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Abstract

Modern materials are often characterized by a wide spectrum of tailored mechanical, mag-

netic, electronic, or thermophysical properties. Connected to their underlying microstruc-

ture, the behavior of most engineered materials can be predicted via accurately modeling

the novel characteristics with tailor-made morphologies. In general, the formation of so-

lidification microstructures is governed by the interplay of thermal and solutal fields with

capillarity. Often neglected due to its complexity, the presence of melt convection plays

a significant role in the final structural properties of cast alloys. Since microstructure

control is essential for any processing activity, in this dissertation, a phase-field model

with liquid phase convection is employed, wherein the interaction of diffusive-convective

fields and their effect on microstructure evolution is studied.

From grain boundaries to columnar dendrites, the numerical results under diffusive-

convective regime are discussed in the following part. To begin with, a phase-field model is

employed to study the phenomenon of grain boundary grooving under equilibrium condi-

tions. The model is validated via comparing the groove kinetics with the volume diffusion

governed grooving theory. In the form of melt convection, the role of an additional con-

vective transport mechanism on grain boundary grooves is extensively investigated for

the first time. The simulated grooves depict an excellent agreement with previous experi-

mental as well as with the sharp interface theory. Besides, the migration of the solid-solid

grain boundary is also captured, where the emergence of asymmetric ridges promote the

lateral drift of the groove root along the downstream direction.

Moreover, the initiation of microstructural patterns for energetically isotropic inter-

faces is presented, where the prediction of tip splitting position is discussed through an

analytical criterion. As a result of curvature driven fluxes, the fundamental and repeat-

ing unit of tip splitting microstructures is analyzed through a direct comparison between

the phase-field and the sharp interface tip splitting position. As opposed to the ex-

isting studies, the proposed criterion successfully predicts the branching position in a

solidifying interface. Subsequently, the influence of other parameters such as interfacial

anisotropy, melt convection and surface energies on the structural transition of tip split-

ting microstructures is established. While a tip splitting morphology is observed for an

isotropic crystal growth, the emergence of directionally dependent columnar dendrites is

demonstrated for anisotropic interfaces.
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Afterwards, the prediction of inter-dendritic arm spacing in the presence of melt con-

vection is examined. In tune with earlier experimental studies, it is shown that the

selection mechanism of primary arms by dendrite submergence in the diffusive regime

translates into the overgrowth of tertiary arms in the diffusive-convective regime. Fur-

thermore, it is revealed that the prediction of primary dendrite arm spacing is modified

due to the presence of convective transport in the inter-dendritic region. Thereafter,

phase-field simulations are performed to predict the growth competition of columnar

dendrites converging at the grain boundary. Commonly studied during the production

of single crystal turbine blades, the overgrowth behaviors of misoriented dendrites at the

grain boundary are captured and analyzed. For the first time, it is shown that the pres-

ence of an additional mass transport in the bulk liquid phase advects the solute dendritic

tips, which in turn modifies the overgrowth mechanism at the grain boundary. Through

microstructural selection maps, it is also concluded that parameters such as misorienta-

tion angle and interfacial anisotropy largely control the overgrowth dynamics at the grain

boundary.



Kurzfassung

Moderne Werkstoffe zeichnen sich oft durch ein breites Spektrum an maßgeschneiderten

mechanischen, magnetischen, elektronischen oder thermophysikalischen Eigenschaften

aus. In Verbindung mit der ihnen zugrundeliegenden Mikrostruktur kann das Ver-

halten der meisten technischen Werkstoffe durch genaue Modellierung der neuartigen

Eigenschaften mit maßgeschneiderten Morphologien vorhergesagt werden. Im Allge-

meinen wird die Bildung von Erstarrungsmikrostrukturen durch das Wechselspiel zwis-

chen Kapillarität und Diffusion bestimmt. Das Vorhandensein von Schmelzekonvektion

spielt eine bedeutende Rolle für die endgültigen Gefügeeigenschaften von Gusslegierun-

gen und wird aufgrund seiner Komplexität oft vernachlässigt. Da die Kontrolle der

Mikrostruktur für jede Verarbeitungsaktivität von wesentlicher Bedeutung ist, wird in

dieser Dissertation ein Phasenfeldmodell mit Flüssigphasenkonvektion verwendet, in dem

die Wechselwirkung von diffusiv-konvektiven Feldern und deren Auswirkung auf die

Gefügeentwicklung untersucht wird.

Im folgenden Teil werden die numerischen Ergebnisse unter einem diffusionskonvek-

tiven Regime von den Korngrenzen bis zu den Säulendendriten diskutiert. Zunächst

wird ein Phasenfeldmodell verwendet, um das Phänomen des Korngrenzenrillens unter

Gleichgewichtsbedingungen zu untersuchen. Das Modell wird validiert, indem die Ril-

lenkinetik mit der volumendiffusionsgesteuerten Rillentheorie verglichen wird. In Form

der Schmelzkonvektion wird erstmals die Rolle eines zusätzlichen konvektiven Transport-

mechanismus auf Korngrenzenrillen eingehend untersucht. Die simulierten Rillen zeigen

eine hervorragende Übereinstimmung mit früheren experimentellen Theorien sowie mit

der Theorie der scharfen Grenzflächen. Daneben wird auch die Wanderung der Fest-

Fest-Korngrenze erfasst, wobei das Auftreten asymmetrischer Grate die seitliche Drift

der Rillenwurzel entlang der stromabwärtigen Richtung fördert.

Darüber hinaus wird die Initiierung von Mikrostrukturmustern für energetisch isotrope

Grenzflächen vorgestellt, wobei die Vorhersage der Spitzenaufteilungsposition anhand

eines analytischen Kriteriums diskutiert wird. Infolge von krümmungsgetriebenen Flüssen

wird die fundamentale und sich wiederholende Einheit von Mikrostrukturen mit Spitzenspal-

tung durch einen direkten Vergleich zwischen dem Phasenfeld und der Position der

scharfen Grenzflächenspitze analysiert. Im Gegensatz zu den vorhandenen Studien sagt

das vorgeschlagene Kriterium die Verzweigungsposition in einem erstarrenden Muster
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erfolgreich voraus. Anschließend wird der Einfluss anderer Parameter wie der Gren-

zflächenanisotropie, der Schmelzkonvektion und der Oberflächenenergien auf den struk-

turellen Übergang von Mikrostrukturen mit Spitzenspaltung ermittelt. Während für ein

isotropes Kristallwachstum eine Morphologie der Spitzenaufspaltung beobachtet wird,

wird für anisotrope Grenzflächen das Auftreten von richtungsabhängigen säulenförmigen

Dendriten demonstriert.

Anschließend wird die Vorhersage des interdendritischen Armabstands bei vorhan-

dener Schmelzkonvektion untersucht. In Übereinstimmung mit früheren experimentellen

Studien wird gezeigt, dass der Selektionsmechanismus von Primärarmen durch das Ein-

tauchen von Dendriten in das Diffusionsregime zum Überwachsen von Tertiärarmen im

Diffusionskonvektionsregime führt. Darüber hinaus zeigt sich, dass die Vorhersage des

primären Dendritenarmabstands aufgrund des Vorhandenseins eines konvektiven Trans-

ports im interdendritischen Bereich modifiziert ist. Danach werden Phasenfeldsimulatio-

nen durchgeführt, um die Wachstumskonkurrenz von Säulendendriten vorherzusagen, die

an der Korngrenze konvergieren. Während der Herstellung von Einkristall-Turbinenschaufeln

häufig untersucht, wird das Überwuchsverhalten von falsch ausgerichteten Dendriten an

der Korngrenze erfasst und analysiert. Zum ersten Mal wird gezeigt, dass das Vorhanden-

sein eines zusätzlichen Massentransports in der flässigen Massenphase die gelösten den-

dritischen Spitzen fördert, was wiederum den Überwuchsmechanismus an der Korngrenze

modifiziert. Durch mikrostrukturelle Auswahlkarten wird auch gezeigt, dass Parameter

wie der Fehlorientierungswinkel und die Grenzflächenanisotropie die Überwuchsdynamik

an der Korngrenze weitgehend steuern.
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Introduction and Literature review



Chapter 1

Introduction: Motivation and

Outline

1.1 Motivation

The art of solidification is one of the oldest in history, and microstructures are extremely

interesting for scientific, technological as well as for aesthetic reasons. Driven by diffusive

and convective contributions, the transport of solutal fields determines the morphology,

the grain size, and the growth direction of self-organizing patterns [1]. Understanding

solidification processes has always been an important step in predicting microstructure

development, and though we have amassed a great deal of knowledge on various aspects

of material synthesis, the role of convective transport has been elusive. Over the last

few decades, a direct comparison between microstructures developed under terrestrial

and microgravity conditions has demonstrated that the presence of convective regime

adds new length and time scales to the selection of solidifying patterns, and eventually

results in morphologies with redistributed solute. Besides, since melt convection is a key

transport mechanism which controls important growth features, let us briefly discuss the

impact of diffusive-convective regime on microstructures through the following examples.

For instance, a metallic plate in contact with a saturated liquid melt may bring

on a phenomenon which is sometimes desirable, but often harmful. Since every real

material has at least one exterior interface in contact with environment, the chemical

and mechanical stabilities of polycrystalline thin films are important for controlling hot

dip galvanization, welding, soldering and other materials processes [2, 3]. In the form of

liquid metal corrosion, the grain boundary grooves in contact with a liquid melt often

leads to intergranular penetration. In critical applications, such as the cooling circuits in

nuclear reactors, corrosion induced solid-liquid interactions promote rapid degradation of

the grain boundaries in solid metals. This persistent behavior limits the ductility, and

hence the performance and reliability of high-strength alloys.

3
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Similarly, investment casting is a key process to manufacture turbine blades for aircraft

engines, where the ever increasing need to produce efficient turbine blades has encouraged

the use of temperature and stress resistant materials. Freckles, hot cracking, low angle

grain boundaries, and other solidification defects are generally found in directionally so-

lidified single crystal superalloy castings [4]. Owing to high performance applications,

the selection of process parameters with improved mechanical properties has enhanced

the intricacies in advanced engineering materials. Under non-equilibrium conditions, the

formation of freckles and cast imperfections is driven by the presence of convective flow

in the mushy zone with large inter-dendritic spacing [4]. As these microscopic defects are

highly undesirable due to their deleterious effect on mechanical and economical perfor-

mance, the knowledge to control the convective regime at the inter-dendritic spaces via

solidification parameters becomes an integral part of failure analysis.

From the aforementioned examples, the challenge for contemporary techniques is the

necessity to avoid, at acceptable cost, the undesirable effects of melt flow. As the re-

sulting structure controls the mechanical and structural properties of metal castings, it

is important to quantitatively characterize the microstructure formation. Moreover, due

to the lack of in-situ findings at each stage of pattern formation, a universal study that

carefully considers the effect of convective transport at the grain boundary as well as

at the inter-dendritic region is needed. Since the 1990s, the computational modeling of

solidification processes has been an attractive discipline for investigating microstructure

evolution, whereby an accurate description of the underlying physics at the solidifying

interface is provided. By employing the well known phase-field approach, this dissertation

addresses one of the pre-existing issues in this area, and examines the unidirectional so-

lidification of microstructures under the cooperative influence of diffusion and convection

for a representative binary alloy model system. An overview of the topics covered in this

dissertation is presented in the following section.

1.2 Outline

Following the motivation for the present study, a comprehensive literature review on di-

rectional solidification is delineated in Chapter 2. Here, the influence of grain boundaries

along with the evolution of morphological instabilities on a planar interface is discussed

through the theory of constitutional supercooling. Later, the linear stability analysis

for a perturbed interface is presented, where the solidifying interface evolves into vari-

ous microstructural patterns depending upon the imposed conditions. Accordingly, the

dendritic morphologies that are widely observed in directional solidification studies are

elucidated. Beginning with the fundamental concepts of the phase-field approach in

part II, the chronological development of phase-field models in dendritic solidification is

elucidated in Chapter 3. Later, the multi phase-field model [5] that addresses the unidi-



Chapter 1 5

rectional solidification of microstructures under diffusive-convective regime is introduced

in Chapter 4. Part III of the thesis deals with the results and discussion section, and an

extended abstract is presented in the following paragraphs.

In Chapter 5, the phase-field model is employed to address the grain boundary groov-

ing phenomenon under the cooperative effect of convection and volume diffusion in the

liquid phase. To begin with, the phase-field model is benchmarked and validated under

pure diffusive conditions, wherein the formation of symmetric groove profiles across the

grain boundary is compared with the Mullins’s groove [6]. Next, the theory of liquid

grooving at the grain boundaries is extended, thereby an additional convective transport

mechanism in the liquid phase is incorporated [7]. Particularly, it is identified that the

groove kinetics as well as the grain boundary grooving mechanism is significantly modified

under diffusive-convective conditions. This chapter, while providing considerable insights

into the mechanism of grain boundary grooving, also closes the gap with the experimen-

tal and sharp-interface theories. Moreover, the simulated grain boundary features in this

chapter are of practical significance for understanding and controlling the nanocrystalline

thin film experiments.

Subsequently in Chapter 6, the morphological evolution of interfacial instabilities

in a constitutionally supercooled melt is simulated. Although the morphologies attain

a random configuration, the deterministic behavior of tip splitting microstructures is

demonstrated. Based on capillary fluxes, the tip splitting mechanism is described via an

analytical criterion, such that the sign of the sharp-interface theory [8] predicts the tip

splitting position. Following these numerical results, the study is extended to qualitatively

investigate the role of melt convection on tip splitting microstructures [9]. Later, it is

shown that the ramified tip splitting microstructures transform into columnar dendrites

with the increase in the anisotropic strength. These hallmarks thereupon become the

basis for studying microstructure formation in the following chapters.

An issue important from both a fundamental and industrial standpoint, the columnar

dendrites simulated in the previous chapter is further analyzed in Chapter 7, where the

the prediction of inter-dendritic arm spacing is examined. The selection mechanism as

well as the primary dendrite arm spacing is studied with and without convection. While

the primary arm selection mechanism is determined in the diffusive regime, the growth of

tertiary branches modifies the spacing selection of columnar dendrites in the presence of

convective regime. Given that the misoriented dendrites are prevalent in cast microstruc-

tures, the prediction of inter-dendritic growth competition is investigated in Chapter 8,

where the microstructural evolution of unidirectionally solidified dendrites with different

crystal orientations is addressed. From a direct comparison between simulations with and

without convection, it is shown that the conventional overgrowth mechanism transforms

into an unusual overgrowth mechanism as the melt velocity gradually increases [10]. By

investigating the mechanisms of dendritic overgrowth and the role of misoriented den-
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drites, it is noted that there exists a critical convection velocity to determine the growth

competition at the grain boundary. In addition, the role of interfacial anisotropy is ana-

lyzed in detail, where it is discerned that the conventional overgrowth behavior is always

dominant at large anisotropic strengths. Finally, the dissertation concludes in Chapter

9, wherein the numerical results are summarized along with the open topics for future

work.



Chapter 2

Unidirectional solidification of

microstructures

The domain of solidification has considerably advanced through the pioneering studies

on segregation, morphological stability and microstructure selection. The rapid develop-

ment of experimental and computational tools have yielded a wealth of new information

and quantitative insights into the unidirectional solidification of microstructures in a va-

riety of alloys [11]. Likewise, the knowledge to control microstructural transition is an

essential requirement for ensuring the quality of finished products, hence the perpetual

and intensive research interest in materials science [12]. Microstructure formation in non

equilibrium systems typically occurs when two phases are driven out of coexistence so

that one of the phases grows at the expense of the other phase. Replete with morphologi-

cal instabilities, the solid-liquid interface is responsible for triggering mushy zones in cast

products, wherein the solidifying phase forms a porous medium of growing dendrites.

Dendritic microstructures found in single and polycrystal castings are produced by

many industrial metal molding methods, such as, shape casting [13, 14], directional cast-

ing [15] and die casting processes [16]. Their morphology is generally determined by the

competition of cooperative diffusive and capillary effects at the solid-liquid interface. On

one hand, the diffusion of solutal fields minimizes the scale of the morphology, and on

the other hand, the role capillarity effects maximizes the scale [17]. In addition, the form

of a microstructure depends not only upon the cooling conditions, but also upon the

alloy composition of the material. Affecting the mechanical and structural properties of

cast products, the microstructures originate during the crystallization of a solid-liquid

interface, whereby a planar interface transforms into hills and valleys, and finally the

solid-liquid interface develops into a complex microstructural network.

From a statistical point of view, the magnitude of dendritic microstructures can be

dramatized by the fact that approximately 1010 metallic dendrites are produced per

second in the world [12]. Similarly, along with the large number of snowflakes and frost

7
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patterns [18], dendritic trees in neural networks [19] are some classic examples of ramified

structures found in nature. In engineered materials, dendritic crystalline forms appear in

melt-grown and and electro-deposited metallic crystals. In such a way, the minute tree-

like branched morphology is the most important structural component grouping our world

[12]. In this regard, an understanding of dendritic structures is crucial for developing next-

generation light weight alloys used in automotive and aerospace applications [20]. In what

follows, a comprehensive literature review on the experimental and theoretical background

for pattern formation in directional solidification is discussed in detail. Besides, in this

chapter, an overview on the effect of convective transport on dendritic microstructures is

also presented.

2.1 Interfacial instabilities in single crystals

Figure 2.1: (a) Morphological development of perturbations generate an array of interfacial

structures along a planar interface in single crystals. (b) The solidifying interface returns to

planarity via remelting the perturbed front. Reprinted from Kurz et al. [1] with permission.

The pioneering experiments on single crystals were first performed by Chalmers et al.

