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Abstract

Hierarchically structured active materials in lithium-ion battery (LIB)
electrodes with porous secondary particles are promising candidates to increase
gravimetric energy density and rate performance of the cell. However, there
are still aspects to this technology which are not fully understood. In order
to obtain deeper knowledge, the goal of this work is to develop efficient
tools to compute effective transport properties of granular cathode structures
as well as porous secondary particles and to evaluate their influence on the
electrochemical performance of the whole cell.

On the one hand, the resistor network method (RN)—a tool to efficiently
compute the effective transport properties of particulate systems—is extended
with regard to the transport through the solid and the pore phase of granular
media represented by sphere packings with polydisperse size-distributions. As
for the solid phase, transport through the volume, via the surface, or a mix of
both are considered. For all cases, appropriate analytically derived formulas
from literature describing resistance between two single particles are used or
combined accordingly. Finally, these single contact models are embedded into
the framework of the RN in order to compute effective transport properties. All
the proposed models—single contact as well es effective transport models—are
verified using finite element methods.

Regarding the pore phase, a novel method concerning the computation of the
effective transport properties is developed. By means of the so-called Laguerre
tessellation the pore phase of the system is decomposed into cells with each

i



Abstract

cell surrounding a particle. Consequently, the cell nodes and edges form the
basis of equivalent resistor networks. The nodes are identified as pore centers
and the edges are the pore throats. As an extension, this model is developed
further to account for more than one conducting species in the pore phase. Both
methods are either verified using the finite element method or validated with
the help of experiments taken from literature.

It is demonstrated that the efficiency of the RN can be used to generate a large
database with varying structure combinations. This way, the foundation is
created for deriving prediction formulas for the effective conductivity of porous
cathode structures represented by sphere packings with overlapping particles as
well as the effective resistance of porous secondary particles.

On the other hand, a mathematical model for half-cells with hierarchically
structured cathodes with porous secondary particles is proposed. First,
the classical half-cell model originating back to Newman and coworkers
is revisited and the basic assumptions for the electrochemically based
equations are presented. As a next step, the mathematical framework of the
volume averaging method is employed to consistently extend the classical
to the hierarchically structured half-cell model. For both models, the full
set of boundary conditions for the half-cell setup is presented. Finally,
the hierarchically structured half-cell model is qualitatively validated by
experiments taken from literature.

The validation of this model allows for large-scale parameter studies by varying
electronic conductivity and diffusion coefficient of the active material as well
as the morphology of the secondary particles. Exemplary results suggest
that, while the rate-limiting factor for the classical cathodes is the diffusion
coefficient of the active material, in case of the hierarchically structured
cathodes, it is the combination of electronic conductivity and inner morphology
of the secondary particles.
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Kurzfassung

Hierarchisch strukturierte Aktivmaterialien in Elektroden von Lithium-
Ionen-Batterien (LIB) mit porösen Sekundärpartikeln sind vielversprechende
Kandidaten zur Erhöhung der gravimetrischen Energiedichte und der
Ratenabhängigkeit der Zelle. Es gibt jedoch immer noch Aspekte dieser
Technologie, die noch nicht vollständig verstanden sind. Um ein tieferes
Verständnis darüber zu erlangen, wie die Kathodenstruktur und -morphologie
die Zellperformanz beeinflusst, ist das Ziel dieser Arbeit die Entwicklung
effizienter Werkzeuge zur Berechnung effektiver Transporteigenschaften für
granulare Kathodenstrukturen, die in Zellmodelle importiert werden können,
um die elektrochemische Zellleistung von LIBs zu bewerten.

Auf der einen Seite wird die Widerstandsnetzwerkmethode (RN)—ein
Werkzeug zur effizienten Berechnung der effektiven Transporteigenschaften
von Partikelsystemen—hinsichtlich des Transports durch die Fest- und
die Porenphase von granularen Medien, die durch Kugelpackungen mit
polydisperser Größenverteilung dargestellt werden, erweitert. Was die
Festphase anbelangt, so wird der Transport durch das Volumen der
Partikel, über deren Oberfläche oder ein Mix aus beiden betrachtet.
Für alle Fälle werden geeignete analytisch hergeleitete Formeln aus der
Literatur verwendet oder entsprechend kombiniert, sodass der Widerstand
zwischen zwei Einzelpartikeln beschrieben wird. Schließlich werden
diese Einzelkontaktmodelle im Rahmen der RN verwendet, um effektive
Transporteigenschaften zu berechnen. Alle vorgeschlagenen Modelle—sowohl
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die Einzelkontakt- als auch die effektiven Transportmodelle—werden mit
Finite-Elemente-Methoden (FEM) verifiziert.

Im Hinblick auf die Porenphase wird eine neuartige Methode zur Berechnung
der effektiven Transporteigenschaften entwickelt. Mit Hilfe der so genannten
Laguerre-Tessellation wird die Porenphase des Systems in Zellen zerlegt,
wobei jedes Partikel in ihnen liegt. Die Zellknoten und -kanten bilden die
Grundlage für äquivalente Widerstandsnetzwerke. Die Knoten werden als
Porenzentren betrachtet und die Kanten sind die Porenhälse. Als Erweiterung
wird dieses Modell dahingehend modifiziert, sodass es möglich ist, mehr als
eine leitende Spezies in der Porenphase zu berücksichtigen. Beide Methoden
werden entweder mit der FEM verifiziert oder mit Hilfe von Experimenten aus
der Literatur validiert.

Es wird gezeigt, dass die Effizienz des RN genutzt werden kann, um eine
große Datenbank mit unterschiedlichen Strukturkombinationen zu erzeugen.
Auf diese Weise lassen sich erfolgreich Vorhersageformeln für den effektiven
Widerstand von porösen Sekundärpartikeln sowie die effektive Leitfähigkeit
von Kugelpackungen mit überlappenden Partikeln ableiten. Analog zur
bekannten Bruggeman-Beziehung können diese Formeln in Zellmodellen
verwendet werden, um den Einfluss der effektiven Transporteigenschaften auf
die elektrochemische Performanz zu untersuchen.

Auf der anderen Seite wird ein mathematisches Modell für Halbzellen mit
hierarchisch strukturierten Kathoden vorgeschlagen. Zunächst wird das
klassische, auf Newman und Mitarbeiter zurückgehende Halbzellenmodell
rekapituliert und die Grundannahmen für die elektrochemisch basierten
Gleichungen vorgestellt. In einem nächsten Schritt wird das mathematische
Gerüst der Volumenmittelungsmethode verwendet, um das klassische auf das
hierarchisch strukturierte Halbzellenmodell konsequent zu erweitern. Für
beide Modelle wird der vollständige Satz von Randbedingungen für den
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Halbzellenaufbau vorgestellt. Schliesslich wird das hierarchisch strukturierte
Halbzellenmodell durch Experimente aus der Literatur qualitativ validiert.

Die Validierung dieses Modells ermöglicht groß angelegte Parameterstudien
durch Variation der elektronischen Leitfähigkeit und des Diffusionskoeffizien-
ten des aktiven Materials sowie der Morphologie der Sekundärpartikel. Vorläu-
fige Ergebnisse deuten darauf hin, dass, während der ratenbegrenzende Faktor
bei den klassischen Kathoden der Diffusionskoeffizient des aktiven Materials
ist, im Falle der hierarchisch strukturierten Kathoden es die Kombination aus
elektronischer Leitfähigkeit und innerer Morphologie der Sekundärpartikeln
ist.
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1 Introduction

1.1 Lithium-ion batteries

The continuous development of numerous mobile devices like smartphones,
laptops and tablets have a great impact on our daily life. For instance, almost
half of the people in Germany own both a smartphone and a tablet [1].
We communicate with each other, schedule appointments, carry out banking
transactions or even track our health. Overall, those little helpers have become
an important part of our daily routine. Furthermore, fossil fuel independent
and electrically driven automobiles continue to enter the market [2]. It can be
expected that in some way or the other our mobility will also change. For all
these examples lithium-ion battery (LIB) technology plays an important role.
It is worth noting that the development and implementation of this technology
has come a long way.

Development of lithium-ion batteries Just recently, in the year 2019,
the nobel prize in chemistry was awarded to John Goodenough, M. Stanley
Whittingham and Akira Yoshino [3]. The researchers were honored for
their contribution to the development and improvement of the lithium-ion
battery. The committee recognized that "[t]heir research not only allowed
for the commercial-scale manufacture of lithium-ion batteries, but it also has
supercharged research into all sorts of new technology, including wind and
solar power" [3]. Indeed, over the last three decades the commercial and
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academic world experienced a large progress and a considerable amount of
publications in that field [4].

Whittingham was the first who developed a battery using a titanium disulfide
cathode (LiTiS2), a nonaqueous electrolyte and a lithium metal anode. As a
result, the cell potential achieved was 2.5V [5]. This was an improvement
compared to the lead-acid batteries with a cell potential of 2.0V. Later,
Goodenough developed a cathode with an even higher potential. He used
lithium cobalt oxide (LiCoO2) where the cell voltage increased up to 4.0V [6].
However, both battery compositions lacked stability due to dendrite growth
of the lithium metal anode, which shortens battery lifetime and poses even
security risks [7]. Finally, Yoshino used the battery setup from Goodenough,
but switched the anode to a carbonaceous material. After running some
successful safety tests, in words of Yoshino, this was the birth of the lithium-ion
battery [8]. Indeed, modifications of carbonaceous materials were developed
ever since [9] and the vast majority of anode material until today is graphite
based [10].

Design and working principle There are two kinds of batteries. Primary
batteries can only be discharged once while the secondary batteries can be
recharged. Furthermore, a battery is usually built up of so-called cells, where
they can be put in series or parallel connection to achieve a desired electric
current or voltage. The design and working principle of a secondary battery
cell can be observed in Figure 1.1.

2
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Figure 1.1: Design and working principle of a lithium-ion battery cell.

The cell has a positive and a negative porous electrode, where both of which
consist of so-called active material. This granular material works as a host
structure being able to take up or release lithium. Moreover, typically,
electronically conductive carbon-black-binder mixture is added to the positive
electrode to enhance electronic conductivity. The electrodes are separated by
an electronically blocking porous layer, i.e. the separator. The pores of the
electrodes as well as the separator are filled with liquid electrolyte to guarantee
transport of the lithium ions through the whole cell. A commonly used salt in
the electrolyte is lithium hexafluorophosphate (LiPF6), which dissociates into
Li+ and PF6

− in the solvent [10].

During the discharge process, lithium is oxidized at the active material surface
of the anode. Consequently, electrons and lithium ions exit the anode material
and move to the cathode via an external circuit and the internal electrolyte
phase, respectively. The emerging external electric current can be used to
power devices. Together with the oxidation process, lithium ions are reduced
at the surface of the cathode material and the lithium atoms enter the crystal
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structure of the solid. Chemically, the above described process can be
expressed as

Li
oxidation−−−−−⇀↽−−−−−
reduction

Li++ e− , (1.1)

which is, in principle, a reversible process. This means that during charging
the above described process reverses its direction. Note that the anode and
the cathode is defined as the electrode where the oxidation and the reduction
occurs, respectively. Technically, only during the discharging the negative
electrode is the anode positive electrode is the cathode. Throughout this work,
only discharging processes are considered which is why the anode is identical
to the negative electrode and the cathode is the positive electrode.

The active material, i.e. the solid particles inside the positive and negative
electrode must be capable of taking up and releasing lithium atoms as well
as storing them. Commonly, graphite-based materials are used in case of the
negative electrodes [10]. Graphite is composed of multiple layers of hexagonal
C6 structures held together by weak van der Waals forces. Lithium atoms can
be stored between those layers where a maximum of one lithium atom can
be stored per six carbon atoms. Therefore, the notation is Li1−xC6, where
0≤ x≤ 1 represents the so-called degree of lithiation.

In case of the positive electrode, the used materials are typically oxides of
transition metals. The crystal structure must be one that allows lithium to move
freely and be stored or released when needed. Additionally, the compound has
to be stable for a large range of lithiation. An overview of the possible material
structures can be found in [11]. However, new material compositions are
continuously under development. Also, commercially used cathode materials
can be found in [12]. For example, a commonly used material is lithium
manganese oxide (Lix(Ni1/3Mn1/3Co1/3)O2 or NMC), where the capacity is
high [13], the rate capability is good [14, 15] and it can operate at high voltages.

A brief look into the future of batteries shows that there is further development
in many directions. For instance, in order to tackle stability problems with the
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liquid electrolyte [16], so-called solid state electrolyte systems are a strong
field of research [17]. Moreover, in view of the critical discussions about
the resources used in a battery, may it be due to the abundance, geographical
distribution or the environmental impact of lithium and other materials, the
natural approach is to use sodium-ion batteries instead [18]. However, since
those technologies are not market-ready yet, the chosen approach is to tweak
the lithium-ion battery technology as far as possible to increase efficiency and
thus limit resource consumption.

Requirements for lithium-ion batteries During the past years, alternative
energy sources have been pursued to reduce fossil fuel consumption.
Therefore, electrochemical energy conversion and storage is under continuous
development [19]. Assuming a renewable energy based electricity production
and storage, the promising technologies are batteries, fuel cells and
electrochemical capacitors. In this work, the focus is on lithium-ion batteries.

Depending on the field of application the requirements for lithium-ion batteries
vary. Generally, the parameters of interest are the specific energy or energy
density in the units of Whkg−1 or WhL−1, respectively. The difference
between the two is that they are expressed either in terms of mass or in terms
of volume. In other words, the best case scenario is having both quantities at
high values representing high energy output while keeping weight and space
requirements low. Moreover, these quantities can be used to compare different
technologies against each other. For instance, the specific energy of gasoline
reaches values of 1700Whkg−1 [20] whereas current lithium-ion batteries
yield around 250Whkg−1 and 440Whkg−1 against a porous or lithium metal
anode, respectively [20].

Apparently, for the lithium-ion battery technology to become a real alternative
to, say, fossil fuels, specific energy must approximately double [21]. Since
the specific energy is mainly governed by the positive electrode [22], finding
better suited positive electrode materials is one solution. Those materials
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must have greater redox potentials and larger electric capacity [22]. Also,
composition and synthesis of the material plays an important role [23, 24].
Additionally, since the materials remain to be poor electronic and ionic
conductors, improving the electrode structure can lead to a better exploitation
of the applied material. As an example, decreasing the particle size and thus
increasing the surface area for the electrochemical reactions leads to higher
rate capabilities, which means a more stable discharge capacity for higher
currents [25]. As a drawback, however, it was found that cycle stability, i.e.
retained capacity over multiple charging and discharging cycles, diminishes.
Promising candidates to overcome this problem are the so-called hierarchically
structured cathodes where the initial material is processed in such a way
that a distinct inner porosity of the active material is achieved. Primary
particles, which typically built-up secondary particles of LIB cathodes, now
form agglomerates and granular structures inside the secondary particles.
Ultimately, in this way created cathodes experience high rate capability and
cycle stability at the same time, see [26–30].

1.2 State of the art in battery modeling

There are different methods to model batteries. On the one hand, there are
empirical models like equivalent-circuit models. Here, simple systems of cell-
scale ordinary-difference equations (ODEs) are used, which can be easily and
cost-efficiently implemented in battery management systems [31]. On the other
hand, there are physics-based models. As the name suggests, they are derived
based on laws of physics and they allow predictions whereas the empirical
models can only be used within experimentally marked bounds.

Physics-based models can act on different scales [10]. The smallest of which
is the molecular scale where the movement of atoms can be tracked and

6



1.2 State of the art in battery modeling

simulated. One scale above is the microscale or the particle-scale where the
solid active material particles are spatially resolved, see for example [32–34].
Finally, the macroscale represents the cell level, where the distribution of
quantities is not resolved spatially. Instead, the aim is to treat the cell as a
continuum while having all inhomogeneities smeared out using appropriate
volume averaging methods. This way, the cell can be treated as a homogeneous
medium where the microscopic features are represented by effective transport
and structure parameters. In this work, the macroscale modeling approach is
chosen.

Cell modeling A mathematical model was developed based on the works
by Newman and co-workers [35–37], which is commonly referred to as
the Newman cell model. Here, models for electrochemical systems were
combined with porous electrodes using the porous electrode theory [38]. In
the framework of the porous electrode theory, volume-averaged quantities were
used where all the geometrical details are intrinsically accounted for [35].
Ultimately, the electrode is considered to be the superposition of two continua,
i.e. the electrolyte and the solid phase. Later, the model was extended to model
lithium-ion cells by [36, 39–46]. The key idea of the cell model is that the total
electric current inside the cell is the sum of the ionic current, i.e. the current
carried by the electrolyte, and the electronic current, i.e. the current carried by
the solid phase. Both the currents are linked via electrochemical reactions at
the surfaces of active material particles. The reaction is typically described by
a charge transfer current or flux using the Butler-Volmer equation [47].

Due to the flexible nature of the cell model, it was extended in many
directions [37]. For instance, a model to account for two different particle
sizes within one electrode was implemented in [48] and an extension to
account for thermal problems was presented in [49]. However, only little
effort was taken to model hierarchically structured electrodes [50]. In [51],
an impedance model for an agglomerate secondary particle was proposed
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and in [52], an electrochemical-mechanical model was developed for porous
secondary particles. In [53], an agglomerate Newman type cell model was
proposed. Here, an additional pore space was introduced on the active material
particle level where the transport of species and the electrochemical reactions
take place on the internal surfaces. It was possible to simulate better rate
capabilities as compared to non-porous secondary particles.

Cathode structure modeling As mentioned above, apart from material
choice, the microstructure of electrodes impacts cell performance [54–60].
Obviously, the particle size distribution influences the microstructure
and thus the performance as well [61]. Additionally, the mechanical
densification processes, such as calendering of the electrode, changes the
microstructure [62–64].

Usually, by densifying the microstructure, the conductivity of the solid phase
and therefore the electronic conductivity can be enhanced. However, this also
reduces the pore space and thus the ionic conductivity, see [65]. In other words,
the effective transport properties, i.e. effective conductivity and effective
diffusivity, change with altering microstructure. Ultimately, the composition
of the microstructure and the densification process should lead to an optimum
balance between the effective transport properties of the solid and the pore
phase.

During the past years there have been a couple of theoretically [66–68] and
empirically driven prediction formulas [69] to estimate the effective transport
properties in porous media. Also, theoretical upper and lower bounds for
effective transport properties were derived, as in [70]. Usually, the formulas
take the form of functions of the volume fractions of the contributing phases.
A well-known volume fraction based relation to calculate effective transport
properties of porous media is the Bruggeman relation [71].
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Nowadays, proper tools like the FIB/SEM tomography allow the electrode mi-
crostructure to be spatially resolved and virtually reconstructed. Those voxel1

based data, the effective transport properties can be calculated using finite
element methods (FEM) or extended finite element methods (XFEM) [72–74].
This way, the effective transport properties calculated are much more accurate
than the above mentioned prediction formulas. However, the tomography,
reconstruction and calculation process is expensive in terms of time and re-
sources.

When considering the cathode structure as a granular system, a well-
established way to model such structures is the Discrete Element
Method (DEM) [75]. As compared to spatially resolved FEM or XFEM,
in the framework of the DEM, each particle is represented a single element
possessing a overall properties only, such as velocity, temperature, potential,
and so on. In the most simple case, the elements are spheres, which
are geometrically characterized by their coordinates and radii. Modeling
granular systems as particulate assemblies is the basis of the Resistor Network
Method (RN) [76–80]. For instance, in [76], the effective thermal conductivity
is described by a network of contacting spheres where each contact is weighted
by a thermal resistance. By extension, this method can be used for non-
spherical assemblies, e.g. ellipsoids [81, 82]. As an applied example,
in [83], resistor networks were used for the calculation of effective transport
properties in solid oxide fuel cells (SOFC). Furthermore, in [84, 85] the RN
was employed for the calculation of the solid phase conductivity of both SOFCs
and LIBs.

Resistor networks can also be used to calculate the effective transport
properties of the pore phase [86]. Among the first was [87–89], where the
permeability was calculated using Darcy’s law. Pore networks were created
based on assemblies of spheres using a so-called Delaunay tessellation. The

1 Voxels are 3D extensions of 2D pixels.
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pore connecting throats were each weighted by a hydraulic conductivity. The
hydraulic conductivity was determined based on the geometry based effective
throat radius. A similar discretization approach was used in [90]. The so-called
Laguerre or generalized Voronoi tessellation was used in [91, 92]. By means of
this spatial decomposition technique the pore phase was divided into cells. The
cell vertices and edges represent the pore centers and pore throats, respectively,
and formed the basis of the resistor network. Pore throat resistances were
attributed to the edges based on geometric bottlenecks due to the surrounding
particles.

A statistics approach was chosen in [93, 94], where effective transport
properties were calculated using a prediction formula based on volume
fraction, tortuosity and constrictivity. The latter of which is a quantity
resembling the influence of bottlenecks inside the system. To this end,
numerous microstructures were generated virtually and the effective transport
properties were calculated by simulations. The generation of virtual but
realistic microstructure was also done in [95, 96]. Also, recent developments
use machine learning techniques on network-based modeling of the effective
transport properties of particulate media [97, 98].

1.3 Objectives of this work

The goal of this work is to combine effective transport property delivering tools
with well-established cell models. Therefore, the resistor network method is
extended in such a way that it becomes capable of providing all necessary
quantities needed for cell modeling. Moreover, the Newman cell model is
revisited and further developed in order to model hierarchically structured
lithium-ion battery electrodes.

10



1.3 Objectives of this work

The structure of this work is as follows. In Chapter 2, the fundamental theories
and tools which are crucial for the whole subsequent work are presented. First,
the mathematical equivalence of different transport phenomena is discussed.
Second, the volume average method is presented, which is key to the
development of the cell models, may it be classical or hierarchically structured
cell models. Finally, the theoretical background of the resistor network method
is presented and an algorithmic solving scheme is proposed.

Chapter 3 introduces the resistor network method for both the solid and the
pore phase. As for the solid phase, the method is extended in particular
such that either the transport can be through the volume or via the surface
of the particles. Additionally, a combination of both transport mechanisms is
presented. Concerning the pore phase, the RN is applied to either the volume of
the pore phase or to a mixture of several different species inside the pore phase.
Finally, all the extensions are either verified using finite element methods
where possible or validated using experimental evidence from literature.

Chapter 4 is dedicated to cell modeling. The derivation of the hierarchically
structured cell model necessitates a deeper knowledge of the classical cell
model. Therefore, the volume average approach is used to comprehend the
standard cell model according to Newman. Later, the same approach is used
to consistently derive the hierarchically structured cell model. Additionally,
the boundary conditions for both models are mathematically derived and
physically motivated.

In Chapter 5, both the resistor network method and the cell models are applied
to specific problems. First, structural influences of secondary particles - which
are composed of smaller primary particles - on the effective transport is studied
by means of the RN. Second, the RN is further used to investigate the structural
influence of densely packed sphere assemblies on effective transport via the
particle volumes and the surfaces. Finally, the classical and hierarchically

11



1 Introduction

structured cell model is applied to real-world cathode structures. Chapter 6
summarizes and concludes this work.

12



2 Fundamentals

2.1 Mathematical equivalence of transport
problems

Under steady-state conditions, the local conservation law can generally be
expressed by the continuity equation

∇ ·~F = 0 , (2.1)

where ~F is the flux vector and ∇ · (. . .) is the divergence operator. In case
of linear transport, it becomes obvious that different transport phenomena can
be treated using the identical mathematical framework, see also [68, 99]. For
instance, energy, species and charge conservation is described by

∇ ·~q = 0 , ∇ ·~j = 0 and ∇ ·~i = 0 , (2.2)

where~q,~j and~i is the heat flux density, mass flux density and electric current
density vector, respectively.

The flux vectors in Equation (2.2) can be expressed via the constitutive laws
dependant on the transport problem under consideration. The thermal, species
and charge transport is typically defined by Fourier’s, Fick’s and Ohm’s law

~q =−λ ∇T , ~j =−D∇c and ~i =−κ ∇ϕ . (2.3)
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2 Fundamentals

It can be seen here that, in general, the flux is linear dependant on some
driving force [100]. Here, λ is the thermal conductivity coefficient, D is
the diffusion, or diffusivity, coefficient and κ is the electric conductivity
coefficient. Furthermore, in the respective constitutive law, the driving force
is either the negative gradient of temperature −∇T or the negative gradient of
concentration −∇c or the negative gradient of electric potential −∇ϕ .

2.2 Volume averaging method

In this work, the focus is on porous and heterogeneous materials. In
particular, the heterogeneities of the material are considered to be small and
homogeneously distributed - in a statistical sense - with respect to the overall
dimensions of the system. It is common to refer to the smaller scale as the
microscale and the larger scale as the macroscale. Obviously, the structure and
the transport processes of the microscale influence the macroscopical transport
properties. However, it can be expected that spatially resolved simulations
of transport processes on the small heterogeneities level are computationally
expensive, if possible at all. Instead, the idea is to subsume information
of the microscale and solve the transport equations on the macroscale
directly. Typically, a representative volume element (RVE) is defined where
its dimensions are sufficiently large to encompass all microscopic phenomena
and sufficiently small compared to the system geometry. Inside the RVEs,
microscopic equations are transformed to macroscopic ones by employing
volume averaging methods [101–105]. In the following, equations defined
on the microscale are referred to as microscale equations whereas equations
defined on the macroscale are referred to as macroscale equations. The
structure on the left-hand side of Figure 2.1 represents a porous and statistically
homogeneous material. On the right-hand side of Figure 2.1, the magnified
region stands for a representative volume element. The macro- and the
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2.2 Volume averaging method

microscale is described by the ~x- and the ~ξ -coordinate vector, respectively,
where the representative volume element is defined in terms of ~ξ . Inside the
representative volume element, the total volume V is occupied by the α- and
β -phase such that V =V α +V β .

Figure 2.1: Volume average sketch.

Consider a general transport problem in the α-phase described by the
continuity equation as

∂ pα

∂ t
+∇ξ ·~Fα = bα , (2.4)

where pα ≡ pα(~x+~ξ , t) is the potential, ~Fα ≡ ~Fα(~x+~ξ , t) is the flux vector,
and bα ≡ bα(~x+~ξ , t) is the source term of this particular phase. The continuity
equation must hold for every spatial point ~ξ and time t of the RVE which, in
turn, is located at a spatial point~x.

In order to upscale the problem onto the macroscale, depicted by the x-
coordinate, Equation (2.4) is averaged over the volume of the RVE. Practically,
it is integrated over the volume V and divided by itself leading to

1
V

∫
V

[
∂ pα

∂ t
+∇ ·~Fα

]
dV ξ =

1
V

∫
V

bαV ξ , (2.5)

or, alternatively,

1
V

∫
V

∂ pα

∂ t
dV ξ +

1
V

∫
V

∇ ·~Fα dV ξ =
1
V

∫
V

bαV ξ . (2.6)
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Considering that the integral can be separated as
∫

V (. . .)dV ξ =
∫

V α (. . .)dV ξ +∫
V β (. . .)dV ξ , where it is defined that α-phase properties are zero in every other

phase, Equation (2.6) becomes

1
V

∫
Vα

∂ pα

∂ t
dV ξ +

1
V

∫
Vα

∇ ·~Fα dV ξ =
1
V

∫
Vα

bαV ξ , (2.7)

where Vα ≡Vα(~x, t) is the volume of the α-phase inside the RVE volume.

