫ h1

0

∫ γx

0

( ∫ h1

0

∫ h1

0
∂2
xω(x+ s+ τ, y) dτ ds

)2
dy dx

are obtained. Inserting now also (3.3), we infer the relation

m2(t, ω)2 ≥
∫ h1

0

∫ γx

0

( ∫ h1

0

∫ h1

0
αγ(x+ s+ τ)2ψ(arctan( y

x+s+τ ))

· |(x+ s+ τ, y)|α−4 dτ ds
)2

dy dx.

Taking also the fact ψ(arctan( y
x+s+τ )) ≥ 1

2 for x, s, τ ∈ (0, h1) and y < γx
into account, we arrive at the estimates
m2(t, ω)2

≥
∫ h1

0

∫ γx

0

( ∫ h1

0

∫ h1

0
α
2 γ(x+ s+ τ)2(1 + γ)α−4(x+ s+ τ)α−4 dτ ds

)2
dy dx

=
∫ h1

0

∫ γx

0

( ∫ h1

0
α
2 γ

(1+γ)α−4

1−α
(
(x+ s)α−1 − (x+ s+ h1)α−1) ds

)2
dy dx

≥
∫ h1

0

∫ γx

0

( ∫ h1

0
α
2 γ

(1+γ)α−4

1−α (1− (3
2)α−1)(x+ s)α−1 ds

)2
dy dx

≥
∫ h1

0

∫ γx

0

( ∫ h1

0
α
2 γ

(1+γ)α−4

1−α (1− (3
2)α−1)2α−1hα−1

1 ds
)2

dy dx

= α2

41−αγ
3 (1+γ)2α−8

8(1−α)2
(
1− (3

2)α−1)2h2α+2
1

=: C1h
2α+2
1 .

In view of (2.3), we hence conclude the result

K(t2, ω,L2(D),PH2(D)) ≥ C
√
C1t

α+1, 0 < t < 1
12
√

10 =: t0.

The monotonicity of the K-functional furthermore implies the inequality
K(t2, ω,L2(D),PH2(D)) ≥ K(t20, ω,L2(D),PH2(D)) =: C2 ≥ C2t

α+1

for t ∈ [t0, 1]. Altogether, we arrive at the desired statement. �
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The remaining upper estimate for the K-functional essentially follows
from a modification of the arguments in the proofs of Theorem 2.3 in [5]
and Theorem 2.5 in [6]. For the sake of a clear presentation, however, we
elaborate the proof.

Lemma 3.2. There is a uniform constant Cu = Cu(ω) > 0 with

K(t2, ω,L2(D),PH2(D)) ≤ Cutα+1, t ∈ (0, 1].

Proof. 1) Throughout the proof, C = C(ω) > 0 is a constant that is allowed
to change from line to line. Let δ ∈ (0, 1) be a fixed number that will
be determined later. Let furthermore χδ : [0, 1] → [0, 1] be a smooth cut-
off function with χδ = 1 on [0, δ/2], support in [0, δ], ‖χ′δ‖∞ ≤ C/δ, and
‖χ′′δ‖∞ ≤ C/δ2. We then write ω as the sum

ω(r, ϕ) = χδ(r)ω(r, ϕ) + (1− χδ(r))ω(r, ϕ) =: v1(r, ϕ) + v2(r, ϕ)

for r ∈ [0, 1] and ϕ ∈ [0, 2π). By construction, v2 is piecewise C2-regular on
the partition ∪2

i=1Di. As a result, the estimate

K(t2, ω,L2(D),PH2(D)) = inf
ω=ṽ1+ṽ2,

ṽ1∈L2(D), ṽ2∈PH2(D)

(
‖ṽ1‖L2(D) + t2‖ṽ2‖PH2(D)

)
≤ ‖v1‖L2(D) + t2‖v2‖PH2(D) (3.4)

is true. We next bound the quantities on the right hand side of (3.4) sepa-
rately. Note that we only focus on the disc segment D1. The remaining one
can be handled in the same way, due to symmetry.