[21], where the distinct controlling parameters for a solidifying interface were appropri-

ately classified. It was concluded that if a solidifying front had too high a concentration

of solute, or impurities, or if the rate of solidification was too fast relative to the mag-

nitude of the applied thermal gradient, then the single crystal alloy melt interface shall

not remain planar. Chalmers et al. [21] also reported that throughout the course of so-

lidification unstable growth conditions promote the development of distinctive interfacial

microstructures along the solid-liquid interface. As shown in Fig. 2.1 and depending upon

the growth conditions, the interfacial instabilities on a decanted alloy crystal amplify into
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an array of microstructural patterns. In single crystals, these interfacial patterns were

later described as periodic, square, or hexagonal arrays of pits, sequential parallel rows of

or cells [21]. Likewise, the small-scale structures developed were categorized as complex

tree-like patterns, namely dendrites. These amplified structures profoundly influenced the

performance of solidified materials, and their morphological appearance strongly influ-

enced the homogeneous single crystals in doped semiconductors [17]. However, in reality,

a solidification front is replete with insoluble particles, infinitesimal thermal fluctuations

and most importantly the grain boundaries (GBs). Consequently, they were considered

as a major source for the initiation of instabilities due to the redistribution of the solutal

field near the solid-liquid interface [22].

2.2 Interfacial instabilities in polycrystals

Figure 2.2: (a)-(f) Morphological evolution of interfacial instabilities in a bicrystal SCN sample.

Initial perturbations amplify at the grain boundary to generate symmetric ridges. With crystal

growth, the instabilities amplify laterally to produce a periodic array of hillocks across the solid-

liquid interface. Reprinted from Xing et al. [23] with permission.

During directional solidification experiments, the solid-liquid interface generally con-

sists of imperfections in the form of grain boundaries, impurities and persistent distortions

which act as preferred locations for the initiation of interfacial instabilities. Most impor-

tantly, when interfacial instabilities are triggered by thermal or constitutional undercool-

ing, they rapidly modify the dimensionality of the solutal fields [17]. In contrast to single

crystals, it is worth mentioning that the solid-liquid interfaces in polycrystalline materials

become unstable by passing through a different, slightly more complicated, sequence of

morphological changes [17]. Schaefer and Glicksman [22] performed seminal experiments
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to record the temporal development of morphological instabilities in a polycrystalline

sample. For their study, a transparent body-centered cubic (BCC) compound, succinon-

itrile (SCN) was considered as the test sample, and solidification was initiated with a

featureless and an initially stationary polycrystalline interface. At first, a few isolated

pit-like depressions appeared at the triple-junction, which was formed by the intersection

of the grain boundaries. As the interface advanced, it sequentially grew near the grooves,

and generated pairs of ridges, running parallel to each other on either side of the grain

boundary grooves, see Fig. 2.2. Concurrently, a shallow valley was formed adjacent to

the grain boundary ridges, followed by a second pair of parallel ridges. Especially at

the trijunctions, three distinct pre-dendritic disks were established at the termination of

each ridge. As shown in Fig. 2.3, with progressive solidification, these disks extended the

disturbance from the triple junction along the three intersecting ridge lines, thereby pro-

ducing a distinctive periodic chain of hillocks. During the final stages of polycrystalline

interfacial instability, it was reported that these protuberances extended farther out into

the melt to sprout periodic bulges in the form of side arms, and branches. Although

observed at low energy boundaries, the dendritic patterns were highly reproducible via

the advancement of annular ridges and an irregular array of hills.

Figure 2.3: Stability of an advancing solid-melt interface in a polycrystalline sample. After the

formation of tri-junctions, three pre-dendritic disks appear along with a pair of ridges at the grain

boundary grooves. As crystal growth continues, the hillocks spread across the grain boundary to

produce a periodic array of hills. Reprinted from Glicksman et al. [17] with permission.

In order to further study the lateral spreading of the perturbations along the grain

boundaries, several experimental investigations [22–28] have been performed on SCN

based alloys. Noel et al. [24] performed in-situ experiments to study the emergence of
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non-planar patterns, and analyzed the cellular interfaces in a transparent binary alloy. It

was confirmed that the initiation and the formation of a grain boundary groove lead to the

propagation of ridges and depressions along a planar front. Similarly, for a directionally

solidified organic alloy, Xing et al. [23] demonstrated the importance of a grain bound-

ary during the birth of instabilities, where the dendritic growth direction was examined

to be largely dependent on the crystalline orientation of the bi-crystal grains. As the

solidification velocity was increased beyond the critical velocity, the initial instability oc-

curred at the two slightly convex ridges. With time, these two cells-ridges coarsened and

dominated the growth competition of cellular microstructures via suppressing the growth

of neighboring cells. The importance of these tree-like reticulated structures in the mi-

crostructural characterization of cast and welded products is discussed in the upcoming

sections.

Figure 2.4: (a)-(f) For anisotropic interfaces, the interfacial instabilities develop into dendritic

structures near the grain boundary. Oriented dendrites compete with each other to produce a

single crystal cast alloy. Reprinted from Xing et al. [23] with permission.

For anisotropic interfaces, the transition from cellular to dendritic interface was evi-

dent in Fig. 2.4. Herein, the growth directions of the dendrites rotated from the imposed

thermal gradient direction to their own preferred crystalline orientation. Subsequently,

the cell to dendrite transition followed a tilted direction so that the morphological pat-

tern represented a dendritic bicrystal. This competition between crystals with different

orientation and bicrystal formation was systematically investigated by Borisov et al. [29],

where it was concluded that the direction of the bicrystal solid grains at the grain bound-

ary can be characterized by the orientation of the grain boundary.
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2.3 Constitutional supercooling

The criterion for interfacial instability in alloys is complicated due to the variation of the

local equilibrium melting point along the solid-liquid interface. During alloy solidification,

and in the absence of stirring in the liquid phase, the pile up of solute is observed ahead

of the interface as a result of the smaller solubility of the solid when the distribution

coefficient is less than unity. Consequently, the excess solute rejected from the solid

accumulates as an enriched boundary layer ahead of the interface. The steady state

diffusion equation describing the system in the laboratory frame is given by

(
∂2C

∂x2
+
∂2C

∂z2

)
+
V

D

∂C

∂z
= 0, (2.1)

where, C0 is the original composition of the solid, V is the interface velocity, D is the

solute diffusivity in the bulk liquid phase, and z is the solidification direction. With k as

the equilibrium partition coefficient of the alloy, and applying the boundary conditions

z = 0, C = C0/k and z = ∞, C = C0 to the above equation gives us the concentration

field which exponentially decreases from the maximum composition C0/k at the interface

to the original composition C0 far from the interface as

C(z) = R1 +R2 exp

(
− V z

D

)
. (2.2)

After applying the far field condition, i.e, far from the interface, the concentration

must be equal to the original composition, C0. Letting C = C0 when z →∝ we get

R1 = C0.

C(z) = C0 +R2 exp

(
− V z

D

)
. (2.3)

Now, let us apply the boundary condition at the solid-liquid interface, where the rate

of solute rejection must be equal to the diffusional flux in the liquid at the interface

C(1− k)V = −DdC
dz

(2.4)

Thus, when z = 0,

C = C0 +R2 (2.5)

and

dC

dz
= −V R2

D
(2.6)
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Substituting the expressions in the above equation gives us

R2 = C0
1− k
k

= ∆C0 (2.7)

Therefore, the complete solution for the solute distribution ahead of the planar inter-

face under steady-state conditions can be written as

C(z) = C0 + ∆C0 exp

(
− V z

D

)
. (2.8)

Now, from the above equation, the equivalent boundary layer δc can be derived as

δc =
2D

V
. (2.9)

This length is generally equal to the base-length of a right-angled triangle having a

height which is equal to the excess solute concentration at the interface, and an area which

is the same as that under the exponential curve, see Fig. 2.5(a). Moreover, according to

above equations, the rate of rejection of solute at the interface is inversely proportional to

the growth rate. For this reason, the accumulated solute must be carried away by diffusion

down the interfacial concentration gradient, and as shown in Fig. 2.5(a), the boundary

layer becomes steeper with increasing growth rate. From the above relationships, it is

clear that during alloy solidification, the concentration substantially modifies ahead of the

solid-liquid interface. However, the prediction of interfacial instabilities along a planar

interface is difficult due to the presence of temperature gradients in the liquid.

Let us now consider a steady-state solidification at a planar interface as shown in

Fig. 2.5. As a result of the varying solute concentration ahead of the solidification front

there is a corresponding variation of the equilibrium solidification temperature, i.e. the

liquidus temperature, as given by the line Te in Fig. 2.5. Apart from the temperature of

the interface, which is fixed by local equilibrium requirements, the actual temperature of

the liquid melt can follow any line, for example Tl. If the imposed temperature gradient

G is less than the critical value shown in Fig. 2.5(b), the liquid in front of the solid-

ification front exists below its equilibrium freezing temperature, i.e. it is supercooled.

Since the supercooling arises from compositional, or constitutional effects it is known as

constitutional supercooling.

To sum up, a necessary condition required for the existence of a constitutionally super-

cooled zone is that the temperature gradient at the interface in the liquid should be lower

than the gradient of liquidus temperature change in the melt. When the temperature

gradient is greater than the liquidus temperature gradient at the solid/liquid interface
dTl
dx

> GC , the latter is stable, i.e., no perturbations. In contrast, an interfacial instability

shall be observed whenever the slope of the local melting point curve (liquidus temper-

ature) at the interface is greater than the slope of the actual temperature distribution
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Figure 2.5: Schematic illustration of constitutional supercooling ahead of a planar solidification

interface.(a) Composition profile ahead of the solid-liquid interface during steady-state solidifi-

cation.(b) The temperature of the liquid phase ahead of the solidification front Tl, whereas the

equilibrium liquidus temperature for the liquid adjacent to the interface varies as Te. Constitu-

tional supercooling arises when Tl lies under the critical gradient.

dTl
dx

< GC . If the imposed temperature gradient ahead of an planar interface is gradually

reduced below the critical value then the first stage of breakdown is the formation of

interfacial instabilities as shown in Figs. 2.1 to 2.4. Hereafter, with the development of a

constitutionally undercooled melt, there exists a driving force for the amplification and

evolution of minute perturbations along a solid-liquid interface during alloy solidification.

In conclusion, the theory of constitutional supercooling generally estimates the processing

conditions that are useful to predict the growth of planar crystals in alloy solidification

[17].
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2.4 Linear morphological stability

Previous section focused on the criteria of stability, or instability, of an initially planar

interface due to the development of constitutional supercooling ahead of the solid-liquid

interface. In short, the stability of an interface depends if the liquidus temperature ahead

of the moving interface is below or above the actual temperature in the melt. However,

the theory of constitutional supercooling lacks significant effects that are to be introduced

through the capillary phenomena of curved crystal-melt interfaces. Especially, the theory

remains incapable of describing the full range of interfacial dynamics, nor does it include

important material parameters that bear upon the general question of interfacial stability.

In order to investigate such a possibility, and to examine the morphological changes

occurring near to the limit of stability, it is necessary to assume that the interface has

already been slightly disturbed under the constraints of diffusion and capillarity.

The theory of linear morphological stability of a planar interface was first examined

by Mullins and Sekerka [30] through the introduction of a sinusoidal ripple in steady state

conditions. Depending upon the wavelength, the classical dispersion relation predicted

whether the perturbation decayed or advanced with time. Mullins and Sekerka provided

the stability of a steady state perturbation by calculating the time dependence of the

amplitude for different wavelengths, via performing a linear-stability analysis. To begin

with, let us assume a small perturbation: ζ(x, t) = ζk exp(ikwx+ ωt) introduced into a

steady-state planar interface. Here, kw is the wave number, ω is the amplitude of the

perturbed interface and ζk is the disturbance in the linear order. In the frame of reference

moving in the z-direction, the governing equation in the present case is a steady-state

diffusion equation in two dimensions, given as,(
∂2C

∂x2
+
∂2C

∂z2

)
+
V

D

∂C

∂z
= 0. (2.10)

For zero diffusivity in the solid and for a phase diagram with parallel solidus and liquidus

lines, the diffusion equation with appropriate boundary conditions provides us with a

dispersion relation between the amplification rate and the wave number [31], expressed

as

ω = kwV [1− (1 + βd)d0
V

D
k2
w]. (2.11)

The above equation represents the phenomenological Mullins-Sekerka dispersion rela-

tion [30], where the amplification rate ω discloses whether the perturbed interface would

grow or decay at different wave numbers kw. In essence, this formula describes the fun-

damental mechanism of diffusion controlled pattern formation in crystals. The above

equation consists of two parts, a positive, destabilizing term that is proportional to the

velocity, and a negative capillary term that contributes to the interface stability, espe-

cially at large wavenumbers or small length scales of the perturbation. For large kw, the

perturbation decays with time and thereby the interface always gets back to a planar
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Figure 2.6: (a)-(b) Schematic illustration of the Mullins-Sekerka instability

surface. Whereas for small kw, the perturbation grows with time and the interface is

always unstable. The schematic depiction of the Mullins-Sekerka instability is shown in

Fig. 2.6, where the solutal fields for planar as well as a perturbed interface are illustrated.

Firstly, the steady-state function given in Eq. (2.10) is depicted in the right-hand side of

part (a). In the absence of capillarity, a forward bulge at the interface A in Fig. 2.6(b)

steepens the concentration fields in the melt, such that the solute is distributed rapidly

away from the surface. In the same manner, a depression in position B melts back. How-

ever, with finite surface tension, the curvatures induces the concentration profiles at the

two positions in order to restore the flatness of the interface. Therefore, the competition

between these two effects determines the sign of ω in Eq. (2.11), and thus the overall

stability of the interface. In summary, an interface subject to such a disturbance shall

evolve into more complex structures over time if the stability criterion is attained. Using

Eq. (2.11), the wavenumber at which ω vanishes, is known as the neutral stability point,

given by λs = 2παf
√
ld0, where l =

V

D
and αf = [(1+βd)]

1/2. Moreover, the perturbation

which grows rapidly occurs at the wavenumber kw/
√

3. Nonetheless, the microstuctural

patterns or perturbations that evolve from an instability along a planar interface shall

have a characteristic size of the order λs.

2.4.1 Microstructural patterns

Obtaining quantitative measurements from an unstable planar interface is challenging.

Generally, the experimental problems are associated with the strong interfacial distur-
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bances caused by the grain boundary grooves, the contact menisci, and the dislocations

[17]. Nonetheless, several investigators [32–34] have found quantitative agreement with

the linear morphological instability theory. For example, the critical wavenumber was

verified by de Cheveignè et al. [32] and later an agreement with the linear instability

theory was shown. More recently, Losert et al. [33] performed careful experiments and

concluded that the obtained wavenumber was in good agreement with the non-linear ver-

sion of stability theory by Warren and Langer [34, 35]. Similar to previous experiments,

Losert et al. [33] utilized SCN as a test alloy and reported a series of observations on

directionally solidified microstructural patterns under steady-state conditions. At low

solidification velocities, the solid-liquid front remains planar and evolves under steady-

state conditions without any instability. However, as the growth rate is increased, a

progressive development of the low-amplitude ripples is observed along the solidifying in-

terface. These ripples subsequently amplify into deep finger-like cells. Nonetheless, at the

highest growth velocity, the interface is fully evolved into an array of aligned dendrites.

This transition from a cell microstructure to a dendritic array is of considerable inter-

est in interpreting the cast microstructures in binary alloys. A morphological diagram

is showcased in Fig. 2.7, wherein the patterns are categorized based on several growth

parameters [36, 37]. The morphology diagram uses undercooling vs anisotropy as the

principal axes and distinguishes seaweed and dendritic structures as the basic patterns.

A second possible classification deals with the random looking structures, namely, frac-

tal as opposed to compact patterns, which is distinguished with a self-similar internal

structure [37]. In other cases, at velocities just above the planar-cellular instability, the

growth orientation is more sensitive to the strength of the thermal gradient [20]. In the

dendritic region, lower temperature gradients favour growth along the direction of the

main crystalline axes, whereas higher thermal gradient strengths favour a tip splitting

microstructure where the dendritic tip continuously splits and changes its orientation.

2.5 Dendritic microstructures

In the preceding section, it is illustrated that the onset of linear morphological instabil-

ity initiates the exponential growth of local perturbations along a solidified front. The

linear stability analysis disclosed that there exists a particular wavenumber for which an

amplified interfacial instability is induced along a perturbed solid-liquid interface. The

most fundamental repeating unit in a microstructure is dendritic in nature. The name

dendrite derives from a Greek word dendron (a tree) which characteristically exhibits

morphological features that display crystallographic directionality, in the form of straight

primary stems, secondary side arms, and tertiary branches. These branches bear special

angular relations between each other via displaying symmetries and reflecting the under-

lying crystal structure of the material [17]. Predominantly, the formation of dendritic
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Figure 2.7: As calculated by Ref. [36], a schematic morphology diagram illustrating the struc-

tural transition, wherein a compact (CS) and fractal (FS) seaweed structure (CS) translates

to fractal (FD) and compact dendrite (CD). The dynamic competition between the interfacial

anisotropy and diffusional fields in the liquid phase regulates the microstructural transition.

microstructures leave a mark on the distribution of secondary phases, which are formed

in the interdendritic spaces of supersaturated liquid as a result of solute rejection [20].

From a morphological point of view, there are two types of dendritic microstructures,

namely, equiaxed and columnar. An equiaxed dendrite generally consists of primary

arms of equal length as measured from the nucleation centre, see Fig. 2.8. In general,

metallic dendrites are capable of growing rapidly under weak thermal gradients in highly

supercooled melts [17]. Over the past five decades, the understanding of dendritic growth

has advanced the engineering applications of cast alloys. The stability of undercooled

melts has also allowed the initiation of dendritic growth by spontaneous nucleation at

some favorable site within the melt or through controlled triggering events induced by

contacting the melt with a seed crystal. Fig. 2.8 shows a classic example of a random

nucleation event occurring within the transparent undercooled melt, where the early stage

of an equiaxed, dendritic, cubic SCN crystal is initiated. With time, well developed side

arms grow outward in orthogonal branching sheets, which are fin-like extensions of the

〈100〉 planes of this cubic crystal. In general, an equiaxed dendrite consists of three

regions of different phases and compositions. The inner solid core, the mixture of solid

and liquid of the dendritic branched structure (mush), and the surrounding liquid with

the far field solutal field.