Take note that volume averages of a property ψ over phase α are defined as

〈ψα(~x, t)〉=
1
V

∫
Vα (~x,t)

ψα(~x+~ξ , t)dV ξ (2.8)

and
ψα(~x, t) =

1
Vα(~x, t)

∫
Vα (~x,t)

ψα(~x+~ξ , t)dV ξ , (2.9)

where the former of which is called phase average and the latter of which is
called intrinsic phase average [106]. Comparing Equations (2.8) and (2.9) it
can be concluded that

〈ψα(~x, t)〉=
Vα(~x, t)

V︸ ︷︷ ︸
φα (~x,t)

ψα(~x, t) = φα(~x, t)ψα(~x, t) , (2.10)

where φα(~x, t) is the volume fraction of the α-phase. Consequently, the phase
averaged continuity equation in Equation (2.7) can be rewritten as

〈∂ pα

∂ t
〉+ 〈∇ ·~Fα〉= 〈bα〉 . (2.11)
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2.2 Volume averaging method

As a next step, each of the terms in Equation (2.11) is transformed using
volume averaging theorems [106, 107]. First, the first term on the left-hand
side of Equation (2.11) is transformed into

〈∂ pα

∂ t
〉= ∂ 〈pα〉

∂ t
− 1

V

∫
Aαβ

pα~vαβ ·~nα dAξ , (2.12)

where Aαβ ≡ Aαβ (~x, t) is the interfacial area between the α- and β -phase,
~vαβ ≡ (~x+~ξ , t) and~nα ≡~nα(~x+~ξ , t) is the velocity and the normal vector of
the interfacial area, respectively. Note that the normal vector is pointing from
the β - into the α-phase. The integral term represents the change of phase inside
the RVE [106]. Assuming non-moving interfacial area and time-independent
volume fraction of the α-phase φα , the velocity vector is equal to zero, such
that the integral term of Equation (2.12) vanishes, yielding

〈∂ pα

∂ t
〉= ∂ 〈pα〉

∂ t
(2.13)

and the intrinsic volume average expression of Equation (2.13) is

∂ 〈pα〉
∂ t

=
∂
(
φα pα

)
∂ t

= φα

∂ pα

∂ t
, (2.14)

respectively. The intrinsic volume average pα is also called the macroscopic
potential.

Second, the second term of the left-hand side of Equation (2.11) is converted
using another volume average theorem, leading to

〈∇ ·~Fα〉= ∇ · 〈~Fα〉−
1
V

∫
Aαβ

~Fα ·~nα dAξ . (2.15)
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The integral term represents the volume-averaged flux at the interfacial area
between the α- and β -phase. Using the average of all surface fluxes f αβ , the
integral term reduces to

1
V

∫
Aαβ

~Fα ·~nα dAξ =
Aαβ

V︸︷︷︸
aαβ

f αβ = aαβ f αβ , (2.16)

where aαβ is the specific surface area between the α- and β -phase. In
accordance to Section 2.1, the α-phase flux vector

~Fα =−kα ∇pα (2.17)

is related to the gradient of the potential pα and conductivity coefficient
of kα of phase α . Before using another volume average theorem on the
second term of the right-hand side of Equation (2.15), the constitutive law
from Equation (2.17) is inserted first. Extracting the constant conductivity
coefficient yields

〈−kα ∇pα〉=−kα〈∇pα〉 . (2.18)

The volume-averaged gradient term in the above equation is

〈∇pα〉= ∇〈pα〉−
1
V

∫
Aαβ

pα~nα dAξ . (2.19)

Assuming that all particles inside the RVE have smooth surfaces and are
symmetric with respect to their centers meaning that every normal vector on
the surface has a counter part on the other side of the particle which points
in the exact other direction. Also pα is assumed to be uniformly distributed
across the surfaces. Eventually, the integral over the surface, i.e. the integral
on the right-hand side of Equation (2.19), disappears. This leads to

〈∇pα〉= ∇〈pα〉 , (2.20)
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2.2 Volume averaging method

which, expressing in terms of intrinsic volume average, yields

∇〈pα〉= ∇
(
φα pα

)
= φα ∇pα . (2.21)

In spite of the assumptions made before, the volume fraction φα ≡ φα(~x) is
still dependent on the macroscopic location ~x. However, in Equation (2.21),
the volume fraction is taken as constant and, thus, extracted from the gradient
operator.

Finally, the right-hand side of Equation (2.11) simply is

〈bα〉= φα bα . (2.22)

Summarizing, the macroscopic continuity equation from Equation (2.11) is
expressed as

φα

∂ pα

∂ t
+∇ ·

(
−kα φα ∇pα

)
−aαβ f αβ = φα bα . (2.23)

The term kα φα is defined using the effective conductivity k
α,eff, such that

Equation (2.23) becomes

φα

∂ pα

∂ t
+∇ ·

(
−kα,eff∇pα

)
−aαβ f αβ = φα bα . (2.24)

The above procedure for the α-phase is performed analogously with respect to
the β -phase, which yields

φβ

∂ pβ

∂ t
+∇ ·

(
−k

β ,eff∇pβ

)
+aαβ f αβ = φβ bβ . (2.25)

In accordance to above, φβ is the volume fraction, pβ is the macroscopic
potential, k

β ,eff is the effective conductivity and bβ is the average source term
of the β -phase.
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2.3 Resistor network method

In this section, the general idea behind the resistor network method is explained
and is partially taken from [91]. The method, as used here, follows [108],
where the so-called node potential method is introduced. It is being used to
calculate electric circuits.

From Section 2.1, irrespective of the underlying physical mechanisms, it
becomes clear that the mathematical problems of thermal, diffusive and charge
transport has the exact same structure. In the following, the mathematical
formulation of the resistor network method is presented using the example
of charge transport. When focusing for the calculation of effective transport
properties in porous materials on charge transport, may it be electronic or ionic,
it is understood in view of the above discussion that the method presented here
will also apply to thermal and diffusion processes which plays an important
role in the context of lithium-ion batteries, as well.

Mathematical formulation of a resistor network

Consider the example network of nodes and resistors sketched in Figure 2.2.
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2.3 Resistor network method

Figure 2.2: Exemplary electrical circuit to describe the resistor network method. a) Nodes NI ,
NJ and the currents II,J on the edges between those nodes. b) Potentials ϕ I , ϕJ at the
nodes and resistances RI,J

κ at the edges. c) Using potential drop U0,1 = ϕ0 −ϕ1 in
order to calculate the effective transport properties.

The nodes NI , NJ and the currents II,J between those nodes, respectively, are
indicated in Figure 2.2a. A yet unknown effective current Ieff between the
nodes N0 and N1 results from a potential drop between those nodes. Note that
N0 and N1 have been chosen such that all the other nodes lie between them. In
other words, N0 and N1 represent the boundary nodes, i.e. the current collector
nodes. At each node NI , Kirchhoff’s current law,

II =

nneigh,I

∑
J

II,J = 0 , (2.26)

accounting for the conservation of charge, is combined with Ohm’s law,

II,J =
U I,J

RI,J
κ

=
ϕ I−ϕJ

RI,J
κ

, (2.27)
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representing the constitutive property of the resistors. Here, nneigh,I is the
number of neighbors of node NI and U I,J is the voltage between the nodes,
represented by a potential drop ϕ I−ϕJ . As a result, the equation

II =

nneigh,I

∑
J

II,J =

nneigh,I

∑
J

ϕ I−ϕJ

RI,J
κ

=

nneigh,I

∑
J

(ϕ I−ϕ
J)GI,J = 0 (2.28)

can be formulated for each node. Note that the directions of the currents in
Figure 2.2a can be chosen arbitrarily as long as the sign of each current in
Equation (2.28) is treated consistently. One choice would be that current II,J

pointing away from a node NI has a negative sign.

According to Figure 2.2b, the unknown potentials ϕ I , ϕJ correspond to the
respective nodes NI , NJ and RI,J

κ is the resistance between the nodes. Also, the
conductance GI,J = 1/RI,J

κ is used as the reciprocal of the respective resistance.
Now, it is possible to assemble a linear system of equations for the given node
resistor network.

In order to solve the system of linear equations, the unknown current Ieff

is replaced by an arbitrarily chosen potential drop U0,1 = ϕ0 − ϕ1 between
the boundaries, see Figure 2.2c. After solving for the unknown potentials
ϕ I , the unknown effective current Ieff and therefore the effective resistance
Rκ,eff =U0,1/Ieff of the system can be calculated.

Solution scheme

In the following, a general scheme for solving resistor networks according to
above is presented. Due to its generality, the method described below is well
suited to be used in a computer program, see [108].
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2.3 Resistor network method

1) Create the conductivity matrix G as

Gi j =

∑
nneigh,I
J GI,J if i = j ,

−GI,J otherwise
(2.29)

and the current vector~I as

I j =


Ieff if j = 0 ,

−Ieff if j = 1 ,

0 otherwise ,

(2.30)

where i, j = 0,1, ...,n, with n being the number of nodes. Furthermore,
nneigh,I is the number of neighbors of the individual node. As shown in
Figure 2.2, Ieff is the current entering the network in node 0 and leaving
the network at node 1. The resulting system of linear equations can be
set up as

G00 G10 G20 · · · Gn0

G01 G11 G21 · · · Gn1

G02 G12 G22 · · · Gn2
...

...
...

. . .
...

G0n G1n G2n · · · Gnn


︸ ︷︷ ︸

G



ϕ0

ϕ1

ϕ2
...

ϕn


︸ ︷︷ ︸

~ϕ

=



−Ieff

Ieff

0
...

0


︸ ︷︷ ︸

~I

.
(2.31)

2) Next, the unknown current Ieff is eliminated from the right-hand side
of Equation (2.31). As a result, a modified system of linear equations
is created which is smaller by one degree of freedom. To this end, the
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equality ϕ0 = ϕ1 +U0,1 is used and the first row in Equation (2.31) is
rewritten as

G00 G10 G20 · · · Gn0

G01 G11 G21 · · · Gn1

G02 G12 G22 · · · Gn2
...

...
...

. . .
...

G0n G1n G2n · · · Gnn





ϕ1 +U0,1

ϕ1

ϕ2
...

ϕn


=



−Ieff

Ieff

0
...

0


.

(2.32)
Second, the known voltage U0,1 is transferred to the right-hand side
which leads to

G00 G10 G20 · · · Gn0

G01 G11 G21 · · · Gn1

G02 G12 G22 · · · Gn2
...

...
...

. . .
...

G0n G1n G2n · · · Gnn





ϕ1

ϕ1

ϕ2
...

ϕn


=



−Ieff−G00U0,1

Ieff−G01U0,1

−G02U0,1

...

−G0nU0,1


.

(2.33)

24



2.3 Resistor network method

Third, the unknown Ieff is eliminated from the right-hand side of the
second line by adding the first two lines. Further, the redundant first line
is deleted such that

G01 +G00 +G11 +G10 G21 +G20 · · · Gn1 +Gn0

G02 +G12 G22 · · · Gn2
...

...
. . .

...

G0n +G1n G2n · · · Gnn


︸ ︷︷ ︸

Ĝ


ϕ1

ϕ2
...

ϕn


︸ ︷︷ ︸

~̂ϕ

=


−(G01 +G00)U0,1

−G02U0,1

...

−G0nU0,1


︸ ︷︷ ︸

~̂I
(2.34)

becomes the modified system of linear equations, where Ĝ is the
modified conductivity matrix, ~̂ϕ is the modified potential vector and ~̂I

is the modified current vector.

3) Now,

Ĝ ~̂ϕ = ~̂I (2.35)

can be solved for the modified unknown potential vector ~̂ϕ .
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4) In the next step, the potential values have to be adjusted to the given
boundary conditions, that is ϕ0 = 0 and ϕ1 = ϕ0−U0,1, by adding the
offset potential ϕoff = ϕ1− ϕ̂1 to all ϕ j>0

ϕ j =

ϕ0 if j = 0

ϕ̂ j +ϕoff otherwise ,
(2.36)

for j = 0, ...,nnodes and reassign potential values ϕ j to ϕJ where the value
of the index j corresponds to node number J.

5) In the last step, the unknown current Ieff can be calculated as the sum of
all nneigh,I currents entering current collector node N0

Ieff =

nneigh

∑
J

ϕ0−ϕJ

R0,J
κ

. (2.37)

When the effective current Ieff is known, the effective resistance Rκ,eff and
therefore the effective conductance Geff can be calculated by

Rκ,eff =
U0,1

Ieff
or Geff =

1
Rκ,eff

. (2.38)

Finally, as in this work the effective conductivity of a representative volume
element is considered, domain dimensions have to be taken into account.
Usually, rectangular domains are considered of a cross section Adomain and a
length Ldomain such that the effective conductivity can be calculated as

κeff = Geff
Ldomain

Adomain
=

Ieff

U0,1
Ldomain

Adomain
. (2.39)
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3 Modeling effective transport
properties in assemblies of spheres

A large focus of this work is the computation of transport properties in
granular materials where the transport can be carried either by solid particles or
pores. With modeling those materials using assemblies of spheres, the spheres
represent the solid phase and the void space is considered to be the pore phase.
In the following, based on the resistor network method scheme, as presented
in Section 2.3, models are developed for the computation of effective transport
properties in sphere packings. Since the transport can be through the solid
phase or the pore phase, models are proposed to create equivalent resistor
networks being applicable for both phases, accordingly. Moreover, since this
is key to the resistor network method, appropriate models are presented to
compute individual resistances inside the network.

3.1 Effective transport properties
of the solid phase

To start with, the computation of effective transport properties of the solid
phase is considered. Here, the transport can be through the volume or via
the surface of the particles. Moreover, a combination of both is possible.
Therefore, as a first step, transport through the volume is presented. As a
second step, the transport via the surfaces is modeled. Finally, a model is
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3 Modeling effective transport properties in assemblies of spheres

proposed representing a combination of both transport types. In general, the
following methods use the geometrical bottleneck effect of contacting particles
in order to calculate effective transport properties.

3.1.1 Volume resistance of two overlapping solid spheres

The first transport type considered is via the volume of two overlapping
spheres. Therefore, a theory and a model of transport between two overlapping
spheres is presented. Afterwards, this model is checked for validity using the
finite element method [91].

Theory Many different cases of heat transfer problems were derived
in [109]. In particular, as sketched in Figure 3.1a, a steady-state heat flux ~φq is
assumed through a circular aperture between two semi-infinite media. In large
distance from the hole, a temperature T0 on the one side and T0 +∆T on the
other side is applied. In such cases, the thermal resistance can be calculated as

R
λ
=

1/λ a + 1/λ b

4rc
. (3.1)

The thermal bulk conductivities of the semi-infinite media are λ a and λ b and
rc is the radius of the circular aperture where the steady-state heat flux ~φq flows
through.

If, as a special case, thermal conductivity is equal to λ a = λ b = λ p,
Equation (3.1) reduces to the solution

R
λ
=

1
2rp λ p , (3.2)

which is given in [110].
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3.1 Effective transport properties of the solid phase

Model As a next step, Equation (3.1) is employed to calculate the resistance
of two overlapping spheres. Therefore, in accordance with Section 2.1, the
solution of the thermal problem is applied to a general transport problem. In
Figure 3.1b, the two semi-infinite media are interpreted as two half-spheres
with the radii rI and rJ , respectively. The bulk conductivities of the I’th and
J’th particle are kI and kJ . Furthermore, the two half-spheres are geometrically
overlapping and thus forming a contact radius rI,J

c between them. Similar to
above, a potential p0 is imposed on the middle-surface of one of the half-
spheres and p0 +∆p on the other. The resulting flux is Fres.

Figure 3.1: Solid-volume resistance. a) Heat flow through a circular aperture between two semi-
infinite materials. b) Flow through two overlapping spheres.

Assuming that the potentials are far away from the contact radius and the
volume of the half-spheres is comparably large, the analytical Formula in
Equation (3.1) can be applied to two overlapping half-spheres, yielding

RI,J
solid,vol =

1/kI + 1/kJ

4rI,J
c

. (3.3)

The subscript "solid,vol" refers to the transport through the whole volume of
the contacting solid spheres. The herby described resistance shall be called
solid-volume resistance which is based on the sphere model.
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3 Modeling effective transport properties in assemblies of spheres

Verification and discussion In order to verify Equation (3.3) and thus
the solid-volume resistance, finite element simulations were conducted using
the commercially available software Abaqus [111]. The FEM provides the
spatially resolved solution of the stationary boundary value problem for two
half-spheres in contact as shown in Figure 3.1b.

The half-spheres are overlapping to form the contact radius rI,J
c . A potential

gradient, i.e. temperature gradient ∆T in the FEM models, is imposed on the
middle surfaces of the spheres. In order to calculate the resulting resistance
RFEM in the FEM calculation, the total flux, i.e. φ FEM

q , at the middle surface of
one of the spheres is used to finally obtain

RFEM =
∆T

φ FEM
q

. (3.4)

A series of finite element simulations were carried out, where not only the
radius ratio rI/rJ and the contact radius relative to the smaller sphere rI/rI,J

c

was varied but also the bulk conductivity quotient kI/kJ . In Figure 3.2, the
dimensionless representation of the resistance R̂ = R rI

1/kI+1/kJ is plotted versus
the dimensionless contact radius rI/rI,J

c for three arbitrarily chosen cases but
with relatively extreme ratios.
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3.1 Effective transport properties of the solid phase

Figure 3.2: Verification of the solid-volume resistance model in Equation (3.3) with varying radii
and conductivities using the finite element method.

It can be seen that the values calculated according to Equation (3.3) have a
good performance as they agree very well with the results by the finite element
simulations. The mean error ē remains within 4% for relatively large overlaps,
e.g. rI/rI,J

c = 1, as well as for relatively small overlaps, e.g. rI/rI,J
c = 20. The

latter of which means that the contact radius is merely 5% of the smaller of the
particle radius.

Furthermore, it has to be noted that the solid-volume resistance from
Equation (3.3) even fits well with the FEM reference results when the radius
ratio rI/rJ was varied from 1/1 to 1/100 and the conductivity ratio kI/kJ was varied
from 1/1 to 1/300 and 300/1.

In view of the above findings, it can be concluded that Equation (3.3), and thus
the solid-volume resistance, is successfully verified to calculate the resistance
of two overlapping spheres. It should be noted that the model makes it possible
to not only calculate the resistance of two different-sized spheres, but also
the bulk conductivities of the particles don’t necessarily have to be equal
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3 Modeling effective transport properties in assemblies of spheres

anymore. Therefore, it is an improvement of the formulas proposed in, for
example, [76, 84].

3.1.2 Effective transport properties of
overlapping solid sphere assemblies

In the above section, it was shown that the volume resistance of two
overlapping solid spheres can be described by Equation (3.3), i.e. the solid-
volume resistance. For the application to an assembly of spheres, however,
it is necessary that the formula also works well inside a network. Therefore,
test cases have been produced and the results by RN, where the solid-volume
resistance is of crucial importance, are compared to those by FEM analysis.
Since there is no analytical solution of the transport problem of random
spherical particle assemblies, the results by FEM are taken as the exact solution
and thus as the reference [91].

Resistor network method for the solid phase The following method
considers the solid phase of a granular structure to be an assembly of
spheres. In contrast to, say, the finite element method, the properties of an
individual sphere are not spatially resolved. Instead, each sphere carries overall
properties, such as uniform temperature, electric potential, concentration and
alike. Overlapping spheres form transport pathways through the assembly and,
therefore, increase effective thermal and electric conductivity, diffusivity, etc.
of the system.

In order to calculate effective transport properties, the above mentioned
transport - or percolated - pathways have to be converted into a network of
nodes and resistors. As a first step, as it is highlighted in Figure 3.3a, those
clusters of spheres have to be identified which connect the boundaries of the
opposing sides. On the topic of cluster identification, refer, for example,
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3.1 Effective transport properties of the solid phase

to [112–114]. The grey-colored particles do not take part in the transport
process and can be neglected.

Figure 3.3: Equivalent resistor network to calculate the effective conductivity of the solid volume
phase. a) Percolating, i.e. conducting, pathways. b) Nodes, i.e. potentials, at the
centers of the particles and edges, i.e. resistances, at the contacts, i.e. overlaps. c)
Connection to the current collectors and boundary nodes.

Second, as shown Figure 3.3b, the percolated clusters are converted into
equivalent networks by assigning nodes and potentials ϕ I , ϕJ to the centers
of the particles. Also, resistors RI,J

solid,vol are attributed to the edges between
those nodes according to the geometric relation from Equation (3.3). Finally,
as shown in Figure 3.3c, additional nodes are added to model the boundary
nodes where the boundary conditions are imposed on. The resistor network is
thus created which is the basis for the calculation of the effective conductivity
according to the scheme presented in Section 2.3.

Model description As mentioned previously, the transport problems in this
work, can be described using equivalent mathematical forms, see Section 2.1.
Therefore, the methods used for, say, heat transport problems can be used
equivalently for electric transport problems. Accordingly, the FEM solution
is acquired by using the heat transport module in Abaqus [111], where the
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3 Modeling effective transport properties in assemblies of spheres

10-node quadratic tetrahedron element DC3D10 is chosen. Similar to above,
the finite element simulation serves as the reference since it is the spatially
resolved exact solution of the steady-state boundary value problem. Finally, the
effective transport properties, achieved by both the FEM and RN methods, are
compared to each other. In case the results by the resistor network method don’t
deviate from the finite element solution, the former of which can be regarded
as verified.

There were two steps involved in generating the particle structures.
First, the initial structure was created using the random close packing
algorithm (RCP) [115]. Generally, the RCP produces randomly distributed,
densely packed and overlap-free assemblies of spheres. Following the
approach of [116, 117], the algorithm scope of application was extended to
cover any given size-distribution of the particles, i.e. the radii of the spheres.
In this case, a normal distribution with a given mean radius rmean and standard
deviation rσ .

Secondly, the initial structure was further densified using an algorithm which
will be called numerical sintering [84, 85]. While keeping the centers fixed in
space the radii of the spheres inside the assembly were successively increased
until a ceratin threshold was reached. The threshold can be a targeted packing
factor, i.e. volume fraction of the solid phase φsolid, or the mean contact angle
θc,mean, see [85]. The contact angle θ

I,J
c of two overlapping spheres is defined

as the bigger of the two angles θ I
c and θ J

c enclosing the contact radius rc, see
Figure 3.4.
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3.1 Effective transport properties of the solid phase

Figure 3.4: Contact angles of two contacting spheres.

Finally, θc,mean is calculated as the mean of the contact angles of all contact
pairs in the system. In the following, the threshold was defined using the
mean contact angle. It is important to note that during this densification
routine any sorts of mechanics were neglected, i.e. contact forces and alike.
The geometrical data of the spheres were then imported into a box-shaped
simulation domain and in both, the FEM and RN analysis, transport through
two opposite conducting surfaces in z-direction was considered.

Concerning the FEM models, as shown in Figure 3.6b, the spheres were cut off
at the conducting surfaces and all nodes on one of these surfaces were set to
the same temperature, while the potential of the nodes on the opposite surface
were dropped by ∆T = 1 with respect to this potential. The resulting heat flux
φ FEM

q was obtained at one of the surfaces where temperature was applied. By
using the domain length Ldomain and cross section area Adomain, it is possible to
calculate the effective thermal conductivity as

λ
FEM
eff =

φ FEM
q

∆T
Ldomain

Adomain
. (3.5)

As for the RN model, the exact same assembly of spheres can be seen in
Figure 3.6a. In the above described framework of the resistor network method,
the sphere assembly has to be converted into an equivalent circuit of nodes
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3 Modeling effective transport properties in assemblies of spheres

and resistors. In order to ensure the same electric potential at the conducting
surfaces of the simulation domain, additional boundary nodes were created
lying exactly on those surfaces. These boundary nodes were constructed as the
contact points of those spheres which were overlapping with the conducting
surface. The resistance between a boundary node and a node in the simulation
domain is calculated as

RI,0
solid,vol =

1/κ I

4rI,0
c

, (3.6)

where rI,0
c is the contact radius of the sphere I and the conducting surface, see

Figure 3.5.

Figure 3.5: Construction of boundary nodes and computation of boundary solid-volume
resistances.

For the resulting network, an electric potential drop of ∆ϕ = 1 was imposed
on the boundary nodes of two opposing surfaces. By considering the domain
length and cross section area, the effective electric conductivity can be
calculated via

κ
RN
eff =

Ieff
∆ϕ

Ldomain

Adomain
, (3.7)

where the effective current Ieff was calculated using the resistor network
method scheme from Section 2.3.
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3.1 Effective transport properties of the solid phase

Test cases For the purpose of verification, up to 15 assemblies were created,
following the method described above. The cases were divided into certain
types of assemblies, see Table 5.1. From the first to the third assembly type,
the mean radius was fixed to an arbitrary length unit of 1 and the mean contact
angle was fixed to 15°, respectively. The only difference among them was the
standard deviation of particle radii, which ranged from 0 to 0.25, such that with
increasing assembly type number the degree polydispersity increased, as well.

Figure 3.6: Verification models of the solid-volume resistor network method for an assembly
of spheres. a) Potential distribution through the network of contacting spheres. b)
Temperature distribution of the spatially resolved finite element mesh.

In Figure 3.6, an example of the test cases is presented. The shown assembly
type 3 is the one with the largest polydispersity.

Evaluation and discussion In order to compare the effective transport
properties, i.e. the thermal and electric conductivity, provided by the FEM and
the RN simulations, respectively, a so-called effective transport parameter k̂eff

is defined. A dimensionless ratio of the effective transport property divided by
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3 Modeling effective transport properties in assemblies of spheres

Table 3.1: Structural parameters of the spherical packings for the RN verification of the transport
through the volume of solid spheres.

Type rmean rσ θc φsolid,mean φpore,mean rc,mean

1 1.00 0.00 15° 0.653 0.327 0.257
2 1.00 0.10 15° 0.650 0.350 0.245
3 1.00 0.20 15° 0.646 0.354 0.234

its bulk conductivity. In case of the thermal transport problem and the electric
transport problem, this yields

k̂FEM
eff =

λ FEM
eff

λbulk
and k̂RN

eff =
κRN

eff
κbulk

, (3.8)

respectively. λbulk is the thermal and κbulk is the electric bulk conductivity. In
Figure 3.7, transport parameters resulting from FEM and RN simulations are
plotted against each other. On the horizontal axis the results from the FEM
solution are shown and on the vertical axis the corresponding values from the
RN analysis are plotted. The black solid line in this figure represents a perfect
match of both the results whereas values above or below indicate an over- or
underestimation of the effective transport parameter by the RN with respect to
FEM.
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3.1 Effective transport properties of the solid phase

Figure 3.7: Verification of the solid-volume resistor network method using finite element
simulations.

It can be seen that the RN results are overestimating the actual effective
transport. However, the average error is around e = 5% which is within an
acceptable range considering the fact that the very complex structure is merely
approximated by nodes and resistors. In other words, the exact solution is
achieved with a lot less degrees of freedom and within a much shorter time [91].

From the above observations, a very good agreement can be stated for the
resistor network approach with the spatially resolved finite element results.
Therefore, the RN is considered to be verified to calculate the effective
transport properties via the solid volume of assemblies of overlapping spheres
with polydisperse size-distributions.

3.1.3 Surface resistance of two overlapping solid spheres

It was shown that the volume resistance of two overlapping spheres can be
calculated by the geometrical contact radius, on the one hand, and the bulk
conductivities of the contacting spheres, on the other hand, see Equation (3.3).
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3 Modeling effective transport properties in assemblies of spheres

For some applications, however, the transport doesn’t necessarily have to
be via the volume. To increase the electronic conductivity, for example,
non-conducting active material particles are coated with a high-conductive
material [118]. In those cases it may be justified to assume that the transport is
solely over the surface of the particles.

Theory In [119], the electric current flow over the surface of spherical
particles was investigated. The electric surface resistance of two overlapping
spheres was found to be

Rκ ,surf =
ρsurf

2π
ln
(

tan(θt/2)

tan(θc/2)

)
. (3.9)

Here, ρsurf is the electric surface resistivity, θt and θc shall be called transport
angle and contact angle, respectively.

In Figure 3.8a, exemplarily, the sketch of two spheres in contact can be seen.
It is assumed that the electric current~I flows completely via the surface and, in
addition, between the contact angle θc and the transport angle θt . The transport
angle θt must be in the range of [θc,180°) because otherwise the logarithmic
expression becomes either negative or infinite.

Model In order to model the transport via the surface, a suitable shell model
is developed. The surface of a sphere is represented by a thin shell, where the
bulk conductivity kbulk of the material under consideration is applied to. The
surface resistivity from above is related to the bulk conductivity as

ρsurf =
1

kbulk · s
, (3.10)

where s is the shell thickness. The idea behind this model is that as long as the
shell is thin enough, the surface transport is accounted for.
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3.1 Effective transport properties of the solid phase

In Figure 3.8b, the model just described is shown. Here, two half-shells with
the radii rI and rJ are geometrically overlapping to form the contact radius rI,J

c .
Now, due to the fact that the former radii can differ in size, the resulting contact
angles θ I

c and θ J
c may also be different. The transport angles are θ

I,J
t and θ

J,I
t .

The respective thickness of the shells is given as sI and sJ . Also, the shell bulk
conductivities are kI and kJ .

Figure 3.8: Solid-surface resistance. a) Electric current via the surface of two contacting spheres.
b) Flow through two overlapping shells.

Finally, the resulting resistance of two overlapping shells is calculated by a
series connection of the surface resistance, as in Equation 3.9, where the shell-
thicknesses and -resistances are accounted for by using the shell model from
Equation 3.10.