2) Recall the definition
ω(r, ϕ) = χ(r)rαψ(ϕ)

of ω in (1.1). Since the cut-off functions χ and χδ are bounded by one, the
relation

‖v1‖2L2(D1) ≤ C‖ψ‖
2
∞

∫ δ

0
r2α+1 dr ≤ Cδ2α+2 (3.5)

is valid.
3) Similar to 2), we first bound the L2-norm of v2 by

‖v2‖2L2(D1) ≤ Cδ
2α−2. (3.6)

To estimate the H2-norm of v2 on D1, we note the fact

‖v2‖2H2(D1) ≤ C
(
‖v2‖2L2(D1) +

∫ 1

δ/2

∫ π/2

0

(
r|∂2

rv2|2 + 1
r |∂r∂ϕv2|2 + 1

r3 |∂ϕv2|2

+ 1
r |∂rv2|2 + 1

r3 |∂2
ϕv2|2

)
dϕdr

)
.

(3.7)
The inequality follows from the representation of all first and second order
derivatives in polar coordinates, and the location of the support of χδ. The
expressions on the right hand side of (3.7) are given by the formulas

∂rv2 =
(
− χ′δχrα + (1− χδ)(χ′rα + αχrα−1)

)
ψ,

∂2
rv2 =

((
− χ′′δχ− 2χ′δχ′ + (1− χδ)χ′′

)
rα + 2α

(
(1− χδ)χ′ − χ′δχ

)
rα−1
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+ α(α− 1)(1− χδ)χrα−2
)
ψ,

∂ϕv2 = (1− χδ)χrαψ′,
∂2
ϕv2 = (1− χδ)χrαψ′′,

∂ϕ∂rv2 =
(
− χ′δχrα + (1− χδ)(χ′rα + αχrα−1)

)
ψ′.

Combining the choice of χδ, (3.6) and (3.7), we then obtain the estimates

‖v2‖2H2(D1) ≤ C
(
‖v2‖2L2(D1) +

∫ δ

δ/2
(|χ′′δ |2r2α+1 + |χ′δ|2r2α−1)‖ψ‖C2 dr

+
∫ 1

δ/2
r2α−3 dr‖ψ‖C2

)
≤ C

(
δ2α−2 +

∫ δ

δ/2
( 1
δ4 r

2α+1 + 1
δ2 r

2α−1) dr
)

≤ Cδ2α−2.

Due to symmetry, an analogous inequality is true on D2. As a result, we
infer the relation

‖v2‖PH2(D) ≤ Cδ
α−1. (3.8)

4) In view of (3.4), (3.5) and (3.8), we arrive at the result
K(t2, ω,L2(D),PH2(D)) ≤ C(δα+1 + t2δα−1).

The asserted statement follows by choosing δ = t. �

Combining Lemmas 3.1 and 3.2, we can directly derive the following reg-
ularity statement for ω in terms of interpolation spaces. The first part of
the statement is well known, see [4] for instance.

Corollary 3.3. Let p ∈ [1,∞), and θ ∈ (0, 1+α
2 ). The function ω is an

element of the space(
L2(D),PH2(D)

)
θ,p
∩
(
L2(D),PH2(D)

)
(1+α)/2,∞.

The mapping is, however, not contained in the (continuous) interpolation
space (L2(D),PH2(D))(1+α)/2.

Proof. The first statement is a direct consequence of Lemma 3.2 and the
embeddings(

L2(D),PH2(D)
)
(1+α)/2,∞ ⊂

(
L2(D),PH2(D)

)
θ,1 ⊂

(
L2(D),PH2(D)

)
θ,p
,

see for instance Propositions 1.3 and 1.4 in [19]. The last claim follows from
Lemma 3.1. �

4. Proof of Theorem 1.1

This section is devoted to the proof of the main result Theorem 1.1. The
essential ingredients of the proof are an application of Theorem 2.1 in [13],
and the estimates for the K-functional of ω from Lemmas 3.1 and 3.2.

To transform our problem into the setting of Ivanov and Kalton, we in-
troduce the linear functional

Φ(v + λω) := λ, v ∈ PH2(D), λ ∈ R,
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on the space PH2(D)⊕ V . The latter is equipped with the norm
‖v + λω‖′ := |λ|+ ‖v‖PH2(D), v ∈ PH2(D), λ ∈ R.