Based on fundamental observations, Ivanstsov deduced a three-dimensional thermal

diffusion field of an isothermal steady-state needle crystal in the form of a paraboloid

[38]. Phenomenologically, it was found that the dimensionless undercooling ∆Iv equals a

function of the Peclet number Pe

∆Iv = Pe exp(Pe)E1(Pe), (2.12)
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Figure 2.8: Left: Experimental micrograph of an equiaxed dendritic crystal in a supercooled melt

of pure, transparent, SCN. Right: Advanced stage dendritic SCN crystal with the development of

nearly periodic side arms along the downward-pointing primary stem. Reprinted from Glicksman

et al. [17] with permission.

where Pe = RV/2a, is the ratio of the tip radius of the paraboloid R,to the thermal

diffusion length 2a/V , a is the heat diffusivity, V the tip velocity, and E1 the exponential

integral function. The right-hand side of the aforementioned equation is now referred to

as Ivanstov function Iv(Pe), which is a shape-preserving solution of a parabolic dendrite

with an isothermal interface. For the next three decades, several improvements were

proposed which subsequently constituted the basis for various theories on the growth

of solid-liquid transformations. Temkin et al. [39] improved Ivantsov’s model for an

isothermal dendrite by including capillarity and interface kinetics. The dendritic shape

was assumed to be paraboloidal and a solution was obtained for small undercooling

or small Peclet numbers. Later, a non-isothermal dendrite model was developed by

Bolling and Tiller [40, 41], where it was reported that the form of the dendrite tip would

differ from that of a paraboloid due to the effects of curvature and attachment kinetics.

Subsequently, Trivedi et al. [42, 42] considered the role of secondary arm branching on

the dendritic shape. The study pointed out that although the inclusion of capillarity will

open up the parabolic shape, the solutal field from the secondary branches shall tend to

close the shape so that the tip region should be close to a parabola.

In the ensuing years, a significant contribution was made in the field of dendritic theo-

ries, where the marginal stability hypothesis of Langer and Müller-Krumbhaar [43] posited

that the dendritic tip operates within the margin of stability, whereas the remainder of

the dendritic interface grows in an unstable, time-dependent manner, producing quasi-

periodic waves that amplify into side arms, or branches. Langer and Müller-Krumbhaar

qualitatively suggested that the tip of a dendrite at the margin of stability implied that
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the dendrite tip becomes as large as possible, but avoids becoming large enough to go

unstable, and split. According to them, the tip radius R of the marginal stability criterion

corresponds to the minimum wavelength for planar instabilities λs. This breakthrough

led to several numerical studies, for example, Rappaz and Thevoz [44, 45] developed a

deterministic equiaxed growth model that coupled heat and solute balance equations of

the regions, and in this way an equiaxed dendritic dendritic growth was simulated. Later,

an extension of the model to multicomponent alloys was developed, where Spittle and

Brown [46] reported a two-dimensional microstructure using the Monte-Carlo technique,

and included the phenomenon of nucleation, growth, remelting and solute redistribution.

However, in reality, the dendritic structures are rarely equiaxed (a filling with a

sphere), but rather grains with the three cubic axes of similar length. If one the axises

becomes larger than the others they are widely called as a columnar dendrite. During

the early stages of solidification, many grains tend to nucleate on or close to the cold wall

of the mould with random orientations, and are of equiaxed form. A columnar structure

(texture) is posteriorly developed by grain elimination through a phenomenon commonly

known as equiaxed to columnar transition (ECT).

2.5.1 Unidirectional growth of columnar dendrites

Unlike the four-fold equiaxed dendrite in an undercooled melt, it is the positive tem-

perature gradient in constraint directional growth which strongly influences the interface

dynamics at the dendritic tip. This particular type of growth creates an array of den-

drites with a characteristic range of primary trunk spacings, see Fig 2.9. One of the major

aspects of columnar dendrites is the determination of the microstructural properties, the

distribution of secondary phases, and the morphology of dendritic branches. The lat-

ter redistributes solute via microsegregation, and henceforth, the control of primary and

secondary arm spacings is desirable. In the last few decades several experimental and

theoretical studies have been devoted to this topic.

The primary dendrite arm spacing is defined as the mean distance between the den-

drite trunks during columnar growth, and the secondary spacing is defined as the dis-

tance between the sidearms that form initially close to the dendrite tip and coarsen in

the mushy zone during the course of solidification. Early measurements which related the

inter-dendritic spacing to the solidification conditions dates back to 1960s. While Bell

and Winegard were the first to examine the Sn-Pb system via directional solidification

experiments [48], Somboonsuck and Trivedi [49] investigated the dynamics associated

with the establishment of a steady-state arm spacing during the directional solidification

of a succinonitrile-acetone alloy. It was found that the solidification velocity rapidly fixed

the steady-state tip morphology but established the primary spacing slowly. In the early

1980s, the mechanisms of mean spacing near the tip region of a directionally solidified
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Figure 2.9: (a)-(f) Evolution of an unidirectionally solidified solid-liquid interface for various

growth rates. Initial perturbations amplify with time to form a periodic array of columnar

dendrites. Imposed solidification velocity and temperature gradient control the morphology as

well as the inter-dendritic spacing of primary arms. Reprinted from Somboonsuck and Trivedi

[47] with permission.

succinonitrile-acetone alloy were examined. Divergent grain boundaries were used in the

experimental setup, where the inter-dendritic spacing between the trunks continuously

increased. It was clearly shown that the competition between secondary and tertiary

branches from neighbouring dendrites was responsible for the establishment of a stable

primary arm spacing.

On the theoretical side, Hunt presented the first deterministic model to predict the

primary spacing under constrained conditions [50, 51]. The model was based upon the

mass balance equation which was matched to a spherical tip growing at the extremum.

The predicted spacing for constrained primary dendrites was derived as,

λ1 = BK∆T 0.25
0 G−0.5V −0.25 (2.13)

where ∆T0 is the equilibrium melting temperature of the alloy, G is the imposed tem-

perature gradient across the sample, BK is the proportionality constant and V is the



22 2.5

solidification velocity. Later, Trivedi et al. [52] developed a model which was based upon

mass balance and marginal stability theory, showing that for a constant G, the relation-

ship λ1 − V goes through a maximum. Within the cellular regime, and at lower growth

rates, the spacing increased with V , while, in the dendritic regime at higher rates, the

spacing decreased. Han and Trivedi [53] further simplified the model and compared it

with experiments on succinonitrile-acetone system. A new mechanism of spacing evo-

lution was observed through the lateral motion of cells and dendrites. For a dendritic

regime under constrained solidification conditions, all three models, by Hunt, Kurz and

Fisher and by Trivedi [52, 54, 55] resulted in the above equation but with different pro-

portionality constants.

Warren and Langer [34] performed a linear stability analysis on the primary dendritic

array and concluded that under constant growth conditions, there exists a wide range

of stable dendritic spacings rather than a unique value. Eventually, they also analysed

non-steady-state diffusion effects during the evolution of primary arm spacings [35]. Sim-

ilarly, Losert et al. [56] measured the stability of a dendritic array in an organic alloy

under thermal perturbation, and found that the observations in the linear regime were

qualitatively consistent with the Warren and Langer theory [34].

Hunt and Lu [50, 57, 58], using numerical simulations found a lower limit to the

primary spacing of columnar dendrites. It was argued that the upper limit to the spacing

regime is twice that of the lower stable regime. Likewise, Han and Trivedi [53], Huang et

al. [59] and Pan et al. [60] also studied the dynamics and the spread of primary spacings

along a planar solidification front. The lower limit found in these studies was consistent

with the theoretical predictions of Warren and Langer [34], and of Lu and Hunt [58].

According to Han and Trivedi [53], the selection mechanism of a stable primary arm

spacing can be described through the following steps

• Tip-elimination

• Tip-splitting

• Tertiary arm development

• Lateral migration and defect interaction with growth front

One intriguing feature of the microstructure, the influence of off-axis heat flow on

the inter-dendritic spacing was experimentally studied by Grugel and Zhou [61], Aka-

matsu and Ihle [62] and Gandin et al. [63] in succinonitrile alloys. In contrast with the

aforementioned selection mechanisms, it was concluded that the dynamic competition

of secondary and tertiary branches was the main mechanism to generate new dendritic

trunks at divergent grain boundaries.
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2.5.2 Dendritic growth competition

Under realistic situations, the formation of axisymmetric dendrites is difficult as minute

crystals often initiate at the inner surface of a chill or mould plate with several equiaxed

grains from which columnar dendrites develop. The columnar dendrites compete with

each other over a certain distance, and finally generate a texture with required microstruc-

tural properties. In such a scenario, the dendritic tip temperature varies with the mis-

orientation angle between the grain and the growth direction. As a result, in a single

crystal cast product, all but one grain with with cubic crystal structure 〈001〉 orienta-

tion is eliminated [64, 65]. Wagner et al. [64] performed experiments and found that

the suppression of secondary arms by the diffusion field of neighbouring dendrites stops

dendrite overgrowth and stabilises an unfavourably oriented grain. However, a few inves-

tigations [64, 66–69] have proposed other possible overgrowth mechanisms for competitive

dendrites. Zhou et al. [66] performed bicrystal experiments on Ni-based superalloys and

concluded that the growth behavior of converging dendrites is anomalous. It was reported

that the solute interaction at the grain boundary has a significant impact on the over-

growth mechanism, where the unfavorably oriented dendrites overgrow at the expense of

favorably oriented dendrites. This phenomenon referred to as unusual overgrowth phe-

nomenon eliminates a favorably oriented dendrite by physically blocking and protruding

over the primary arms. Furthermore, other experimental studies [64, 67, 69] have also

endorsed the overgrowth of misoriented dendrites at the grain boundary.

Besides the in-situ experiments, several computational studies [70–73] have success-

fully examined and depicted the dendritic growth competition in cast alloys. For example,

Tourret et al. [70] argued that the growth competition in columnar dendrites was depen-

dent on the imposed temperature gradient, and the rate of suppression of unfavorably

oriented dendrites was non-monotonic. The influence of the imposed temperature gra-

dient G and the orientation of neighbouring grains on the primary spacing and on the

orientation of grain boundaries were shown. Again, it was found that the overgrowth of

misoriented grains was not related to the tip temperature difference and that under cer-

tain circumstances unfavourably oriented grains could persist. In addition, for diverging

dendrites, it was suggested that the formation of secondary and tertiary arms was always

accountable for the overgrowth of favorably oriented dendrites, thereby reiterating the

importance of microscopic thermal fluctuations at the interface.

Although two-dimensional simulations effectively capture the physics of inter-dendritic

growth competition, a three-dimensional dendritic network provides realistic solutal be-

havior near the dendritic tips. In an another study, Tourret et al. [74] studied with a

phase-field model the competition between columnar grains in two and three dimensions

for small sample thicknesses with an dendritic array. The grain orientation was varied

around the growth axis and its effect on the grain competition was studied. Similarly,

Guo et al. [75] presented a three-dimensional phase-field study of columnar grain compe-
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tition due to secondary and tertiary branching behaviour in diverging grain boundaries

with various crystallographic orientations. However, the rotation of secondary branches

was not considered in this study. Especially for a converging dendritic network, Li et

al. [71] performed phase-field simulations in two dimensions and examined the unusual

overgrowth behavior at the grain boundary. In corroboration with the aforementioned

experimental observations, it was concluded that the solute interaction at low pulling

velocities was responsible for the overgrowth of an unfavorably oriented dendrite. These

observations were further acknowledged by Takaki et al. [76], where the unusual over-

growth phenomenon was observed as a result of asymmetric diffusion layers at the grain

boundary.

2.6 Diffusive-convective regime

Convective transport of solute near the solid-liquid interface is omnipresent in practical

solidification processes, and therefore most dendritic theories tend to slightly differ from

experimental results. It is well known that the cooperative effect of diffusive-convective

regime adds new length and time scales to the selection of solidifying patterns, and

eventually results in morphologies that are potentially much different from those gen-

erated by purely diffusive transport. Nonetheless, not only does convection influence

the solidification pattern, but the evolving microstructure can also trigger unexpected

and complicated flow phenomena. Convective transport near the solidification front is

normally driven either by volume differences between the phases, or by density gradients

temperature gradients in the alloy melt, or by surface tension gradient (Marangoni effect)

or by an external melt flow effect such as pouring, electromagnetic stirring, etc [12].

Owing to the intricacies in a microstructure, the topic of dendritic growth in the pres-

ence of melt flow was treated extensively by Glicksman et al. [77], and Ananth and Gill

et al. [78], where two different types of convective transport was considered. Firstly, nat-

ural flow, which arises from the gravitational effect on the motion of fluid due to density

differences, and secondly, forced convective melt flow, which is induced by some external

transport of diffusional fields. Glicksman and Gill performed systematic experiments and

investigated the melt flow effects on dendritic growth for parabolic crystals in a thermal

flow [78], and found a very good agreement between theory and experimental results.

A brief perusal on studies related to dendritic growth in the presence of fluid flow

provides us enough evidence that melt convection has a large effect for enhancing mor-

phological changes during microstructural evolution. For example, for the interfacial

instabilities developed along a polycrystalline sample, Noel et al. [25] interestingly stud-

ied and reported the influence of melt convection during the unidirectional solidification

of SCN alloys. It was reported that the liquid phase convection completely swept the

solute layer near the growth front, and thereby delayed the emergence of hillocks in the
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downstream solid ridges. In agreement with other studies [26, 27], Jamgotchian et al.

[79] also exhibited the localization of microstructures in the presence of fluid flow. Focus

and outward hexagonal flow type were the two localized patterns observed in agreement

with the theoretical predictions of Davis et al. [80].

Despite these experimental studies, there have been limited numerical models to study

the influence of flow on microstructural formation. Nevertheless, computational studies

[81–83] have made quantitative predictions on the free evolution of a dendrite in both,

two and three dimensions. Beckermann et al. [82] performed phase-field simulations with

convection in the liquid phase, where the emphasis on the dendrite tip dynamics revealed

that the tip velocities in upstream direction had a rapid growth rate than the tips along

downstream direction. Similarly, other studies [81, 83] described the shape as well as the

side branching dynamics due to the convective transport via two- and three-dimensional

studies. Recently, Chen et al. [84] revealed the fundamental differences in flow patterns

around a four fold dendrite in two and three dimensions, where the thermal fields along

upstream and downstream directions were reported to be significantly different, in turn

changing the appearance of secondary and tertiary branches. In addition, using an experi-

mental setup, Shevchenko et al. [85] exhibited the effects of natural and forced convection

on directionally solidified Indium dendrites. It was reported that the morphology as well

as the growth direction of columnar dendrites was modified in the convective regime. In

light of above and the literature available, there is however not enough studies devoted

to investigate the influence of melt convection on an unconstrained microstructure, such

as columnar or polycrystalline networks. In this regard, the present work intends to fill

the gap in our understanding. As discussed above, the incorporation of convection in

the melt could lead to the formation of distinct morphologies when compared with the

diffusive regime. Moreover, the onset of convective and morphological instabilities during

the unidirectional solidification of a binary alloy has been unexplored, and thereupon a

precise understanding of the aforementioned problems need to be addressed. Henceforth,

from grain boundaries to columnar dendrites, the present dissertation builds upon the

experimental and theoretical studies in literature under diffusive regime, and extends it to

address the influence of convective transport on microstructural patterns via phase-field

modeling.
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Phase-field modeling

Formation of complex microstructures in alloy solidification has fascinated researchers in

materials science and related areas for many years. However, the principal obstacle in

predicting pattern formation is the accuracy in calculating the diffusive-convective trans-

port near the solid-liquid interface [86]. Owing to the increase in computing power, much

progress has been made in simulating solidification problems on the scale of microstruc-

tures [87]. Traditional simulation methods for treating the free-boundary problems were

first based on the front-tracking of sharp-interface. Nonetheless, quantitative results

were difficult to obtain as a result of the problems involved in tracking a sharp boundary

in a complex morphology. Over past few years, the phase-field approach has become

ubiquitous as of late and is gaining popularity as a method of choice to model complex

microstructures in solidification, precipitation and strain induced transformations [88].

The principal idea of any phase-field model is to characterize the phases using a non-

conserved order parameter that varies smoothly across the diffuse interface. In general,

the governing equation ensures that the interface profile evolves in order to minimize

the free energy of the system with time, and which is coupled to the diffusion field near

the solid-liquid interface. Since it represents the sharp interface formulation of the prob-

lem in an accurate and a computationally efficient way, these models are found to be

increasingly useful for the materials community because of its fundamental origins [89].

Using simple finite-difference algorithms, a dendritic pattern was the first and the most

easiest simulated microstructure at high supercoolings (supersaturations) [90, 91]. The

phase-field method has proved to be extremely powerful in the development of dendritic

microstructures without the necessity to explicitly track the evolving interface. In addi-

tion, this method provides a visual impression of the microstructures which often matches

the experimental observations. The primary objective of this chapter is to introduce the

fundamental concepts of the phase-field approach, and to briefly summarize the historical

developments in literature.

29
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3.1 Phase-field variable and free energy functional

Figure 3.1: (a)-(b) Schematic representation of a sharp interface and a diffuse interface profile.

While the white color with φ = 1 depicts a solid phase, φ = 0 represents the liquid phase with

black color.

In order to describe the state of a system during phase transformation, traditional

thermodynamics utilize variables such as pressure, volume etc. However, it is known

that the condensed phases often display changes in positional and or rotational order

during a phase transition. Ordered phases are often distinguished from disordered phases

by a decreased number of geometric symmetries, and they may be scalars, vectors, or

tensors [92]. For example, in ferromagnets, the magnetization is zero above the Curie

temperature, but finite below. The popularity of the phase-field approach is due to the

elegance with which it treats moving boundary problems in the regime of sharp interface

methods. Here, the phase-field variable φ is defined as a scalar field that specifies the

local state of matter (solid or liquid). In this thesis, it will be interpreted rather as

being related to the local volume fraction of the solid phase, that is, the phase field φ

is 0 in the liquid and 1 in the solid. Between these two values in the bulk phases, the

phase-field varies smoothly across a region called the diffuse interface, as schematically

depicted in Fig. 3.1(b). Subsequently, the phase-field variable is also used to interpolate

the thermodynamic and kinetic properties across the interface. The spatial dependence

of the phase-field variable presents the unique feature of the phase-field method, wherein

the diffuse interface region is introduced by replacing the sharp one. Furthermore, if a

single phase-field variable represents the phase transformation from a liquid to a solid

phase, then multiple scalar phase-field variables can be used to treat situations where

more than two solid phases appear, for example, eutectic and peritectic solidification
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[93].