RI,J
solid,surf = RI

solid,surf +RJ
solid,surf

=
1/kI sI

2π
ln

(
tan(θ

I,J
t /2)

tan(θ I
c/2)

)
+

1/kJ sJ

2π
ln

(
tan(θ

J,I
t /2)

tan(θ J
c/2)

)
.

(3.11)
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3 Modeling effective transport properties in assemblies of spheres

The subscript "solid,surf" refers to the transport via the surface of the solid
particles. Thus, the resistance described here shall be called solid-surface
resistance whereas the underlying model is called the shell model.

Verification and discussion A series of FEM scenarios were generated to
verify Equation (3.11). Following the model in Figure 3.8b, the finite element
models were created accordingly. Therefore, geometrically overlapping shells
were created. To be precise, similar to Section 3.1.1, half-shells were created.
A potential gradient was represented by a temperature drop of ∆T = 1 between
the nodes at the mid-surfaces of the half-shells. The resulting flux is the total
heat flux φ FEM

q at one of the top or bottom mid-surface. It is used to calculate
the resistance of the FEM models by

RFEM =
∆T

φ FEM
q

. (3.12)

In Figure 3.9, the results of the investigation can be seen. Here, the
dimensionless representation of the resistance R̂ = R

1/kI sI+1/kJ sJ is plotted versus
the ratio rI/rI,J

c , where rI is the smaller of the two radii. The ratio ranges from
around 1 up to around 10, where the former means that the contact radius is
almost the same as the smaller radius of the two and the latter means that it is
10% of the size of the smaller radius.
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3.1 Effective transport properties of the solid phase

Figure 3.9: Verification of the solid-surface resistance model in Equation (3.11) with varying
radii and conductivities using the finite element method. a) Shell thickness ratio
c = 0.05. b) Shell thickness ratio c = 0.10. c) Shell thickness ratio c = 0.15.
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3 Modeling effective transport properties in assemblies of spheres

As an example of normal to extreme cases, the radius ratio rI/rJ was varied from
equal-sized 1/1 to relatively large ratios of 1/10. Furthermore, the conductivity
ratio kI/kJ was also varied from 1/1 up to 1/300. Lastly, in Figure 3.9a, b and c,
the shell thickness ratio c = sI/rI−sI = sJ/rJ−sJ was varied from 0.05 via 0.1 to
0.15. This stands for the ratio of the shell thicknesses to the inner radii which,
in turn, are the radii of the inner surfaces of the shells. For all cases, θ

I,J
t and

θ
J,I
t were set to 90°.

Generally, evaluating Figure 3.9, it can be noted that RI,J
solid,surf fits best

for relatively low values of rI/rI,J
c , that is for large overlaps. However, in

Figure 3.9a, it can be seen that even for a relatively large rI/rI,J
c ratio the formula

performs best for thin shells with c = 0.05, where the mean error is around
e = 3%. Also, for moderate shell thicknesses of c = 0.10, the mean error of
e = 8% is accaptable.

From what was found above, the solid-surface resistance and, in turn, the shell
model is considered to be successfully verified. Using this model, it is possible
to calculate the resistance between two thin overlapping shells, where not only
the radii can be different, but also the conductivities of the shells. The only
restriction is that the shells have to be thin enough. That is to say, the thickness
of the shells should not exceed the radii of the sphere which they are covering
by 15%.

3.1.4 Effective transport properties of
overlapping solid shell assemblies

It was shown, that the resistance of two single contacting shells can be
calculated using the solid-surface resistance. Next, it is investigated if the
proposed formula in Equation 3.11 holds for an assembly of shells.
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3.1 Effective transport properties of the solid phase

Resistor network method for shell assemblies Recall that the solid phase
of a granular structure was taken as collection of spheres. Since now the
focus is on the transport via the surface of the spheres, rather, the structure
is considered as an assembly of thin shells. Similar to above, overlapping
shells form conducting pathways through the system and contribute to the
effective conductivity. In order to calculate the effective conductivity of shell
assemblies, the resistor network is used and adapted, accordingly.

In Figure 3.10, the general approach on how to apply the RN scheme on the
shell model is sketched. First, conducting, i.e. percolating, pathways through
the assemblies have to be found, see the highlighted shells in Figure 3.10a.
Next, potentials ϕ I and ϕJ are assigned to the shell centers, i.e. nodes, and the
resistances RI,J

solid,surf are assigned to the contact pairs, i.e. edges, as can be seen
in Figure 3.10b. Finally, in Figure 3.10c, the boundary conditions are applied
to the boundary nodes and the equivalent node network can be solved using the
scheme according to Section 2.3.

Figure 3.10: Equivalent resistor network to calculate the effective conductivity via the solid
surface. a) Percolating, i.e. conducting, pathways. b) Nodes, i.e. potentials, at the
centers of the shells and edges, i.e. resistances, at the contacts, i.e. overlapping
shells. c) Connection to the current collectors and boundary nodes.
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3 Modeling effective transport properties in assemblies of spheres

While using the solid-surface resistance for the contact pairs in Figure 3.10b,
setting the transport angle between two contacting shells in the assembly needs
special treatment. That is because the presence of more than one contact
partner of a shell is likely to influence the transport path along the shell and
decreases the transport angle. In Figure 3.11, exemplarily, four shells are
sketched, where the I’th shell in the middle is in contact with the surrounding
J’th, K’th and L’th shell. Now, in order calculate the resistance RI,J

solid,surf

between the I’th and the J’th shell, the adjacent contact pairs have to be
accounted for by adjusting the transport angle θ

I,J
t in Equation (3.11).

Figure 3.11: Calculation of the transport angle for shells with adjecent contacts.

Consider for the solid-shell resistance RI,J
solid,surf between shell I and J the

contribution of the region around the J’th and L’th shell. Apparently, the
transport path becomes shorter, the closer the L’th shell approaches J. The
length of the transport path is represented by the transport angle θt and, in
particular, θ

I,J−L
t describes the transport path between the contact pair I and J

and the neighborhood of L. Note that the transport angle θ
I,J−L
t starts from the

axis between the centroids of I’th and J’th shell and ends at the contact radius
of the I’th and L’th shell. In 3D, the angle is measured on the plane constructed
by the axis between the centroids of I’th and J’th shell and the axis between the
centroids of I’th and L’th shell. Since there can be more than one contacting
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neighbor to I, the other contact pairs have to be considered as well. Therefore,
in a similar fashion, the transport angle θ

I,J−K
t is calculated.

Finally, the transport angle θ
I,J
t , entering Equation (3.11), is taken as the

average of all transport angles. Thus,

θ
I,J
t =

1
nneigh,I

nneigh

∑
n=1

θ
I,J−i(n)
t for i(n) = J,K,L, ...i(nneigh,I) , (3.13)

where nneigh,I is the number of contact neighbors of shell I and i(n) is the index
of the n’th shell. Note that it is chosen that θ

I,J−J
t = 90° in Equation (3.13) and

the maximim transport angle is set to 90°.

Model description The generation of the shell assemblies was done
in a similar fashion to Section 3.1.2. The RCP is used to generate
randomly distributed, densely packed and overlap-free collections of spheres.
Additionally, the particle size of the generated structures can be a polydisperse
distribution, following a normal distribution. Then, the structures were
densified until a certain threshold was reached, in this case it was the mean
contact angle.

The densified sphere assemblies were the basis for the FEM models. In order
to generate shells, a shell-thickness must be provided. With regard to the shell
thickness, for every sphere imported from the generated structures, another
sphere around the same center was imported, as well, with the shell thickness
substracted from its radius. As a next step, the inner sphere was geometricaly
substracted from the outer sphere and hence leaving a shell.

In Figure 3.13b, the meshed shells can be seen. Additionally, with respect to
the dimensions of the simulation box, the parts of the shells outside the box
in z-direction are cut off. The color gradient in the same figure represents the
temperature gradient. For the finite element model, a temperature gradient of
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∆T = 1 was imposed on the nodes of the opposing surface of the domain in
z-direction on the cutting plane.

Finally, the resulting heat flux φ FEM
q was evaluated at the top or bottom surface

in z-direction to achieve the effective thermal conductivity as

λ
FEM
eff =

φ FEM
q

∆T
Ldomain

Adomain
, (3.14)

domain length and domain cross-section area is Ldomain and Adomain,
respectively.

The generated sphere assemblies from above were imported and solved using
the RN framework. In accordance to the boundary conditions in the finite
element model, an electric potential drop of ∆ϕ = 1 is applied to the boundary
nodes in z-direction. The boundary nodes were generated as the contact points
of the shells and the boundary plane in z-direction und, thus, lying exactly on
that plane. The resistance between a boundary node and a node within the
simulation domain was calculated as

RI,0
solid,surf =

1/kI sI

2π
ln

(
tan(θ

I,0
t /2)

tan(θ
I,0
c /2)

)
, (3.15)

where θ
I,0
c and θ

I,0
t is the contact and transport angle between boundary plane

and shell, respectively, see Figure 3.12. Note that θ
I,0
t is computed as described

above, where the axis between the I’th shell and the boundary 0 is constructed
between the shell center and the boundary node coordinates.

48



3.1 Effective transport properties of the solid phase

Figure 3.12: Construction of boundary nodes and boundary solid-surface resistances.

In Figure 3.14a, the electric potential distribution of an example assembly can
be seen. The simulation box is depicted by the black borders.

The resistor network analysis provided the effective electric conductivity

κ
RN
eff =

Ieff
∆ϕ

Ldomain

Adomain
, (3.16)

where the effective current Ieff was calculated using the resistor network
solving scheme according to Section 2.3.

Test cases In the following, up to 15 test cases were produced and, based on
the test cases, the RN results were compared to the ones from FEM simulations.
Three types of assemblies were generated. As can be seen in Table 3.3, the
assemblies differ in their standard deviation of the radii ranging from 0.0, i.e.
mono-sized particles, to 0.20, i.e. polydisperse particle size distribution. In
every one of the cases, the shell thickness ratio was set to c = s/r−s = 0.1. This
corresponds to a moderate shell thickness according to the investigation above,
which resembles the average case. In Figure 3.13, the RN and FEM models
are compare to each other. Here, the assembly is of the type 3 whith the largest
standard deviation rσ .
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Table 3.3: Structural parameters of the spherical packings for the verification of the RN transport
via the surface of solid spheres.

Type rmean rσ θc,mean φsolid,mean φpore,mean rc,mean θt,mean

1 1.00 0.00 15° 0.659 0.341 0.257 83.338°
2 1.00 0.10 15° 0.645 0.355 0.244 84.077°
3 1.00 0.20 15° 0.647 0.353 0.234 84.714°

Figure 3.13: Verification models of the solid-surface resistor network method for an assembly
of shells. a) Potential distribution through the network of discrete elements. b)
Temperature distribution of the spatially resolved finite element mesh.

Evaluation and discussion For comparison reasons, previously mentioned
dimensionless effective transport parameters are used. Therefore, the effective
thermal and electric conductivities are normalized as

k̂FEM
eff =

λ FEM
eff

λshell
and k̂RN

eff =
κRN

eff
κshell

, (3.17)
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respectively, where λshell is the thermal and κshell is electric conductivity of the
shells.

In Figure 3.14, the results can be observerd. The effective transport parameters
are plotted against each other. On the horizontal axis, the results from the FEM
solution are potted whereas on the vertical axis, the RN reults are provided.
The black solid line indicates a perfect match of both results. Points above or
below mean over- or underestimation of the finite element results which are
taken as reference results.

Figure 3.14: Verification of the solid-surface resistor network method using finite element
simulations.

In general, the results provided by the resistor network method overestimate
the reference finite element results. On the other hand, the mean error ē is
below 5%. This is a reasonably low error, given that the solid-surface model
is a rather rough approximation of the suface transport over a very complex
structure.
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3.1.5 Mixed resistance of overlapping core-shells

The shell model, as presented above, can be used when the transport properties
of the conductive coating is much larger than the core. Due to the large variety
of different coatings for the cathode and anode material [120], for instance,
there may be cases where the transport property of the core material can not be
neglected [121].

Model To account for such cases, the idea now is to simply superimpose the
solid-volume transport, Figure 3.1, and the solid-surface transport, Figure 3.8.
As a result, in Figure 3.15, the volume part is represented by the core and the
surface part is represented by the shell.

Figure 3.15: Flow through two overlapping core-shells.

Both the core and the shell radii are represented as rI and rJ . The cores have
a conductivity of kI

core and kJ
core whereas the shells have a conductivity of kI

shell

and kJ
shell. Furthermore, the two resistances, volume and surface, are sharing

the same contact radius rI,J
c and contact angles θ I

c and θ J
c . The transport angles

are θ
I,J
t and θ

J,I
t .
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As a consequence, the superposition of the two transport phenomena leads
to a parallel connection of the volume and the shell resistance model,
Equations (3.3) and (3.11), respectively, yielding

RI,J
solid,mix =

 1

RI,J
solid,surf +RI,J

solid,vol

−1

=

 1
1/kI

shell sI

2π
ln
(

tan(θ
I,J
t /2)

tan(θ I
c/2)

)
+

1/kJ
shell sJ

2π
ln
(

tan(θ :J,It /2)

tan(θJ
c/2)

)
+

1/kI
core+1/kJ

core
4rI,J

c


−1

.

(3.18)
Since the equivalent resistance is a mixed form of solid-volume and solid-
surface resistance, it will be called solid-mix resistance and the underlying
model is called core-shell model.

Verification and discussion For verification purposes, and as was done
above for the previous cases, a series of geometrically overlapping core-shell
FEM scenarios were created. The cores and shells were meshed separately
but shared the same nodes at the interface between core and shell. Hence, the
temperature in the finite element simulation was continiuous at those interfaces.
Therefore, the FEM simulation represents a physically more realistic situation
than the superposition of the core-shell model.
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Figure 3.16: Verification of the solid-mix resistance model RI,J
solid,mix as presented in

Equation (3.18) with varying radii and conductivities using the finite element
method. a) Shell thickness ratio c = 0.05. b) Shell thickness ratio c = 0.10. c) Shell
thickness ratio c = 0.15.
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Exemplarily, in Figure 3.16, those results are shown where the radius ratios rI/rJ

take moderate values, i.e. 1/1 and 1/5, and rather extreme values, i.e. 1/10. Also,
the shell conductivities kI

shell and kJ
shell range both from 2 up to 10 whereas the

cores conductivities always remain at 1. Finally, for all combinations, the shell
thickness ratio c = sI/rI−sI = sJ/rJ−sJ was varied from 0.05, via 0.1, to 0.15 to
examine the influence of the shell thickness.

The results of the investigation are presented in Figure 3.16. Here, the
dimensionless representation of the resistances

R̂ = R

(
1

1/kI
shell sI + 1/kJ

shell sJ
+

rI

1/kI
core + 1/kJ

core

)
(3.19)

is plotted versus the ratio rI/rI,J
c . R represents either the single points provided

by the FEM simulations or the dashed lines calculated by the solid-mix
resistance from Equation (3.18). Also, for every combination, the relative mean
error ē is shown.

On the one hand, in Figure 3.16, it can be seen that for all cases the numerical
results agree the best with the results by the core-shell model, if the overlap is
the largest, i.e. rI/rI,J

c → 1. On the other hand, even for relatively small overlaps,
i.e. rI/rI,J

c → 10, the best agreement is achieved if the shell thickness takes its
lowest ratio 0.05, see Figure 3.16a. For example, in case of the largest radius
ratio rI/rJ = 1/10 and the largest shell conductivities of 10, the mean relative
error is around 1%.

Influence of shell and bulk conductivity ratio In the following, the limits
of the core-shell model, as it is used in Equation (3.18), are discussed. To this
end, the shell to core conductivity ratio kcore/kshell has been varied from 1/1 up to
rather extreme ratios of 1/100. While on the other hand, the radius and shell-
thickness ratios were kept constant as rI/rJ = 1/1 and c = sI/rI−sI = sI/rJ−sJ =

0.05.
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3 Modeling effective transport properties in assemblies of spheres

In Figure 3.17, the results of the above described investigation are shown. On
top of that, the theoretical limits of the core-shell model are plotted. These
are, on the one hand, the solid-volume resistance RI,J

solid,vol from Equation (3.3),
if the volume part becomes dominant and, on the other hand, the solid-
surface resistance RI,J

solid,surf from Equation (3.11), if the surface part becomes
dominant.

Figure 3.17: Influence of conductivity ratio on the solid-mix resistance model RI,J
solid,mix as

presented in Equation (3.18) and comparioson to the solid-volume model RI,J
solid,vol

taken from Equation (3.3) as well as the solid-surface model RI,J
solid,surf described by

Equation (3.11).

Unsurprisingly, in case of the conductivity ratio being 1, the FEM solution
tends to the solid-volume resistance curve. Furthermore, the solid-mix
resistance is also approaching the solid-volume curve. However, especially
for small overlaps, that is rI/rI,J

c → 10, the solid-mix resistance deviates from
the FEM or the solid-volume resistance by around ē = 24% with respect to the
numerical solution. The error originates from the fact that the core-shell model
is a superposition of the sphere and the shell model.

56



3.1 Effective transport properties of the solid phase

Another interesting observation can be made whith regard to the cases where
the shell conductivity is 100 times larger than the core conductivity. It seems
that this ratio is sufficient to almost exactly match the solid-surface resistance.
Also, the relative mean error of the core-shell model to the FEM model
is merely ē = 4%. Finally, the intermediate states are represented by the
conductivity ratio kcore/kshell = 1/10. The curve lies between the solid-volume
resistance and the solid-surface resistance and shows a relative mean error of
ē = 3% with respect to the finite element model.

Thus, it can be concluded that the core-shell model, i.e. the solid-mix resistance
in Equation (3.18), is capable of covering the limits of solid-volume and solid-
surface resistance.

3.1.6 Effective transport properties
of overlapping solid core-shell assemblies

It was shown, that the resistance of two contacting core-shells can be calculated
using Equation (3.18). Next, it is investigated if the formula holds for an
assembly of core-shell particles. Therefore, a series of assemblies of such
particles were generated and the effective transport properties provided by RN
are compared to the results by FEM analysis.

Resistor network method for core-shell assemblies In Figure 3.18, the
resistor network approached is sketched for an assembly of core-shell particles.
First, the percolating clusters are identified, as highlighted in Figure 3.18a. The
percolated clusters are then converted to equivalent node resistor networks.
This can be seen in Figure 3.18b, where the particle centers are the nodes and
the contact pairs are represented by edges. Potentials ϕ I and ϕJ are assigned
to the nodes and the resistances RI,J

solid,mix to the edges. Finally, the boundary
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3 Modeling effective transport properties in assemblies of spheres

conditions are applied to the boundary nodes and the resulting resistor network
can be solved using the scheme according to Section 2.3.

Figure 3.18: Equivalent resistor network to calculate the effective conductivity via the solid
volume and surface. a) Percolating, i.e. conducting, pathways. b) Nodes, i.e.
potentials, at the centers of the core-shells and edges, i.e. resistances, at the contacts,
i.e. overlapping core-shells. c) Connection to the current collectors and boundary
nodes.

Note that the transport angles in Equation (3.18) have to be determined in the
same way as in the shell model from Section 3.1.4.

Model description Again, similar to Section 3.1.2, randomly distributed,
densely packed and overlap-free assemblies of spheres with a polydisperse
particle-size distribution were generated using the RCP. Afterwards, the initial
structures were further densified using the numerical sintering algorithm until
a certain threshold was reached, i.e. the mean contact angle.

As the FEM model is concerned, the generated sphere structures were first
imported into the simulation domain. In order to convert the spheres into
core-shell particles, a shell thickness was provided. As a result, every sphere
was divided into the shell and the core part. In Figure 3.20b, such a core-
shell particle assembly can be observed. The parts of the particles outside
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3.1 Effective transport properties of the solid phase

of the borders in z-direction of the simulation domain were cut off. For the
finite element calculation, a temperature gradient of ∆T = 1 was applied to the
opposing surfaces of the domain in z-direction on the cutting planes.

The resulting heat flux φ FEM
q was evaluated at the top or bottom surface in

z-direction and the effective thermal conductivity was calculated as

λcore =
φ FEM

q

∆T
Ldomain

Adomain
, (3.20)

where the domain length and domain cross-section area is Ldomain and Adomain.

The generated sphere assemblies from above were also imported to the
RN framework. For the individual core-shell model resistance, as in
Equation (3.18), the shell thickness has to be provided. Similar to the FEM
model, the potential drop ∆ϕ = 1 was applied to the boundary nodes of the
opposing surfaces in z-direction. The boundary nodes were generated as the
contact points of the core-shells particles and the boundary plane in z-direction
und, thus, lying exactly on that plane. The resistance between a boundary
node and a node within the simulation domain was calculated as a parallel
connection, again, according to

RI,0
solid,mix =

 1
1/kI

shell sI

2π
ln
(

tan(θ
I,0
t /2)

tan(θ I
c/2)

)
+

1/kI
core

4rI,0
c


−1

. (3.21)

where θ
I,0
c and θ

I,0
t is the contact and transport angle between boundary plane

and shell, respectively, and rI,0
c is the contact radius, see Figure 3.19.
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3 Modeling effective transport properties in assemblies of spheres

Figure 3.19: Construction of boundary node and boundary resistance.

Finally, the RN provides the effective electric conductivity using

κcore =
Ieff
∆ϕ

Ldomain

Adomain
, (3.22)

where Ieff was calculated using the resistor network solving scheme from
Section 2.3.

Test cases Up to 15 test cases were created and, based on the test cases,
the RN results were compared to the ones from FEM simulations. Three types
of assemblies were generated. As can be seen in Table 3.5, the assemblies
differ in the standard deviation of the radii ranging from 0.0, i.e. mono-sized
particles, to 0.20, i.e. polydisperse particle sizes. In every one of the cases,
the shell thickness ratio was taken as c = s/r−s = 0.1 representing a moderate
shell thickness from the above investigation. In Figure 3.20, the RN model is
compared to the same by the FEM model. Here, the assembly is of the type 3
with the largest standard deviation rσ .
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3.1 Effective transport properties of the solid phase

Table 3.5: Structural parameters of the spherical packings for the verification of the RN transport
through the solid core-shells.

Type rmean rσ θc,mean φsolid,mean φpore,mean rc,mean θt,mean

1 1.00 0.00 15° 0.655 0.344 0.257 83.35°
2 1.00 0.10 15° 0.647 0.353 0.242 84.10°
3 1.00 0.20 15° 0.647 0.353 0.233 84.74°

Figure 3.20: Verification models of the solid-mix resistor network method for an assembly of
core-shell particles. a) Potential distribution through the network of an assembly
of core-shell particles. b) Temperature distribution of the spatially resolved finite
element mesh.

Evaluation and discussion Before comparing the effective transport
properties, they are normalized by th bulk conductivities first. In this case,
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3 Modeling effective transport properties in assemblies of spheres

the bulk conductivities were taken from the core parts. This yields the
dimensionless effective transport parameters as

k̂FEM
eff,mix =

λ FEM
eff

λcore
and k̂RN

eff,mix =
κRN

eff
κcore

, (3.23)

respectively, where λcore is the thermal and κcore is electric conductivity of the
cores. The results of the above investigation can be seen in Figure 3.21. The
effective conductivity is overestimated by the RN. However, the mean error is
around ē = 7% which is acceptable given the fact that the core-shell model is
a rough simplification. In this sence, the core-shell model can be regarded as
verified to a degree sufficient of this work.

Figure 3.21: Verification of the solid-mix resistor network method using finite element
simulations.
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3.2 Effective transport properties of the pore phase

3.2 Effective transport properties
of the pore phase

In this section, the effective transport properties of the pore phase are
investigated. The pore phase is considered to be the space between the solid
phase, e.g. active material particles in lithium-ion battery cathodes. Here,
this space is filled with liquid electrolyte which is needed to provide sufficient
lithium-ions and ionic charge for the electrochemical reactions on the active
material particle surfaces. In other words, the electrolyte-filled pore phase
has to provide a sufficiently large effective diffusivity and conductivity for a
lithium-ion battery to operate properly.

In addition to the electrolyte, inside the pore phase an electronically conductive
carbon-black-binder phase, i.e. filler phase, is distributed. This is in particular
necessary since the active material particles are commonly known for their poor
electronic conductivity. This, on the other hand, is needed to provide enough
electrons for the electrochemical reactions. The pore phase is thus shared by
both the liquid electrolyte and the filler phase.

In the following, a resistor network method is developed for the calculation
of the effective conductivity of the pore phase. Additionally, an extension is
proposed to account for those cases where the pore phase is shared by multiple
conducting phases.

3.2.1 Volume resistance of pore throats

The crucial part of the resistor network approach is the identification and
computation of individual resistances. In the case of the pore phase, the
individual resistances are the pore throats. Therefore, a model is proposed to
estimate the resistance of such pore throats based on the geometrical bottleneck
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3 Modeling effective transport properties in assemblies of spheres

effect [91, 92]. For simplicity, the model is presented for the 2D case. The steps
necessary for a 3D implementation are mentioned whenever needed.

Model To start from, inside the pore phase of a granular assembly, it is
assumed that transport is hindered by the bottlenecks created by the solid
particles. To model such bottlenecks, i.e. pore throats, it is necessary to identify
the pores and pore centers first.

Figure 3.22: Pore-volume resistance. a) Flux through a bottleneck between two particles. b)
Resulting flux between nodes NI and NJ inside the spatially discretized bottleneck,
i.e. pore throat. c) Discretization of throat into sub-throats. Divide sub-throats into
small increments in order to calculate wire resistances.

Figure 3.22a shows an example of such a bottleneck where two particles form
a narrow region, i.e. a pore throat, between them. Before and after the pore
throat are the pore centers which are connected by the pore throat. Between the
pore centers, some flux ~F is considered to flow through. The exact position of
the pore centers is achieved by a spatial decomposition technique, which will
be subject to the next part. Next, in Figure 3.22b, the nodes NI and NJ indicate
the start and end point of the flux. Those nodes are taken as the pore centers
and the gray-shaded region is the spatial decomposition of the pore throat.

A pore throat resistance RI,J
pore,vol is attributed to the pore throat which is

expressed as a parallel connection of resistances representing the sides of the
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3.2 Effective transport properties of the pore phase

node connecting edge. In the 2D example, see Figure 3.22b, these sides are the
sub-regions created by triangles of the edge defining nodes and the respective
centers of the surrounding particles. Additionally, the overlapping areas of the
particles are subtracted from the triangles. Because the sub-regions describe
parts of the pore throats, they are called sub-throats.

A sub-throat is sketched in Figure 3.22c. The resistance of such a sub-throat is
calculated as a series connection of wire resistances. To this end, each edge is
divided into sufficiently small increments ∆Ln and the resistance ∆Rn

m of each
increment is calculated by

∆Rn
m = ρpore

∆Ln

An
mean

, (3.24)

where ρpore is the resistivity of the pore material. A mean line length An
mean of

the n’th increment has to be passed, in case of 2D. In case of 3D, its a mean
cross section area.

The resulting resistance RI,J
m of one sub-throat m is then calculated as a series

connection of the incremental resistances as

RI,J
m =

nincr

∑
n=1

∆Rn
m = ρpore

nincr

∑
n=1

∆Ln

An
mean

, (3.25)

where nincr is the number of increments between nodes NI and NJ . Here, ∆L

is estimated individually for each sub-throat. The size of ∆L is successively
reduced until the resulting resistance calculated for the next increment doesn’t
differ from the previous one by a certain small threshold, here within 5%.

Finally, as mentioned above, the resulting resistance

RI,J
pore,vol =

(
msthr

∑
m=1

1

RI,J
m

)−1

(3.26)
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of the edge, i.e. pore throat, which connects the nodes NI , NJ , i.e. the pore
centers, is a parallel connection of the resistances RI,J

m of all msthr sub-throats
belonging to this edge. Thus, a model is derived for pore throat resistances
which can be used along the resistor network method when modeling the pore
phase effective transport properties. The index "pore,vol" refers to transport
through the volume of the pore phase which is why this resistance is called
pore-volume resistance.

3.2.2 Effective transport properties of
pore throat assemblies

In the above section, the computation of an individual throat resistance was
presented, i.e. the pore-volume resistance from Equation (3.26). Next, this
kind of resistance is used in the framework of the resistor network method to
calculate effective transport properties of the pore phase.