The kernel of Φ then coincides with PH2(D), and Φ is bounded. Following
Section 2 in [13], we now also define the quantities
‖Φ‖t := sup{|Φ(f)| | f ∈ PH2(D)⊕ V with t‖f‖L2(D) + ‖f‖′ ≤ 1},

σ0 := lim
τ→∞

inf
0<τt≤1

1
log τ log K(τt,Φ)

K(t,Φ) ,

σ1 := lim
τ→∞

sup
0<τt≤1

1
log τ log K(τt,Φ)

K(t,Φ) ,

involving the function
K(t,Φ) := K(t,Φ, (PH2(D)⊕ V )∗,L2(D)∗), t > 0.

(The symbolW ∗ denotes the dual space ofW ∈ {PH2(D)⊕V,L2(D)}.) The
reasoning in the proof of Proposition 3.2 in [13] then gives rise to the useful
formulas

σ0 = lim
τ→∞

inf
s≥1

1
log τ log ‖Φ‖s‖Φ‖sτ , σ1 = lim

τ→∞
sup
s≥1

1
log τ log ‖Φ‖s‖Φ‖sτ . (4.1)

We next determine σ0 and σ1 in terms of the exponent α.

Lemma 4.1. The identity σ0 = σ1 = 1−α
2 is valid.

Proof. 1) For convenience, we write K(·, ω) for K(·, ω,L2(D),PH2(D)). Let
t > 0, and f = v + λω in PH2(D)⊕ V with t‖f‖L2(D) + ‖f‖′ ≤ 1. In case λ
is zero, the relation

|Φ(f)| = 0 ≤ 1
1+tK( 1

t ,ω)

is clearly true. The next goal is to establish the same estimate for nonzero
real λ. By definition of the norm ‖·‖′, we infer the estimates

1 ≥ t|λ|
(
‖ 1
λv + ω‖L2(D) + 1

t ‖
1
λv‖PH2(D)

)
+ |λ| ≥ t|λ|K(1

t , ω) + |λ|
= (1 + tK(1

t , ω))|Φ(f)|.

Taking now the supremum with respect to all functions f in PH2(D) ⊕ V
with t‖f‖L2(D) + ‖f‖′ ≤ 1, we conclude the result

‖Φ‖t ≤ 1
1+tK( 1

t ,ω)
. (4.2)

Next, we derive a similar lower inequality for ‖Φ‖t. To that end, let
w ∈ PH2(D) with

K(1
t , ω) + 1

t ≥ ‖w + ω‖L2(D) + 1
t ‖w‖PH2(D). (4.3)

We then put v := ‖Φ‖tw ∈ PH2(D). Note here the relation
t‖v + ‖Φ‖tω‖L2(D) + ‖Φ‖t + ‖v‖PH2(D) ≥ 1, (4.4)

being a consequence of the definition of ‖Φ‖t. Combining (4.3) and (4.4),
we conclude the estimates

1 ≥
‖ 1
‖Φ‖t v + ω‖L2(D) + 1

t ‖
1
‖Φ‖t v‖PH2(D)

K(1
t , ω) + 1

t
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=
1

t‖Φ‖t
(
t‖v + ‖Φ‖tω‖L2(D) + ‖v‖PH2(D)

)
K(1

t , ω) + 1
t

=
1

t‖Φ‖t
(
t‖v + ‖Φ‖tω‖L2(D) + ‖Φ‖t + ‖v‖PH2(D) − ‖Φ‖t

)
K(1

t , ω) + 1
t

≥
1

t‖Φ‖t (1− ‖Φ‖t)
K(1

t , ω) + 1
t

.

Simple algebraic manipulations then lead to the desired lower inequality

‖Φ‖t ≥ 1
tK( 1

t ,ω)+2
. (4.5)

2) To obtain a lower bound for σ0, we plug (4.2) and (4.5) into formula
(4.1). In this way, the relations

σ0 = lim
τ→∞

inf
s≥1

1
log τ log ‖Φ‖s‖Φ‖sτ ≥ lim

τ→∞
inf
s≥1

1
log τ log

(
sτK( 1

sτ ,ω)+1

sK( 1
s ,ω)+2

)
follow. Taking now also Lemmas 3.1 and 3.2 into account, we arrive at the
crucial result

σ0 ≥ lim
τ→∞

inf
s≥1

1
log τ log

(
Cls

1−α
2 τ

1−α
2

Cus
1−α

2 +2

)
≥ 1−α

2 .