Investigating systems during phase transition involves the construction of a Landau-

Ginzburg free-energy functional [94], which unlike the classical model, treats the system

as a whole. Therefore, as discussed above, a phase-field φ variable is postulated which

characterizes the phase of the system at each point in space and time. Under non-

equilibrium conditions, the Ginzburg-Landau functional that governs the evolution of

the phase-field variable can be expressed as

F (T, φ,∇φ) =

∫
V

[
fbulk(T, ..) +

K

2
(∇φ)2 + fdw(φ)

]
dV. (3.1)

In general, the bulk free energy term fbulk(T, ..) as a function of temperature or

concentration is a complex function, and it is typically approximated by a polynomial

series that is interpreted as a Taylor series expansion. This formalism often allows for

a mesoscopic description of that accounts for bulk thermodynamics and interfaces. On

the right-hand side, further terms include the double-well potential energy fdw(φ) and

the gradient energy K
2

(∇2φ) terms. The bulk free energy term acts as the driving force

which governs the phase transformation in a system. Therefore, in the above equation, in

addition to the double-well and the gradient energy term a function, fbulk(..), is included.

For example, the simplest form of the temperature dependent free energy functional may

be approximated for a pure substance as F =
∫
V

[fint(φ,∇φ)+g(φ)fs(T )+(1−g(φ))fl(T )].

Here, fint represents the contribution of the interface which is equal to zero outside of

the diffuse interface region. The terms fs(T ) and fl(T ) are the free energy densities

of solid and liquid, respectively, and g(φ) is an higher order interpolation function that

satisfies g(0) = 0, g(1) = 1, and g′(0) = g′(1) = 0. While more complex descriptions of the

functional F are possible, for the present section, it is assumed that the only contribution

to the energy functional from local gradients is that of the phase-field. A more general

model might also include contributions due to the gradients of other variables, such as

temperature and composition.

3.2 Dynamics of conserved and non-conserved order

parameter

The nature of the order parameter, conserved or non-conserved, plays a significant role

under non-equilibrium conditions, where, in addition to the spatial dependency, the scalar

field also exhibits temporal dependency. The kinetic equations for the scalar fields are

called conserved if they take on the form of a flux-conserving equation. Similarly, the

temporal evolution of the scalar field whose global average need not be conserved is

typically governed by a non-conserved equation [92]. At first, the dynamics of an order
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parameter that represents a conserved quantity is elucidated, where a simple binary alloy

is chosen. A disordered phase with average concentration φ = φ0 shall undergo phase

separation as the temperature decreases below the critical temperature. In an isothermal

system, the dynamics of this process is fundamentally driven by the gradients in the

chemical potentials µ. As φ represents the local concentration differences, the mass

conservation equation is given by

∂φ

∂t
= −∇ · J (3.2)

where the mass flux is governed by J = −M∇ · µ, and M is the mobility. Substituting

the flux in the above equation provides us with the following equation of motion for the

order parameter of a phase separating alloy mixture

∂φ

∂t
= ∇ ·

(
M∇δF

δφ

)
. (3.3)

Here, the chemical potential is derived from the Ginzburg-Landau free energy as a func-

tional of the concentration, and represents a variational derivative rather than a partial

derivative. The above equation is widely celebrated as the Cahn-Hilliard equation [95], or

Model B as called in the condensed matter physics literature by Hohenberg and Halperin

[96], where various order parameter models were classified to describe the associated

physical phenomenon.

Next, some phase transformations involve order parameters that do not follow the

conservation law. For example, magnetic domain growth, order-disordered transitions,

or isothermal solidification of a pure material in the absence of a density jump are some

well known physical processes. This is in complete contrast to the phenomenon of phase

separation in an alloy mixture, where the the system evolves towards the equilibrium

under the condition that total solute in the system be conserved. Therefore, the or-

der parameters that evolve without global conservation are called non-conserved order

parameters. In this scenario, the rate of change of a non-conserved order parameter is

defined as δF/δφ, as the global conservation of the variable φ is not required, the simplest

evolution for a non-conserved order parameter is given by

∂φ

∂t
= −MδF

δφ
(3.4)

The above equation is referred to as model A by Hohenberg and Halperin’s classifica-

tion of phase-field models [96], a paradigm used to describe the evolution of an order

parameter without the requirement of global mass conservation law. In other words, a

non-conserved order parameter evolves according to the steepest functional gradient of

the free energy, which systematically pushes the order parameter to minimum of the free

energy landscape. A classic example that is governed by the above equation is dynamics

of a system of Ising spins in the absence of external field.
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The evolution equations for both conserved and non-conserved order parameter un-

derline the basic physics of many phase-field models, and have the following generic

features

• an order parameter is appropriately chosen to address the physical phenomenon

• a Ginzburg-Landau type free energy density is constructed to include the bulk

phases and the interfacial energy of the system

• evolution equations for the order parameter are constructed on the principle of free

energy minimization and, if required, conservation laws.

In addition, due to the presence of thermal fluctuation at the microscopic range, and

under equilibrium conditions, all quantities of a system continuously fluctuate in space

and in time. Therefore, in order to accurately model thermal fluctuations at the solid-

liquid interface, stochastic noise sources are also commonly included in the evolution

equations.

3.3 Interface structure and energy

The existence of solid-liquid interfaces is inherent in solidification microstructures. Under

equilibrium conditions, the bulk driving force is zero, and only the interface contribution

remains in the free energy functional. Therefore, from Eq. (3.1), the general form of the

interface free energy density Fint as suggested by Ginzburg-Landau theory [94] with a

gradient and potential term reads

Fint =
K

2
(∇φ)2 +Hfdw(φ). (3.5)

Here, fdw(φ) is a function of the order parameter φ which has two minima fdw(φ) = 0

for φ = 0 and φ = 1, with a maximum in between these two values to form a double-well

potential, and K and H are constants. To analyze further, the free energy density and

H have energy/volume as its dimension, and Fdw(φ) is a dimensionless function, whereas

K has dimension of energy/length. Let us now define

ε =

√
K

H
(3.6)

such that the term ε has the dimension of length and represents the finite width of the

diffuse interface. Also,
√
KH has the dimension of surface tension. Henceforth, the two

coefficients determine the width and the excess free energy of the interface. At melting

temperature, the planar interface at rest at the melting temperature is an equilibrium
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state and must therefore satisfy
∂φ

∂x
= 0. Now, calculating the variational derivative of a

free energy functional at equilibrium

δF

δφ
=
∂Fint

∂φ
−∇∂Fint

∂∇φ = 0 (3.7)

For a one-dimensional transition zone between liquid φ = 0 and solid φ = 1 where φ

varies in the x direction normal to the interface, and considering a simplified form of the

double-well function Fdw(φ) = φ2(1− φ)2, Eq. (3.5) yields

K

(
∂φ(x)

∂x

)2

−Hφ2(1− φ)2 = 0. (3.8)

From the above equation, the exact solution of the interface showing the smooth variation

in-between the bulk phases is given as

φ(x) =
1

2

1 + tanh

(
x

2ε

) (3.9)

where, ε =
√
K/H. This value of the interface thickness is a balance between two

opposing effects. Firstly, the interface tends to be sharp in order to minimize the volume

of material. Secondly, the interface tends to be diffuse to reduce the energy associated

with the gradient of φ [90]. In addition, it is important to note that the profile of the

interface depends on the choice of the double-well potential fdw and the spatial scale of

the profile is set with the constant ε. Furthermore, the excess free energy associated

with the compositional and/or structural inhomogeneities occurring at interfaces is the

interfacial energy. Therefore, the interfacial energy γ is defined as the integral of the

interface excess of the free energy

γ =

∫ ∞
−∞

Fint dx (3.10)

=

∫ ∞
−∞

[
K

2
(∇φ)2 +Hfdw(φ)

]
dx (3.11)

= H

∫ ∞
−∞

[
1

2
ε2(∇φ)2 + fdw(φ)

]
dx (3.12)

Now, in the above equation, the variable x is non-dimensionalized after substituting

x̃ = x/ε, and rewritten as

γ =
√
KH

∫ ∞
−∞

[
1

2

∂2φ(x̃)

∂x̃2
+ fdw(φ)

]
dx̃. (3.13)

Therefore last equation is dimensionless, and for the sake of convenience shall be called

I. As a result, the interfacial energy γ is given by

γ = I
√
KH (3.14)
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and utilizing Eq. (3.6), one can obtain

γ = IεH. (3.15)

From the above expression, we incur that the constant H is the amplitude of the double-

well potential, and it determines the height of the energy barrier between the two equi-

librium phases. The product of this barrier height H and the thickness of the interface ε

thus phenomenologically relates the total interface excess energy γ. In general, interfacial

energies are anisotropic due to the crystalline nature of solids. The degree of interfacial

energy anisotropy can have a significant effect on the growth morphology and equilibrium

shape of particles. A number of approaches have been proposed to introduce interfacial

energy anisotropy in phase-field models [88]. In conclusion, the above discussed equilib-

rium solutions are a strict requirement for any phase-field model.

In the late twentieth century, the basic principles of the phase field theory have been

extended to develop multi-phase or multi-order parameter phase-field models in an at-

tempt to study numerous polycrystal, multi-phase or multi-component phenomena in

phase transformations [92]. In particular, Steinbach et al. [97] developed a phase-field

model of a multiphase system in which the phase-field variable was associated with each

phase in the system. In this work, an underlying free-energy functional was chosen that

involved the pairwise interactions between all the different phases. Analogous with the

generic single phase-field models, multi-order and multi-phase-field models were typi-

cally constructed so as to respect the thermodynamic symmetries of bulk phases and to

consistently reproduce the correct sharp interface kinetics in the limit when phase field

interfaces become mathematically sharp. This method begins through defining N vari-

ables φi, and each of which is unity in the corresponding ith single phase region of the

sample such that the constraint
∑N

i=1 φi = 1 is followed [92]. The resulting governing

equations are used to conduct numerical simulations in a variety of situations, and the

feasibility of this methodology is demonstrated in peritectic and eutectic systems [98, 99].

In the following section, a brief history and the early development of phase-field methods

in solidification are discussed in detail.

3.4 Phase-field models for solidification

In the last few decades, an important step in modeling solidification microstructures was

initiated by J. S. Langer at the Department of Mathematical Sciences of Carnegie Mel-

lon University (CMU), Pittsburgh [12, 100]. The developed model was based upon the

Cahn and Hilliard’s [95] approach who derived a formulation that accounted the gradi-

ents in thermodynamic properties in heterogeneous systems with diffuse interfaces. The

principal idea for the phase-field model was constructed such that a non-conserved order

parameter varied smoothly across the diffuse interface and thereafter evolved according
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to a governing equation. This generic concept was given a more quantitative outlook

by Caginalp et al. [101–103] and Langer [100] who showed that the phase-field model

converged to the free-boundary problem in the limit of vanishing interface width.

Based on the seminal phase-field theory, Ryo Kobayashi was the first to simulate a

dendritic microstructure [91, 104], where the scheme to solve the Stefan’s problem during

the solidification of a pure substance in an undercooled melt was developed by replacing

the sharp interface problem by a diffuse interface. Interfacial anisotropy was incorporated

in the model which consequently produced realistic needle-like dendritic microstructures

for the first time, see Fig. 3.2. While McFadden et al. [105] introduced a two-fold

anisotropy, Grossmann et al. [106] applied the method to directional solidification. In

subsequent years, the pioneering work of Kobayashi had a strong influence on the devel-

opment of the phase-field models for simulating dendritic morphologies, wherein several

assumptions and restrictions of the phase-field method were addressed in detail.

Figure 3.2: Realistic needle-like dendritic morphology simulated via phase-field method.

Reprinted from Kobayashi et al. [91] with permission.

Following the preliminary investigations on pure materials, the next step towards the

application of the phase-field theory in materials science was the development of a binary

alloy model by Wheeler, Boettinger and McFadden [90, 107, 108]. Widely known as

the WBM model, their fundamental approach was to construct a generalized free energy

functional that was dependent on both concentration and phase by superposition of two

single-phase free energies, and weighting them by the alloy concentration. Eventually, the

governing equations were derived for the temporal and spatial variation of the phase-field,

which identified the local state or phase, and composition.

The aforementioned phase-field models were initially applicable to large supersatu-

rations only, where the diffusion boundary layer in the liquid ahead of the advancing

solid-liquid interface was small. Another restriction was that the numerical parameters

were largely dependent on the finite interface thickness. Moreover, the asymptotic analy-

sis of the sharp-interface limit of the phase-field models was not applicable for quantitative

computations. Since it was necessary to employ nanometer scale interface widths that
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are generally much smaller than the microstructure scale, it became computationally

expensive to perform large scale simulations through these models.

Limitations and disadvantages of the phase-field methodology were circumvented

when Karma and Rappel [88, 109, 110] pioneered the criteria to choose the simulation

parameters for an upscaled diffuse interface width. The thin-interface limit analysis was

introduced so as to quantitatively model the physically relevant limit of local thermody-

namic equilibrium at the solid-liquid interface (vanishing interface kinetic undercooling).

A computationally tractable interface thickness was employed that was just an order

of magnitude smaller than the dendrite tip radius, and thus much larger than the real

nanometer scale interface width. This methodology permitted them to perform quanti-

tative calculations at reasonably small undercoolings, and also in three dimensions. Sub-

sequently, Murray et al. [111] compared the phase-field results with the dendritic growth

experiments on pure undercooled SCN via considering a four-fold interfacial anisotropy.

The obtained results were qualitatively in tune with the experimental observations of

tip-splitting microstructures. In due course, the computational efficiency was strongly

improved by Dantzig et al. [112] and Provatas et al. [113], who developed an adaptive

method which refined the mesh in the vicinity of the interface but is left coarse away

from the interface. In this manner, the size of the two-dimensional lattice was substan-

tially increased and they found a good agreement with the solvability theory at high

undercoolings.

Notwithstanding, for alloy solidification, a quantitative comparison between the inter-

facial phenomena at the atomistic scale and the simulated microstructure scale is consid-

erably more difficult. A major restriction is that the solute diffusivity in the solid phase

is generally much slower when compared in the bulk liquid melt. In these circumstances,

the mesoscopic interface width ε artificially magnifies several non-equilibrium effects that

are generally absent for two-sided diffusion. Almgren [114] was first to characterized

these non-equilibrium artifacts via a thin interface analysis of a phase-field model with

asymmetric diffusivities. The well known non-equilibrium effects included the diffusion of

solutal atoms along the arc length of the interface, namely surface diffusion, an interface

stretching term that modified the mass conservation associated with the local increase

of arclength of a moving curved interface, and a discontinuous jump of the chemical po-

tential across the solid-liquid interface, known as solute trapping. The magnitude of all

these spurious artifacts scaled with the interface thickness. Since the phase-field simu-

lations are performed at orders of magnitude larger than in reality, it is important to

ensure that the results are unaffected by numerical artifacts. The advancement with re-

spect to previous phase-field models was achieved by the addition of a phenomenological

anti-trapping solute current in the mass conservation relation by Karma [89]. This term

counterbalanced the physical, albeit the artificially large solute trapping effect generated

when a mesoscopic interface thickness is imposed to simulate the interface evolution on
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experimental length and time scales. Furthermore, it provided an additional freedom to

suppress other spurious effects that scaled with the interface thickness when the diffu-

sivity was unequal in solid and liquid phases [114]. This methodology also paved way

for quantitative comparisons between experiments and simulations both in two and three

dimensions, with the possibility of testing the theories and concepts used to interpret

microstructural pattern formation [115].

Whenever the free energies are interpolated similar to the WBM models [90, 107, 108],

there exists an additional length-scale arising from the variation of the grand potential ex-

cess across the interface. Especially for systems where the term becomes largely dominant,

the surface energy and the interface thickness loose their independence. Consequently,

this restricts advantage to simulate physical features, because the growth conditions that

can be simulated with such an approach gets restricted. Additionally, one must pre-

calculate the contribution of the chemical free energy excess to the surface energy, in

order to choose the right simulation parameters. This introduces a non-physical interac-

tion between the free energy bulk phases with the interface and imposes a constraint on

the finite interface width.

As mentioned before, early phase-field models of alloy solidification were plagued

by a dependence of the surface tension on the interface thickness that arose from the

coupling between the phase-field and concentration equations. This problem was solved

later through the introduction of coarse-graining approach, which generalized the pure

substance model by introducing a concentration field in addition to the temperature

field and by writing down a free energy functional that depends on the phase field,

the temperature, and the concentration [107, 116]. In contrast, a second approach was

developed by Kim, Kim and Suzuki [117], where different concentration fields were used

for the respective phases, the concentration at a given point is written as an interpolation

of the individual phase concentrations, and the equation is closed with the condition of

equilibrium chemical potential among the phases, or alternatively a known partition

relation among the phase concentrations which enables the determination of the phase

concentrations. The common basis for both methodologies however, is that the driving

force for phase transformation is the difference of the grand potentials of the phases, at the

same chemical potential. Through this construction, it was evident that at equilibrium,

there exists no terms arising from the chemical system, which contributed to the solution

of the equilibrium phase-field profile. Implying that the equilibrium properties such as

the interfacial energies can be fixed independently of the free energy of the respective

phases. In this regard, Plapp [118] proposed a methodology where it was shown that

the coarse-graining approach could be easily extended to more complex alloy systems if

a grand-potential functional was used. Similarly, the limitations of a multi-phase-field

model [119] was addressed in detail, and a new model was developed by Choudhury

and Nestler [5], where a modified grand potential functional was considered rather than
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the free energy functional with the thermodynamic variable as the chemical potential

instead of the concentration field. Thereafter it was shown that the excess contribution

to the interface was negated, and the length scale related to the interface thickness is

independent of the chemical system. Moreover, the developed model was then applicable

to simulate complex microstructures for various alloy systems [120–122].
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Grand potential based multi-phase

field model

Phase-field models to simulate complex microstructures have been used for more than

two decades. Having fairly understood the principal concepts, the governing equations

describing alloy solidification are similar to the ones corresponding to pure material [31].