Resistor network method for the pore phase While it is quite straight
forward to discretize the solid phase of a granular system using spheres, as
demonstrated in Section 3.1, it is not as obvious to model the pore phase in a
similar way, because of the relatively complex shapes of the pores and throats.
In Figure 3.23, exemplarily, an equivalent resistor network for the pore phase
is sketched.
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3.2 Effective transport properties of the pore phase

Figure 3.23: Equivalent resistor network to calculate the effective conductivity of the pore
volume phase. a) Discretization of the pore phase using Laguerre cells. b) Potentials
at cell vertices and resistances at the edges. c) Connection to the current collectors
and boundary nodes.

First, pores and pore connecting throats have to be identified. To this end, the
pore phase is discretized using the so-called Laguerre or generalized Voronoi
tessellation method [122, 123], where the generators are given by the midpoints
of the particles and their weights are given by the corresponding radii. For
detailed information regarding this tessellation technique, refer to [124]. The
computation is done by employing the software library Voro++ [125].

In general, for isolated points in a domain, which happen in this case to be
the sphere centers, the tessellation method assigns a spatial cell to each such
point. Each cell contains all points whose distance to the associated cell center
is less than or equal to any other sphere or cell center. In case of packings
with polydisperse particle sizes, additionally, the distances are adjusted with
respect to the particle sizes [122]. In 3D space, the cells take the form of
convex polyhedra. Using this method, the whole domain volume can be fully
decomposed into cells. Finally, the pore phase is defined as the volume of the
cells where the volume of the particles, i.e. solid phase, is subtracted from.
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3 Modeling effective transport properties in assemblies of spheres

The result of the tessellation is that all particles are wrapped in cells while
their borders, i.e. edges and faces, lie in an optimum distance between the cell
centers, i.e. particle centers. An exemplary cell discretization can be seen in
Figure 3.23a. The spherical particles are wrapped by cells, edges, vertices and,
in the 3D-case, faces. Each vertex is chosen as the center of a pore and the
corresponding edges as the pore throats. By extension, the network nodes NI

and NJ correspond to the vertices where the potentials ϕ I , ϕJ are associated
with and the edges are related to the resistances RI,J

pore,vol, see Figure 3.23b.

In order to compute the resistances using the approach described above, the
regions around the individual edges have to be decomposed into throats and
sub-throats. In case of 2D, the regions are constructed as the areas which
are given by triangles defined by the nodes of the considered edge and the
associated sphere centers, where the intersection area with the associated
spheres is subtracted from. In the 3D case, the surrounding region is the volume
given by tetrahedrons, which, as an extension of the 2D case, are additionally
defined by the centers of the faces of the cells which meet at the considered
edge. The intersecting volumes of the associated spheres are then subtracted
from the tetrahedrons.

The boundary nodes have to be identified where the boundary conditions can
be applied to, see Figure 3.23c. Finally, the resulting node resistor network is
solved by the scheme described in Section 2.3.

Verification As a next step, the verification of the pore-volume model in the
framework of the resistor network method is checked. To this end, similar to
Section 3.1.2, different assemblies of varying degree of particle polydispersity
were generated using the RCP and densified using the numerical sintering
algorithm. The resulting collections of spheres were then imported to both
the RN and the FEM framework. Finally, the resulting effective transport
properties were computed and compared to each other.
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3.2 Effective transport properties of the pore phase

As far as the finite element model is concerned, first, the generated sphere
assemblies were imported into a box-shaped domain. Secondly, the spheres
were cut out of the domain such that the complement volume remained. The
latter of which was identified as the pore phase and can be seen in Figure 3.24b.
The color gradient refers to the temperature distribution emerging from the
temperature drop of ∆T = 1 on the surface nodes of the simulation domain in
the z-direction while the other surfaces in x- and y-direction remain insulated.
The resulting heat flux φ FEM

q was evaluated at the top or bottom surface in
z-direction and the effective thermal conductivity was calculated as

λ
FEM
eff =

φ FEM
q

∆T
Ldomain

Adomain
, (3.27)

where the domain length and domain cross section area is Ldomain and Adomain,
respectively.

Regarding the resistor network model, the spheres were imported into the box-
shaped simulation domain, as well. As a next step, the Laguerre tessellation
was used, as described above, to fully discretize the pore phase and which
was the basis for the resistor network method. In Figure 3.24a, the potential
distribution of such a resistor network can be observed. The vertices on the
boundary planes in z-direction were directly used as boundary nodes and an
electric potential drop of ∆ϕ = 1 was applied to these boundary nodes.

The effective electric conductivity was calculated by

κ
FEM
eff =

Ieff
∆ϕ

Ldomain

Adomain
, (3.28)

where the effective current Ieff was calculated using the resistor network
solving scheme according to Section 2.3.

Test cases Next, 15 test cases were created, where the structural parameters
upon which the assemblies were generated are presented in Table 3.7.
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Table 3.7: Structural parameters of the spherical packings for the verification of the transport
through the volume of the pore phase.

Type rmean rσ θmean φsolid,mean φpore,mean

1 1.00 0.00 15° 0.657 0.343
2 1.00 0.10 15° 0.649 0.351
3 1.00 0.20 15° 0.644 0.356

In Figure 3.24, as an example, one assembly of the type 3 with the largest
standard deviation is shown.

Figure 3.24: Verification models of the pore-volume resistor network method for the pore phase
of an assembly of spheres. a) Potential distribution through the network of pores and
throats. b) Temperature distribution of the spatially resolved finite element mesh.

Evaluation and discussion In order to compare the RN and FEM
results, the effective transport properties have to be converted to effective
transport parameters. Therefore, the effective thermal and electric conductivity
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were normalized by the bulk thermal λbulk and electric conductivity κbulk,
respectively, which yields

k̂FEM
eff =

λ FEM
eff

λbulk
and k̂RN

eff =
κFEM

eff
κbulk

. (3.29)

In Figure 3.25, the comparison of the investigation can be seen. As usual,
the finite element results are on the horizontal whereas the resistor network
values are on the vertical axis. The solid black line indicates a perfect match
of the two methods. Here, the results obtained by the RN are overestimating
the reference FEM results by a little bit as the mean error is around e = 1%.
This, on the other hand, is a low error considering the approximation of the
arguably complex pore phase structure by a combination of series and parallel
connections of wire resistances. Moreover, concerning resource and time cost,
the RN is superior to the FEM calculation [91].

Figure 3.25: Verification of the pore-volume resistor network method using finite element
simulations.
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Given the rather low error, even for the pore phase of polydispersely sized
sphere packings, the resistor network method to calculate the effective
conductivity of the pore phase can be considered as verified.

3.2.3 Volume resistance of mixed pore throat

Different other material phases can distributed inside the pore phase. For
example, to enhance the electronic conductivity and to fix the active materials
of the cathodes of lithium-ion batteries, solid carbon-black (CB) and polymeric
binder is added to the pore phase. Thus, the pore phase is shared by liquid
electrolyte, on the one hand, and by a conductive filler phase, i.e. carbon-black-
binder phase, on the other hand. In the following, the model of the pore-volume
resistance is extended in such a way that it is able to account for such cases. It
is assumed that the different phases in the pore phase don’t interact with each
other.

Model In Figure 3.27, the bottlenecks, similar to Section 3.2.1, are
sketched. The only difference is that another phase is added to the bottleneck
space. The added phase is indicated by the black dots in Figure 3.27a. Next, in
Figure 3.27b, the pore throat is identified as the gray-shaded area.
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3.2 Effective transport properties of the pore phase

Figure 3.26: Throat resistance of volume-mix resistance.

Figure 3.27: Pore-mix resistance. a) Flux through a bottleneck between two particles. Additional
phase depicted as black dots. b) Resulting flux between nodes NI and NJ inside
the spatially discretized bottleneck, i.e. pore throat. c) Discretization of throat into
sub-throats. Divide sub-throats into small increments in order to calculate wire
resistances. Account for volume fraction of the additional phase.

The resistance of such a pore throat with added phases is RI,J
pore,mix,c, where c

refers to the transport through the particular phase c of a mixed pore phase. In
order to calculate the resistance, again, each edge is divided into sufficiently
small increments ∆Ln where an incremental resistance ∆Rn,c

m of each segment
is calculated by

∆Rn,c
m = ρ

c
poreφ

c ∆Ln

An
mean

. (3.30)

Here, ρc
pore is the resistivity of the phase c, φ c

m is the volume fraction of the
phase inside the sub-throat m and An

mean is the mean cross section area for the
n’th increment.

The resulting resistance RI,J,c
m of the added phase c inside the sub-throat m is

then calculated as a series connection of the incremental resistances as

RI,J,c
m =

nincr

∑
n=1

∆Rn,c
m = ρ

c
poreφ

c
nincr

∑
n=1

∆Ln

An
mean

, (3.31)
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where the number of increments used between Nodes NI and NJ is nincr and ∆L

is chosen individually for each sub-throat. For this, ∆L is successively reduced
until the resulting resistance of the sub-throat doesn’t differ from the previous
one by a certain small threshold. In this work, the threshold is set to 5%.

The resulting resistance RI,J
pore,mix,c of the added phase c inside the pore throat

is a parallel connection of the resistances RI,J,c
m of all msthr sub-throats.

RI,J
pore,mix,c =

(
msthr

∑
m=1

1

RI,J,c
m

)−1

. (3.32)

Summarizing, for each phase of the pore phase separately, a pore throat
resistance was derived where the transport path is shared by more than one
phases. The index "pore,mix" refers to transport through the mixed volume of
the pore phase which is why this resistance is called pore-mix resistance.

3.2.4 Effective transport properties of
mixed pore throat assemblies

In the following, the pore-mix resistance is used inside the framework of the
RN. To this end, a pore-mixed resistor network is presented and validated using
experimental results from the literature.

Resistor network for the pore mix resistance The build up of the resistor
network for the mixed pore structure is similar to Section 3.2.2. As can be
seen in Figure 3.28a, the Laguerre tessellation is used to discretize the pore
phase. Recall that the resulting cells are formed by the vertices, edges and
faces. The black dots represent an additional randomly distributed phase inside
the pore phase. In Figure 3.28b, it can be seen that the vertices are taken as the
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3.2 Effective transport properties of the pore phase

nodes where the potentials ϕ I , ϕJ are associated with. The edges stand for the
representative pore-mix resistance RI,J

pore,mix.

Figure 3.28: Equivalent resistor network to calculate the effective conductivity of the pore mix
phase. a) Discretization of the pore phase using Laguerre cells. b) Potentials at the
Laguerre vertices and representative resistances at the edges. c) Account for volume
fraction of added phase in each sub-throats. Connection to the current collectors and
boundary nodes.

The computation of RI,J
pore,mix is performed using the methodology described in

Section 3.2.3. To this end, the distributed additional phase inside the pores is
regarded as smeared across the sub-throats. This is depicted by the differently
shaded areas, i.e. sub-throats, in Figure 3.28c. Note that the differently
shaded areas imply that, if known, each sub-throat can have individual volume
fractions of the considered phases. Finally, the boundary conditions can be
applied to the boundary nodes and the effective conductivity can be calculated
using the scheme described in Section 2.3.

Validation In the above sections, the FEM was rigorously used to verify
the individual resistor network approach. However, in case of lithium-
ion batteries, this is not feasible due to the very complex structure of
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the mixed phases in the pore phase. Alternatively, the resistor network
approach for the mixed pore resistance is validated using experiments from
literature. In [126], the effective electric conductivity of carbon-black-binder
mixtures with and without the presence of active material particles was
measured. Several binder compositions were presented. In this case, the
binder consisted of polyethylene oxide (PEO), polyvinylidene difluoride-co-
hexafluoroproylene (PVdF-HFP) and ethylene carbonate-propylene carbonate
(EC-PC). The carbon-black content of the mixtures was varied from 0 to
18.8%.

It can be seen that for a carbon-black volume fraction of 0%, the effective
electric conductivity does not vanish. That is because the ionic conductivity
of the binder contributes to the electric conductivity, which is around
1 ·10−7 Sm−1. Since this compositions have no relevance in applications, in
this investigation, carbon-black-binder mixtures and electrode compositions
without carbon-black content are neglected. Therefore, if the carbon-black
volume fraction reaches zero, the electric conductivity is also set as zero.
This way, the electronic conductivity is extracted from the experimental data.
The effective electric conductivity rises orders of magnitudes for carbon-
black volume fractions from 1.5 to 6%. This range was identified as the
so-called percolation threshold, which resembles the critical volume fraction
of conducting species where the likelihood to form conducting pathways
increases drastically. For contents larger than that, the effective electric
conductivity increases asymptotically until, at the theoretical limit of carbon-
black volume fraction of 100%, the bulk electronic conductivity of carbon-
black is reached, which is assumed as 1000Sm−1 [126].
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In order to account for the above described behavior, the effective electronic
conductivity of the carbon-black-binder mixture provided by the experimental
data was fitted by the s-shaped function

κ
fit
CB-B,eff = a ·

1− exp

(
−
(

φCB

b

)c
) , (3.33)

where the parameters are a = 1000, b = 0.167 and c = 2.358. Here, a was
chosen as the bulk electronic conductivity of carbon-black. Thus, for large
values of the carbon-black volume fraction φCB related to the carbon-black-
binder mixture the bulk electronic conductivity would be reached. The fit-
function fulfills the criterion that the effective electric conductivity is 0Sm−1

if the carbon-black content reaches zero, see Figure 3.29b.

As the next step, active material particles were added to the carbon-black-
binder mixtures and the effective electric conductivity was measured. In the
following, the electrode compositions are divided into two phases, which are
the pore and the solid phase. The former of which comprises of the electrolyte
and the carbon-black-binder mixture phase and the latter of which is the active
material phase. It was reported that the electrode samples were densified
such that porosities of 30% were achieved. Since the pores are filled with
electrolyte, the resulting phase is identified as the electrolyte phase. The
remaining 70% of volume fraction were shared by the carbon-black-binder
mixture and the active material phase. This phases contained a volume fraction
of 19− 22% active material and 81− 78% of carbon-black-binder mixture.
For the following investigation, the active material and carbon-black-binder
volume fraction with respect to the whole volume was set as the average values,
which were around 15% and 55%, respectively.

Experimentally achieved effective electric conductivity values of the above
described electrode structures were compared to numerical results. To this
end, comparable virtual compositions were created. Similar to Section 3.1.2,
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3 Modeling effective transport properties in assemblies of spheres

the initial sphere packings were generated using the RCP. The structures were
further densified by means of the numerical sintering algorithm. Additionally,
the algorithm was slightly modified. In this case, the box-shaped simulation
domain was isotropically and successively reduced or expanded such that the
spheres inside the domain were moved upon or apart from each other. This was
done until the targeted porosity was achieved. This way, the particle size was
preserved.

The used active material was Li1,2V3O8 and the size was set to a particle
radius of 1µm, which was deduced from SEM images in [126]. Following
the description of the electrode composition from above, the targeted volume
fraction of the active material with respect to the whole volume was set to 15%.
The remaining pore phase of 85% was shared by 65% and 35% carbon-black-
binder mixture and electrolyte, respectively.

Based on this composition, scenarios of sphere assemblies were created which
were randomly distributed but structure-wise identical to the electrode in the
experiments. Using the pore-mix resistor network method, the presence of
added phases, i.e. electrolyte and carbon-black-mixture phase, was accounted
for by appropriately setting the volume fraction c in the pore throat resistance
computation from Equation (3.26). In order to calculate the (effective)
bulk conductivity of the carbon-black-binder phase, the fit-function from
Equation (3.33) was used.
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3.2 Effective transport properties of the pore phase

Figure 3.29: Validation of the pore-mix resistor network method by using experiments
from [126]. a) Effective electric conductivity of a cathode structure with active
material and carbon-black-binder phase. b) Effective electric conductivity of
the carbon-black-binder phase as a function of the carbon-black content, see
Equation (3.33).

In Figure 3.29a, the results of the resistor network calculations, i.e. κRN
eff,CB-B,

are compared to the measurements from [126]. It can be seen that the values
provided by RN match the experiments very good for carbon-black volume
fractions above 4%, which is within the observed percolation threshold [126].
However, the numerical results deviate a little bit for carbon-black contents
below 4%. This originates from the fact that the fit-function used for the
conductivity of the carbon-black-binder phase deviates for lower carbon-black
volume fractions. On the one hand, the fit-function was chosen such that
it represents the s-shaped percolation phenomenon, where it is difficult to
properly describe the behavior at the vicinity of the percolation threshold.
On the other hand, usually, carbon-black volume fraction are above 4%, see
for instance [127]. In general, the overall quality of the match between
the numerical results and the experiments leads to the conclusion that the
resistor network approach described above is able to calculate the effective
conductivity of added conductive phases in the pore phase.
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3 Modeling effective transport properties in assemblies of spheres

3.3 Summary

In Sections 3.1 and 3.2, it was shown how the resistor network method can be
used to model effective transport properties of both the solid and pore phase in
an assembly of spheres with polydisperse size-distribution.

Concerning the solid phase, equivalent resistor networks were created based on
boundary connecting clusters of spheres. The transport through this clusters
was distinguished between volume and surface type. In order to be used in
the framework of the RN, the crucial part is the computation of resistances
of individual contact pairs. To this end, regarding the volume transport,
the solid-volume resistance was constructed in Equation (3.3) based on the
sphere model. The surface transport was computed using the solid-surface
resistance from Equation (3.11) where the underlying model was the shell
model. Moreover, assuming the transport is partially through the volume and
the surface, a solid-mix resistance was developed in Equation (3.18). The
corresponding model was the core-shell model.

As for the pore phase, equivalent resistor networks were created based on
spatial decomposition techniques. Here, the Laguerre tessellation was used
where every particle inside an assembly is placed into convex polyhedral cells.
This way, the pore phase was geometrically defined as the complement volume
of cells and the contained spheres. Additionally, the cell vertices and edges
were the basis upon which resistor networks were created. While the vertices
resembled the pore centers, the edges were identified as the pore throats. Based
on the pore throat geometry, a resistance was calculated, accordingly. Since the
transport was through the volume of the pore, the corresponding resistance in
Equation (3.26) was named pore-volume resistance. Additionally, since the
pore phase can be shared by multiple conducting phases, another model was
proposed. The pore-mix resistance in Equation (3.32) considers the resistance
of additional phases using their volume fractions and resistivity.
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4 Cell modeling

The working principle of lithium-ion battery cells was described in Section 1.1.
In general, electrochemical reactions take place on the surfaces of the active
material of the positive and negative electrode. Those electrodes usually are
porous structures and comprise of different components. In order to model
battery cells, several physics-based approaches on different length-scales can
be applied [10]. In the following, a continuum approach is chosen.

A prominent candidate of this modeling approach is the Newman type cell
model [41]. While the development of novel cathode structures proceeds, i.e.
hierarchically structured electrodes [26–29], the need for novel cell modeling
approaches arises, as well. Therefore, in the first section of the following
part, the classical cell model is presented first. Next, In the second section,
the cell model is consistently extended to account for hierarchically structured
electrodes.

4.1 Classical half-cell

In Figure 4.1a, the sketch of the classical half-cell setup is shown. The anode on
the left-hand side is a lithium foil and the positive electrode, i.e. cathode during
the discharging process, on the right-hand side is a porous composite structure,
comprising the active material and carbon-black-binder mixture, which is the
conductive filler material. The porous separator is sandwiched between the
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4 Cell modeling

lithium foil and the positive electrode. In addition, both the porous cathode and
separator are completely soaked with liquid electrolyte. The setup is chosen
such that one is able to study solely the influence of the porous cathode on
the performance of the cell. In contrast, the full-cell setup, with an additional
porous anode, both electrodes would influence the cell performance.

Figure 4.1: Half-cell setup of lithium-ion batteries. a) Sandwich structure of a lithium-ion battery
cell. The anode is a solid lithium metal. b) The porous structure of the cathode is
homogenized.

A suitable model to incorporate battery charging and discharging processes
originated from [36, 40–42]. The model basis is the so-called porous electrode
theory [47] and [35]. In this theory, the structural details of the actual geometry
is smeared out across the model to achieve effective properties. This way, two
scales are introduced, where transport defined on the full three dimensional
structural details of the electrode on the smaller scale is called microscopic
while the corresponding effective transport on the larger smeared scale is
referred to as macroscopic. Therefore, transport equations defined on the
microscale are referred to as microscale equations whereas transport equations
defined on the macroscale are referred to as macroscale equations. Every point
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4.1 Classical half-cell

of the model represents a superposition of two phases. While the electrolyte
represents one phase by itself, typically, the active material and filler material
is subsumed as the other phase, i.e. the solid phase. The structural and material
properties of each phase are characterized by the volume fraction, specific
surface area and effective transport properties. Additionally, the two phases
interact with each other via electrochemical reactions on the active material
surfaces.

Thus, the particle and pore geometry of the system is not spatially resolved
but, rather, can be viewed as smeared across the model. In Figure 4.2b, the
smeared region is indicated by the shaded area where, additionally, at every
point in the cathode region the active material particles are modeled as spheres.
Therefore, the cell model, as presented here, is divided into two levels, i.e. the
cell and the particle level. The former of which represents the macroscopic
scale, i.e. transport in the porous electrode, whereas the latter describes the
transport processes inside the active material.

4.1.1 Macroscale equations

In the framework of the porous electrode theory, at every spatial point of the
macroscale model, the solid and the electrolyte phase are superimposed. By
extension, the currents and fluxes in the phases are superimposed, as well. It is
assumed that, on cell level, the electronic current is carried by the solid phase,
whereas the ionic current is carried by the electrolyte phase. Furthermore,
while the transport of cations is supposedly via the electrolyte phase on cell
level, the insertion process and lithium transport process inside the solid phase
is modeled on particle level.

The above transport phenomena are described by four continuity equations
representing the conservation of electronic and ionic charge as well as the
conservation of mass in the solid and electrolyte phase. In the following,
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4 Cell modeling

the micro- and macroscale forms of the continuity equations are recalled
as originally presented in [35, 41, 47]. As it was shown in [128, 129], the
macroscopic forms used in the cell models can be derived by applying volume
averaging methods, which were presented in Section 2.2. The same methods
are also chosen in the following.

Conservation of mass in the solid phase

First, the transport in the active material is considered. At any point of the
electrode, lithium is intercalated into the active material. The inserted lithium
is assumed to obey a Fickian type diffusion transport process which can be
written as

∂cs

∂ t
= ∇ ·

(
Ds∇cs

)
, (4.1)

where cs is the lithium concentration and Ds is the corresponding diffusion
coefficient of active material. In addition, the active material secondary
particles are assumed to be spheres such that spherical coordinates can be
employed. Moreover, the transport is modeled as spherically symmetric, such
that, using the transformation operation from Appendix A.1, Equation (4.1)
can be rewritten in spherically symmetric form yielding

∂cs

∂ t
=

1
y2

∂

∂y

(
y2Ds

∂cs

∂y

)
. (4.2)

Note that the dimension y is the radial coordinate inside the spherical particles.

Conservation of electronic charge in the solid phase

In the porous electrode, the electronic charge is carried by the solid phase. The
microscale electronic current density is described using Ohm’s law as

~is =−κ
eon
s ∇ξ ϕs , (4.3)
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4.1 Classical half-cell

where κeon
s is the electronic conductivity and ϕs is the electronic potential of

the solid phase. Note that, analogous to Section 2.2, the coordinate ξ refers to
the microscale. Due to conservation of charge, the continuity equation reads

∇ξ ·~is = ∇ξ ·
(
−κ

eon
s ∇ξ ϕs

)
= 0 . (4.4)

From Section 2.2, using Equation (2.24), the macroscopic form of
Equation (4.4) is

∇ ·
(
−κ

eon
s,eff∇ϕs

)
−ase jseF = 0 , (4.5)

where, comparing to Equation (2.24), k
α,eff ≡ κeon

s,eff is the effective electronic
conductivity, pα ≡ ϕs is the macroscopic electronic potential and aαβ ≡ ase

is the specific surface area of the solid phase. Electronic charge is produced
due to electrochemical reactions at the interface between active material and
electrolyte. This is accounted for by the reaction term bαβ ≡ jseF which
represents the exchange current density induced by lithium flux jse at the
interface between solid and electrolyte phase, where F is the faraday constant.

Rearranging Equation (4.5) leads to

∇ ·
(
−κ

eon
s,eff∇ϕs

)
= ase jseF , (4.6)

which is the macroscopic continuity equation representing the electronic
charge conservation in the solid phase.

Conservation of ionic charge in the electrolyte phase

The ionic charge is carried by the electrolyte phase. Using the concentrated
solution theory on binary electrolytes [47], the ionic current density can be
written as

~ie =−κ
ion
e ∇ξ ϕe−κ

ion
D ∇ξ lnce , (4.7)
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where κ ion
e is the ionic conductivity, ϕe is the ionic potential and ce is the

lithium concentration of the electrolyte phase. Moreover, the diffusional
conductivity is

κ
ion
D =

νκ ion
e RT
F

(
s+

nν+
+

t0
+

z+ν+
− s0ce

nc0

)(
1+

∂ ln f±
∂ lnce

)
, (4.8)

where s+, s0 and ν+ are stoichiometric coefficients of the cations in the solute,
z+ is the charge number of the cations, t0

+ is the transference number of the
cations with respect to the solvent, n is the number of moles of a species and
c0 is the concentration of the solvent. In case of LiPF6, which is the electrolyte
salt used in this work, the reaction equation is LiPF6 −−⇀↽−− Li+ + PF6

− [10]
and, therefore, the parameters are s+ = −1, s0 = 0, n = 1, ν+ = 1, ν = 2 and
z+ = 1. Note that ν = ν++ν−, where ν− = 1 is the a stoichiometric coefficient
of the anions. Equation (4.8) can therefore be simplified as

κ
ion
D =

2κ ion
e RT
F

(
t0
+−1

)(
1+

∂ ln f±
∂ lnce

)
. (4.9)

Due to conservation of charge, the continuity equation reads

∇ξ ·~ie = ∇ξ ·
(
−κ

ion
e ∇ξ ϕe

)
+∇ξ ·

(
−κ

ion
D ∇ξ lnce

)
= 0 . (4.10)

From Section 2.2, using Equation (2.25) and recognizing that the electrolyte
represents the β -phase, the macroscopic form of Equation (4.10) is

∇ ·
(
−κ

ion
e,eff∇ϕe

)
+∇ ·

(
−κ

ion
D,eff∇ lnce

)
+ase jseF = 0 . (4.11)
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where, comparing to Equation (2.25), the effective conductivity k
β ,eff is

identified as either the effective ionic conductivity κ ion
e,eff or the effective

diffusional conductivity

κ
ion
D,eff =

2κ ion
e,effRT

F

(
1+

∂ ln f±
∂ lnce

)(
t0
+−1

)
. (4.12)

Moreover, the macroscopic potential pβ is either the macroscopic ionic
potential ϕe or the macroscopic concentration of lithium ce of the electrolyte
phase. The specific surface area aαβ ≡ ase is between the solid and the
electrolyte phase, where ionic charge is produced due to electrochemical
reactions. This is accounted for by the reaction term jseF , as well. Rearranging
Equation (4.11) yields the macroscopic continuity equation representing
conservation of ionic charge in the electrolyte phase as

∇ ·
(
−κ

ion
e,eff∇ϕe−κ

ion
D,eff∇ lnce

)
=−ase jseF . (4.13)

Conservation of mass in the electrolyte phase

Following the above assumed concentrated solution theory of binary
electrolytes [47], the flux density of cations is

~j+ =−ν+De

(
1− dlnc0

dlnce

)
∇ξ ce +

~iet
0
+

z+F
+ c+~v0 , (4.14)

where ce is the salt concentration of the electrolyte or, in short, electrolyte
concentration, De is the diffusion coefficient c0 is the concentration of the
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solvent and ~v0 is the velocity of the solvent. The corresponding continuity
equation reads

∂c+
∂ t

=−∇ξ ·~j+

= ∇ξ ·

[
ν+De

(
1− dlnc0

dlnce

)
∇ξ ce−

~iet
0
+

z+F
− c+~v0

]

= ∇ξ ·

[
ν+De

(
1− dlnc0

dlnce

)
∇ξ ce

]
−

∇ξ ·
(
~iet

0
+

)
z+F

−∇ξ · c+~v0 .

(4.15)

Using electroneutrality conditions, i.e. ce = c+/ν+ = c−/ν− or c+ = ceν+,
Equation (4.15) can be rearranged as

ν+
∂ce

∂ t
= ν+∇ξ ·

[
De

(
1− dlnc0

dlnce

)
∇ξ ce

]
−

∇ξ ·
(
~iet

0
+

)
z+F

−ν+∇ξ · (ce~v0) .