Similar reasoning leads to the analogous statement

σ1 ≤ 1−α
2 .

Altogether, we conclude the asserted identity σ0 = σ1 = 1−α
2 . �

Combining the above Lemma 4.1 with Theorem 2.1 in [13], we are now
in the position to establish Theorem 1.1.

Proof of Theorem 1.1. 1) We first derive the second asserted identity(
PH1(D),PH2(D)⊕ V

)
θ2,2 = PH1+θ2(D), θ2 ∈ [0, α).

Applying Theorem 2.1 in [13] together with Lemma 4.1, we obtain the iden-
tities(

PH2(D)⊕ V,L2(D)
)

1−θ2
2 ,2

=
(
PH2(D),L2(D)

)
1−θ2

2 ,2

=
(
L2(D),PH2(D)

)
1+θ2

2 ,2
= PH1+θ2(D).

In particular, the statement(
PH2(D)⊕ V,L2(D)

)
1/2,2 = PH1(D) (4.6)

is obtained. Using now additionally reiteration interpolation, see Corol-
lary 1.24 in [19] for instance, we infer the second desired formula(

PH1(D),PH2(D)⊕ V
)
θ2,2 =

(
PH2(D)⊕ V,PH1(D)

)
1−θ2,2

=
(
PH2(D)⊕ V, (PH2(D)⊕ V,L2(D))1/2,2

)
1−θ2,2

=
(
PH2(D)⊕ V,L2(D)

)
1−θ2

2 ,2
= PH1+θ2(D).
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2) Let θ1 ∈ (α, 1). By Theorem 2.1 in [13] and Lemma 4.1, the interpola-
tion space(

PH2(D),L2(D)
)

1−θ1
2 ,2

=
(
L2(D),PH2(D)

)
1+θ1

2 ,2
= PH1+θ1(D)

is a closed subspace of codimension one in the space(
PH2(D)⊕ V,L2(D)

)
1−θ1

2 ,2

=
(
PH2(D)⊕ V, (PH2(D)⊕ V,L2(D))1/2,2

)
1−θ1,2

=
(
PH2(D)⊕ V,PH1(D)

)
1−θ1,2

=
(
PH1(D),PH2(D)⊕ V

)
θ1,2. (4.7)

Note here that we employ formula (4.6) in the second identity. Further-
more, the one-dimensional space V from (1.2) is also a closed subspace of(
PH1(D),PH2(D)⊕ V

)
θ1,2 with V ∩PH1+θ1(D) = {0}, see Corollary 3.3 or

[4] for instance. Altogether, we arrive at the first asserted identity(
PH1(D),PH2(D)⊕ V

)
θ1,2 = PH1+θ1(D)⊕ V.

3) It remains to conclude that the space PH1+α(D) is not closed in(
PH1(D),PH2(D)⊕ V

)
α,2. This statement is a consequence of the formula(

PH1(D),PH2(D)⊕ V
)
α,2 =

(
PH2(D)⊕ V,L2(D)

)
1−α

2 ,2
, (4.8)

Theorem 2.1 in [13], Lemma 4.1, and the relation

PH1+α(D) =
(
PH2(D),L2(D)

)
1−α

2 ,2
.

(Note that (4.8) is verified in the same way as (4.7).) �

Acknowledgements.
I want to thank Roland Schnaubelt, Peer Kunstmann, Marlis Hochbruck,

Dorothee Frey, and Nick Lindemulder for valuable discussions and advice
regarding this paper and my ongoing research. Moreover, I thank Roland
Schnaubelt for his careful reading of the manuscript.

References

[1] I. Asekritova, F. Cobos, and N. Kruglyak, Interpolation of closed sub-
spaces and invertibility of operators, Z. Anal. Anwend. 34 (1) (2015),
1–15.

[2] F. Assous, P.Jr. Ciarlet, and J. Segré, Numerical solution to the time-
dependent Maxwell equations in two-dimensional singular domains: The
singular complement method, J. Comput. Phys. 161 (1) (2000), 218–249.

[3] I. Babuška, and B.Q. Guo, Regularity of the solution of elliptic problems
with piecewise analytic data. Part I. Boundary value problems for linear
elliptic equation of second order, SIAM J. Math. Anal. 19 (1) (1988),
172–203.