In this regard, the phase-field model for a pure material was extended straightforwardly

to an alloy phase-field model, by matching the variables in the pure material problem

to the alloy problem. Apart from the shortcomings mentioned in the earlier chapter,

previous models [88, 90, 107, 108] were based on two unrealistic assumption. Firstly,

the liquidus and solidus lines in the phase diagram were assumed to be parallel, and

secondly, the solute diffusivity was constant throughout the system. In realistic systems,

the slopes of liquidus and solidus lines are significantly different from each other in a

phase diagram, and the solute diffusivity in the solid phases is much smaller than that in

the liquid phase. Consequently, a modification of the multi phase-field model [119] was

developed, where for a range of applications, the choice of the interface thickness limited

the size of the simulation domain and, hence, the large scale microstructure evolution

could not be observed. These restrictions were elegantly addressed by Choudhury and

Nestler [5], and in this chapter, the modifications as well as the governing equations

are described briefly, followed by the inclusion of liquid phase convection. Furthermore,

since the solidification morphologies reported in this work are simulated under isothermal

conditions, the temperature dependence of the thermodynamic parameters is ignored.

4.1 Grand chemical potential modeling approach

In general, the driving force for phase transformation in alloys in the sharp-interface

limit is the difference of the grand potentials of the two bulk phases, and thereafter the

evolution equations drive the system in a direction to reduce the difference of grand

41
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potentials between the bulk phases. In this model, the phase evolution is determined by

the minimization of the functional dΩ/dt 6 0, which is formulated as

Ω(T,µ,φ) =

∫
Ω

[
Ψ(T,µ,φ) +

(
εa(φ,∇φ) +

1

ε
w(φ)

)]
dΩ. (4.1)

Here, µ represents the chemical potentials of the system at a given temperature and

φ = (φα, ...., φN) describes the phase vector with φα being the local volume fraction

of the phase α. ε is a length scale related to the width of the diffuse interface. In

this model, T is the temperature and N is the total number of phases in the system.

εa(φ,∇φ) and 1
ε
w(φ) are the gradient and obstacle potential type energy densities [123].

The bulk phase grand potential contribution Ψ(T,µ,φ) is expressed as the interpolation

of individual contributions

Ψ(T,µ,φ) =
N∑
α=1

Ψα(T,µ)h(φα). (4.2)

Here, h(φα) is the interpolation function, and to employ the chemical potential as the

fundamental field which replaces the concentration, the thermodynamic function defining

the functional needs to be reformulated. Generally, the free energy functional is based

on the free energy density fα(cα), and the phase-dependent concentration variable in the

function fα(cα) can be replaced by the intensive variable by considering the Legendre

transform of the free energy which yields the expression for individual grand potentials

Ψα

Ψα(T,µ) = fα(cα(µ, T ), T )−
N∑
α=1

µcα(µ, T ), (4.3)

For a multiphase-field representation, the interpolation function h(φα) can be chosen

of the form

h(φα) =
h̃(φα)∑
β h̃(φβ)

, (4.4)

ensuring that the condition
∑

β h(φβ) = 1 is always fulfilled [124]. h̃(φα) is expressed as

a third order polynomial

h̃(φα) = φ2
α(3− 2φα). (4.5)

As given in Ref. [5], the phase concentrations is expressed by the following constraint

c =
N∑
α=1

cα(µ, T )h(φα). (4.6)
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The evolution equation for N phase-field variables used to calculate the temporal

change of the phases in each computational cell can be written as

τε
∂φα
∂t

= ε

(
∇ · ∂a(φ,∇φ)

∂∇φα
− ∂a(φ,∇φ)

∂φα

)
− 1

ε

∂w(φ)

∂φα
− ∂Ψ(T,µ,φ)

∂φα
− Λ, (4.7)

where Λ is a Lagrange multiplier so that the local constraint
∑N

α=1 φα=1 is fulfilled. The

relaxation constant τ is chosen according to the expression [5], such that the attachment

kinetics at the interface vanishes.

Furthermore, the gradient energy in Eq. (4.1) is expressed as

a(φ,∇φ) =

N,N∑
α,β=1

γαβ[ac(qαβ)2]|qαβ|2, (4.8)

where γαβ is the interfacial free energy per unit area of the α/β phase boundary. The

generalized antisymmetric gradient vector qαβ reads qαβ = φα∇φβ − φβ∇φα. The for-

mulation for the generalized gradient vector qαβ allows to distinguish the physics of each

phase (or grain) boundary by providing degrees of freedom. The anisotropy of the surface

entropy density is modeled by the factor ac(qαβ)2 depending on the orientation of the

interface. In this model, the phase boundaries with isotropic energies are realized by

ac(qαβ) = 1, and the anisotropic crystals with an underlying four-fold cubic symmetry is

modeled by the expression

ac(qαβ) = 1− δαβ
(

3∓ 4
|qαβ|44
|qαβ|4

)
, (4.9)

where |qαβ|44 =
∑d

i=1(q4
i ) and |qαβ|4 = [

∑d
i=1(q2

i )]
2. The strength of the anisotropy of the

α− β phase or grain boundary is given by the parameter δαβ.

The multiobstacle type potential which is previously described [119] can be written

as

w(φ) =
16

π2

∑
α<β

γαβφαφβ +
∑
α<β<δ

γαβδφαφβφδ. (4.10)

Presence of spurious and artificial phases increases the potential in the two-phase region,

and in order to avoid third-phase contributions in a two-phase interface, additional third

order terms ∼ φαφαφδ are added to the multiobstacle potential w(φ). Although the

analytics and numerical handling of this term are discussed in detail by Hoetzer et al.

[125], the effect of the third order term on numerical results is discussed in Appendix A.

Starting from the mass diffusion equation, the evolution equation for the concentration

fields can be written as

∂c

∂t
+∇ · (Uc) = ∇ ·

(
M(φ)∇µ− Jat − qn

)
. (4.11)
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In the above mass conservation equation, the right hand side has contributions from

diffusion as a result of gradients in the chemical potential, and the mobility M(φ) is

defined as

M(φ) =
N∑
α=1

Mαg(φα), (4.12)

where the individual phase mobilities Mα is written as

Mα =
N∑
α=1

Dα
i

∂cα(µ, T )

∂µ
. (4.13)

Here, Dα
i accounts for the transport of solutal fields inside the respective phase volumes,

and g(φα) is an interpolation function of the form similar to h(φα) in Eq. (4.5). However,

strictly speaking, the functions to interpolate mobilities and the grand potentials need not

be the same. In general, the order of magnitude of solute diffusivity in the solid phases

is much lower Dα
i ≪ Dβ

i when compared within the bulk liquid phases. Henceforth, in

the present thesis, as a good approximation for alloy solidification, the diffusion of solutal

species in the solid phases is considered negligible (zero diffusivity in the solid phase).

In addition, the term U represents the liquid velocity vector. All the remaining terms

in the above equation are discussed in the detail in the upcoming sections. Now, from

Eq. (4.6), rewriting the time derivative of the concentration fields gives us

∂c

∂t
=

N∑
α=1

∂cα(µ, T )

∂µ

∂µ

∂t
h(φα) +

N∑
α=1

∂cα(µ, T )

∂T

∂T

∂t
h(φα) +

N∑
α=1

cα(µ, T )
∂h(φα)

∂φ

∂φ

∂t
. (4.14)

In the present thesis, the unidirectional solidification of microstructures under diffusive-

convective regime is performed under isothermal conditions only. In this regard, the vari-

ation of temperature fields across diffuse interface is constant
∂T

∂t
= 0, and the second

term on the left hand side of the above equation is neglected. Therefore, the evolution

equation for the chemical potentials can be obtained by substituting the above equation

in Eq. (4.11)

N∑
α=1

∂cα(µ)

∂µ

∂µ

∂t
h(φα)+

N∑
α=1

cα(µ)
∂h(φα)

∂φ

∂φ

∂t
= ∇·

(
M(φ)∇µ− (Uc)−Jat−qn

)
. (4.15)

Rearranging the terms we get

∂µ

∂t
=

[
N∑
α=1

h(φα)
∂cα(µ)

∂µ

]−1

×
{
∇ ·
(
M(φ)∇µ−Uc− Jat − qn

)
−

N∑
α=1

cα(µ)
∂h(φα)

∂φ

∂φ

∂t

}
. (4.16)
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The evolution equations are discretized using finite differences in space, and the time

derivative follows an explicit scheme. The phase-fields variables are computed in the

center of the cells, whereas the chemical potentials and the velocity components are solved

in the center for the faces in three-dimensions. The numerical algorithm is parallelized

via message passing interface and a detailed description of the implementation is given

in Ref. [126].

4.1.1 Anti-trapping current

It is well known that the phase-field simulations are generally performed at a mesoscopic

thickness, and the presence of non-equilibrium artifacts influences the large-scale pattern

evolution via competing with, or even superseding, the capillary effects [114]. These

artifacts are observed especially in alloy solidification, since the solute diffusivity varies

asymmetrically through the solid-liquid diffuse interface, from zero in the solid (for a one-

sided model) to a constant value Dβ
i in the liquid phase. The best known effect is solute

trapping, which is associated with the chemical potential jump at the interface. As the

magnitude of these non-equilibrium artifacts scales with the thickness of the interface,

its magnitude is greatly exaggerated as the simulations are upscaled. As a result, the

solute trapping artifact will appear for solidification velocities that are much smaller

than those observed in experiments. Therefore, in order to perform accurate phase-

field simulations, it has to be eliminated from the phase-field model. For isothermal

and directional solidification [89, 115], an additional contribution, namely anti-trapping

current Jat in the flux was proposed to counteract the solute trapping effect. In this

regard, a supplementary term is introduced in the mass conservation equation Eq. (4.16),

where the corrective anti-trapping term produces a mass flux along the normal direction,

and thereby counterbalances the trapping current due to the presence of non-equilibrium

artifacts, expressed as

Jat = −πε
4

g(φα)[1− h(φα)]√
φα(1− φα)

× [cβ(µ, T )− cα(µ, T )]
∂φα
∂t

∇φα
|∇φα|

. (4.17)

A complete description of the above anti-trapping term is discussed in detail by

Choudhury and Nestler[5], where the anti-trapping term Jat is proportional to the in-

terface thickness and to the growth velocity, and directed from the solid to the liquid

in order to assist the solute transport from solid to liquid phase along the unit normal

vector. Furthermore, as said above, the inclusion of the above term also provides addi-

tional freedom in the model to suppress other spurious effects that scale with the interface

thickness for studies with unequal diffusivities in the solid and liquid phases.
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4.1.2 Thermal fluctuations

Imperfections along a solidifying planar interface are prevalent in directional solidification

experiments [127]. In the form of thermal fluctuations at the solid-liquid interface, these

random fluctuations assist the initiation of initial perturbations across the solidification

front. For dendrites, further developments [128–131] reported a physical picture, where

small noisy perturbations amplified to a macroscale along the sides of a steady-state

crystal, in qualitative agreement with some experiments [131]. Henceforth, the numerical

noise term qn in Eq. (4.16) is included to accurately capture the presence of thermal

fluctuations at the solid-liquid interface. Especially, for typical growth conditions in

binary alloys where the attachment kinetics is negligible, the conserved noise in the mass

flux is the most appropriate manner to account the role of thermal fluctuations. Through

the fluctuation-dissipation theorem [132, 133], the term qn follows a Gaussian distribution

with a variance

〈qm(x, t)qn(x′, t)〉 = 2Dβ
i Fuδmnδ(x− x′)δ(t− t′) (4.18)

Here, δ is the Dirac function, δmn is the Kronecker delta, qn, is the random variable

along the normal direction, while qm, withm = x, y, z, are the generated random variables

in space and time, respectively, through the conventional Polar Marsaglia method [134].

The magnitude of the numerical noise Fu = 0.06 is calculated according to Karma and

Rappel [133].

4.2 Relation to sharp-interface limit

In order to make the phase-field model a numerical tool for simulating free-boundary

problems, the equivalence between the phase-field model and the free-boundary problem

needs to be established. Therefore, it remains to be demonstrated that the phase-field

model generates the correct boundary conditions at the interfaces, and to relate the

parameters of the phase-field model to those of the free-boundary problem. In this

regard, a comprehensive asymptotic analysis is generally performed of the phase-field

model for a two phase binary alloy solidification problem with the assumption of one-

sided diffusion in the liquid phase. The general idea is as follows, two different coordinate

systems are defined by the technique of matched asymptotic expansions, often also called

boundary-layer calculations. The first one corresponds to the sharp-interface problem,

outer scale, and the second one is attached with the interface, inner scale, scaled by the

interface thickness. Next, these fields are expanded as a power series in the parameter

ε, which gives an outer expansion and an inner expansion. Then, the equations of the

phase-field model are solved perturbatively order by order in ε in each region are solved,

using the relevant coordinate system. Lastly, the two expansions are matched order by
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order using the condition that the limit of the inner expansion far from the interface

must coincide with the limit of the outer expansion when the interface is approached.

The result of this procedure are the boundary conditions for the relevant fields on the

outer scale, which are determined by the equations on the inner scale. The asymptotic

analysis accompanying the early phase-field models were confined to the sharp interface

limit wherein the model was analysed for the condition that the interface width tends to

zero ε → 0 [113]. This analysis unravels the compliance of the phase-field approach to

the physical laws, particularly the Gibbs-Thomson relation, in addition to other sharp

interface solutions. The analysis was subsequently extended to included finite interface

limit [88], and the expressions for the kinetic coefficient in the thin-interface limit were

performed via an asymptotic analysis, and the matched asymptotics is presented in detail

by Choudhury and Nestler [5]. In the upcoming chapters, the simulation conditions

are imposed such that the attachment kinetics is negligible. The interface relaxation

coefficient τ is calculated through a thin-interface analysis [5, 88] as

τ = ε
[cβeq − cαeq](M + F )

Dβ
i
∂cβ

∂µ

(4.19)

For the third order interpolation function h(φα) in Eq. (4.5), when used in combination

with the obstacle potential, the values of F and M are 0.063828 and 0.158741 respectively

[5].

4.3 Incorporation of melt convection

The presence of melt flow in the liquid phase strongly influences the microstructural

evolution in solidification patterns, where its dominant effect is to speed up the transport

of solute near the solid-liquid interface. Fundamental equations of fluid dynamics are

called Navier-Stokes equations, wherein the case of an isothermal flow, they represent

two physical conservation laws, namely, the conservation of fluid momentum and the

conservation of mass, given as

ρ
( ∂
∂t

(U) + U · ∇U
)

= −∇p+∇ · [η(∇U +∇UT )] (4.20)

and

∇ · (U) = 0. (4.21)

Here, U, ρ, p, η denote the liquid velocity, density, pressure and the dynamic vis-

cosity of the liquid melt respectively. Apart from the imposed convection velocity, the

flow parameters ρ = 1.0 are η = 1.0 are considered constant throughout the dissertation.

Furthermore, in this work, an incompressible melt flow is considered such that the density

change of the alloy melt is negligible, and no additional body forces are present in the
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system. Over the last few years, different methodologies to incorporate convective trans-

port into phase-field models have been developed. One is to treat the solid as a highly

viscous liquid, where the viscosity depend on the phase field in the standard Navier-

Stokes equations. Another method is to use the the diffuse interface region as a rigid

porous medium, where the porosity is identified with the phase-field variable. Widely

known as the Beckermann approach [82], in this method, the usual no-slip condition at

a sharp solid-liquid interface is enforced through a varying interfacial force term in the

diffuse interface region. Using a thin-interface approach, this method has shown that the

interface thickness only needs to be small compared to the mesoscale of the flow field.

The above equations are coupled with the phase-field vector φ, where the velocity vector

is expressed as

U = φαUα + φβUβ, (4.22)

where a non-conserved quantity φβ for the liquid phase and φα for solid, φα = 1 − φβ

is introduced, on the basis of the local constraint
∑N

α=1 φα=1. In this thesis, the solid

phase is considered stationary and rigid, such that the velocity of the solid phases are

considered negligible φαUα = 0. Henceforth, the convection velocity vector is expressed

as

U = φβUβ (4.23)

Therefore, the fluid momentum and mass balance equations are reformulated as

ρ
( ∂
∂t

(φβUβ) + φβUβ · ∇Uβ

)
= −φβ∇p+∇ · [η(∇φβUβ +∇φβUβ

T )]−Md
l , (4.24)

and

∇ · (φβUβ) = 0. (4.25)

Again, similar to Beckermann et al. [82], the last term Md
l explains the dissipative

viscous stress, expressed as

Md
l = ηhφβ

U

ε
|∇φβ|, (4.26)

Here, h is the dimensionless parameter. This particular term provides a distributed

momentum sink in the diffuse interface region, thus forcing the liquid velocity to zero as

φ → 1, such that while approaching towards the liquid side of the diffuse interface, the

convection velocity becomes linear. The dimensionless parameter h is generally evaluated

via performing an asymptotic analysis [135] and in the present model, h has the value

7.989 for the obstacle type potential Eq. (4.10).
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4.3.1 Dimensionless parameter h

The dimensionless parameter h in the dissipative stress term Md
l in Eq. (4.26), and the

discontinuity of the velocity profile is treated via performing an asymptotic analysis, i.e.,

matching the inner solution of the diffuse interface with the outer velocity profile corre-

sponding to the sharp interface. In general, the term h plays a vital role in determining

the accuracy of the velocity profiles at the solid-liquid interface. To begin with, let us

consider a Poiseuille flow in-between the two plates at y = 0 and y = L oriented parallel

to the x-axis, see Fig. 4.1. Here, the no-slip condition is applied at the solid-liquid in-

terface φ = 0.5, and the solid-liquid interface φ = 0.5 is expected to be at z = 0. Now,

using φβUβ = ul, the steady state momentum equation for a sharp interface reads

η
d2ul
dy2

=
dp

dx
. (4.27)

After applying the no-slip boundary conditions at the two stationary walls, the analytical

Figure 4.1: Schematic description of the velocity profiles for the Poiseuille flow with a sharp

interface Usharp and a diffuse interface Udiffuse. Here, y = 0 represents the solid-liquid interface

φ = 0.5. The walls at y = L and y = 0 are considered stationary.

solution to the above equation is given as

ul(y) = −L
2

2η

dp

dx

[
1−

(
y

L

)2]
. (4.28)

Similarly, the momentum equation for a diffuse interface approach is expressed as

η
d2ul
dy2
− 4

πε2
hη

(1− φ)

φ

√
φ(1− φ)ul = φ

dp

dx
. (4.29)
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Here, the second term represents the dissipative stress term Md
l , rewritten for the multi-

obstacle potential in Eq. (4.13). Nevertheless, the term Md
l acts such that if h = 0, we

get back to the sharp interface description in Eq. (4.27). The above equation can now be

rewritten after introducing a variable y = Y∆y and substituting ε = 4∆y [5, 119]

η
d2ul
dY 2

− hη

4π

(1− φ)

φ

√
φ(1− φ)ul = ∆y2φ

dp

dx
. (4.30)

Considering the limit when ∆y is very small, the right hand side in the above equation

can be neglected and expressed as

η
d2ul
dY 2

− hη

4π

(1− φ)

φ

√
φ(1− φ)ul = 0. (4.31)

Similar to Beckermann [82], it is believed that the solution to the above momentum

equation varies exponentially within the diffuse interface region, i.e., ul(Y ) = exp(
√
hY ).