(4.16)
Dividing by ν+ on both sides brings

∂ce

∂ t
= ∇ξ ·

[
De

(
1− dlnc0

dlnce

)
∇ξ ce

]
−
~ie∇ξ · t0

+

z+ν+F
−∇ξ · (ce~v0) , (4.17)

where the identity ∇ξ ·
(
~iet

0
+

)
=
�
��

��*
0

∇ξ ·
(
~ie

)
t0
+ +~ie∇ξ · t0

+ was used. The
first part of Equation (4.17) is due to the diffusion process, where De is the
diffusion coefficient and the driving force is the concentration gradient ∇ξ ce.
In the second part, the migration part, is governed by the electric current
density~i. Finally, the third part is due to the velocity ~v0 of the solvent and
is called convection part. It is usually assumed that d lnc0/dlnce ≈ 0 and
~v0 = 0 [36, 46]. Additionally, t0

+ is treated as concentration independent,
which was observed by experiments [130] and which makes the gradient term
vanish. However, in [131], it was indicated that this may not be correct. Finally,
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4.1 Classical half-cell

the microscopic conservation of mass of the electrolyte phase can be reduced
to

∂ce

∂ t
= ∇ξ ·

(
De∇ξ ce

)
. (4.18)

From Section 2.2, using Equation (2.25), the macroscopic form of
Equation (4.18) is

φe
∂ce

∂ t
= ∇ ·

(
De,eff∇ce

)
−ase(1− t0

+) jse , (4.19)

where, comparing to Equation (2.25), φβ ≡ φe is the volume fraction, pβ ≡ ce

is the macroscopic concentration, k
β ,eff ≡ De,eff is the effective diffusivity and

aαβ ≡ ase is the specific surface area of the electrolyte phase. Recall that the
reaction term jse represents the lithium flux density at the interface between
solid and electrolyte phase. Note that it is expected that the anions are not
taking part in the electrochemical reaction which is accounted for by the term
(1−t0

+). Thus, Equation (4.19) represents the macroscopic continuity equation
describing mass conservation of the electrolyte phase.

Reaction kinetics The electrochemical reaction at the interface of
electrolyte and active material is described by a Butler-Volmer type
equation [10, 47, 132] which, in case of a lithium-ion cell, can be written as

jse =− j(η ,ce,cs,surf) =−
i0
F
·

{
exp
(
(1−α)F
RT

η

)
− exp

(
−αF
RT

η

)}
=−k0c1−α

e (cs,max− cs,surf)
1−α cα

s,surf

·

{
exp
(
(1−α)F
RT

η

)
− exp

(
−αF
RT

η

)}
,

(4.20)
where i0 is the exchange current density, k0 is the effective reaction rate
constant [10], α or (1− α) are symmetry factors representing a favouring
of cathodic or anodic reaction, respectively. Typically, α is set to 0.5 [47].
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Additionally, cs,max is the maximum concentration in the solid phase and cs,surf

is the concentration at the particle surface. Here,

η = (ϕs−ϕe)−Eeq(cs,surf) (4.21)

is the overpotential indicating if the potential difference between solid and
electrolyte is above or below the equilibrium potential Eeq(cs,surf). The latter
of which is a function of the concentration at the surface of the particle.

4.1.2 Classical half-cell model

In this Section, the half-cell model is presented as it was implemented in this
work using COMSOL Multiphysics [133]. Using the software’s equation-
based modeling module, partial differential equations (PDEs) can be entered
directly. In Figure 4.2, the implemented PDEs are summarized, which are the
previously presented macroscopic continuity equations.

The transport is considered through thickness direction of the cell only. Based
on this assumption, transport in the lateral directions is neglected. Therefore,
only one-dimensional transport is considered. Figure 4.2 shows two model
levels. Each of the levels contain one-dimensional domains. These are, on the
one hand, the separator and positive electrode domain, i.e. cathode, on the cell
level. The separator and cathode, i.e. positive electrode, domain is denoted
by the superscript "sep" and "pos", respectively. Note that the conservation of
charge in the solid phase is omitted in the separator part, since there is no solid
phase present. On the other hand, the one-dimensional particle domain can be
found on the particle level.

On the top level, the cell level, the macroscopic continuity equations, i.e.
Equations (4.6), (4.13) and (4.19), for the respective cell quantities of interest
are defined. The respective cell properties of interest are the electronic potential
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4.1 Classical half-cell

in the solid phase ϕs, the ionic potential in the electrolyte phase ϕe and the
electrolyte phase concentration ce. On the particle level, the mass conservation
in the solid phase, i.e. Equation (4.2), is present. The cell property of interest
is the concentration of lithium in the solid phase cs.

Boundary conditions

In addition to the partial differential equations, the boundary conditions (BCs)
are also shown in Figure 4.2. In the special case presented here, the anode is
modeled as a lithium metal foil. This assumption leads to different boundary
conditions compared to the full-cell model, see [36, 42]. Furthermore,
galvanostatic discharge conditions are considered, thus, a constant electric
current is applied. In case of galvanostatic charging processes, the sign of the
applied current has to be reversed. As was mentioned before, transport in only
one direction, i.e. x-direction in Figure 4.2, is considered such that volume
integrals become simpler, see Appendix A.2.

Electronic charge in the solid phase As a first step, the total electronic
current in the solid phase is calculated. Therefore, Equation (4.6) is integrated
over the cathode volume yielding

Acell
∫ Ltot

Lsep
∇ ·
(
−κ

eon,pos
s,eff ∇ϕs

)
dx = Acell

∫ Ltot

Lsep
ase jseF dx

−Acell
κ

eon,pos
s,eff ∇ϕs(L

tot)−
���

��
���

���
�:0

Acell
(
−κ

eon,pos
s,eff ∇ϕs(L

sep)
)
=

Acell
∫ Ltot

Lsep
ase jseF dx ,

(4.22)
where

−κ
eon,pos
s,eff ∇ϕs(L

sep) = 0 (4.23)
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accounts for the fact that the electronic current density must be zero at the
separator-cathode interface. Moreover, the electronic current density at the
cathode-current-collector interface is identified as

−κ
eon
s,eff∇ϕs(L

tot)︸ ︷︷ ︸
is(Ltot)

=
∫ Ltot

Lsep
ase jseF dx . (4.24)

Due to galvanostatic boundary conditions, the electronic current density at the
cathode-current-collector interface is set as is(L

tot) = iapp. Note that the total
cell length is the sum of the separator and the positive electrode length, i.e.
Ltot = Lsep +Lpos.

Concentration in the solid phase Next, the volume average change
in concentration of lithium in the solid phase is calculated. Therefore,
Equation (4.2) is integrated over its spherical domain and averaged over its
volume, see Appendix A.2, which leads to

3
rsec

3

∫ rsec

0
y2 ∂cs

∂ t
dy =

3
rsec

3

∫ rsec

0

∂

∂y

(
y2Ds

∂cs

∂y

)
dy

=
3

rsec
Ds

∂cs(rsec)

∂y
−
���

���
��:03

rsec
3 02Ds

∂cs(0)
∂y

,

(4.25)

where rsec is the radius of the spherical active material particles. Note that

Ds
∂cs(rsec)

∂y
= jse (4.26)

is set to account for the electrochemical reaction boundary condition at the
surfaces of the particles [40, 42], where jse is the Butler-Volmer type flux
density from Equation (4.20). In other words, by inserting the boundary
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condition from Equation (4.26) into Equation (4.25), the volume-averaged
change in concentration can be expressed as

1
rsec

2

∫ rsec

0
y2 ∂cs

∂ t
dy = jse . (4.27)

Ionic current and potential in the electrolyte phase The total ionic
current in the electrolyte phase is calculated by integrating and volume-
averaging Equation (4.13) over the cell volume as

Acell
∫ Lsep

0
∇ ·
(
−κ

ion,sep
e,eff ∇ϕe−κ

ion,sep
D,eff ∇ lnce

)
dx+

Acell
∫ Ltot

Lsep
∇ ·
(
−κ

ion,pos
e,eff ∇ϕe−κ

ion,pos
D,eff ∇ lnce

)
dx =

−Acell
∫ Ltot

Lsep
ase jseF dx .

(4.28)

The left-hand side is

Acell
∫ Lsep

0
∇ ·
(
−κ

ion,sep
e,eff ∇ϕe−κ

ion,sep
D,eff ∇ lnce

)
dx+

Acell
∫ Ltot

Lsep
∇ ·
(
−κ

ion,pos
e,eff ∇ϕe−κ

ion,pos
D,eff ∇ lnce

)
dx =

((((
(((

((((
(((

((((
((

Acell
(
−κ

ion,sep
e,eff ∇ϕe(L

sep)−κ
ion,sep
D,eff ∇ lnce(L

sep)
)
−

Acell
(
−κ

ion,sep
e,eff ∇ϕe(0)−κ

ion,sep
D,eff ∇ lnce(0)

)
+

���
���

���
���

���
���

��:0

Acell
(
−κ

ion,pos
e,eff ∇ϕe(L

tot)−κ
ion,pos
D,eff ∇ lnce(L

tot)
)
−
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((((

(((
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(((
(((

Acell
(
−κ

ion,pos
e,eff ∇ϕe(L

sep)−κ
ion,pos
D,eff ∇ lnce(L

sep)
)
=

−Acell
(
−κ

ion,sep
e,eff ∇ϕe(0)−κ

ion,sep
D,eff ∇ lnce(0)

)
,

(4.29)
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where

−κ
ion,pos
e,eff ∇ϕe(L

tot)−κ
ion,pos
D,eff ∇ lnce(L

tot) = 0 (4.30)

accounts for the fact that no ionic current is allowed at the cathode-current-
collector interface. Also, continuity of ionic current at the separator-cathode
interface is represented by

−κ
ion,sep
e,eff ∇ϕe(L

sep)−κ
ion,sep
D,eff ∇ lnce(L

sep) =

−κ
ion,pos
e,eff ∇ϕe(L

sep)−κ
ion,pos
D,eff ∇ lnce(L

sep) .
(4.31)

Finally, using the results of the left-hand side simplifications, leads to

−(−κ
ion,sep
e,eff ∇ϕe(0)−κ

ion,sep
D,eff ∇ lnce(0)︸ ︷︷ ︸

ie(0)

) =−
∫ Ltot

Lsep
ase jseF dx , (4.32)

where the total ionic current density at the anode-separator interface is
expressed as

ie(0) =
∫ Ltot

Lsep
ase jseF dx . (4.33)

Due to galvanostatic conditions, and by comparing Equation (4.33) to
Equation (4.24), the ionic current density at the anode-separator interface is
ie(0) = iapp.

Concerning the ionic potential, usually, the focus is on the potential difference,
thus, ϕe is arbitrarily set to zero at the anode side [40, 42], which is expressed
via

ϕe(0) = 0 . (4.34)
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4.1 Classical half-cell

Concentration in the electrolyte phase The total flux in the electrolyte
phase is achieved by integrating Equation (4.19) and averaging over the cell
volume, which results in

1
Ltot

(∫ Lsep

0
φ

sep
e

∂ce

∂ t
dx+

∫ Ltot

Lsep
φ

pos
e

∂ce

∂ t
dx

)

=
1

Ltot

(∫ Lsep

0
∇ ·
(

Dsep
e,eff∇ce

)
dx+

∫ Ltot

Lsep
∇ ·
(

Dpos
e,eff∇ce

)
−ase(1− t0

+) jse dx

)

=
1

Ltot

(∫ Lsep

0
∇ ·
(

Dsep
e,eff∇ce

)
dx+

∫ Ltot

Lsep
∇ ·
(

Dpos
e,eff∇ce

)
dx

)

− 1
Ltot

∫ Ltot

Lsep
ase(1− t0

+) jse dx .

(4.35)
The divergence terms give

∫ Lsep

0
∇ ·
(

Dsep
e,eff∇ce

)
dx+

∫ Ltot

Lsep
∇ ·
(

Dpos
e,eff∇ce

)
dx

=
���

���
�

Dsep
e,eff∇ce(L

sep)−Dsep
e,eff∇ce(0)+���

��
��:0

Dpos
e,eff∇ce(L

tot)−
���

���
�

Dpos
e,eff∇ce(L

sep)

=−Dsep
e,eff∇ce(0) ,

(4.36)
where

Dsep
e,eff∇ce(L

sep) = Dpos
e,eff∇ce(L

sep) and Dpos
e,eff∇ce(L

tot) = 0 (4.37)

reflects continuity of mass flux between separator and cathode region and
implies that no mass flux is allowed at the cathode-current-collector side,
respectively.

95



4 Cell modeling

Using Equation (4.36) in Equation (4.35) yields

1
Ltot

(∫ Lsep

0
φ

sep
e

∂ce

∂ t
dx+

∫ Ltot

Lsep
φ

pos
e

∂ce

∂ t
dx

)
=

− 1
Ltot

(
Dsep

e,eff∇ce(0)
)
− 1

Ltot

(∫ Ltot

Lsep
ase(1− t0

+) jse dx

)
.

(4.38)
Equation (4.38) shows that the volume-averaged temporal change of the
electrolyte concentration is due to diffusion at the anode-separator interface
and the electrochemical reactions of cations at the electrolyte-solid interface.
As was assumed earlier, the applied electroneutrality condition guarantees the
same amount of anions and cations in a region. Globally, this is expressed as
a constant average electrolyte concentration, i.e. a vanishing temporal change.
Therefore, the left-hand side of Equation (4.38) is set to zero yielding

−Dsep
e,eff∇ce(0) =

∫ Ltot

Lsep
ase(1− t0

+) jse dx . (4.39)

In other words, the flux of cations due to electrochemical reactions at
the surface area of electrolyte and active material is compensated by
migration at the anode-separator interface [38]. Comparing Equation (4.33)
to Equation (4.39), the right-hand side of the latter can be rewritten in terms of
the applied current density as

∫ Ltot

Lsep
ase(1− t0

+) jse dx =
(1− t0

+)

F

∫ Ltot

Lsep
ase jseF dx︸ ︷︷ ︸

ie(0)=iapp

=
iapp

F
(1− t0

+) , (4.40)

where, following the assumptions made in Section 2.2, the specific surface area
ase and, additionally, t0

+ are assumed constant and, therefore, can be extracted
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4.1 Classical half-cell

from the integral. Thus, the boundary condition for the flux in the electrolyte
phase at the anode-separator interface can be written as

−Dsep
e,eff∇ce(0) =

iapp

F
(1− t0

+) . (4.41)

The boundary condition in Equation (4.41) is commonly used to replace
the anode in a half-cell model [40, 42, 132]. However, disassembling the
continuity equations for the electrolyte phase, as was done above, shows the
implications that come along with it. Such as, the volume average lithium
concentration in the electrolyte can be assumed to stay constant over time.

Cell quantities

The half-cell model, as presented above, is used to evaluate cell performance.
To this end, typically, cell quantities like state of charge, specific capacity, cell
voltage and alike are computed and discussed.

Specific capacity The total capacity, or ampere-hour capacity, or electric
capacity, of the cell can refer to either the negative or positive electrode. It is
calculated via the initial and maximum lithium concentration in the solid phase
of the respective electrode. In case of the half-cell model used in this work, the
total capacity of the positive electrode is given as

Qtot =V pos(cs,max− cs,init)F

= AcellLpos
φs(cs,max− cs,init)F ,

(4.42)

where V pos
s and φs is the volume fraction of the solid phase of the positive

electrode, respectively. Acell and Lpos is the volume, cross section area and
length of the positive electrode, respectively. cs,init and cs,max is the initial and
maximum allowable concentration of the active material, respectively. The

97



4 Cell modeling

specific capacity is commonly used in the battery community. For this purpose,
the capacity is related to the mass of the active material, i.e. mAM, which brings

Qspec =
Qtot

mAM
=

AcellLposφs(cs,max− cs,init)F
AcellLposφs %AM

=
(cs,max− cs,init)F

%AM
,

(4.43)

where %AM is the density of the underlying active material.

Cell voltage The cell voltage is defined as the voltage drop between
positive and negative electrode-current-collector interface. Since the anode is
represented as a lithium metal foil, the anode potential is assumed to be zero.
Thus, the cell voltage is equal to the cathode-current-collector interface as

Ucell = ϕs(L
tot) . (4.44)

State of charge and depth of discharge Typically, the cell voltage is drawn
versus the so-called state of charge (SOC) or depth of discharge (DOD) of
the cell. SOC is defined as the releasable capacity relative to its maximum
allowable, whereas DOD is defined as the released capacity relative to its
maximum allowable [134, 135]. In case of a full-cell setup, the state of charge
or depth of discharge can be related to the capacities of either the positive or the
negative electrode. As for the half-cell model in this work, the state parameters
are defined using the positive electrode capacity. Since the electrode capacity
is directly related to the amount of lithium stored inside the active material, the
DOD can be calculated as

DOD(t) =
cs,avg(t)− cs,init

cs,max− cs,init
, (4.45)
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where cs,avg(t) is the cell’s volume-averaged lithium concentration of the solid
phase at time t. During discharge, as the lithium concentration increases in
the positive electrode, the value of Equation (4.45) increases from 0 to 1,
representing an initial concentration state and a maximum concentration state
where, ideally, all sites of the active material crystal structure are filled with
lithium [10]. In other words, the cell’s depth of discharge increases while, by
the same time, its state of charge decreases from 1 to 0. Therefore, the cell’s
SOC and DOD are related via

SOC = 1−DOD . (4.46)

Calculating the nC current In the battery community, it is very common
to use the concept of C rate. The C rate represents an electrical current, where a
C rate of 1 corresponds to a current that is needed to charge or discharge a LIB
within one hour. Higher C rates stand for higher currents whereas lower C rates
mean lower currents. In reality, the value of the C rate is highly dependent on
the structure, geometry, electrochemistry, etc., such that, usually, experiments
are needed, in order to find the electric current representing a C rate of 1.

In the cell model, however, the 1C rate representing electric current can be
calculated directly from the given structural parameters. It was shown that the
state of charge can be calculated by knowing the state of lithium concentration
of the electrode. In case of the presented half-cell model, the volume-averaged
temporal change of lithium concentration of the positive electrode is generally
calculated as

∂cs,avg

∂ t
=

1
Lpos

∫ Ltot

Lsep

3
rsec

3

∫ rsec

0
y2 ∂cs

∂ t
dydx . (4.47)
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Recall that, from Equation (4.25), the temporal change of lithium of a single
particle is known as

3
rsec

3

∫ rsec

0
y2 ∂cs

∂ t
dy =

3
rsec

jse . (4.48)

Volume-averaged integration of Equation (4.48) over the electrode volume
leads to

1
Lpos

∫ Ltot

Lsep

3
rsec

3

∫ rsec

0
y2 ∂cs

∂ t
dydx =

1
Lpos

∫ Ltot

Lsep

3
rsec

jse dx . (4.49)

Inserting Equation (4.49) into Equation (4.47) brings

∂cs,avg

∂ t
=

1
Lpos

∫ Ltot

Lsep

3
rsec

jse dx . (4.50)

Additionally, from Equation (4.24) and the boundary condition iapp = is(L
tot),

the applied current density is represented as

iapp =
∫ Ltot

Lsep
ase jseF dx . (4.51)

Under the assumption that the interfacial area ase and the active material
particle radii rsec are constant, they can be extracted form the integrals of
Equations (4.50) and (4.51), converting them into

∂cs,avg

∂ t
=

1
Lpos

3
rsec

∫ Ltot

Lsep
jse dx (4.52)

and

iapp = aseF
∫ Ltot

Lsep
jse dx . (4.53)
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Finally, comparing Equations (4.52) and (4.53), brings

∂cs,avg

∂ t
=

1
Lpos

3
rsec

iapp

aseF
. (4.54)

From Equation (4.54), it can be seen that the volume-averaged temporal change
of lithium concentration of the positive electrode can be computed by the
applied current density iapp and the structural properties Lpos, rsec and ase. Note
that those properties are taken as constants in this work, which also makes
Equation (4.54) constant.

In order to calculate cs,avg(t) at time t, Equation (4.54) is multiplied by t and
the initial concentration cs,init is added such that

cs,avg(t) =
∂cs,avg

∂ t
· t + cs,init

=
1

Lpos
3

rsec

iapp

aseF
· t + cs,init .

(4.55)

Inserting Equation (4.55) in Equation (4.45), the depth of discharge at time t

is

DOD(t) =
1

Lpos
3

rsec

iapp
aseF · t

cs,max− cs,init
. (4.56)

A fully discharged cell is represented by setting DOD(t) = 1 within one hour
t = 3600s in Equation (4.56). Rearranging yields the 1C-current as

i1C
app = (cs,max− cs,init)

Lpos rsec aseF
3 ·3600

. (4.57)

Generally, the nC-current is

inC
app = n(cs,max− cs,init)

Lpos rsec aseF
3 ·3600

. (4.58)
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Note that the above derivations do only apply for cases where the specific
surface area can be calculated using ase =

3φs
rsec

, which implies the assumption
that the active material particles are of spherical shape and detached from each
other [136]. Morphological variations from this formula necessitate special
treatment of the above presented derivations, which shall not be considered in
the present work.
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4.1 Classical half-cell

Figure 4.2: Mathematical model of the half-cell setup.
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4.2 Hierarchically structured half-cell

As mentioned in Section 1, the performance of LIBs can be increased by so-
called hierarchically structured cathodes where, by postprocessing the initial
active material, the porosity of secondary particles is increased. As a result,
the rate capability and cycle stability can be improved [26–29]. In order to
simulate such structures, in the following, the previously presented half-cell
model is extended for hierarchically structured cathodes. Consequently, the
model is called hierarchically structured half-cell model [137].

In Figure 4.3a, the sketch of the hierarchically structured half-cell is presented.
Similar to the classical half-cell setup from Section 4.1, on the left-hand side,
the anode is a lithium metal foil and, on the right-hand side, the positive
electrode is a porous composite structure which is composed of the active
material and the filler material. The latter of which is a carbon-black-binder-
mixture. Also, a separator is placed between anode and positive electrode.
In the hierarchically structured electrode case, however, the active material
secondary particles—which are built up by primary particles—show a distinct
porosity. Both the separator and composite electrode structure—including the
secondary particle pores—are filled with liquid electrolyte.
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4.2 Hierarchically structured half-cell

Figure 4.3: Hierarchically structured half-cell setup of lithium-ion batteries. a) Sandwich
structure of a lithium-ion battery cell. The anode is a solid lithium metal and the
cathode has porous active materials, i.e. secondary particles. b) The porous structure
of both the cathode and the secondary particles are homogenized.

During charge or discharge, electrochemical reactions take place only at the
interfacial area between primary particles and electrolyte inside the secondary
particles. Due to the porous secondary particles, an additional transport region
is introduced into the system. Therefore, as an extension of the classical half-
cell model [36, 40–42], the hierarchically structured half-cell model is divided
into three levels. The cell, the secondary particle and the primary particle level.
Following the classical half-cell model, the porous electrode theory [35, 47]
does also apply to the hierarchically structured half-cell model.

On cell level, transport is carried by the electrolyte and the solid phase, where,
similar to the half-cell model, the solid phase accounts for the active material
and the filler material. On secondary particle level, all transport is via the
electrolyte or the primary particles, where the latter of which is identified as
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the solid phase on this level. Finally, the intercalation and transport process of
lithium inside the solid phase is modeled on the primary particle level.

A model for porous secondary particles was also presented in [53]. In the
present work, however, the secondary particle and electrolyte share the same
specific surface area for exchange flux. Additionally, to avoid double counting
of exchange flux density, the electrochemical reactions are only between
primary particles and the surrounding electrolyte within the secondary particle
and electrochemical reactions between secondary particle and electrolyte are
neglected. Moreover, transport of lithium inside the secondary particles is
only via the internal electrolyte phase and is intercalated via electrochemical
reactions into the additionally introduced primary particle level.

4.2.1 Macroscale equations

In this section, the mathematical formulation of the hierarchically structured
half-cell model is derived. The electronic and ionic charge transport, as well as
cationic flux has to be accounted for on both, the cell and the secondary particle
level. Therefore, in total, six continuity equations have to be defined and
solved. Similar to Section 4.1.1, microscopic transport equations are defined
for the respective phases and volume average theorems are used to convert
them to macroscopic forms. Additionally, on primary particle level, the lithium
transport is modeled by a Fickian type diffusion. A summarized version of
the presented PDEs can be found in Figure 4.4 and 4.5. In the following,
the superscript "sec" and "prim" refers to the considered level, i.e. secondary
particle or primary particle level. If no superscript is given, the properties refer
to the cell level.
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4.2 Hierarchically structured half-cell

Primary particle level

On the primary particle level, lithium moves due to diffusion. Spherical
symmetry is assumed for the primary particles.

Conservation of mass in the solid phase The transport process inside the
primary particles is taken as one-dimensional Fickian diffusion by

∂cprim
s

∂ t
=

1
z2

∂

∂ z

(
z2Ds

∂cprim
s

∂ z

)
. (4.59)

Here, the concentration of lithium is cprim
s and the diffusion coefficient in the

solid phase is Ds. The dimension z is introduced as the radial coordinate inside
the primary particle.

Secondary particle level

On the secondary particle level, the derivation of the macroscale forms of
the conservation equations is quite similar to the derivations in Section 4.1.1.
Additionally, and as can be observed by experiments [29], hierarchically
structured secondary particles are of spherical shape. Therefore, spherical
symmetry is employed and the derived macroscale equations are converted into
spherically symmetric forms according to Appendix A.1.

Conservation of charge in the solid phase Similar to Equation (4.6),
the macroscopic form of the conservation of charge in the solid phase of a
secondary particle is

∇ ·
(
−κ

eon,sec
s,eff ∇ϕ

sec
s

)
= asec

se jsec
se F , (4.60)

where κ
eon,sec
s,eff is the effective electronic conductivity of the solid phase, ϕ

sec
s is

the macroscopic electronic potential and asec
se is the specific interfacial area of
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the primary particle surfaces and the electrolyte inside the secondary particles.
Note that the macroscopic surface flux of the secondary particles jsec

se can be
calculated using the Butler-Volmer relation according to Equation (4.69).

Converting to the spherical coordinate system, and employing spherical
symmetry, yields

1
y2

∂

∂y

(
−y2

κ
eon,sec
s,eff

∂ϕ
sec
s

∂y

)
= asec

se jsec
se F . (4.61)

Here, the dimension y is introduced as the radial coordinate inside the
secondary particle.

Conservation of charge in the electrolyte phase Analogous to
Equation (4.13), the macroscopic form of the conservation of charge in the
electrolyte phase of a secondary particle is

∇ ·
(
−κ

ion,sec
e,eff ∇ϕ

sec
e −κ

ion,sec
D,eff ∇ lncsec

e

)
=−asec

se jsec
se F , (4.62)

where κ
ion,sec
e,eff and κ

ion,sec
D,eff is the effective ionic and diffusional conductivity of

the electrolyte phase, respectively, ϕ
sec
e is the macroscopic ionic potential and

csec
e is the macroscopic electrolyte concentration inside the secondary particles.

The spherically symmetric version of Equation (4.62) is

1
y2

∂

∂y

(
−y2

κ
ion,sec
e,eff

∂ϕ
sec
e

∂y
− y2

κ
ion,sec
D,eff

∂ lncsec
e

∂y

)
=−asec

se jsec
se F . (4.63)

Conservation of mass in the electrolyte phase Finally, on the secondary
particle level, the conservation of mass in the electrolyte is derived as follows.
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Adapting the macroscopic form of the conservation of mass in the electrolyte
phase from Equation (4.19) as

φ
sec
e

∂csec
e

∂ t
= ∇ ·

(
Dsec

e,eff∇csec
e

)
−asec

se (1− t0
+) jsec

se , (4.64)

where Dsec
e,eff is the effective diffusion coefficient of the electrolyte phase inside

the secondary particle.

Converting Equation (4.64) to the spherical coordinate system and employing
spherical symmetry yields

φ
sec
e

∂csec
e

∂ t
=

1
y2

∂

∂y

(
y2Dsec

e,eff
∂csec

e

∂y

)
−asec

se (1− t0
+) jsec

se . (4.65)

Cell level

In order to derive macroscopic continuity equations for the cell level of
the hierarchically structured half-cell model, volume averaging methods are
applied according to Section 2.2.