12 KONSTANTIN ZERULLA

[4] I. Babuška, B. Andersson, B. Guo, J.M. Melenk, and H.S. Oh, Finite
element method for solving problems with singular solutions, J. Comput.
Appl. Math. 74 (1-2) (1996), 51–70.

[5] I. Babuška, and B.Q. Guo, Optimal estimates for lower and upper bounds
of approximation errors in the p-version of the finite element method in
two dimensions, Numer. Math. 85 (2) (2000), 219–255.

[6] I. Babuška, and B.Q. Guo, Direct and inverse approximation theo-
rems for the p-version of the finite element method in the framework
of weighted Besov spaces. Part I. Approximability of functions in the
weighted Besov spaces, SIAM J. Numer. Anal. 39 (5) (2001/02), 1512–
1538.

[7] P.Jr. Ciarlet, F. Lefèvre, S. Lohrengel, and S. Nicaise, Weighted reg-
ularization for composite materials in electromagnetism, M2AN Math.
Model. Numer. Anal. 44 (2010), 75–108.

[8] M. Costabel, and M. Dauge, Singularities of electromagnetic fields in
polyhedral domains, Arch. Ration. Mech. Anal. 151 (3) (2000), 221–276.

[9] M. Costabel, M. Dauge, and S. Nicaise, Singularities of Maxwell inter-
face problems, M2AN Math. Model. Numer. Anal. 33 (3) (1999), 627–
649.

[10] M. Dauge, Elliptic boundary value problems on corner domains.
Smoothness and asymptotics of solutions, Lect. Notes Math. Vol. 1341.
Springer, Berlin 1988.

[11] R.A. DeVore, and R.C. Sharpley, Besov spaces and domains in Rd,
Trans. Amer. Math. Soc. 335 (2) (1993), 843–864.

[12] P. Grisvard, Elliptic problems in nonsmooth domains, Pitman, Boston
1985.

[13] S. Ivanov, and N. Kalton, Interpolation of subspaces and applications
to exponential bases, St. Petersburg Math. J. 13 (2) (2002), 221–239.

[14] H. Johnen, and K. Scherer, On the equivalence of the K-functional and
moduli of continuity and some applications, in: Constructive theory of
functions of several variables, W. Schempp, and K. Zeller (ed.), Lect.
Notes Math. Vol. 571. Springer, Berlin 1977, 119–140.

[15] A. Jonsson, and H. Wallin, A Whitney extension theorem in Lp and
Besov spaces, Ann. Inst. Fourier (Grenoble), 28 (1) (1978), 139–192.

[16] R.B. Kellogg, Singularities in interface problems, in: Numerical solution
of partial differential equations-II. SYNSPADE 1970, B. Hubbard (ed.),
Academic Press, New York 1971, 351–400.



INTERPOLATION OF A REGULAR SUBSPACE 13

[17] J.L. Lions, and E. Magenes, Non-homogeneous boundary value problems
and applications, Vol. I, Springer, Berlin 1972.

[18] J. Löfström, Real interpolation with constraints, J. Approx. Theory 82
(1) (1995), 30–53.

[19] A. Lunardi, Interpolation theory (3rd ed.), Scuola Normale Superiore,
Pisa 2018.

[20] J. Nečas, Direct methods in the theory of elliptic equations (corr. 2nd
print.), Springer, Berlin 2012.

[21] S. Nicaise, Polygonal interface problems, Peter D. Lang, Frankfurt am
Main 1993.

[22] H. Triebel, Allgemeine Legendresche Differentialoperatoren II, Ann.
Scuola Norm. Sup. Pisa Cl. Sci. (3) 24 (1) (1970), 1–35.

[23] R. Wallstén, Remarks on interpolation of subspaces, in: Function spaces
and applications, M. Cwikel, J. Peetre, Y. Sagher, and H. Wallin (ed.),
Lect. Notes Math. Vol. 1302. Springer, Berlin 1988, 410–419.

Department of Mathematics, Karlsruhe Institute of Technology, Engler-
str. 2, 76131 Karlsruhe, Germany.
E-mail: konstantin.zerulla@kit.edu


	1. Introduction
	2. Analytical preliminaries
	3. Estimates for the K-functional
	4. Proof of Theorem 1.1
	Acknowledgements

	References