The value of h should be obtained such that at y = I, the velocity profiles of the sharp

and the diffuse interface match. Thereby, the solution of the Eq. (4.30) within the diffuse

interface is determined numerically with a 4th order Runge-Kutta solver and compared

with the outer solution defined by Eq. (4.28). Henceforth, it is estimated that with a

value of h = 7.989 the velocity profile of the diffuse interface matches closely with that of

the sharp interface with minimum deviation. Lastly, as the obstacle potential is given by

Eq. (4.10), the value of the dimensionless term h differs with Beckermann [82], further

information on the dimensionless term h is discussed in detail by Selzer [135].

4.4 Thermodynamic bulk free energies

To mimic realistic microstructures, the thermodynamic properties of the material system

under investigation is a prerequisite for alloy solidification. Therefore, attempts were

made to thermodynamically describe the system based on the corresponding phase dia-

grams of the components involved. A key component in modeling real multi-component

alloys is the utilization of thermodynamic information from the well-known collection

of databases. Incorporating CALPHAD database, CALculation of PHAse Diagrams

[136, 137] in phase-field models acts as a source for these essential material properties,

and has a significant influence on the course of the simulated phase transitions. Inte-

grating phase-field models with thermodynamic databases has been described in detail

by Moelans et al. [124] and others [138, 139]. The most essential methodologies are as

follows, the first requires the direct computation of the thermodynamic driving force in

the equations of motion of the interfaces, using the computation routines embedded in

the optimization engines which are usually part of softwares developed to calculate phase-

diagrams, for example, PANDAT, THERMOCALC. However, the procedure to evaluate

the driving forces from the respective databases at every time-iteration is computation-

ally intensive and therefore rarely performed. Especially for phase-field models, since one
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does not require the information of the free-energies in the whole range of concentrations.

The second approach deals with the formulation of simplistic bulk free energies which

incorporates the thermodynamic attributes in the locality of compositions around which

the system is expected to exist during dynamic evolution.

In order to describe the thermodynamics of the respective bulk phases, the variation

of the grand potentials with composition of the respective phases is approximated using

a second degree polynomial in a method proposed by Choudhury et al. [140]. For the

solid phase α, we define the bulk free energy of an isothermal binary alloy model system

in the following polynomial form

fα(ci, cj) = Aαc2
i +Bαc2

j +Dαci + Eαcj + Fα. (4.32)

Here, ci and cj are the mole concentrations of the components i and j, respectively. In

addition, the coefficients Aα, Bα, Dα, Eα, Fα represent the fitted free-energy coefficients.

Since we consider a two component binary alloy model, we follow the local constraint

ci + cj = 1, and express the above equation in terms of ci as

fα(ci) = (Aα +Bα)c2
i + (Dα − Eα − 2Bα)ci + Eα + Fα +Bα, (4.33)

which is further reformulated as

fα(ci) = Aα12c
2
i + Aα13ci + Aα14, (4.34)

where Aα12 = Aα + Bα, Aα13 = Dα − Eα − 2Bα and Aα14 = Eα + Bα + Fα. Here, the

coefficients Aα12, Aα13 and Aα14 are determined using the free energy densities, chemical

potential as well as the equilibrium mole fractions of a binary isothermal model alloy

system. Now, the thermodynamic functions required for the grand potential model can

be derived through the above expression. Hereafter, one can again calculate a function

for the chemical potentials, which is expressed by the first derivative of the polynomial

µ(ci) =
∂fα

∂ci
= 2Aα12ci + A13. (4.35)

Next, the phase concentrations can be derived as functions of the chemical potential by

inverting the above expression,

ci(µ) =
(µ− Aα13)

2Aα12

, (4.36)

and their derivatives with respect to µ is given as

∂ci
∂µ

=
1

2Aα12

. (4.37)

Finally, by substituting the expression for ci(µ) in fα(ci)−µci we obtain the approximated

grand potential densities

Ψα(µ) = Aα14 −
(µ− Aα13)2

2Aα12

(4.38)
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Ψα(µ) = − 1

4Aα12

µ2 +
Aα13

2Aα12

µ+ Aα14 −
Aα13

4Aα12

(4.39)

From the above, all the thermodynamic functions for the grand potential model in

the case of a binary system are now obtained. As discussed before, the grand potential

densities are given as quadratic polynomials depending on the chemical potentials. In

the context of quantitative phase-field modelling, the approach of data fitting can be

used to derive simplified thermodynamic functions from the CALPHAD database with

an acceptably small error inside of the data range of interest [140]. In the present work,

the least squares method is adapted to perform the fits, which is a commonly used tool for

regression analysis. Hereby, the bulk free energy coefficients in Eq. (4.34) are calculated

such that they represent the typical data from CALPHAD database for a binary alloy

model system. In our present purpose, we choose the coefficients to be Aα12 = 1.00,

Aα13 = −0.40, Aα14 = 0.04 for the solid, and, Aβ12 = 2.00, Aβ13 = −3.20, Aβ14 = 1.28 for

the liquid phase respectively. Moreover, since we are simulating the generic features of

solidification microstructures coupled with convection in the liquid alloy melt, the chosen

methodology in the present work can be extended straightforwardly to other binary alloy

systems [71, 72]. In the present work, the equilibrium mole fractions in the solid α and

liquid β phases are set as cαeq = 0.2 and cβeq = 0.8 respectively. Also, the dimensionless

melt supersaturation ∆ is given as

∆ =
cβeq − cβ

cβeq − cαeq

, (4.40)

In an isothermal system the driving force for phase transformation is developed

through the growth of a product phase into a supersaturated parent phase. In the scope

of this thesis, the phase-field simulations for alloy solidification are carried out on the

assumption of isothermal conditions, and therefore the numerical results presented in the

upcoming chapters are performed for constant temperature.
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Chapter 5

Liquid grooving at grain boundaries

Grain boundaries are of considerable scientific and technological interest due to their

significant influence on structural and material properties. Initiation of transport path-

ways, formation of voids in the inter granular regions [141], secondary phase nucleation

sites [142], sintering [143, 144], and formation of sinks during creep mechanism [145, 146]

are some widely known examples of grain boundary (GB) induced phenomena. From a

technological point of view, in nanocrystalline thin films, the deepening of grain bound-

ary grooves at interface trijunctions was suggested as the primary mechanism for thin

film breakup [147, 148]. This limited their applicability as surface protective coatings for

tribological applications, diffusion barriers in microelectronics and hard wear resistant

cutting tools [149, 150]. Understanding and predicting the grain boundary behavior in

crystalline materials is therefore important. In this chapter the phenomenon of liquid

grooving is reproduced, and the groove kinetics is compared with the classical Mullins’s

theory. Subsequently, the grain boundary grooving is extended, wherein the cooperative

effect of volume diffusion and melt convection in the liquid phase is extensively investi-

gated. Parts of the results presented in this chapter has been published in Acta Materialia

[7].

5.1 Grain boundary grooving: Revisiting Mullins’s

seminal theory

Under isothermal conditions, a polycrystalline material in contact with a saturated liquid

melt develops a groove at the interphase junctions. In order to minimize the excess

interfacial free energy at the solid-solid grain boundary, the V-shaped groove deepens with

time. In addition, the difference in the chemical potentials between the curved surface

near the groove root and the relatively even surface further from the groove pit causes a

drift of the material by various mechanisms, such as evaporation-condensation, volume

55
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diffusion or surface diffusion. In a realistic scenario, all of these transport mechanisms

operate concurrently at the solid-liquid interface [6, 151], but under some conditions

one may dominate. In general, there are two types of grain boundary grooves, namely,

thermal and liquid. When an interface separates a solid phase from vacuum or from

saturated metal vapour, the grooves are referred to as thermal grooves (TGs). But, when

it separates a liquid and a solid phase, the grooves are classified as liquid grooves (LGs).

Experimental micrographs of grain boundary grooves under equilibrium conditions are

presented in Fig. 5.1, where the two solid grains are separated by the solid-solid grain

boundary. The seminal theory of grain boundary grooving was addressed by Mullins

[6, 152], where the formation of a symmetric V-shaped groove in-between the two semi-

infinite solid grains was investigated for the very first time. The classical theory of Mullins

was based upon the following assumptions:

• The grain boundary is perpendicular to the surface of the bi-crystal sample.

• The grain boundary does not participate in the material transport, i.e., there is no

grain boundary diffusion.

• The surface properties, especially the surface energies are independent of the crys-

tallographic orientation.

• The transport mechanisms of solute atoms are independent from one another.

• The presence of lateral flow near the grain boundary is negligible.

Figure 5.1: (a)-(c) Experimental micrographs of liquid grooving at the solid-solid grain boundary

under equilibrium conditions. Reprinted from Xing et al. [23] with permission.

Based on the mechanism of material transport, it was proposed that the groove ge-

ometries increased with a temporal exponent of 1/3, 1/4 and 1/2 for volume diffusion,

surface diffusion and evaporation and condensation, respectively. In addition, it was re-

ported that the groove profiles corresponding to these mechanisms were not identical.

In the case of surface diffusion and volume diffusion, the groove root conserved mass
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to generate symmetric ridges on either side of the grain boundary, whereas, in the case

of condensation-evaporation, the formation of ridges was absent. Thereafter, Mullins’s

theory motivated others to identify the mechanism responsible for experimentally de-

veloped grooves through both kinetic and profile properties. In addition, the grooving

mechanism was also predicted by the physical properties of the material and experimental

environments.

Later, Mullins’s theory was extended for an entire range of dihedral angles by Hardy

[153], where the theoretical predictions were in close agreement with the volume diffusion

dominated grooving experiments. For practical conditions, Mullins’s theoretical analysis

was further extended by considering polycrystalline samples and mobile grain boundaries

[154]. GB grooving studies were subsequently employed to experimentally determine the

diffusion coefficients in binary alloys [155, 156].

5.1.1 Grain boundary grooving by volume diffusion

In the present section, the volume diffusion induced grain boundary grooving phenomenon

is simulated, and the groove kinetics is compared with the classical theory of Mullins

[6]. It is well known that if the phase boundaries are isotropic and independent of the

crystallographic orientation, the formation of an equilibrium dihedral angle Φ is attained

by the force balance at the interfacial trijunction. A schematic representation of the local

equilibrium angle at the trijunction is depicted in Fig. 5.2, where the equilibrium angle

is given by Young’s law

Φ = 2 cos−1 γgb

2γsl

. (5.1)

Here, γgb, is the surface energy of the grain boundary and γsl is the solid-liquid inter-

facial energy. The dihedral angle at the triple junction decreases as the grain boundary

energy increases, and the dihedral angle ceases to exist as the grain boundary energy is

greater than twice the solid-liquid interfacial energy.

At first, the simulation domain is initialized with two distinct semi-infinite solid grains,

as shown in Fig. 5.3 in blue and red colors, respectively. Here, the periodic boundary

condition is considered for the left and right, and the no-flux boundary condition is

imposed on the top and the bottom sides of the simulation domain, respectively. The

lateral domain boundaries are far away from the groove root and have no influence on

the numerical results. For the present simulations, γgb/γsl = 1.0 is considered, where

γgb, is the surface energy of the grain boundary and γsl is the solid-liquid interfacial

energy. Lastly, in this thesis, the set of common parameters will be in dimensionless

units, and for the sake of completeness, order of magnitudes for the parameters are listed

in Appendix. A. The material and simulation parameters to model the phenomenon of

grain boundary grooving are given in Table. 5.1.
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Figure 5.2: A diagrammatic illustration of the equilibrium angle Φ at the trijunction, where γgb,

γsl represent the grain boundary and the solid-liquid interfacial energies, respectively.

Table 5.1: Material and numerical parameters to simulate the phenomenon of liquid grooving

at the grain boundaries.

Description Parameter Value

Diffusivity Dβ
i 2.00

Partition coefficient k 0.25

Interface width ε 2.00

Third order term δαβγ 2.0

Discretized grid space ∆x = ∆y 0.5

Time step ∆t 0.03

In order to maintain the local equilibrium at the trijunction, the groove root deepens

with time and a V-shaped symmetric groove is systematically established in-between the

two adjacent semi-infinite grains under isothermal conditions. According to Mullins’s

theory [6, 152], the groove dimensions are proportional to the annealing time, and follows

a kinetic law of the form

dg(t) = Btn, (5.2)

where, dg represents the groove depth which is defined as the distance between the initial

planar interface and the groove root, B is materials constant. Although, the temporal

exponent n varies depending upon the mechanism of material transport, as per Mullins’s

solution for volume diffusion [6], n = 1/3 is expected for the present study.

Initialized with a dihedral angle Φ = 180◦ at the interface junction, the system will

form a groove, in order to minimize the interfacial free energy, as shown in Fig. 5.3(a)-(b).

The temporal evolution of the bicrystal solid grains is depicted in Fig. 5.3(b), where the

solute atoms tend to leave the curved surface and consequently force the groove to deepen

with time. As the mass transport ahead of the solid-liquid interface is controlled by bulk

diffusion in the liquid phase, the symmetric nature of the V-shaped groove profiles is

evident through the φ = 0.5 isolines in Fig. 5.4. The variation of interfacial curvature
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Figure 5.3: (a)-(b) Temporal evolution of phase and concentration fields for a semi-infinite

bicrystal grain under the influence of volume diffusion. At t = 0, the initial simulation condition

is depicted, where the grain boundary forms a T-shaped interface junction in-between the solid

grains. In order to minimize the excess interfacial free energy at the grain boundary, the groove

deepens with time. Here, the blue and red colors indicate the two solid grains, respectively. The

color bar illustrates the concentration field according to the legend embedded near the snapshots.

and thereby the chemical potentials at the groove pit region is shown in Fig. 5.5, where

the non-uniform curvature across the grain boundary drives the solute atoms away from

the root position towards the grain centers. As time elapses, the bicrystal grain attains a

time independent profile depending upon the imposed surface energies. This mechanism

of liquid groove deepening in Fig. 5.3 is similar to the groove channels studied by Bokstein
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Figure 5.4: Illustration of the groove root deepening via the φ = 0.5 isolines, where the for-

mation of symmetric groove profiles and ridges is evident. In complete agreement with the

Mullins’s seminal theory, the grain boundary grooving phenomenon is reproduced by phase-field

simulations. Herein, the groove pit deepens with time as given by Eq. (5.2).

Figure 5.5: Variation of interfacial curvatures and chemical potentials across the grain boundary

groove. The presence of unequal chemical potentials drive the material transport from the groove

root towards the flat surfaces. The color bar illustrates the local interfacial curvatures and

chemical potential fields according to the legend embedded below the snapshots.

et al. [157], where the rate-determining factor was diffusion in the liquid phase. Further-

more, sincerely reproduced by the phase-field model, the symmetric groove profiles at

the grain boundaries in Fig. 5.4 are in complete agreement with the seminal theory of

Mullins [6], where volume diffusion was the main transport mechanism near the grain

boundary groove. In contrast with the grooves developed by surface diffusion [158], it is

worth mentioning that the groove profiles in the present study exhibit only maxima at
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Figure 5.6: Calculated groove depth dg from the initially flat interface as a function of time. A

non-linear analytical fit dg ∝ tn provides us with n = 0.3330. An excellent agreement with the

Mullins’s theory is observed.

1

10

100

1000 10000

d
g
+

d
h

Time

Phase-�eld simulation

Mullins's Theory

Figure 5.7: Calculated groove depth dg + dh, from the maxima of the profile dh as a function

of time. A non-linear analytical fit (dg + dh) ∝ tn provides us with n = 0.3332. An excellent

agreement with the Mullins’s prediction for volume diffusion governed kinetics is observed.
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the grain boundary ridges, see Fig. 5.4. Due to the presence of mass transport along the

arc length, a characteristic dip below the flat surface following the maximum is observed

for a surface diffusion governed groove profiles. However, in the present scenario, as the

GB grooving is driven by volume diffusion only, the mass transport in the liquid phase

does not produce such minima near the symmetric grain boundary ridges. Again, in

agreement with Mullins’s observation, the transport mechanisms during GB grooving are

independent from one another and the groove profiles subsequently differ.