Charge conservation in the solid phase The microscopic continuity
equation regarding the conservation of electronic charge on the cell level is
analogous to Equation (4.4). Using the volume average approach by employing
Equation (2.24) brings

∇ ·
(
−κ

eon
s,eff∇ϕs

)
= φsecis,sec , (4.66)

where k
α,eff ≡ κeon

s,eff is the effective electronic conductivity, pα ≡ ϕs is
the macroscopic electronic potential. In contrast to the common half-cell
model, the electrochemical reactions at the interface between the secondary
particle surfaces and the surrounding electrolyte, i.e. the surface term in
Equation (2.24), is neglected in this work. Rather, the production of electronic
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charges on the cell level is due to electrochemical reactions from within the
secondary particles on the surface area of the primary particles. This is
expressed as the volume-averaged source term being identified as φα bα ≡
φsecis,sec, where φsec is the volume fraction of secondary particles without
internal porosity and is,sec is the volume-averaged production term of electronic
charges inside the secondary particles.

Charge conservation in the electrolyte phase The microscopic
continuity equation regarding the conservation of ionic charge is identical
to Equation (4.10). Using the volume-average approach, by applying
Equation (2.25), yields

∇ ·
(
−κ

ion
e,eff∇ϕe−κ

ion
D,eff∇ lnce

)
= φsecie,sec . (4.67)

Comparing to Equation (2.25), the effective conductivity, k
β ,eff, is either the

effective ionic conductivity, κ ion
e,eff, or the effective diffusional conductivity

κ ion
D,eff on the cell level. Moreover, the macroscopic potential, pβ , is either

the macroscopic ionic potential, ϕe, or, ce, the macroscopic concentration of
lithium of the electrolyte phase. Additionally, the generation of ionic charges is
due to electrochemical reactions on the surfaces of the primary particles inside
the secondary particles. Therefore, the volumetric production term on the right-
hand side of Equation (4.67) is defined by the volume-averaged production
term of ionic charges from within the secondary particles ie,sec. Note that the
reaction term in Equation (2.25) on the surfaces of the secondary particles is
neglected.

Mass conservation in the electrolyte phase The derivation of the
macroscopic continuity equation regarding the mass conservation of the
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electrolyte phase starts with the microscopic form provided by Equation (4.18).
Using volume-averageing, by employing Equation (2.25), results in

φe
∂ce

∂ t
= ∇ ·

(
De,eff∇ce

)
+φsec je,sec . (4.68)

where, comparing to Equation (2.25), φβ ≡ φe is the volume fraction, pβ ≡ ce

is the macroscopic concentration and k
β ,eff ≡ De,eff is the effective diffusion

coefficient on cell level. The electrochemical reaction on the surfaces between
the secondary particles and the electrolyte is neglected. Instead, the production
of cations je,sec is governed by electrochemical reaction from within the
secondary particles.

Reaction kinetics Similar to Section 4.1.1, the electrochemical reaction at
the interface between primary particles and electrolyte is described by a Butler-
Volmer type equation on secondary particle level. In case of the hierarchically
structured half-cell model, it reads

jsec
se =− j(ηsec,csec

e ,csec
s,surf)

=−
isec
0
F
·

{
exp
(
(1−α)F
RT

η
sec
)
− exp

(
−αF
RT

η
sec
)}

=−k0(csec
e )1−α(cs,max− csec

s,surf)
1−α(csec

s,surf)
α

·

{
exp
(
(1−α)F
RT

η
sec
)
− exp

(
−αF
RT

η
sec
)}

,

(4.69)

where, compared to Equation (4.69), isec
0 is the exchange current density on

secondary particle level and csec
s,surf is the lithium concentration at the primary

particle surfaces. Moreover, η
sec refers to the overpotential at the surface of a

primary particle inside a secondary particle by

η
sec = (ϕsec

s −ϕ
sec
e )−Eeq(c

sec
s,surf) , (4.70)
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where the equilibrium potential, Eeq(c
sec
s,surf), is a function of csec

s,surf.

4.2.2 Hierarchically structured half-cell model

As can be seen in Figures 4.4 and 4.5, the hierarchically structured half-cell is
divided into three levels, each of which containing one-dimensional domains.
On the top level, the cell level, the separator and the positive electrode domain,
i.e. cathode, is modeled. Here, the superscripts "sep" and "pos" indicate the
respective region.

Boundary conditions

Similar to the half-cell model from Section 4.1.2, the anode is modeled as
a lithium metal foil. Again, galvanostatic charge or discharge is considered,
thus the applied current is assumed to be constant. In the following, boundary
conditions are derived by integrating over domains in the cartesian and
spherical coordinate systems. The mathematical basics of the integration
operations performed can be found in Appendix A.2.

Electronic charge and potential in the solid phase As a first step,
concerning the right-hand side of Equation (4.66), the volume-averaged source
term is,sec is evaluated by volume-averaged integration of Equation (4.61),
yielding

3
rsec

3

∫ rsec

0

∂

∂y

(
−y2

κ
eon,sec
s,eff

∂ϕ
sec
s

∂y

)
dy =

3
rsec

3

∫ rsec

0
y2asec

se jsec
se F dy

− 3
rsec

3 rsec
2
κ

eon,sec
s,eff

∂ϕ
sec
s (rsec)

∂y
−

��
���

���
���

��:0(
− 3

rsec
3 02

κ
eon,sec
s,eff

∂ϕ
sec
s (0)
∂y

)
=

3
rsec

3

∫ rsec

0
y2asec

se jsec
se F dy ,

(4.71)
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where rsec is the secondary particles radius. Consequently, by recognizing that
the electronic current density at the surface of the secondary particle is

−κ
eon,sec
s,eff

∂ϕ
sec
s (rsec)

∂y︸ ︷︷ ︸
isec
s,surf

=
1

rsec
2

∫ rsec

0
y2asec

se jsec
se F dy ,

(4.72)

is,sec can be expressed as

is,sec =
3

rsec
isec
s,surf =

3
rsec

3

∫ rsec

0
y2asec

se jsec
se F dy , (4.73)

which, in turn, can be used for the right-hand side of Equation (4.66) yielding

φsecis,sec = φsec
3

rsec︸ ︷︷ ︸
ase

isec
s,surf = aseisec

s,surf , (4.74)

where, in case of equal-sized and detached spherical secondary particles, ase =
3φsec
rsec

[136] is identified as specific surface area between secondary particle and
electrolyte.

As the next step, the electronic current over the cell domain is calculated by
volume-averaged integration of Equation (4.66) as

Acell
∫ Ltot

Lsep
∇ ·
(
−κ

eon,pos
s,eff ∇ϕs

)
dx = Acell

∫ Ltot

Lsep
φsecis,sec dx

−Acell
κ

eon,pos
s,eff ∇ϕs(L

tot)−Acell

���
���

���
�:0(

−κ
eon,pos
s,eff ∇ϕs(L

sep)
)
=

Acell
∫ Ltot

Lsep
φsec

3
rsec

3

∫ rsec

0
y2asec

se jsec
se F dydx ,

(4.75)
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where Acell is the cross section area of the cell. Note that the result from
Equation (4.73) was used. Additionally,

−κ
eon,pos
s,eff ∇ϕs(L

sep) = 0 (4.76)

accounts for the fact that electrons are not allowed to enter the separator
domain. Finally, the electronic current density at the cathode-current-collector
side is

−κ
eon,pos
s,eff ∇ϕs(L

tot)︸ ︷︷ ︸
is(Ltot)

=
∫ Ltot

Lsep
φsec

3
rsec

3

∫ rsec

0
y2asec

se jsec
se F dydx , (4.77)

where is(L
tot) is set to be the applied electric current density iapp.

Continuity of the electronic potential between secondary particle and the cell
level is realized by a Dirichlet boundary condition

ϕ
sec
s (rsec) = ϕs . (4.78)

Concentration in the solid phase Next, the average change in
concentration of lithium in the solid phase is considered. Therefore,
volume-averaged integration over the spherical primary particle level of
Equation (4.59) brings

3
rprim
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∫ rprim
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z2 ∂cprim
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3
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3

∫ rprim
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3
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2Ds
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∂ z
−
���

���
���

�:0
3

rprim
3 02Ds

∂cprim
s (0)
∂ z

,

(4.79)
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which describes the volume-averaged temporal change of lithium concentra-
tion inside a primary particle. Note that

Ds
∂cprim

s (rprim)

∂ z
= jsec

se
(4.80)

accounts for the electrochemical reaction boundary condition at the surfaces of
the primary particles. Here, jsec

se is the Butler-Volmer type reaction term from
Equation (4.69).

Ionic current and potential in the electrolyte phase The volume-
averaged source term on the right-hand side of Equation (4.67) is tackled
next. Therefore, Equation (4.63) is volume-averaged over its spherical domain,
which brings
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− 3
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(4.81)
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Identifying that

−κ
ion,sec
e,eff

∂ϕ
sec
e (rsec)

∂y
−κ

ion,sec
D,eff

∂ lncsec
e (rsec)

∂y︸ ︷︷ ︸
isec
e,surf

=

− 1
rsec

2

∫ rsec

0
y2asec

se jsec
se F dy

(4.82)

is the ionic current density at the surface of the secondary particle, the volume-
averaged ionic current density is

ie,sec =
3

rsec
isec
e,surf =−

3
rsec

3

∫ rsec

0
y2asec

se jsec
se F dy , (4.83)

where isec
e,surf is the ionic current density at the surfaces of the secondary

particles. The right-hand side of Equation (4.67) is rewritten as

φsecis,sec = φsec
3

rsec︸ ︷︷ ︸
ase

isec
e,surf = aseisec

e,surf . (4.84)

The total ionic current, i.e. volume-averaged integration of Equation (4.67), is

Acell
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0
∇ ·
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ion,sep
e,eff ∇ϕe−κ

ion,sep
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dx+
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φsecie,sec dx .

(4.85)
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The left-hand side is
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(4.86)

where

−κ
ion,pos
e,eff ∇ϕe(L

tot)−κ
ion,pos
D,eff ∇ lnce(L

tot) = 0 (4.87)

accounts for the fact that no ionic current is allowed to enter or leave the
cathode-current-collector interface. Also, continuity of ionic current at the
separator-cathode interface is represented by

−κ
ion,sep
e,eff ∇ϕe(L

sep)−κ
ion,sep
D,eff ∇ lnce(L

sep) =

−κ
ion,pos
e,eff ∇ϕe(L

sep)−κ
ion,pos
D,eff ∇ lnce(L

sep) .
(4.88)

Using Equation (4.83), the right-hand side of Equation (4.85) becomes
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3
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3
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Finally, the total ionic current density at the anode-separator interface is

−
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0
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se jsec
se F dydx ,

(4.90)

where, comparing to Equation (4.77), ie(0) is the applied current density iapp.
Note, the continuity of the ionic potential between secondary particle and the
cell level is realized by a Dirichlet boundary condition

ϕ
sec
e (rsec) = ϕe . (4.91)

Concentration in the electrolyte phase As a final step, the volume-
averaged source term on the right-hand side of Equation (4.68) is dealt with
by volume-averaged integration of Equation (4.65), which results in
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(4.92)
The flux density at the secondary particle surface, jsec

e,surf, is identified as
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(4.93)
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thus
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(4.94)

where jsec
e,surf is the mass flux density at the secondary particle surfaces, which

renders the corresponding term in Equation (4.68) as

φsec je,sec = φsec
3

rsec︸ ︷︷ ︸
ase

jsec
e,surf = ase jsec

e,surf . (4.95)
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Applying volume-averaged integration on Equation (4.68) and using the result
from Equation (4.94) leads to

1
Ltot

(∫ Lsep

0
φ

sep
e

∂ce

∂ t
dx+

∫ Ltot

Lsep
φ

pos
e

∂ce

∂ t
dx

)

=
1

Ltot

(∫ Lsep

0
∇ ·
(

Dsep
e,eff∇ce

)
dx+

∫ Ltot

Lsep
∇ ·
(

Dpos
e,eff∇ce

)
+φsec je,sec dx

)

=
1

Ltot

(∫ Lsep

0
∇ ·
(

Dsep
e,eff∇ce

)
dx+

∫ Ltot

Lsep
∇ ·
(

Dpos
e,eff∇ce

)
dx

)

+
1

Ltot

(∫ Ltot

Lsep
φsec

(
− 3

rsec

∫ rsec

0
y2

φ
sec
e

∂csec
e

∂ t
dy

− 3
rsec

∫ rsec

0
y2asec

se (1− t0
+) jsec

se dy
)

dx

)

=
1

Ltot

(∫ Lsep

0
∇ ·
(

Dsep
e,eff∇ce

)
dx+

∫ Ltot

Lsep
∇ ·
(

Dpos
e,eff∇ce

)
dx

)

− 1
Ltot

∫ Ltot

Lsep
φsec

3
rsec

3

∫ rsec

0
y2

φ
sec
e

∂csec
e

∂ t
dydx

− 1
Ltot

∫ Ltot

Lsep
φsec

3
rsec

3

∫ rsec

0
y2asec

se (1− t0
+) jsec

se dy

(4.96)
The divergence terms read
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where
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tot) = 0 (4.98)
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reflects continuity of mass flux between separator and cathode region and
implies that no mass flux is allowed at the cathode-current-collector side.

Using Equation (4.97) in Equation (4.96) yields
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(4.99)

Finally, the volume-averaged temporal change of concentration in the
electrolyte phase is
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(4.100)
Equation (4.100) shows that the volume-averaged temporal change of
electrolyte concentration is due to diffusion at the anode-separator interface on
cell level and electrochemical reactions of cations at the electrolyte-primary-
particle interface on secondary particle level. As was assumed earlier, the
applied electroneutrality condition enforces the same amount of anions and
cations. On cell and secondary particle level, this is expressed as a constant
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volume-averaged concentration in the electrolyte, i.e. a vanishing temporal
change. Therefore, the left-hand side of Equation (4.100) is set to zero yielding
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By comparing Equations (4.90) and (4.101), the latter of which is rewritten as
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F
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(4.102)
where t0

+ is assumed to be constant. Using the boundary condition from above,
i.e. setting the ionic current density at the anode-separator interface equal to
the applied current density, yields

−Dsep
e,eff∇ce(0) =

iapp

F
(1− t0

+) . (4.103)

Interestingly, Equation (4.103) is the same as for the half-cell model [40, 42, 132].
In order to satisfy continuity of concentration, the concentration between
secondary particle surface and the cell level is prescribed as Dirichlet boundary
condition

csec
e (rsec) = ce . (4.104)

Cell quantities

Analogous to the half-cell model from Section 4.1.2, the evaluation of the cell
performance is done by computing the appropriate cell quantities. Note that
the cell voltage and state of charge or depth of discharge is computed similar
to the half-cell model from Section 4.1.2 and are therefore omitted here.
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Specific capacity The specific capacity is calculated by first evaluating the
total capacity as

Qtot =V pos
s (cs,max− cs,init)F

= AcellLpos
φsφ

sec
s (cs,max− cs,init)F ,

(4.105)

where V pos
s is the volume of the solid phase inside the positive electrode, and

cs,init and cs,max is the initial and maximum allowable concentration of the
active material, respectively. The former of which, can be calculated using
the positive electrode’s cross section area Acell, length Lpos, volume fraction
of secondary particles φs and volume fraction of the secondary particles’ solid
phase φ sec

s .

Finally, the specific capacity is

Qspec =
Qtot

mAM
=

AcellLposφsφ
sec
s (cs,max− cs,init)F

AcellLposφsφ
sec
s %AM

=
(cs,max− cs,init)F

%AM
,

(4.106)

where %AM is the density of the active material.

Calculating the nC current In case of the presented hierarchically
structured half-cell model, the volume-averaged temporal change of lithium
concentration in the positive electrode is calculated as
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∂ t
=

1
Lpos

∫ Ltot

Lsep

3
rsec

3

∫ rsec

0
y2 3

rprim
3

∫ rprim

0
z2 ∂cprim

s

∂ t
dzdydx . (4.107)

From Equations (4.79) and (4.80), it is known that
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0
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se . (4.108)
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Importing Equation (4.108) into Equation (4.107) yields
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Moreover, from Equation (4.77), it was found that
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if galvanostatic boundary conditions apply and is(L
tot) is set to a constant

applied electric current density iapp. Under the assumption that φsec, rprim and
asec

se are constant properties, Equations (4.109) and (4.110) are rewritten as
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and
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Comparing Equations (4.111) and (4.112) yields
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3
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1
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3

rsecase

3
rprimasec
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(4.113)

where by φsec =
ase rsec

3 it was assumed that the secondary particles are equal-
sized and detached [136]. cs,avg(t) at time t is calculated analogous to
Equation (4.55), which is inserted into Equation (4.45) such that the depth
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of discharge is calculated as cs,avg(t) at time t is calculated by multiplying
Equation (4.113) by t and adding the initial concentration cs,init yielding

cs,avg(t) =
∂cs,avg

∂ t
· t + cs,init

=
iapp

F
3

rsecase

3
rprimasec

se
· t + cs,init .

(4.114)

Inserting Equation (4.114) in Equation (4.45), the depth of discharge at a time
t is

DOD(t) =

iapp
F

3
rsecase

3
rprimasec

se
· t

cs,max− cs,init
. (4.115)

The 1C-current can be computed by rearranging Equation (4.115) as well as
setting t = 3600s and DOD(t) = 1 representing a fully discharged cell within
one hour as

i1C
app = (cs,max− cs,init)

Lpos rsec ase rprim asec
se F

9 ·3600
. (4.116)

In general, the nC-current is

inC
app = n(cs,max− cs,init)

Lpos rsec ase rprim asec
se F

9 ·3600
. (4.117)

Note that the above derivations do only apply for cases where the specific
surface area can be calculated using ase = 3φs

rsec
and asec

se = 3φ sec
s

rprim
, which

implies the assumption that the active material particles, either secondary or
primary particles, are of spherical shape and detached from each other [136].
Morphological variations from these formulas necessitate special treatment of
the above presented derivations, which shall not be considered in the present
work.
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Figure 4.4: Mathematical model of the hierarchically structured half-cell setup.
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Figure 4.5: Mathematical model of the hierarchically structured half-cell setup. (continued)
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4.3 Validation of the hierarchically structured
half-cell model

The following section aims at validating the previously presented hierarchically
structured half-cell model [137]. To this end, geometry, structure and material
properties from [30] were imported into the model and the simulation results
were compared to measurements reported in [30].

4.3.1 Geometry, structure and transport properties

In [30], both classical and hierarchically structured electrodes were
prepared and electrochemically characterized. Moreover, the morphology of
hierarchically structured electrodes was varied in terms of primary particle
sizes, inner porosity and secondary particle size. Additionally, statistical
image analysis based on synchrotron tomography was used to investigate the
structural properties of the electrodes.

Concerning classical electrodes, dense pristine powder (p-NMC) was
used, where LiNi1/3Mn1/3Co1/3O2 (NMC) was the active material. The
hierarchically structured electrodes were prepared using nanostructured
powder (n-NMC), which was obtained by grinding, spray drying and
calcinating the p-NMC powder. See [30] for a more detailed description
of the process. In both cases, slurries were produced by adding conductive
filler material to the powders. The conductive filler material comprised of
polyvinylidene difluoride (PVDF) binder, carbon black and graphite. Finally,
the electrodes were produces by casting the slurries onto an aluminium foil.
In Tables 4.1 and 4.2, the geometry and structure properties of the resulting
electrodes are summarized. Note that the specific surface area is computed
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as a = 3φ

r [136], where—depending on model level—the respective value is
calculated by

ase =
3φ

pos
s

rsec
or asec

se =
3φ sec

s

rprim
, (4.118)

respectively.

Table 4.1: Geometry properties of the classical and hierarchically structured half-cells taken
from [30].

Parameter p-NMC n-NMC-F850 n-NMC-F900

Lsep [m] 260 ·10−6 260 ·10−6 260 ·10−6

Lpos [m] 50 ·10−6 76 ·10−6 71 ·10−6

In the following, the classical electrode setup named p-NMC is compared to
hierarchically structured electrodes denoted by n-NMC, which are based on
the same material. Moreover, the secondary particle’s radii are comparable
among all electrodes. Additionally, the nanostructured secondary particles
were treated with different calcination temperatures of 850°C and 900°C,
which led to larger primary particle sizes and lower porosities in case of the
higher temperature. In order to distinguish between those two, the n-NMC
electrodes are denoted by n-NMC-F850 and n-NMC-F900.
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Table 4.2: Structure properties of the classical and hierarchically structured half-cells taken
from [30].

Parameter p-NMC n-NMC-F850 n-NMC-F900

Cell level

φ
sep
e [−] a) 0.50 0.50 0.50

φ
pos
e [−] 0.54 0.57 0.58

φ
pos
s [−] 0.28 0.32 0.30

φ
pos
f [−] 0.18 0.11 0.12

asec [m−1] b) 2.00 ·105 2.31 ·105 2.05 ·105

Secondary particle level

φ sec
e [−] 0.00 0.46 0.38

φ sec
s [−] 1.00 0.54 0.62

rsec [m] 4.20 ·10−6 4.15 ·10−6 4.40 ·10−6

asec
se [m−1] b) - 9.00 ·106 7.75 ·106

Primary particle level

rprim [m] - 0.18 ·10−6 0.24 ·10−6

a) Assumed. b) Calculated using Equation (4.118).

The effective transport properties are calculated using the bulk material
property multiplied by an effective transport parameter k̂eff, which incorporates
the morphology of the transport paths of the corresponding conducting phase.
On the one hand, it can be calculated by employing the resistor network
method for both the solid and pore networks on virtual particle assemblies,
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as presented in Sections 3.1 and 3.1. On the other hand, the statistically
derived so-called M-factor can be used equivalently which accounts for volume
fraction, tortuosity and constrictivity of the transport phase [92, 93]. One
prominent way of calculating effective transport parameters, however, is the
Bruggeman correlation [71, 138], which is a function of the volume fraction of
the transport phase and the Bruggeman transport coefficient brugg in the form
of k̂eff = φ brugg. As for the cell level in this investigation, this type of relation
shall be used to compute the effective transport parameters of the cathode as
follows.

In [92], the RN was extensively used to generate a large database of
sphere assembly scenarios with randomly distributed and slightly overlapping
particles following a polydisperse size-distribution. By means of statistical
methods, prediction formulas for the transport parameters of the considered
packings were developed in terms of the mean contact angle and the standard
deviation of the particle radii. Notably, it was found that a Bruggeman
type correlation can be employed to compute effective transport parameters
of the pore phase. In contrast to the transport through the solid phase, it
seemed that neither the considerably large polydispersity nor the degree of the
investigated densification had an influence on the transport through the pore
phase. There, a Bruggeman coefficient of 1.342 was found to achieve the best
approximation [92]. Considering that the underlying degree of polydispersity
and densification corresponds to the cathode structures in [30], the transport
coefficient is therefore applied in this investigation.

In addition to that, as a simple model assumption, the electronic and ionic
transport carried by the filler phase and electrolyte phase, respectively,
is modeled by splitting the above-mentioned Bruggeman-based effective
transport parameter of the total pore phase according to the volume fractions.
This way, both phases can be regarded as smeared homogeneously over the
pore phase. Recall from before that the filler phase comprises of binder, carbon
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black and graphite. In this work, the filler phase is equipped with an effective
electronic conductivity resulting from all three components.

In this investigation, using the volume fractions φ
pos
f of the filler and φ

pos
e of

the electrolyte phase from Table 4.2, the volume fraction of the pore phase is
obtained as

φ
pos
pore = φ

pos
e +φ

pos
f , (4.119)

which is used to calculate the effective transport parameter of the pore phase
as

k̂pos
eff,pore = φ

pos
pore

1.342 . (4.120)

In the framework of the cell models presented in this work, electronic and ionic
transport is via the filler and electrolyte phase, respectively. Using the additive
split of the pore phase from Equation (4.119), the effective electronic and ionic
transport properties are assigned according to the volumetric share of the filler
and electrolyte phase as

k̂eon,pos
eff = φ

pos
pore

1.342 ·

(
φ

pos
f

φ
pos
pore

)
and k̂ion,pos

eff = φ
pos
pore

1.342 ·

(
φ

pos
e

φ
pos
pore

)
,

(4.121)
respectively. In case of the separator on the cell in this investigation, its
porosity was assumed as 0.5 , which is in the range of the typical characteristics
of commercial separators, and its Bruggerman transport coefficient was taken
as 3.0, which is within the range reported in literature [139].

Finally, effective transport parameters of the primary particle and pore
networks on secondary particle level for the hierarchically structured half-cell
model were used in form of the M-factors reported in [30], which are based
on the real morphology. The effective transport parameters are summarized in
Table 4.3.
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Table 4.3: Transport properties of classical and hierarchically structured electrodes taken
from [30].

Parameter p-NMC n-NMC-F850 n-NMC-F900

Cell level

k̂ion,pos
eff [−] a) 0.48 0.50 0.51

k̂eon,pos
eff [−] a) 0.16 0.10 0.11

Secondary particle level

k̂ion,sec
eff [−] - 0.33 0.10

k̂eon,sec
eff [−] - 0.20 0.46

a) Calculated using Equation (4.121).

4.3.2 Electrochemistry and material parameters

From [30], the equilibrium potential curves, i.e. open circuit voltage curves
(OCV), were taken as the ones measured at the lowest C rate of C/20, see
Figure 4.6.
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Figure 4.6: OCV curves taken from [30].

The half-cell models, as presented here, need information on the minimum and
maximum allowable lithium concentration inside the active cathode material.
Those quantities are computed here as follows. During the discharging
process, lithium is intercalated into the active material starting from an initial
depth of discharge DODinit. Arriving at the maximum capacity, the final
maximum depth of discharge DODmax is reached. The initial and maximum
depth of discharge is computed by assuming that—due to the stoichiometry
of LiNi1/3Mn1/3Co1/3O2—the theoretical maximum capacity of NMC being
around Qth.max

spec = 278mAhg−1, see Appendix B.1. In [30], it was found that the
reversibly accessible capacity in case of p-NCM is 158mAhg−1 and in case of
n-NCM-F900 is Qtot

spec = 161mAhg−1. In this investigation, the same capacity
of 161mAhg−1 was used for n-NCM-F850. As a model assumption, here the
cell is discharged until the maximum theoretical capacity of NMC is reached,
which means DODmax = 1. This is justified by discussing Figure 4.6. It can be
seen that at a cut-off voltage of 3V the gradients of the discharge curves tend
towards infinity. This implies that the material’s maximum capacity is almost
reached. Additionally, due to the lithium metal as anode, it can be assumed that
the supply of lithium ions is enough for the cathode material to fully lithiate.
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4.3 Validation of the hierarchically structured half-cell model

It should be noted that, during the initial charging and discharging processes,
the capacity of the NMC material might not be fully exploited because of the
formation of a lithium-rich phase at the surfaces of the active material particles
which hinders lithium diffusion [140]. However, there it was also shown that
by an extended voltage relaxation step at deep discharge, this phase disappears
and the capacity efficiency can be fully recovered. In turn, theoretically, this
means that the provided voltage window is enough to fully lithiate the given
material, i.e. reaching the maximum theoretical capacity.

Subsequently, the onset of the simulation, i.e. initial depth of discharge
DODinit, is calculated relative to DODmax. By using the reversibly accessible
capacity from before, the initial depth of discharge is computed as

DODinit =
Qth.max

spec −Qtot
spec

Qth.max
spec

, (4.122)

which is 0.42 and 0.43 in cases of n-NCM-F850/n-NMC-F900 and p-NCM,
respectively. Furthermore, the maximum and minimum concentration in the
solid phase is computed by

cs,max = DODmax Qth.max
spec %NMC

F
and

cs,init = DODinit Qth.max
spec %NMC

F
,

(4.123)

respectively, where the NMC density of %NMC= 4770kgm−3 [141] was used,
which can be calculated according to Appendix B.2.

In literature, values of NMC lithium diffusion coefficients can vary from
1 ·10−15 m2 s−1 to 1 ·10−13 m2 s−1 [142–146] and the electronic conductivity
can vary from 2.2 ·10−4 Sm−1 to 5.2 ·10−6 Sm−1 [145, 147]. Additionally,
in [142, 148], electronic conductivity was measured as a function of
temperature and lithiation state of NMC. Here, the lithiation state is depicted
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by γ = cs/cs,max in Liγ Ni1/3Mn1/3Co1/3O2, where—theoretically—γ = 1 refers
to a fully lithiated and γ = 0 to a fully delithiated state.