Next, Fig. 5.6 depicts the temporal evolution of the groove depth and an analytical

fit provides us with a temporal exponent n = 0.3330. Furthermore, the groove depth

from the maxima of the groove profiles is also calculated and shown in Fig. 5.7, where

the non-linear fit gives us n = 0.3332. From the above two-dimensional simulations, both

the groove geometries have shown an excellent agreement with the Mullins’s predicted

kinetics [6]. When compared, the proportionality constant corresponding to the groove

pit is greater than for the root, which qualitatively complies with the previous study

of Gladwell et al. [159]. Likewise, in accordance with previous studies [155, 160], the

applicability of the grooving kinetics is successfully reproduced for the ratio γgb/γsl = 1.0.

Lastly, the effect of spatial and temporal discretization on the grain boundary grooving

phenomenon is investigated in detail in Appendix. A.

5.1.2 Determination of slope m at groove root

In the present section, the slope at the groove root obtained from the phase-field sim-

ulations is verified. Assuming that the phase boundaries are isotropic, the slope m of

the grain boundary groove profile at the groove root with respect to the initially flat

interface is given by m = cot
(

Φ
2

)
. In the present study, the ratio

γgb

γsl

= 1.0 is considered,

and henceforth, from the aforementioned equation and Eq. (5.1), the calculated slope m

at the groove root is 0.577. Next, the slope m at the groove root is derived from the

simulated two-dimensional grain boundary profile. Since the present methodology is a

diffuse-interface approach, the intersection between the two polynomials is considered as

the root position. In order to calculate the slope m at the groove root, the φ = 0.5 iso-

line is fitted on the either side of the grain boundary with a fourth order polynomial, as

shown in Fig. 5.8 with a solid black line, and the point of intersection between these two

polynomials is first determined. Next, the slope made by the tangent to the polynomial

at this point of intersection is calculated analytically to be 0.566. A direct comparison of

the theoretically obtained slope m, and the fourth order polynomial fit of the interface

shapes shows an excellent agreement between the two methods.
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Figure 5.8: Determination of slope m at the groove root from phase-field simulations. A fourth-

order polynomial is fitted to the extracted φ = 0.5 isolines. Subsequently, the slope made by the

tangent to the polynomial at the point of intersection is calculated.

5.1.3 Effect of surface energy

The dihedral angle at the interface trijunction is known to influence the morphology

and break-up of solid grains in thin film polycrystals [161]. Since the relative surface

energies play a pivotal role, the effect of the solid-solid grain boundary and solid-liquid

interfacial energy on the grain boundary grooving phenomenon is examined for finite

grains in the present section. It is well known that the direct measurement of the solid-

liquid interfacial energies via experiments is rigorous, and therefore not straightforward.

In general, most of the calculations are based on the indirect interpretation of nucleation

experiments, or by theoretical approaches [162]. Utilizing the phase-field approach, the

numerical parameters are modified such that the ratio R0 decreases, where R0 is the ratio

between the grain boundary energy to the solid-liquid interfacial energy.

Fig. 5.9 showcases the grain boundary groove profiles for different ratios R0. As the

equilibrium angle differs, it is observed that the morphology of the groove pit region is

significantly modified. However, the profiles indicate that the groove width, as measured

from the profile maximas is nearly independent of the imposed surface energies. Con-

sequently, Fig. 5.9 depicts that the relative value of the groove height increases with an

increase in the ratio R0. Thereafter, as the contribution from the grain boundary energy

dominates, the profile becomes relatively steeper and bends sharply with pronounced

grain boundary ridges.
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Figure 5.9: Effect of surface energies on the grain boundary groove profiles. As the ratio R0

increases, the groove pit morphology is significantly modified.

Based on the groove profiles, it is important to understand as to what values of slope

m are observed in actual experiments. From Eq. (5.1), for a solid-solid grain boundary

which is normal to the free surface, the relation between the equilibrium angle Φ and the

surface energies is given by
γgb

γsl

= 2 cos
(

Φ
2

)
. As discussed in the previous section, the

slope m of the groove profile at the root position with respect of the initial flat interface

is given as m = cot
(

Φ
2

)
. Combining the two yields a relation between m and R0

m = cot

(
Φ

2

)
(5.3)

m =
cos
(

Φ
2

)√
1− cos2

(
Φ
2

) (5.4)

Substituting cos

(
Φ

2

)
=
R0

2
, where R0 =

γgb

γsl

, we get

m =
R0√

4−R2
0

(5.5)

The above derived relation is depicted in Fig. 5.10, where an excellent agreement with

the systematic two-dimensional simulations is observed. As the ratio
γgb

γsl

varies from 0

to 2, the slope m varies from 0 to infinity, see Fig. 5.10. For the majority of the grain

boundary grooves observed in bicrystal experiments [23, 157, 163], the slope m is less

than unity. In this thesis, the calculated slope m is 0.5666, and correspondingly agrees

well with the typical values observed in experimental studies [23, 157]. For the limiting

case R0 → 0, the contribution from the grain boundary decreases and thereby the grain
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Figure 5.10: Groove root slope m as a function of the ratio R0 between the solid-solid grain

boundary energy γgb to solid-liquid surface energy γsl.

boundary vanishes to produce a single crystal. Furthermore, R0 = 2.0 corresponds to

the separation of the bicrystal grain into two separate crystals, as pictorially depicted

for finite grains in Fig. 5.11. The bicrystal separation for R0 = 2.0 is widely known as a

common mode of failure in polycrystalline thin films, wherein the grain boundary groove

penetrates through the film thickness and results in the breakup of thin films during

annealing [164, 165].

Figure 5.11: Grooving phenomenon at various R0 in finite grains. As the contribution from the

solid-liquid interfacial energy decreases, a separation of the bicrystal into two individual solid

grains is observed. Here, the blue and red colors indicate the two solid grains, respectively

Based on the above analysis and profile shapes of the grain boundary groove, the

phase-field model is successfully benchmarked and validated, and in the forthcoming

sections we elucidate the role of an additional convective mass transport mechanism on

the grooving phenomenon.
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5.2 Grain boundary grooving under diffusive-convective

regime

Figure 5.12: At an imposed convection velocity Ux = 1.2, where Ux is the magnitude of the

convection velocity along the x-direction, the concentration and velocity fields illustrate the grain

boundary grooving phenomenon in the presence of liquid phase convection. A cooperative effect

of melt convection and volume diffusion in the liquid phase modifies the grooving mechanism at

the grain boundary. The right and the top color bars represent the magnitude of the solutal and

the velocity fields, respectively.

As discussed at the beginning of this chapter, Mullins’s theory [6] on grain boundary

groove kinetics was limited to pure diffusive regimes only, and the role of convective trans-

port near the solid-liquid interface was considered negligible. In this regard, Mullins’s

theory is extended and the role of liquid phase convection on the mechanism of grain

boundary grooving for finite grain sizes is explored in detail. Along with the initializa-

tion, all the simulation parameters are kept same so as to have a direct comparison with

the groove kinetics under pure diffusive regime. In addition to the concentration and

phase fields, the boundary conditions for the velocity fields are periodic in the left and

right sides. Again, the lateral boundaries act as a far field conditions, and do not have

any influence on the numerical results. The slip boundary condition is imposed on the

top and bottom sides of the simulation domain, respectively. Finally, a no-slip boundary

condition is also applied at the solid-liquid interface.

In Fig. 5.12, the evolution of the grain boundary groove is illustrated via the simula-

tion screenshots in the presence of melt convection Ux = 1.2, where Ux is the magnitude
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Figure 5.13: Temporal evolution of the groove profiles at an imposed convection velocity

Ux = 1.2. With time, the groove root deepens and the asymmetricity of the grain boundary

ridges increases. The deposition of solute atoms at the right-sided ridge by convective transport

generates wider and higher peaks. The direction of melt flow is schematically represented.

of the convection velocity along the x-direction. In the present section, the alloy melt

flow direction is perpendicular to the solid-solid grain boundary. During the initial stages

of grooving, it is observed that the grain boundary ridges on either side of the groove

pit develop similar to the well known Mullins’s profile [6]. However, as time elapses in

Fig. 5.13, the migration of the solute atoms from the groove root intensifies towards the

right-sided ridge, and therefore, the asymmetry of groove profile increases with time.

In contrast with pure diffusive conditions, the variation of the local curvature produces

an unequal solute deposition at the grain centers. Qualitatively, the groove profiles in

Fig. 5.13 display similar characteristics when compared with previous bicrystal experi-

ments with lateral convection in the liquid phase [163]. Using a Bridgman-process, it

was successfully shown that the V-shaped groove profile developed asymmetrically for

finite convection velocities in a binary alloy system. Lastly, it is interesting to note that

the width of the groove pit increases with time and significantly differs with Mullins’s

solution, see Fig. 5.13.

In order to further understand the grooving phenomenon, the convection velocity

along the x-direction is systematically increased and a direct comparison of the groove

profiles with and without convection is shown in Fig. 5.14. In the case of volume diffusion

governed grooving, it is discerned that the groove profile is always symmetrical to the
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Figure 5.14: A direct comparison of the grain boundary groove profiles at various convection

velocities. The groove morphology at the trijunction is always symmetric under pure diffusive

conditions, whereas, with increasing lateral velocity, the groove profiles become asymmetric. The

ridge on the left side is completely removed for Ux = 3.0.

grain boundary, see the solid red isoline in Fig. 5.14. However, as the rate of solute

deposition differs, the asymmetricity of the groove profiles increases with the increase

in the melt velocity, see Fig. 5.14. Whenever the solute transport is driven by only

one transport mechanism, the groove profile is defined by a fixed shape under steady-

state conditions. On the other hand, a cooperative effect in the diffusive-convective

regime no longer produces a symmetric groove profile, and the grain centers evolve with

dissimilar interfacial curvatures. Since the imposed melt flow is perpendicular to the

grain boundary, a lateral drift of the groove root towards the downstream direction is also

noticed. As shown Fig. 5.14, it is noteworthy that the left-sided ridge height continuously

diminishes as the convective transport dominates in the alloy melt. From the above set of

results and comparisons, it is successfully demonstrated that the employed multiphase-

field model accurately simulates the combined influence of liquid phase convection and

volume diffusion on the grain boundary grooving phenomenon.

The ratio H0 between the left and right-sided ridge heights that are established on ei-

ther side of the grain boundary groove is now calculated for various convection velocities.

As shown Fig. 5.15, while the ratio H0 remains unity for pure diffusive conditions, it pro-

portionately decreases with the increase in the convection velocity. Here, the right-sided

grain boundary ridge evolves at a faster rate when compared with its counterpart during
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Figure 5.15: Ratio H0 between the left and the right ridge heights as a function of time for

various convection velocities. An increase in the convection velocity proportionately decreases

the ratio H0.

the grain boundary grooving process. It is therefore also believed that the formation

of anomalous peaks generate irregular and wider groove pits at the grain boundary. In

particular, for polycrystalline thin films, such a groove behavior is known to alter the

growth kinetics, such as the formation of pin holes [147, 148, 166].

5.2.1 Comparison between sharp interface theory and phase-

field simulation

The grain boundary grooving phenomenon under the influence of melt convection is

studied by extending the well known theory of Mullins [6]. In addition to diffusion in

the liquid phase, the role of an additional convective transport mechanism was included

[163], and the sharp interface groove profile W of the grain boundary groove was derived

from the stationary transport equation

∂C

∂x
=
Dβ
i

Ux

(
∂2C

∂x2
+
∂2C

∂y2

)
(5.6)

with the boundary conditions

C(x, 0, t) = C∞ + A0K(x, t) (5.7)
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Figure 5.16: Under pure diffusive conditions, a direct comparison between phase-field simula-

tions and numerically calculated sharp-interface groove profile from Eqs. (5.8) and (5.9). An

excellent agreement with the sharp-interface groove profile is observed. For the limiting case

ξ → 0, the well known Mullins’s symmetric groove profile by volume diffusion is reproduced.

Here, the simulated groove profiles from the phase-field simulations are scaled such that the

groove root is at x = 0.

where A0 is the materials constant, C∞ is the equilibrium concentration at the planar

interface andK(x, t) is the interfacial curvature across the groove. Applying the boundary

conditions and for y →∞, the solution to the above differential equation is first obtained.

After integrating the curvature with respect to x and using the small slope approximation

(slope of the profile is small), the profile W (x, ζ, ξ) of the grain boundary groove is derived

as

W+(x, ζ, ξ) = −2m

ξπ
exp(ξx)

∫ ∞
0

G(ω, ζc)

1 + ω2
cos(2ζcω

√
1 + ω2−2 tan−1(ω)+ξxω) dω+2mx

(5.8)

W−(x, ζ, ξ) = −2m

ξπ
exp(ξx)

∫ ∞
0

G(ω, ζc)

1 + ω2
cos(2ζcω

√
1 + ω2−2 tan−1(ω)+ξxω) dω (5.9)

Here, the superscripts + and − represent the positive and negative side of the groove

root at x = 0, respectively. In addition, ξ =
Ux

2Dβ
i

, ζc = ξ3ζ, ζ = B0t, where B0 is the
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Figure 5.17: Comparison between phase-field simulations and numerically calculated sharp in-

terface groove profile for different convection velocities Ux. A complete agreement is observed

between the φ = 0.5 isolines and the sharp interface groove profile. The asymmetricity of the

groove profile increases with an increase in the lateral melt velocity. Here, the simulated profiles

from phase-fiedl simulations are scaled such that the groove root is at x = 0.

materials constant, and G(ω, ζc) = exp[ζc
√

1 + ω2(1− ω2)]. The derivation for the above

groove profiles has been provided in detail by Ratke and Volgel [163]. The slope of the

groove profile at the groove root with respect to the initially flat interface is calculated

as m = 0.566.

At first, the phase-field groove shapes under pure diffusive conditions is compared with

the sharp interface theory, and the groove profile in Eqs. (5.8) and (5.9) is calculated

numerically for the limiting case ξ → 0. In Fig. 5.16, a direct comparison of the groove

profiles is shown, where it is observed that the phase-field results are in near agreement

with the numerically calculated groove profile for different simulation timesteps. As il-

lustrated in the previous section, the ridges evolve symmetrically across the solid-solid

grain boundary for ξ → 0, and the Mullins’s groove [6] for volume diffusion is repro-

duced in Fig. 5.16. Next, under diffusive-convective regime, the simulated groove profile

is systematically compared with Eqs. (5.8) and (5.9) in Fig. 5.17. For various convection
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velocities, the phase-field model befittingly captures the asymmetric groove profile at the

grain boundary, wherein the grain boundary ridges evolve asymmetrically and the depth

of the groove root deepens when compared with the diffusive regime. Furthermore, the

groove shapes observed in this work are very different from the classical Mullins groove,

which suggests the presence of an additional convective transport that contribute to the

total mass balance at the groove root. In the theoretical study [163], a laminar fluid

with a constant velocity was considered perpendicular to the solid-solid grain boundary

through the slip boundary condition at the solid-liquid interface. In contrast, following

the assumptions of Beckermann model [82], a physically accurate no-slip boundary con-

dition is applied such that the lateral melt velocity is zero at the solid-liquid interface.

Additionally, the root position was fixed at x = 0 and the groove profile was theoretically

derived [163]. However, as a result of lateral migration of the grain boundary, a slight

drift of the groove root along the x-direction is captured in our simulations. Widely

observed in previous theoretical and computational studies [158, 167–169], the lateral

drift of the groove root along the downstream direction increases with the increase in

the asymmetricity of the groove profile. It is therefore believed that the aforementioned

differences between the sharp-interface theory and our phase-field simulation account for

the small deviation near the groove pit region in Fig. 5.17. Lastly, it is reiterated that the

growth of the asymmetric hillocks near the groove is independent and they do not overlap

with each other, and henceforth it is reiterated that the lateral boundary conditions do

not play any role in the grooving phenomenon. Nevertheless, owing to computational and

numerical challenges, the deviation at the grain boundary ridges is expected to diminish

for phase-field simulations performed at higher resolution.

5.2.2 Variation of groove depth in diffusive-convective regime

In the present section, the grain boundary groove kinetics is estimated under the cooper-

ative effect of volume diffusion and melt convection in the liquid phase. The groove depth

as a function of time for various convection velocities is shown in Fig. 5.18, where it is

observed that the groove deepens at a faster rate, and therefore significantly differs when

compared with the classical theory of Mullins under pure diffusive regime. Under the

influence of bulk diffusion as a transport mechanism only, the kinetic law by Mullins [6]

provides us with the exponent n = 1/3. However, in the diffusive-convective regime, it is

perceived that the temporal exponent n increases with the increase in the convection ve-

locity. From a non-linear analytical fit in Fig. 5.18, it is found that the exponent n varies

in-between 0.34 − 0.40 for the given set of initial flow conditions. The two-dimensional

GB grooving simulations performed in the present chapter and the groove kinetics are

in excellent agreement with the analytical and experimental study by Ratke and Vogel

[163], where it was proposed that the introduction of liquid phase convection significantly

modifies the Mullins’s kinetic law [6]. It was extensively reported that the grain boundary
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Figure 5.18: Calculated groove depth dg as a function of time for various convection velocities

from phase-field simulations. For all the various results, the non-linear analytical fit follows

the kinetic law of the form dg ∝ tn. The temporal exponent increases with the increase in the

velocity and significantly varies when compared with Mullins’s classical prediction. The solid

lines represent the corresponding analytical fits to the numerical data.

groove geometry was asymmetric and the temporal exponent increased proportionately

due to the introduction of liquid phase convection perpendicular to the solid-solid grain

boundary. Although it has not captured in the present study, it is worth mentioning that

for the limiting case Ux →∞, Ratke and Vogel [163] reported that the kinetic law as well

as the grain boundary groove profile behaved similar to the condensation and evaporation

of atoms along the grain boundary.

5.2.3 Grain boundary migration

Under elevated temperatures, the solid-solid grain boundary migration oversees the rate of

grain growth during annealing, and is important for materials synthesis [148, 161]. Several

studies [166, 170–172] on polycrystalline thin films have reported that the formation of

grain boundary grooves can often traverse and consequently break up the entire thickness

of the thin film within a reasonable amount of time. In this regard and in this section, the

role of grain boundary grooving on the initiation of GB migration is addressed in detail.