In Figure 4.7, the electronic conductivity of NMC is plotted over the lithiation
state at 30°C, where the experimental values from [142] were approximated by
the fit-function

lg(κeon
NMC) =−2.988γ

10.95−2.629γ +0.624 . (4.124)

It can be observed that the value of conductivity ranges from ≈ 1 to ≈
1 ·10−5 Sm−1 for lithiation states of γ = 0.25 to γ = 1.00, respectively.
This result by [142] was acknowledged by [143]. There, additionally, the
diffusion coefficient and reaction rate for NMC was measured. Therefore, in
the following, material parameters were taken from [143] and [142] because
a complete and, thus, more likely consistent set of diffusion coefficient,
electronic conductivity and reaction rate constant for NMC can be expected.

Figure 4.7: Electronic conductivity of NMC over lithiation. Experimental values taken
from [142] and fitted by Equation (4.124).

The kinetic reaction rate constant is often treated as a fitting parameter [149].
However, in case of different electrode structures, the fitting process could
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yield different reaction rate constants for each variation. In contrast to that,
the approach in this work is to approximate the effective reaction rate constant
k0 purely based on the underlying material. By taking the exchange current
density from experiments on NMC in [143], the exact same material based
constant is used for every simulation in this work. This way, the comparability
between different cathode and cell structures can be improved.

To compute the effective reaction rate constant, first, the Butler-Volmer type
reaction equation from Equation (4.20) is employed. Based on this equation,
the reaction rate constant can be calculated as

− i0
F

=−k0c1−α
e (cs,max− cs,surf)

1−α cα
s,surf

k0 =
i0
F

1

c1−α
e (cs,max− cs,surf)

1−α cα
s,surf

.
(4.125)

Secondly, the experimental value of 7.2Am−2 is used for the exchange current
density i0, which is taken from [143]. From Table 4.4, the mean value of
maximum and minimum lithium concentration in the solid phase for p-NMC
of 35402molm−3 and the mean electrolyte concentration of 1000molm−3 is
used for cs,surf and ce, respectively. α is taken as 0.5. As a result, the effective
reaction rate constant is recalculated as

k0 =
7.2
F

1

10000.5(49477−35402)0.5 494770.5
≈ 1.0 ·10−10 . (4.126)

Therefore, in all simulations in this work, k0 is taken as 1.0 ·10−10 mol−1m2.5/s.
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Table 4.4: Material properties.

Parameter p-NMC
n-NMC-

F850
n-NMC-

F900
Reference

T [K] 298 -

%NMC [kgm−3] 4770 [141]

DODmax [−] 1.00 -

DODinit [−] 0.43 0.42 0.42
Equation
(4.122)

cs,init [molm−3] 21357 20823
Equation
(4.123)

cs,max [molm−3] 49477 49477
Equation
(4.123)

ce,init [molm−3] 1000 [131]

Ds [m
2 s−1] 1.00 ·10−14 [143]

κeon
s [Sm−1] 100 [13]

κ
eon,sec
s [Sm−1] Equation (4.124) [142, 143]

k0 [mol−1 m2.5 s−1] 1.0 ·10−10 Equation
(4.125)

α [−] 0.5 [47]

t0
+ [−] 0.23 [131]

The LP30 electrolyte (1 M LiPF6 v/v: 1:1 DMC:EC) was considered, where
the concentration dependent material parameters were taken from [131]. The
initial concentration is 1000molm−3. In accordance with Section 4.1.1, t0

+
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is set to a constant value of 0.23, which is the average value of t0
+ for the

concentration ce between the assumed extreme values 0 and 3000molm−3.

4.3.3 Results and Discussion

The above described material, geometry and structural parameters were
imported into the classical and the hierarchically structured half-cell model
from Sections 4.1 and 4.2, respectively. In the following, discharging currents
corresponding to different C rates were applied in each model, where the
C rates ranged from rather low to rather large values. As in [30], C rates
of C = 1/20,1/10,1/5,1/2,1,2,3,5,7,10 were used, which ultimately aims at
revealing rate capability of the underlying cell composition.

The comparison of experiments and simulation results can be observed in
Figure 4.8. Recall that the electrode structure with unmodified dense cathode
particles is modeled by using the classical half-cell model and is denoted by
p-NCM. Moreover, electrodes built-up by nanostructured secondary particles
are modeled by means of the hierarchically structured half-cell model and
are referred to as n-NCM-F850 and n-NCM-F900. The experimental values
in Figure 4.8b were obtained by taking the mean value of the corresponding
measurements in [30]. Notably, n-NCM-F850 and n-NCM-F900 show better
rate capabilities as compared to p-NCM. Clearly, the same behavior can
be observed in Figure 4.8a, where the simulation results also predict better
performance for the nanostructured particle electrodes. Especially for rather
high C rates of 7C and 10C, the hierarchically structured half-cell model
results are very close to the measured values. While the simulations estimate
around 70mAhg−1 and 50mAhg−1 retained specific capacity for these C
rates, experiments measure a little bit higher values of around 75mAhg−1

and 55mAhg−1. Note that in case of the classical half-cell model, the
simulated value is a little bit higher in case of 10C than the measurements.
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The simulation predicts approximately 30mAhg−1, while experiments found
approximately 25mAhg−1. Moreover, in case of both the classical and
hierarchically structured half-cell model the retained specific capacity only
decreases gradually for C rates between 1/20C and 3C. Apparently, the
simulation curves show a distinct drop between 3C and 7C, whereas the
experimental curves decrease steadily from low C rates to higher C rates.

Figure 4.8: Rate capabilities of p-NCM, n-NCM-F850 and n-NCM-F900. a) Simulation results.
b) Experiments from [30].

Given that the results clearly show a qualitatively good agreement with
experiments, the proposed hierarchically structured half-cell model can be
regarded as validated in a sense that it allows for investigations to predict
at least qualitatively the influence of geometry, structure and material on
electrochemical performance. Moreover, as is shown in the following, the
model offers detailed information on how those parameters affect the cell
quantities. For instance, the drop behavior mentioned before can be understood
by investigating the local distribution of DOD, denoted here as dod. It is
calculated similar to Equation (4.45), however, the volume-averaged lithium
concentration of the solid phase at time t is not evaluated for the whole cell,
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rather, the average concentration is computed at every point x along the cathode
on cell level and at every point y along the secondary particle level.

On cell level, the local distribution is computed as

dod(t,x) =
cs(t,x)− cs,init

cs,max− cs,init
. (4.127)

The volume-averaged lithium concentration of the solid phase at time t at the
position x is calculated as

cs(t,x) =
3

rsec
3

∫ rsec

0
y2cs(t,x)dy (4.128)

in case of the classical half-cell model, whereas this value is

cs(t,x) =
3

rsec
3

∫ rsec

0
y2 3

rprim
3

∫ rprim

0
z2cprim

s (t,x)dzdy , (4.129)

in case of the hierarchically structured half-cell model.

Figure 4.9 shows dod over the normalized cathode position for both the
classical and hierarchically structured half-cell model. t is set as the end time
of the simulation, which is determined by the cut-off voltage 3V. The cathode
positions (x− Lsep)/Lpos = 0 and (x− Lsep)/Lpos = 1 refer to the separator-
cathode interface and the cathode-current-collector interface, respectively,
while (x− Lsep)/Lpos = 0.5 is the cathode middle position. Additionally, in
Figure 4.9a - c, the state of charge distribution is shown for different C rates,
namely 3C, 5C and 7C.

It can be observed that in case of 3C, the distribution is constant over the
cathode thickness. This applies to p-NMC as well as n-NMC-F850 and n-
NMC-F900. While dod is almost 1 in case of n-NMC-F850/n-NMC-F900,
the depth of discharge is lower in case of p-NMC. At 5C, all curves show
decreasing behavior towards the cathode-current-collector interface. In case of
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n-NMC-F850 and n-NMC-F900, a small gradient is visible in the first half of
the cathode whereas in the second half the gradient is more pronounced. In case
of p-NMC, the decreasing behavior can be observed directly at the separator-
cathode-interface. Overall, the dod values of the hierarchically structured
half-cells are constantly larger than 0.60 whereas the classical half-cell model
ranges around 0.45. Finally, at 7C, the depth of discharge distribution of
n-NMC-F850 and n-NMC-F900 looks similar to the one of p-NMC at 5C.
However, for the nanostructured electrodes, a gradient is visible right at the
separator-cathode interface and the curve flatten towards the cathode-current
collector interface. Moreover, the dod level of n-NMC-F850 and n-NMC-F900
is around the same value as well. The distribution in case of p-NMC is almost
constant over the cathode region and is around 0.25.

By comparing the dod distribution of the different cells, an important aspect
considering cathodes with nanostructured secondary particles can be extracted.
For increasing C rates, the cathode active material is more efficiently utilized
in case of hieararchically structured cathodes, which yields to superior rate
performance as compared to cathodes with monolithic secondary particles.
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Figure 4.9: Local depth of discharge along cell direction at different C rates. a) 3C. b) 5C. c) 7C.
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In addition to the dod distribution along the x-direction, the depth of discharge
distribution can be investigated along the radius in y-direction inside the
secondary particle, which is referred to as dodsec(t,y).

On secondary particle level, the depth of discharge distribution along the radial
position is calculated as

dodsec(t,y) =
csec

s (t,y)− cs,init

cs,max− cs,init
. (4.130)

The volume-averaged lithium concentration of the solid phase at time t at the
position y is calculated as

csec
s (t,y) = cs(t,y) , (4.131)

in case of the classical half-cell model, whereas this value is

csec
s (t,y) =

3
rprim

3

∫ rsec

0
z2cprim

s (t,y)dz . (4.132)

in case of the hierarchically structured half-cell model.

In Figure 4.10, dodsec(t,y) is plotted versus both the normalized x and y

position inside the secondary particle. The cathode position (x−Lsep)/Lpos =

0 refers to a secondary particle sitting at the separator-cathode interface,
whereas (x−Lsep)/Lpos = 0.5 and (x−Lsep)/Lpos = 1 are secondary particles
in the middle of the electrode and at the cathode-current-collector interface,
respectively. Additionally, y/rsec = 1 denotes to the secondary particle surface,
whereas y/rsec = 0 is the center. Again, the depth of discharge distribution is
shown for the distinct C rates of 3C, 5C and 7C, respectively, and t is set as
the simulation time at the cut-off voltage of 3V.

In general, the curves corresponding to n-NCM-F850 and n-NCM-F900 show
less pronounced gradients as compared to the p-NCM curves. At 3C, it
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can be observed that the surfaces of the secondary particles in both classical
and hierarchically structured half-cell model show high states of discharge at
around 1.0. However, from the surface to the center of the secondary particles
a more drastic decrease can be seen in case of p-NMC as compared to n-NMC-
F850 and n-NMC-F900, where the latter two of these remain stable at a high
level. At higher C rate of 5C, the differences in dodsec distribution in the
secondary particles become more visible. While n-NMC-F850 and n-NCM-
F900 show a rather constant distribution, a clear gradient can be observed for
p-NCM. Additionally, following the observations made for Figure 4.9, the state
of discharge distributions at the secondary particle surfaces along the cathode
direction decline from the separator-cathode interface to the cathode-current-
collector interface. An interesting observation can be made for the case of 7C.
Again, the gradients in the dodsec distributions inside the secondary particles
are more pronounced for p-NCM than in the cases of n-NMC-F850 and n-
NMC-F900. However, the depth of discharge at the secondary particle surface
is actually higher at the separator-cathode interfaces in case of p-NMC than in
the cases of n-NMC-F850 and n-NCM-F900.

From the above observations of the dodsec distribution, the conclusion
from above can be extended. In addition to the enhanced utilization of
the cathode’s secondary particles due to an internal porosity, the depth of
discharge distribution and, thus, the concentration level of the active material
is homogeneous. Even for larger C rates, the homogeneity remains stable
inside the nanostructured secondary particles, which leads to a better rate
performance as compared to the non-porous secondary particles.

As was reported in [30], the investigated electrodes n-NNC-F850, n-NMC-
F900 and p-NMC show comparable loadings, i.e. active material mass per
unit cross section. As was discussed above, the electrodes with the porous
secondary particles show better utilization of the active material. This way, the
energy density, i.e. energy per unit mass, is improved as well.
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Figure 4.10: Local depth of discharge along cell and secondary particle direction at different C
rates. a) 3C. b) 5C. c) 7C.
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4.4 Summary

From the above observations, the superior performance of hierarchically
structured electrodes as compared to classical electrodes can be reproduced by
means of the presented models. This means, for instance, the hierarchically
structured half-cell model can be used to estimate sensitivity of geometry,
structural and material parameters, which is the topic in Section 5.3.

4.4 Summary

In this chapter, a model for half-cells with hierarchically structured cathodes
with porous secondary particles was proposed. As a first step, the well-
established half-cell model based on the contributions of Newman and
coworkers was recalled in detail. By means of the volume average method,
the hierarchically structured half-cell model was proposed as a consistent
extension of the classical half-cell model. The mathematical boundary
conditions were acquired in detail and physically motivated for both models.
Finally, the hierarchically structured half-cell model was qualitatively validated
by comparing simulated and measured electrochemical performance based on
real-world cathode structures taken from literature. The model successfully
predicted the experimentally observed superior electrochemical performance
of cathodes with porous secondary particles as compared to monolithic
secondary particles. Additionally, the model allowed for the investigation of
this observation by discussing the local lithium concentration distribution of
the solid phase of the electrode and secondary particle level, respectively. It
was shown that nanostructured secondary particles differ from classical ones
by having more of a homogeneous concentration distribution for higher C
rates. This way, the available active material capacity could be better exploited
leading to a higher performance.
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In the following, the applicability of the in Sections 3 and 4 presented methods
is demonstrated. On the one hand, the resistor network method is employed
to derive prediction formulas for the effective resistance of porous secondary
particles and for the effective transport properties of sphere packings. In
both cases, transport is considered via the surface and the volume of the
particles. On the other hand, the hierarchically structured half-cell model is
used for parameter studies in order to reveal the influence of different structural
and material parameters on the electrochemical performance of cathodes with
porous active material particles.

5.1 Effective transport properties
of hierarchically structured spheres

In Section 3.1, it was shown that the resistor network approach can be utilized
to compute effective transport properties of sphere assemblies. As for classical
cell models of the type presented in Section 4.1, for instance, this approach
can be used to deliver effective transport properties of the porous electrode
structure. That is to say, if the electrode is modeled as sphere packings.
Concerning the hierarchically structured cell model from Section 4.2, the
active material is modeled as spherical secondary particles built up by smaller
spherical primary particles. In this case, in order to model effective transport
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properties through the active material phase, certain parts of the resistor
network method need to be adjusted accordingly.

Consider the exemplary network of porous secondary particles, in Figure 5.1a.
In Figure 5.1b, the equivalent node resistor network can be observed, where the
secondary particle centers are the nodes and the contacts between the particles
are identified as the resistors. In Section 3.1, it was pointed out that the crucial
part in the framework of the RN is the computation of the resistances of the
individual contact pairs. The most practical way is to have analytical formulas
as in Equations (3.3) and (3.11), where the resistances can be evaluated based
on the geometry of the overlapping particles.

Therefore, the following section aims at deriving a formula describing the
resistance between contact pairs of hierarchically structured spheres by their
geometry and inner structure. Moreover, two cases will be considered. In the
first case, the transport is through the volume of the primary particles and, in
the second case, the transport is via the surfaces of the primary particles.

Figure 5.1: Resistor network method for hierarchically structured spheres. a) Assembly of
hierarchically structured spheres. b) Equivalent network with nodes at the centers
of the spheres and resistances assigned to the contact pairs.
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Model

To begin with, similar to Equation (3.11), the resistance between two
contacting hierarchically structured spheres is modeled as a series connection
of two resistances. Moreover, those two resistances are computed by utilizing
a model where each of the spheres are put between two conducting plates.
In Figure 5.2, the replacement model of a hierarchically structured sphere
between two conducting plates is sketched. The larger secondary particle
comprises of smaller primary particles. The respective primary particle and
secondary particle radii are rprim and rsec, respectively. Furthermore, the
secondary particle is positioned between two conducting plates with a gap
distance of hsec, which results in a contact radius of rsec,c. The internal contact
radii rI,J

prim,c are between the primary particles with radii rI
prim and rJ

prim. Clearly,
the effective resistance of the model in Figure 5.2 is depends on all the above
presented structural properties. A formula representing effective resistances of
hierarchically structured spheres must therefore contain all those quantities.

Figure 5.2: Model of hierarchically structured sphere between two conducting plates.
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The approach chosen here was to conduct a variety of numerical experiments
and deduce structural dependencies. The resistor network method was chosen
to perform the numerical experiments. However, before running parametric
studies, the applicability of the RN on hierarchically structured secondary
particles with inner porosity has to be verified.

Verification of the RN for hierarchically structured spheres

Similar to rectangular domains in Section 3.1, hierarchically structured spheres
were generated, the structure was densified and the effective resistance was
calculated using the resistor network method. Finally, the results were
compared to finite element simulations. Concerning the generation of the
assemblies, the RCP was modified to create randomly generated, overlap-free
and densely packed collections of spheres inside a spherical domain. The initial
structures were then further densified using the numerical sintering algorithm.
In this case, the primary particles were fixed in space and their radii were
successively increased until a certain densification criterion was reached. This
way, the spherical shape of the secondary particle was maintained.

Importing the data, setting up the models and evaluating the effective transport
properties for both cases of volume and surface transport followed the
descriptions from Sections 3.1.4 and 3.1.2, respectively. In order to model
the conducting plates, in case of the RN, sphere caps of a certain height were
removed from the secondary sphere, see Figure 5.3a, on two opposing sides in
transport direction, see Figure 5.3b. Consequently, all primary particles, with
their centers lying inside those virtual caps, were deleted, see the highlighted
spheres in Figure 5.3b. Finally, the bottoms of the caps were chosen to
be the conducting plates connected to the intersecting primary particles, see
Figure 5.3c. This is where the boundary nodes were placed following the
description in Section 3.1.
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Figure 5.3: Hierarchically structured sphere between two conducting plates.

In the finite element model, the primary particles were simply cut off at a
defined position in the transport direction. This can be seen in Figure 5.4b
and d.
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Figure 5.4: Verification models for the effective conductivity of hierarchically structured spheres
using the resistor network and finite element method. Top: Transport via the surface,
i.e. solid-surface. Bottom: Transport via the volume, i.e. solid-volume

Concerning the FEM models, all nodes on one of the conducting plate surfaces
were set to the same temperature, while the potential of the nodes on the
opposite surface were dropped by ∆T = 1 with respect to this potential. Due
to the mathematical equivalence of the transport problems considered in this
work, the methods used for heat transport problems solved by finite element
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methods can be compared equivalently to electric transport problems solved
by the resistor network method. Therefore, concerning the RN, an electric
potential drop of ∆ϕ = 1 was imposed on the boundary nodes. Analogous to
Equations (3.5) and (3.7), the effective resistance of a secondary particle was
computed by

RFEM =
∆T

φ FEM
q

and RRN =
∆ϕ

Ieff
, (5.1)

respectively. In the FEM model, the resulting heat flux φ FEM
q was obtained at

one of the surfaces with the applied temperature and, in case of the RN, the
effective current Ieff was calculated using the resistor network solving scheme
according to Section 2.3.

Test cases

In the following, 15 scenarios of assemblies were created, according to the
method described above. The scenarios were divided into three types of
assemblies, see Table 5.1. For all assembly types, the mean radius rmean and
the mean contact angle θmean were fixed to 1 and 15°, respectively. The only
varying parameter was the standard deviation rσ ranging from 0 to 0.25 such
that, with increasing assembly type number, the polydispersity increased. The
resulting volume fraction of the solid phase φsolid,mean and pore phase φpore,mean

as well as the mean contact radius rc,mean is presented in Table 5.1 as well. In
addition, the transport is considered either through the volume or the surface of
the primary particles. In the latter case, the surface is modeled by shells with a
thickness of 0.1 · rprim, i.e. 10% of the primary particle radii.
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Table 5.1: Structural parameters of secondary particles for the verification of the transport
through the volume and via the surface of solid spheres.

Type rmean rσ θmean φsolid,mean φpore,mean rc,mean

1 1.00 0.00 15 0.653 0.327 0.257
2 1.00 0.10 15 0.650 0.350 0.245
3 1.00 0.20 15 0.646 0.354 0.234

Evaluation and discussion

The results of this investigation can be observed in Figure 5.5. Effective
resistances R̂RN

eff and R̂FEM
eff are calculated by Equations (3.8) and (3.17),

respectively, and normalized by the bulk or shell conductivity. On the
horizontal axis the results provided by the FEM analysis are shown and on the
vertical axis the corresponding values by the RN are drawn. The black solid
line in this figure represents a perfect match of the two results whereas values
above or below indicate an over- or underestimation of the effective transport
property by the RN, respectively.
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Figure 5.5: Verification of the resistor network method for hierarchically structured spheres using
the finite element method. a) Transport through the volume of primary particles. b)
Transport via the surface of primary particles.

It can be seen that, while the mean error is around e = 6% in the case of
surface transport, the mean error is almost zero in the case of volume transport.
Therefore, given the considerably low errors, the above observations allow
the conclusion that the resistor network approach is suitable to compute the
effective transport properties of hierarchically structured spheres between two
conducting plates.
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Parametric studies and prediction formulas

In order to model the effective resistance, the prediction formula

Reff = R̂fit ·
rprim,m

rprim,c,m
· rsec

rprim,m
·

rprim,m

sm
· 1

rsec
·ρbulk,shell (5.2)

is proposed, where R̂fit is a fit function and the rest of the parameters are
interpreted as follows. Here, the first model parameter is the ratio rprim,m/rprim,c,m,
which is interpreted as the degree of densification of the secondary particle and
relates the mean primary particle radius rprim,m to the mean contact radius of
the primary particles rprim,c,m. Furthermore, rsec/rprim,m describes the tortuosity
effect and takes the secondary particle radius rsec into account. Finally, rsec,c/rsec

is the ratio of the contact radius of the conducting plates rsec,c to the secondary
particle radius and ρbulk,shell is either the bulk or the shell, resistivity, depending
on if volume or surface transport is considered. Additionally, sm/rprim,m relates
the shell thickness sm to the mean primary particle radius, where, in case of
volume transport, this parameter is omitted.

The degree of densification rprim,m/rprim,c,m can theoretically range within the
limits of 1 and ∞. In the first case, the contact radii are of the same size as
the primary particles, which means that the structure can be regarded as bulk
material. The second case represents a structure where the primary particles
have no contact to each other, which results in no conducting pathways. The
tortuosity effect described by rsec/rprim,m is within the limits of 1 and ∞. Roughly
speaking, the closer the primary and secondary particle sizes are, the shorter the
conducting paths within the secondary particle. As a consequence, the effective
resistance decreases. On the other hand, the effective resistance increases if
comparably small primary particles form more tortuous and longer pathways.
Finally, the values of rprim,m/sm are within the limits of 1 and ∞. The latter of
which resembles a mean shell thickness of 0 and no transport paths via the
surface. Consequently, the effective resistance tends to infinity as well. In
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theory, a shell thickness of the size of sm provides the best transport paths via
the surface and, therefore, the lowest effective resistance.

In the following, the verification of the prediction formula in Equation (5.2)
is demonstrated by 100 randomly generating hierarchical sphere structures
following the tool chain of RCP (modified to account for spherical domains),
numerical sintering and RN, see Section 3.1. For each of the scenarios, the
combination of the model parameters were chosen at random within the limits
shown in Table 5.3.

Table 5.3: Variation of parameters of the hierarchically structured spheres.

Parameter Value

rprim,m/rprim,c,m 2.4 . . .11.5
rsec/rprim,m 13.4 . . .41.0
sm/rprim,m 0.01 . . .0.09
rsec,c/rsec 0.2 . . .0.4
ρbulk,shell 0.001 . . .0.1

Figure 5.6 shows the results of the numerical experiments. In Figure 5.6a,
transport through the volume and, in Figure 5.6b, transport via the surface
is shown. The effective resistance is plotted over the dimensionless
ratio rsec,c/rprim,m. It can be observed that, on the one hand, the results can be
represented in a dimensionless form using the parameters in Table 5.3. On the
other hand, the curves approximately lie on a simple rational 1/x-type function,
which only depends on the ratio rsec,c/rprim,m. This function can be given by

R̂fit =
1

afit
rsec,c

rprim,m

, (5.3)
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where afit ≈ 6, in case of volume transport, and afit ≈ 20, in case of surface
transport.

Using the prediction formula from Equation (5.2), the behavior of the effective
resistance in terms of the structural properties can be investigated. For instance,
in both the volume and the surface transport case, the effective resistance
tends to increase to rather large numbers if rsec,c/rprim,m approaches small values.
This means that, given a constant rsec,c, for increasing rprim,m, the number of
primary particles in contact with the conducting plate decreases leading to
higher effective resistances. Vice versa, an increasing ratio of rsec,c/rprim,m leads
to a smaller effective resistance, which means that more primary particles are
in contact with the conducting plates.

Figure 5.6: Prediction formulas to estimate the effective resistance of hierarchically structured
spheres between two conducting plates. a) Transport is via the volume of the primary
particles. b) Transport is via the surface of the primary particles.
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Conclusion

Equation (5.2) represents the effective resistance of a hierarchically structured
secondary sphere between two plates. The secondary sphere is composed of
smaller primary spheres. The formula can be used to model transport either
through the volume or via the surface of the primary spheres. Moreover, it can
be used to model transport between two contacting hierarchically structured
secondary particles. Practically, and similar to Equations (3.3) and (3.11), the
fit formula can be used in the framework of the resistor network method to
calculate the effective conductivity of an assembly of hierarchically structured
spheres.

5.2 Effective volume and surface transport
properties of sphere assemblies

The knowledge of effective transport properties in granular materials such
as battery electrodes [18, 150] plays an important role for battery modeling.
Usually, effective transport properties of granular materials are approximated
by the volume fraction of the transport phase under consideration, see [69] for
a review. Battery modelers tend to use a Bruggeman type relation [71, 138]
to estimate effective transport properties of the porous electrodes [36, 41, 46].
In [92], the resistor network method was used to show that this type of
empirical relation works well for the pore phase of sphere assemblies with a
polydisperse size-distribution. In order to model effective transport properties
of particle networks, however, the Bruggeman relation is not well suited [67].

In order to overcome this drawback, adequate prediction formulas need to
be found. Therefore, in the following, the practical use of the solid-volume
model from Section 3.1.2 and the solid-surface model from Section 3.1.4 is

161



5 Applications

demonstrated. The models are used to develop prediction formulas to compute
effective transport properties of assemblies of overlapping and equal-sized
spheres, where the transport can be through the volume or the surface of the
spheres.

Model parametrization

A series of 100 scenarios of randomly distributed and monosized sphere
assemblies were created in a box-shaped simulation domain using a certain
set of model parameters. The model parameters were chosen as follows. A
porosity range φpore between 0.1 and 0.4 was targeted representing, on the one
hand, a rather dense packing and, on the other hand, one which is near the
percolation threshold of monosized spheres [76]. Moreover, the sphere radii
rp were between 0.1 and 0.8 representing an arbitrary but rather large range
of particle sizes. This particle size range is comparable to the primary particle
sizes possible in [30], which ranged between 0.179 and 0.6µm. Note, however,
an arbitrary length unit lu is chosen, since the investigated transport parameters
are dimensionless and independent of the chosen length unit. Finally, in case
of surface transport, a constant shell thickness was set to 0.01.

Analogous to Section 3.1.2, the initial sphere packings were generated using
the RCP. The structures were then further densified by means of the numerical
sintering algorithm. Additionally, the numerical sintering algorithm was
slightly modified. In contrast to the algorithm described in Section 3.1.2,
the box-shaped simulation domain was isotropically and successively reduced
such that the spheres inside the domain were moved upon each other. This was
done until a densification criterion, i.e. the targeted porosity, was achieved. In
this way, the particle sizes could be preserved.
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Results and discussion

The effective transport parameters through the volume and via the surface of
the spheres were calculated using the resistor network method as presented in
Section 3.1.2 and Section 3.1.4, respectively, and evaluated in Figure 5.7. Here
the effective transport parameters are drawn over the porosities and particle
radii. In Figure 5.7a, the effective transport parameters of the volume transport
case is shown whereas, in Figure 5.7b, the surface transport case can be
observed. Recall from the above mentioned sections that the effective transport
parameters are defined as the effective transport properties normalized by
the transport coefficients of the particle volumes or shells. In the present
investigation, without loss of generality, they both set to unity.
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Figure 5.7: Evaluation of transport parameters by the parametric study. a) Transport through
volume. b) Transport via surface. c) Comparison of surface and volume transport
over the porosity.

Apparently, in Figure 5.7a, the effective volume transport parameters only
depend on the porosity of the system. For high porosity values the effective
transport parameters are low while for low porosities they increase. Therefore,
the numerical results are fitted by the bi-linear surface fit

k̂fit
vol = a0 +a1φpore +a2rp , (5.4)
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where the parameter values are a0 = 1.0, a1 =−2.130 and a2 = 0.01. Here, a0

is chosen such that, for the special case of a completely dense structure, i.e. if
φpore→ 0 and rp→ 0, the effective transport parameter becomes 1 resembling
bulk material properties.

In Figure 5.7b, the effective transport parameter via the surface is shown.
Remarkably, the effective transport parameter is not only dependent on the
porosity but also on the particle radius. The best effective transport parameter
is achieved for low particle radii and low porosities. Additionally, it can be
observed that for a constant porosity, the effective transport parameter can be
enhanced by decreasing the particle radius. Finally, the resulting values where
fitted by

k̂fit
surf =

1
(1+φpore)b0

· 1
(1+ rp)b1

, (5.5)

where the fitting parameter values are b0 = 6.717 and b1 = 5.332. Note that
the function was chosen such that, for the completely dense structure case, i.e.
φpore→ 0 and rp→ 0, Equation (5.5) becomes bulk material property.

Consider the special case of linearly increasing particle radius and decreasing
porosity. A similar case was observed in [151]. There, pellets were
investigated made of conductive particles which were pressed together and
sintered afterwards. By adjusting the pressure and sinter temperature, different
particle radii and the pellet porosities were achieved leading to increasing
particle radii while, at the same time, decreasing porosity. In Figures 5.7a
and 5.7b, such a path is indicated by k̂fit,path

vol or k̂fit,path
surf in case of volume or

surface transport, respectively. In Figure 5.7c, Equations (5.4) and (5.5) are
evaluated along this path. In particular, the curves are plotted over porosity.
While k̂fit,path

vol decreases with increasing porosity in the volume transport case,
which can be expected, the surface transport curve k̂fit,path

surf rises. Clearly,
k̂fit,path

vol decreases because of reducing overlaps of particles. However, reducing
overlaps apply also to k̂fit,path

surf . Therefore, this effect seems to be compensated
by decreasing particle sizes because, due to that, the specific surface area
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increases as well. The specific surface area is defined as the total free surface
area divided by the simulation box volume. The computation of the specific
surface area—as used in this work—is sketched in Figure 5.8. For a given
assembly of spheres depicted on the left-hand side, the total free surface area
is calculated by summing up the surface areas of each individual particle. The
magnification on the right-hand side exemplarily highlights a single particle out
of the assembly. The individual free surface area is computed by subtracting
the surface area of the sphere caps, which are formed by the overlaps with the
neighboring particles, from the total surface area of the particle.

Figure 5.8: Computation of specific surface area for assemblies of spheres.

In Figure 5.9, the evolution of specific surface area for the present investigation
can be observed. In Figure 5.9a, the resulting values are fitted by

afit
s =

c0

(1+φpore)b1
· c2

(1+ rp)c3
, (5.6)

where the fitting parameters are c0 = 3.636, c1 = −1.104, c2 = 5.196 and
c3 = 5.397. The evolution of specific surface area along the given path afit,path

s

can be seen in Figure 5.9b.

166



5.2 Effective volume and surface transport
properties of sphere assemblies

Figure 5.9: Specific surface area by the parametric study.

Apparently, the specific surface area curve along the given path is similar
to the evolution of the transport parameter via the surface. Given that the
specific surface area is intrinsically accounted for by the transport angle of
the resistance in Equation (3.11), this directly effects the overall effective
conductivity.

Conclusion

The investigation results reveal that Equations (5.4) and (5.5) can be used to
model the effective transport parameters via volume and surface of mono-
sized sphere assemblies with varying porosity and particle sizes. In case of
cell modeling, Equation (5.4) can be used to calculate the transport properties
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of the active material phase, given that it is modeled by spheres. Additionally,
since in Equation (5.5) thin layers of shells are assumed, it can be utilized
to model effective transport properties of high-conductive carbon coatings of
active material. Finally, the above findings support the observations in [151].
There, an increase in effective ionic conductivity was observed in case of
larger porosities. This increase was attributed to the dominant transport via
the surfaces of the particles due to an increase in surface area.

5.3 Parameter study on
hierarchically structured electrode performance

In Section 4.3, the hierarchically structured half-cell model, as proposed in
this work, was validated qualitatively by experiments taken from literature. It
was concluded that it can be used to investigate the influence of the electrode’s
geometry, structure and material on the cell’s electrochemical performance.
By means of this model, the difference between classical and hierarchically
structured cathodes in terms of sensitivity to the diffusion coefficient and
electronic conductivity of the active material was investigated in [137]. In the
following study, however, the focus is on the hierarchically structured cathodes
only and a larger set of parameters is taken into account. The influence
of diffusion coefficient and electronic conductivity of the active material as
well as secondary particle morphology on the rate capability is analyzed. To
this end, the cathode structure n-NMC-F900 from Section 4.3 was used as a
reference and the mentioned parameters were varied as follows. Note that,
if not stated otherwise, the other parameters concerning geometry, structure,
transport and material were taken from Tables 4.1, 4.2, 4.3 and 4.4.

The electronic conductivity was assumed between 1 ·10−3, 1 ·10−4 and
1 ·10−5 Sm−1 representing a rather large spectrum of high and low values

168



5.3 Parameter study on
hierarchically structured electrode performance

and corresponding to lithiation states of γ = 0.9, 0.95 and 1.0 in
Liγ Ni1/3Mn1/3Co1/3O2, see Equation (4.124). The diffusion coefficient
was set as 1 ·10−13, 1 ·10−14 and 1 ·10−15 m2 s−1, which are the extreme
values found in literature [142–146]. The secondary particle morphology is
characterized by the porosity, primary particle radii, specific surface area and
effective transport parameter. In this investigation, the primary particle radii
and effective transport parameters were varied while keeping the porosity fixed.
Note that, indirectly, the specific surface area is influenced by changing the
radii since it is calculated as a = 3φ

r [136]. In order to study the influence of
the transport via the primary particle network, the effective transport parameter
k̂eon,sec

eff is varied between values of 0.25, 0.50 and 0.75, where the first and
the middle value is comparable to the lowest and largest parameters which
were found for n-NMC-F850 and n-NMC-F900, respectively. An additional
effective transport parameter of 0.75 is chosen to see if an improvement of
transport path quality would influence performance.

For all 81 combinations of the above described parameters, the rate
performance was simulated by using C rates from 1/20 to 10 and the simulation
was stopped at a cut-off voltage of 3V. Results of this investigation can be
found in Figure 5.10, where some representative cases are selected to be shown.
From the top to the bottom row, the electronic conductivity is 1 ·10−3, 1 ·10−4

and 1 ·10−5 Sm−1, respectively. From the left to the right column, the transport
coefficient, the primary particle radii and the diffusion coefficient is varied.

In general, it can be observed that from the top to the bottom the rate capability
decreases for decreasing electronic conductivity. While a distinct specific
capacity drop in case of the largest two conductivity values can be observed
after 3C, the performance drops after 1C for the case of lowest conductivity.
Note, however, that the gradient of the drop is steeper in case of the larger two
conductivity values. On the other hand, for the second and third column, the
variation of particle radii and diffusion coefficient does not seem to influence
the shape of the performance curve as the curves within one diagram are
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almost identical. However, in case of the first column, where the transport
coefficient was varied, a clear difference between the curves can be observed
for decreasing conductivity of the active material. Especially, in the lower
left diagram, it can be seen that for increasing values of k̂eon,sec

eff , the rate
performance decreases more visibly.

From the above observations, some conclusions can be drawn. Varying the
diffusion coefficient within the range presented here does not seem to influence
the performance. While it was found in [137] that for classical cathodes
the rate-limiting factor is the diffusion of lithium into the monolithic active
material particles, in case of the hierarchically structured cathodes, sensitivity
to the diffusion coefficient could not be observed, see also [53]. In addition to
that, changing the primary particle radii, in the range presented here, has no
visible effect on the performance. This indicates that the primary particle radii
in combination with the diffusion coefficient still provide diffusion paths which
are short enough to not have an impact. However, electronic conductivity of
the active material has a strong effect on rate capability. On the one hand, this
can be explained by assuming that lithium diffusion via the electrolyte phase
of the secondary particle pores is favored. Here, the diffusion coefficients are
orders of magnitudes higher than in the solid phase [146, 152]. On the other
hand, low electronic conductivity values lead to a lower performance, which
was also observed in [53, 152]. Therefore, electronic conductivity becomes
rate-limiting. In addition to this observation, this investigation revealed
the secondary particle morphology plays a crucial role when the electronic
conductivity reaches lower values. In other words, poor inter-primary particle
contact becomes more problematic in case of low electronic conductivity,
which was also observed in [152].

The effect of the transport coefficient on the electrochemical performance
is further investigated with the help of Figure 5.11, where, analogous to
Section 4.3, the depth of discharge distribution along the secondary particle
radii is shown. The lowest electronic conductivity of 1 ·10−5 Sm−1 is chosen
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Figure 5.10: Parameter study rate performance. Varying electronic conductivity of active material
from top to bottom row. Varying transport coefficient, primary particle radii and
diffusion coefficient from left to right column.

at a C rate of 3C as, in this case, the differences in performance are visible
the most. Three cases of transport coefficients are discussed, where it can be
observed that for all cases the value of dodsec is around 1 at the surfaces of
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the secondary particles. From the surface to the particle center, the depth of
discharge decreases slowly at first but at a certain point shows a distinct drop
and decreases slowly again until the end. In case of higher values of k̂eon,sec

eff ,
this distinct drop occurs more towards the surface of the secondary particles as
well as results in lower dodsec towards the center. This leads to a lower depth
of discharge DOD for the whole cell represented by lower retained specific
capacity.

Figure 5.11: Depth of discharge distribution along secondary particle radius direction at 3C.

Poor inter-particle contact and low electronic conductivity of the active
material can explain the observations in Figure 5.12, which is based on
investigations in [137] and where the two cathode structures n-NMC-F850
and n-NCM-F900 are compared to each other. Experiments in Figure 4.8b
show that for higher C rates, the two rate performance curves diverge from
each other. Notably, however, n-NCM-F900 performs a little better than n-
NCM-F850 even though the latter of which shows more preferable structural
properties in terms of higher specific surface area of primary particles for
electrochemical reactions inside the secondary particles and smaller primary
as well as secondary particles leading to shorter diffusion paths. For the
simulation, the rate performance for the two structures were calculated using
the geometry, structure and material parameters from Tables 4.1, 4.2, 4.3
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and 4.4. However, the secondary particles’ electronic conductivity was set
to the lowest value of 1 ·10−5 Sm−1 in both cases. This low value could
be justified as a first simple measure to account for additional resistance
effects such as contact resistances between primary particles beyond the purely
geometrical bottleneck effects considered so far. The results show a clear
difference in performance, where n-NMC-F900 achieved better rate capability
than n-NMC-F850. By comparing the effective transport parameters from
Table 4.3 of the solid phase for both cases, it can be seen that the value of
k̂eon,sec

eff = 0.46 in case of n-NMC-F900 is more than twice as large as it is in
case of n-NMC-F850, which is 0.20. As was pointed out before, effective
transport parameters reflect the quality of transport paths which, ultimately,
characterizes the connectivity of primary particles. Adding to the fact that
electronic transport is predominantly via the primary particle network of the
secondary particles [153], the combination of low electronic conductivity
and poor connectivity of primary particles may lead to low electrochemical
performance. Therefore, in view of the above observations, the rate-limiting
factor is the effective electronic conductivity of the primary particle network
inside the porous secondary particles.

Figure 5.12: Simulation results based on real electrode structure and using low electronic
conductivity.
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Conclusion

A large scale parameter study was conducted by means of the qualitatively
validated hierarchically structured half-cell model from Section 4.3. The
influence of electronic conductivity, transport and diffusion coefficients of the
active material as well as the primary particle radii on the rate performance
was discussed. It was found that diffusion coefficients and primary particle
sizes have barely visible effect as the diffusion paths might still be short
enough to not have an impact on performance. However, it could be shown
that low electronic conductivity and large transport coefficient influence the
rate capability more significantly. It was concluded that the combination of
low electronic conductivity and poor inter-connectivity of the primary particle
network inside the secondary particles might become rate-limiting in case of
hierarchically structured cathodes.
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In the present work, the resistor network method was extended with regard
to the transport through the solid and the pore phase of granular systems
represented by sphere packings with polydisperse size-distributions. As for
the solid phase, transport through the volume, via the surface or a mix of
both were considered. For all cases, appropriate analytically derived formulas
from literature describing resistance between two single particles were used
or combined accordingly. Finally, these single contact models were embedded
into the framework of the resistor network method in order to compute effective
transport properties. All the proposed models—single contact as well es
effective transport models—were verified using finite element methods.

Regarding the pore phase, a novel method concerning the computation of
transport through the pore phase was developed. The key was the so-called
Laguerre tessellation, where the pore phase of the system is decomposed into
cells with each of them containing a single particle. Consequently, the cell
nodes and edges were the basis of equivalent resistor networks. The nodes
were identified as pore centers and the edges were the pore throats. As an
extension, this model was modified to account for more than one conducting
species in the pore phase. Both methods were either verified using the finite
element method or validated with the help of experiments taken from literature.

In the application part of this work, it was shown how the resistor network
method for volume and surface transport can be used to conduct large scale
parameter studies. Due to the resource and time efficiency of this method, a
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large variety of different structural compositions can be simulated in a short
amount of time. In this work, the resulting database allowed for the derivation
of prediction formulas for the effective resistance of porous secondary particles
and porous electrodes consisting of mono-sized and overlapping spheres.

A model for half-cells with hierarchically structured cathodes with porous
secondary particles was proposed. As a preparation step, the well-established
half-cell model in accordance to the contributions of Newman and coworkers
was recalled in detail first. It was pointed out that the mathematical framework
of this model can be derived equivalently by employing volume averaging
methods. By means of the same methods, the hierarchically structured half-cell
model was proposed as a consistent extension of the classical half-cell model.
For both models, the mathematical boundary conditions were acquired in
detail and they were physically motivated. The hierarchically structured half-
cell model was applied to real-world cathode structures taken from literature.
In doing so, the model was validated qualitatively by comparing simulated
and measured electrochemical performance as it successfully predicted the
experimentally observed superior electrochemical performance of cathodes
with porous secondary particles as compared to monolithic secondary particles.
Additionally, it allowed for the investigation of this observation by discussing
the local lithium concentration distribution of the solid phase along electrode
and secondary particle direction. It was shown that nano-structured secondary
particles differ from classical ones by having more of a homogeneous
concentration distribution for higher C rates. This way, the available active
material capacity could be better exploited leading to a higher performance.
Finally, the hierarchically structured half-cell model was applied for parameter
studies. By varying the diffusion coefficient and electronic conductivity of the
active material as well as the secondary particle morphology, it was found that
the combination of low conductivity and poor inter-connectivity of the primary
particle network inside the secondary particles might become rate-limiting.
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As a possible future work, the resource and time efficiency of the resistor
network as well as the presented half-cell models can be used for further
investigations. A large variety of artificial particle-based structures can be
generated and effective transport properties for the solid and pore phase
can be computed representing the solid and the electrolyte phase in the cell
models. These parameters can be incorporated into the cell models in order
to investigate the impact on the electrochemical performance. This way,
the electrochemical performance for a large set of parameters regarding the
geometry, structure and material properties can be computed efficiently and,
ultimately, the best combination can be chosen to design optimized electrodes.
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List of symbols

Constants

Name Description Value Unit

F
Faraday’s
constant

96485 Cmol−1

R
Universal gas
constant

8.314 Jmol−1 K−1

NA
Avogadro
constant

6.02214076 ·1023 mol−1

Physics

Name Description Unit

ϕ Electric potential V

I Electric current A

i Electric current density Am−2

κ Electric conductivity Sm−1

ρ Electric resistivity Ωm
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Physics cont.

Name Description Unit

ρsurf Electric surface resistivity Ω

κeon Electronic conductivity Sm−1

κ ion Ionic conductivity Sm−1

Rκ Electric resistance Ω

Gκ Electric conductance S

T Temperature K

φq Heat flux W

q Heat flux density Wm−2

λ Thermal conductivity Wm−1 K−1

R
λ

Thermal resistance KW−1

G
λ

Thermal conductance WK−1

c Mass concentration molm−3

D Mass diffusion coefficient m2 s−1

J Molar flux mols−1

j Molar flux density molm−2 s−1

t Time s
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Chemistry

Name Description Unit

f± Mean molar activity coefficient [−]

s+, s−, s0
Signed stoichiometric coefficients of
cation, anion and solvent

[−]

v+, v−
Unsigned stoichiometric coefficient
of the cation and anion

[−]

z+, z−
Signed charge numbers of cation
and anion

[−]

t0
+, t0
−

Transference numbers of cation and
anion with respect to the solvent

[−]

c0 Concentration of the solvent molm−3

n Number of moles of a species [−]

α
Asymmetric charge-transfer
coefficient 0≤ α ≤ 1

[−]

k0 Effective reaction-rate constant molα−1 m4−3α s−1

i0 Exchange current density Am−2

Resistor network method

Name Description

F Flux

R Resistance

p Potential

201



Bibliography

Resistor network method cont.

Name Description

Ieff Effective current

keff Effective conductivity

kbulk Bulk conductivity

kshell Shell conductivity

kcore Core conductivity

k̂eff Effective transport parameter

φpore Volume fraction of the pore phase

φsolid Volume fraction of the solid phase

r Radius

rc Contact radius

rσ Standard deviation of radii

θc Contact angle

θt Transport angle

s Shell thickness

ρsurf Surface resistivity

ρpore Pore resistivity

Ldomain Domain length

Adomain Domain cross section

Rsolid,vol Solid-volume resistance

Rsolid,surf Solid-surface resistance

Rsolid,mix Solid-mix resistance

Rpore,vol Pore-volume resistance
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Resistor network method cont.

Name Description

Rpore,mix Pore-mix resistance

Cell model

Name Description Unit

ϕs, ϕs, ϕ
sec
s

Electronic potential in the solid
phase, on cell and on secondary
particle level

V

ϕe, ϕe, ϕ
sec
e

Ionic potential in the electrolyte
phase, on cell and on secondary
particle level

V

η , η , η
sec Electric overpotential, on cell and

on secondary particle level
V

is,sec

Volume-averaged production term
of electronic charge from inside the
secondary particle level

Am−3

ie,sec

Volume-averaged production term
of ionic charge from inside the
secondary particle level

Am−3

je,sec

Volume-averaged production term
of lithium ions from inside the
secondary particle level

molm−3 s−1
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Cell model cont.

Name Description Unit

cs, cs, csec
s ,

Concentration in the solid phase, on
cell and on secondary particle level

molm−3

ce, ce, csec
e ,

Concentration in the electrolyte
phase, on cell and on secondary
particle level

molm−3

κeon
s

Electronic conductivity in the solid
phase

Sm−1

κ ion
e

Ionic conductivity in the electrolyte
phase

Sm−1

κ ion
D

Diffusional conductivity in the
electrolyte phase

Am−1

κeon
s,eff, κ

eon,sec
s,eff

Effective electronic conductivity
in the solid phase on cell and on
secondary particle level

Sm−1

κ
eon,pos
s,eff

Effective electronic conductivity in
the solid phase on cell level in the
positive electrode region

Sm−1

κ ion
e,eff, κ

ion,sec
e,eff

Effective ionic conductivity in the
electrolyte phase on cell and on
secondary particle level

Sm−1

κ
ion,sep
e,eff , κ

ion,pos
e,eff

Effective ionic conductivity in the
electrolyte phase on cell level in
the separator and positive electrode
region

Sm−1

204



Bibliography

Cell model cont.

Name Description Unit

κ ion
D,eff, κ

ion,sec
D,eff

Effective diffusional conductivity in
the electrolyte phase on cell and on
secondary particle level

Am−1

κ
ion,sep
D,eff , κ

ion,pos
D,eff

Effective diffusional conductivity in
the electrolyte phase on cell level in
the separator and positive electrode
region

Am−1

Ds
Diffusion coefficient in the solid
phase

m2 s−1

De
Diffusion coefficient in the
electrolyte phase

m2 s−1

De,eff, Dsec
e,eff

Effective diffusion coefficient in
the electrolyte phase on cell and on
secondary particle level

m2 s−1

Dsep
e,eff, Dpos

e,eff

Effective diffusion coefficient in
the electrolyte phase on cell level in
the separator and positive electrode
region

m2 s−1

ase, asec
se

Specific surface area between solid
and electrolyte phase on cell and on
secondary particle

m−1

jse, jsec
se

Butler-Volmer type mass flux
density at the solid and electrolyte
interface on cell and on secondary
particle

molm−2 s−1
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Cell model cont.

Name Description Unit

φs, φ sec
s

Volume fraction of the solid phase
on cell and on secondary particle
level

[−]

φe, φ sec
e

Volume fraction of the electrolyte
phase on cell and on secondary
particle level

[−]

φ f
Volume fraction of the filler phase
on cell level

[−]

Q Ampere-hour capacity Askg−1

Eeq Equilibrium potential V

Ucell Cell voltage V

Lsep, Lpos, Ltot Separator, positive electrode and
total thickness

m

Acell Cross section area of the cell m2

V pos Volume of the positive electrode m3

rsec, rprim
Secondary particle and primary
particle radius

m

mAM Mass of the active material kg

ρAM
Gravimetric density of the active
material

kgm−3
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Sub- and superscripts

Name Description

init Initial value

max Maximum value

surf Surface

eff Effective parameter

ion Ionic

eon Electronic

s Solid phase

e Electrolyte phase

pos Positive electrode

sep Separator

tot Total

cell Cell

sec Secondary particle

prim Primary particle

spec Specific

avg Average

res Resulting
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Acronyms

Name Description

AM Active material

CB Carbon black

RVE Representative volume element

FEM Finite element method

XFEM Extended finite element method

RN Resistor network method

LIB Lithium-ion battery

DEM Discrete element method

RCP Random close packing algorithm

PDE Partial differential equation

ODE Ordinary differential equation

BC Boundary condition

soc Local state of charge

dod Local depth of discharge

SOC Global state of charge

DOD Global depth of discharge

OCV Open circuit voltage

NMC Nickel Manganese Cobald Oxide LiNi1/3Mg1/3Co1/3O2

EMT Effective medium theory

FIB/SEM Focused Ion Beam Scanning Electron Microscopy
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A Mathematical operations

A.1 Divergence operator

The divergence operator in the cartesian coordinate system is

∇ ·~F =
∂Fx

∂x
+

∂Fy

∂y
+

∂Fz

∂ z
, (A.1)

where x,y,z are the cartesian coordinates and Fx,Fy,Fz are the respective
components of the flux vector.

The divergence operator in the spherical coordinate system is

∇ ·~F =
1
r2

∂1
∂ r

(
r2Fr

)
+

1
r sin(Θ)

∂

∂Θ

(
sin(ΘFΘ)

)
+

1
r sin(Θ)

∂

∂Φ
FΦ , (A.2)

where r,Θ,Φ are the spherical coordinates and Fr,FΘ,FΘ are the respective
components of the flux vector.
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A.2 Integration

Cartesian domains

The volume integral of a function f (x,y,z) is

∫∫∫
V

f (x,y,z)dV =
∫ Lx

0

∫ Ly

0

∫ Lz

0
f (x,y,z)dxdydz , (A.3)

where Lx,Ly,Lz is the edge length of a box. In case of the function being
independent of y, and z, the volume integral is

∫ Lx

0

∫ Ly

0

∫ Lz

0
f (x)dxdydz = LyLz

∫ Lx

0
f (x)dx (A.4)

and the volume average is

LyLz ∫ Lx

0 f (x)dx
V

=
1
Lx

∫ Lx

0
f (x)dx . (A.5)

Spherical domains

The volume integral of a function f (r,Θ,Φ) is

∫ 2π

0

∫
π

0

∫ R

0
f (r,Θ,Φ)r2 sin(Θ)dr dΘdΦ . (A.6)

In case of spherically symmetric conditions, the angular dependencies are
constant such that the concerning volume integrals reduce to

4π

∫
∞

r=0
f (r)r2 dr . (A.7)
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A.2 Integration

Furthermore, the volume average of the above equation is

4π
∫

∞

r=0 f (r)r2 dr
4/3πR3 =

3
R3

∫
∞

r=0
f (r)r2 dr . (A.8)
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B Physics

B.1 Specific capacity from stoichiometry

By using Faraday’s law, which states that the rate of production of a species
is proportional to the current, and the total mass produced is proportional
to the amount of charge passed multiplied by the equivalent weight of the
species [47]:

mi =−
siMiIt

nF
, (B.1)

where mi is the mass of species i produced by a reaction in which its
stoichiometric coefficient is si and n electrons are transferred, Mi is the molar
mass, F is Faraday’s constant, and the total amount of charge passed is equal
to the current I multiplied by time t. Rearranging Equation (B.1) brings

I t
mi︸︷︷︸

Qi,spec

=− nF
siMi (B.2)

which yields the specific capacity of species i as Qi,spec =
I t
mi

, where I t = Qi is
taken as the total capacity of species i.

The above mentioned coefficients of species i refer to the electrode reaction

s−M−z− + s+ M+
z+ + s0 M0 −−⇀↽−− ne− , (B.3)
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where M is the symbol for the chemical formula of species i, and z−, z+ are
signed charge numbers of cation and anion [10].

As for the positive electrode, the reaction in a lithium-ion cell is

M+Li++ e− −−⇀↽−− LiM , (B.4)

where the M stands for some metal oxide in the positive electrode material [10].
Rearranging Equation (B.4) into the form of Equation (B.3) as

LiM−M− Li+ −−⇀↽−− e− , (B.5)

leads to the coefficients z− = z+ = 1, s− = 0, s+ =−1, s0 = 0 and n = 1.

In the following, Equation (B.6) is used to calculate the specific capacity of
the positive electrode active material LiNi1/3Mn1/3Co1/3O2, which is used in
this work. Therefore, the molar mass Mi ≡ MLiNi1/3Mn1/3Co1/3O2 ≡ MNMC is
computed as the stoichiometrically weighted sums of each element using their
atomic weights. From Table B.1, the sum molar mass is 96.46gmol−1.

Table B.1: Atomic weights of the elements in LiNi1/3Mn1/3Co1/3O2.

Element Stoichiometry
Atomic weight

[gmol−1]

Total weight
[gmol−1]

Li 1 6.941 6.941

Ni 1/3 58.693 19.564

Mn 1/3 54.938 18.313

Co 1/3 58.933 19.644

O 2 15.999 31.998
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B.2 Density from X-ray data

By using this molar mass as well as the coefficients from Equation (B.5) and
inserting these values into Equation (B.6) yields the specific capacity of NMC
as

QNMC,spec =
F

96.46
= 278mAhg−1 . (B.6)

B.2 Density from X-ray data

The gravimetric density of a material i can be calculated by x-ray data.
From [154], the density can be calculated by

%i=
N Mi

NA Vi,cell
(B.7)

where N is the number of atoms per unit cell, Mi is the molar mass, NA is the
Avogadro constant and Vi,cell is the unit cell volume.

In the following, Equation (B.7) is applied to the positive electrode
active material LiNi1/3Mn1/3Co1/3O2, which is used in this work. From
Appendix B.1, the molar mass Mi ≡MLiNi1/3Mn1/3Co1/3O2 ≡MNMC is computed
as the stoichiometrically weighted sums of each element using their atomic
weights. From Table B.1, the sum molar mass is 96.46gmol−1. Additionally,
the values of the number of atoms per unit cell and the unit cell volume are
taken from [141], where N = 3 and Vi,cell = 100.769Å

3
. Note that these values

refer to a fully lithiated NMC metal oxide, i.e. γ = 1 in Liγ Ni1/3Mn1/3Co1/3O2.
However, densities for other lithiation states are computed accordingly. Finally,
the gravimetric density of NMC is

%NMC=
3 ·96.46

6.02214076 ·1023 ·100.769
= 4770kgm−3. (B.8)
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