Generally, when a solid-solid grain boundary ends at a free surface, the formation of an

isothermal liquid groove affects its lateral migration. At various melt velocities the semi-

infinite bicrystal solid grain isolines are depicted in Fig. 5.19, where it is observed that
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Figure 5.19: Phase isolines depicting the bicrystal grain morphology for different convection

velocities. The lateral drift of the solid-solid grain boundary along the downstream direction

(right side) is evident and the rate of grain boundary migration increases with an increase in

the melt velocity.

the solid-solid grain boundary drifts laterally along the x-direction with an increase in the

melt velocity. As the rate of solute advection is increased at the groove pit region, a lateral

root drift is clearly noticed. Henceforth, a slight bending of the grain boundary drives

the migration along the flow direction. Such an effect results in the solute accumulation

along the right-sided ridge, which in turn produces an asymmetric groove profile.

The present observation agrees in spirits with a theoretical investigation [169], where

the effect of grain boundary migration on the ridge position was extensively examined.

It was reported that the solid-solid grain boundary motion results in the formation of

an asymmetric groove profile, and the lateral motion of the solid-solid grain boundary

increases with the increase in the groove profile asymmetry. In the present study, it is

believed that while the solid-solid grain boundary and the groove pit remain mobile along

the x-direction, a rapid grain boundary migration allows the groove root to deepen, and

eventually affects the thermochemical and kinetic properties of polycrystalline thin films

[161, 171, 172].

5.2.4 Effect of surface energy

Under the influence of volume diffusion alone, the role of surface energy was previously

discussed, and thereby in the present section, an additional transport mechanism in the
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form of lateral convection is investigated. In Fig. 5.20, at an imposed convection velocity

Ux = 2.4, the calculated groove depth as a function of time is depicted for various R0,

where the rate of groove deepening decreases with the decrease in the ratio R0. Here,

the fitted numerical data follows the well known kinetic law of the form dg ∝ tn, and

the temporal exponent n varies with the decrease in the ratio R0. Moreover, with an

increase in the contribution from the solid-liquid interfacial energy, the solutal transport

towards the grain boundary ridges maintains the force balance at the groove cavity.

Resultantly, the rate of groove pit deepening decreases with the decrease in the ratio

R0. Nonetheless, for the limiting case R0 → 0, the contribution from the grain boundary

energy is negligible, and the grooving phenomenon will be diminished at the interphase

junctions.

From a qualitative point of view, Fig. 5.21 depicts the groove profiles for R0 = 0.7, 1.0

at Ux = 2.4, where it is observed that the position of the groove pit rapidly decreases

with the increase in the ratio R0. Along with the flattening of the grain boundary ridges,

it is noticed that the width of the groove pit widens as the contribution from the solid-

liquid interfacial energy increases. For R0 = 1.0, the grain boundary rapidly migrates

along the downstream direction, which in turn leads to greater advection of the solutal

fields near the solid-liquid interface. Distinctly, the lateral migration of the solid-solid

grain boundary is completely hindered when the groove angle increases for R0 = 0.7.
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Figure 5.21: For an imposed convection velocity Ux = 2.4, the influence of surface energy on the

grain boundary grooving phenomenon. With the increase in the ratio R0 = γgb/γsl, the groove

pit deepens. Additionally, as the dihedral angle increases, a significant difference between the

ridge morphology is observed.

Although the groove profiles continue to evolve asymmetrically, a sharp root morphology

transforms to a blunted form as the ratio R0 decreases. Depending upon the groove angle

and its subsequent kinetics, several intergranular defects such as void formation, solute

segregation can be further studied in detail for thin film polycrystals [161, 172].

5.2.5 Polycrystalline thin films

Polycrystalline thin films are found in diverse applications ranging from dielectric lay-

ers to optical, magnetic, and tribological coatings, to diffusion and thermal barriers

[161, 172, 173]. The presence of multiple grain boundaries also represent a key mi-

crostructural element of polycrystalline thin films, and in many cases they determine

their physical, mechanical and functional properties [174]. As discussed earlier, the phe-

nomenon of liquid groove deepening promotes surface roughness, and possibly break-up

of thin films [161]. In this regard, it is important to have a concise overview of the

microstructural evolution in polycrystalline thin films. Hitherto, the grain boundary

grooving phenomenon is investigated for semi-infinite solid grains with the presence of

an isolated grain boundary. However, in reality, since several solid are interconnected,

the stability as well as the performance of polycrystalline thin films are strongly affected.
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Figure 5.22: (a)-(e) Three-dimensional simulation of crystal growth in a polycrystalline thin

film. As a result of grain boundary area minimization, the larger grains evolve at the expense

of smaller grains.(d)-(e) Elimination of the red colored grain is highlighted schematically.

Therefore, in the present section, the growth behavior of a polycrystalline solid is briefly

studied. In this section all the simulation parameters are kept the same and a three-

dimensional simulation domain is considered with 200× 100× 200 cells in each direction,

and the growth behavior of liquid grooving in a multi-grain boundary system is simulated.

Fig. 5.22 demonstrates the morphological evolution of a polycrystalline film without

lateral convection. Under pure diffusive conditions, the minimization of grain boundary

area and the excess energy associated with the grain boundaries drive the growth behav-

ior of isotropic grains. Widely known as the normal grain growth behavior, the larger

grains continue to grow while impinging and inhibiting the growth of smaller grains. As

illustrated in Fig. 5.22(a)-(e), the temporal evolution of the polycrystal grains lead to

the shrinkage and the elimination of some grains, see the highlighted red colored grain

in Fig. 5.22(d)-(e). Similarly, in the presence of lateral convection in Fig. 5.23(a)-(b),

the solid grain evolve continuously and impinge the growth of smaller grains. As the

convection velocity increases, the growth kinetics is slightly modified, where the rapid

grain boundary migration for Ux = 3.0 eliminates the red colored grain at a faster rate

when compared with its counterpart. As observed previously in the two-dimensional

simulations, it is important to note that the lateral drift of the grain boundary plays

an important role in controlling the kinetic behavior of polycrystalline solids. Fig. 5.24

quantitatively depicts the temporal evolution of the phase fractions of the grain 5 (red col-

ored highlighted grain) for different conditions, where the rate of decrease in the volume

fraction is inversely related to the convection velocity.
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Figure 5.23: (a)-(b) Growth morphology of a three-dimensional polycrystal under the influence

of lateral convection. As the magnitude of convection velocity increases, the rate of elimination

of the red colored grain increases.
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Figure 5.24: Temporal volume fractions of red colored solid grain under different convection

velocities. Grain elimination increases with the increase in the convection velocity.

5.3 Summary

In this chapter, two-dimensional phase-field simulations have been performed to capture

the grain boundary grooving phenomenon under diffusive-convective conditions. At first,

the multiphase-field model is validated and benchmarked by simulating and comparing
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the grooving process with Mullins’s theory for volume diffusion. As time elapses, it is

shown that the groove pit systematically deepens, and follows the well known kinetic law

dg ∝ t1/3. Thereupon, under pure diffusive conditions, it is shown that the groove profiles

and kinetics are in excellent agreement with Mullins’s seminal theory.

Next, the grain boundary grooving is extended and the synchronous effect of convec-

tion and volume diffusion is investigated for the first time via the phase-field approach.

The groove morphology along with other groove properties are completely modified due

to the presence of an additional convective mass transport in the liquid phase. Since the

distribution of the solutal fields near the V-shaped groove is unequal, it is shown that the

asymmetricity of the groove profiles increases with the increase in the convection veloc-

ity. A direct comparison of the simulated groove profiles with the sharp interface theory

is also shown. For simulations with and without convection, the groove profiles from

our phase-field model have shown an excellent agreement with the theoretically derived

sharp interface groove profile. Moreover, the groove depth at various convection velocities

follows the classical law dg ∝ tn, but the temporal exponent n is modified significantly

when compared with the Mullins’s seminal theory. In the diffusive-convective regime,

the temporal exponent varies in-between 0.33 and 0.4, and the groove depth is always

larger when compared with volume diffusion. Nonetheless, the qualitative and quantita-

tive findings in the present study are in excellent agreement with previous analytical and

experimental studies.

Afterwards, the lateral drift of the grain boundary along the flow direction is shown

where the rate of GB migration increases with the increase in the convection velocity.

Furthermore, since the relative surface energies primarily control the equilibrium groove

angle, an increase in the ratio R0 distinctly modifies the groove depth as well as the

groove morphology at the grain boundary. For the limiting case R0 → 0, the solid-liquid

interfacial energy dominates and the grooving phenomenon is diminished at the grain

boundary. Lastly, the growth behavior of three-dimensional polycrystals is investigated,

where the rate of elimination of solid grains increases with the increase in the convection

velocity. It is henceforth concluded that the numerical results in this chapter provide

new insights into the grain boundary grooving mechanism, and the cooperative effect of

convective and diffusive forces in the liquid phase modifies the groove kinetics.

Liquid grooving at grain boundaries is limited to equilibrium conditions, where the

solid-solid grain boundary is in contact with a saturated alloy melt. Whenever the inter-

face velocity exceeds the critical velocity of a planar interface, it has been experimentally

studied [22] that several interfacial instabilities typically grow at the grain boundaries. In

the forthcoming chapter, the directional solidification of a bicrystal and the morphological

evolution of a solid-liquid interface is presented in detail.
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Chapter 6

Unidirectional solidification of tip

splitting microstructures

The selection of solidification patterns has been a long-standing fundamental interest in

scientific and engineering significance. The local competition between the diffusion fields

and the interfacial dynamics (interfacial anisotropy) determines the shape of a solidifying

microstructure [175]. During crystal growth, the onset of morphological instabilities

along a planar interface has a tendency to influence the microstructural characteristics

of a cast alloy. However, since the solidification front is replete with imperfections, i.e.,

grain boundaries and foreign particulate matter, the problem becomes more complex as

the solute interacts with the groove pits at the triple junction. Henceforth, in this chapter,

the role of grain boundaries in a constitutionally supercooled melt is focused, where the

initiation and the mechanism of tip splitting microstructures along a solidifying interface

is investigated in detail. Later, the structural transition of microstructural patterns in

the presence of lateral convection is studied. Results presented in the first half of this

chapter are a part of a manuscript under submission, whereas results discussed in the

second half of this chapter has been published in Computational Materials Science [9].

6.1 Role of grain boundaries

In the present section, the role of grain boundary in a constitutionally supercooled melt is

investigated, and the formation of a grain boundary ridge as an early onset instability is

simulated. In Fig. 6.1, under pure diffusive regime, it is observed that in a supersaturated

melt of composition ∆ = 0.5, the region adjacent to the grain boundary pit becomes

unstable. When compared with the grain centers, the instabilities at the grain boundary

amplify at a faster rate into primary ridges. It is noticed that the parts of the grain centers,

not immediately adjacent to the grain boundary remain featureless and undistorted.

Afterwards, while the shape of the perturbations depends on whether it decays or grows,

81
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the initial perturbation from a liquid groove always coarsens [157]. These primary ridges

evolve into a periodic array of hills and later transform into a ramified dendritic network

depending upon the interfacial anisotropy. Nonetheless, the local growth competition of

these primary ridges is always dependent on the initial orientation of the solid grain [23].

Figure 6.1: Temporal evolution of grain boundary ridges near the groove pit in an supersaturated

melt of composition ∆ = 0.5. Throughout this chapter, the colors blue and red refer to the two

distinct solid grains and green color represents the liquid phase.

Table 6.1: Simulation parameters for tip splitting microstructures.

Description Parameter Value

Diffusivity Dβ
i 1.00

Melt supersaturation ∆ 0.5

Anisotropic strength δαβ 0.0

Interface width ε 4.00

Simulation Domain Nx×Ny 1000×1000

Discretized grid space ∆x = ∆y 1.0

From the above set of two-dimensional simulations, it is evident that the grain bound-

aries in a bicrystal specimen play an important role during the initiation of morphological

instabilities as a result of solute redistribution near the groove pit. The 1D concentration

profiles at two different positions are extracted and depicted in Fig. 6.2, where the solute

diffuses across the grain boundary and reduces the solute segregation. This decrease in

the solute concentration increases the interface height to form an amplified ridge at the

grain boundary. In general, the groove acts as a solute pit which decreases the solute

concentration near the trijunction, while the solute profiles away from the grain bound-

ary are not much affected. In contrast with the perturbations developed along a planar

interface, the ridges simulated in the present study have only been found to appear near

the grain boundaries [22, 23, 79, 176].

As a ridge is developed near a grain boundary, the solute is laterally rejected outwards,

leading to the formation of secondary depressions, which may, in turn, initiate secondary
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Figure 6.2: 1D concentration profiles at two different positions. Presence of steeper solutal

gradients enhance the formation of ridges at the grain boundary.

ridges and rings. Therefore, the average interface height is greater at the grain boundary

than the minute perturbation away from the pit. The effect of grain boundaries on

pattern formation is highly reproducible, although the solute distribution depends on

the equilibrium groove profile. In agreement with experimental [22, 176] and phase-field

studies [177], it is believed that the formation of a grain boundary groove acts as a sink

for the morphological evolution of a solid-liquid interface, which consequently results in

the lateral development of instabilities in a polycrsytal. Since the interfacial energy is

considered isotropic, these amplified tips split in a fork like manner and develop into a

non-planar pattern over a period of time. Nonetheless, in tune with Noel et al. [24]

and others [23, 178], the grain boundary operates as a potential site for the initiation

and generation of hill shaped perturbations at the center of the solid-liquid interface.

Finally, it is also worth noting, that during the course of further solidification, these

primary ridges and protuberances developed at the grain boundary influence the growth

competition of columnar dendrites.

6.2 Tip splitting microstructures under diffusive regime

Initiated at the grain boundary, the temporal evolution of a solidifying pattern is depicted

in Fig. 6.3, where the solid-liquid interface along with the grain boundary ridges solidify

into a ramified tip splitting microstructure. Since the concentration decreases in front of

the solid-liquid interface, the local thermodynamic equilibrium is maintained as a result
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Figure 6.3: Temporal evolution of interfacial instabilities along a bicrystal sample. In a su-

persaturated melt of composition ∆ = 0.5, the primary ridges developed at the grain boundary

amplify into split structures along with the propagation of hillocks across the two solid grains.

of unidirectional solidification. At the initial growth stage, the interface keeps planar and

advances slowly towards the liquid region. With the accumulation of the solutal fields

ahead of the solid-liquid interface, the planar interface loses its stability and undergoes

the well known Mullins-Sekerka instability [30], which states that the stability of a solid-

liquid interface is governed by the critical wavelength of the perturbation and the extent

of constitutional supercooling. The dynamic evolution of the interface instability is sim-

ulated at δαβ = 0.0, where random tip splitting structures are observed. The non-planar

tip splitting microstructures are known as seaweed structures, originally observed in sev-

eral experimental investigations [36, 179–182], a different growth morphology compared

with the dendrites [36]. While the anisotropic dendrites are directionally dependent, the

tip splitting microstructures in Fig. 6.3 are considered as patterns without orientational

order.

The fundamental and repeating characteristic of a seaweed structure is the successive

and continuous splitting of the tips, as shown in Fig. 6.4(a)-(d). Similar to the diffusion

limited growth of isotropic crystals [180–182], the formation of seaweed patterns is inher-

ently related to the low anisotropic property of the solid-liquid interface. As illustrated

in Fig. 6.4(a)-(c), when growth conditions are imposed for which a planar interface just

becomes unstable, a zone of supercooled liquid exists ahead of the planar interface which

causes the interface to become unstable and to form a perturbed shape, see Fig. 6.4(a).

The threshold value of the interface velocity is exceeded such that the lateral diffusion of

solute reduces the solute concentration at the cell tip. Consequently, the tips along the

planar interface travel ahead to become a branched morphology, see Fig. 6.4(d). Never-

theless, the absence of anisotropy promotes an uninhibited, omnidirectional growth via

irregular branching and splittings of an evolving interface [183].
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Figure 6.4: (a)-(d) In a supersaturated melt, the formation of a tip splitting microstructure

along a solidifying solid-liquid planar interface. Initial perturbations evolve with time to un-

dergo successive branching at the tip position. Isolines with various colors represent different

simulation time.
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6.3 Deterministic behavior of tip splitting microstruc-

tures

6.3.1 Analytical criterion for tip splitting position

The stability of tip splitting morphologies was first determined, and it was concluded that

the solidification patterns evolve into doublon or seaweeds depending upon the imposed

undercooling and interfacial anisotropy [184]. In addition, it was shown that the presence

of numerical noise at the solid-liquid interface was another factor to enhance the formation

of tip splitting microstructures. However, one of the major drawbacks of this argument

is that such a study shows no clarity on the position of tip splitting. Recently, Glicksman

[8] proposed an analytical criterion vb = Bg∇2
sκ, where Bg is materials constant, for the

branching mechanism through the Gibbs-Thomson temperature distribution as an active

interfacial energy. According to this theory, the sign of the surface divergence of the

interfacial curvature ∇2
sκ, where κ is the interfacial curvature, determines whether the

interface moves towards the melt or the crystal. It was reported that a positive ∇2
sκ

represented the growth of the interface, whereas, a negative ∇2
sκ promoted a hindered

growth of the interface [8]. Consequently, the rotation points developed a wrinkle, which

later evolved into a sidebranch. The local analysis was proved to be successful in kine-

matically determining the rotation points for branching, wherein the crystal experienced

an accelerated growth. The present section builds upon this mechanism and addresses

the fundamental tip splitting behavior of seaweed structures. In the forthcoming seg-

ments, the expressions for capillary mediated analytical theory for a convex profile in two

dimensions is derived, and subsequently compared with the two-dimensional phase-field

simulations.

Since the main objective of the present section is to demonstrate the tip splitting

instability, the initial condition is similar to the convex parabolic perturbations developed

in Fig. 6.4(a). Here an axisymmetric parabolic interface is considered as a solid phase

and the rest of the domain is bulk liquid phase to avoid any mathematical complexity.

To begin with, the sharp-interface criterion for a two-dimensional surface is determined

in the following manner. Let f(x) be the equation of a parabola in a two-dimensional

domain, given as

f(x) = −α0(x− h)2 + p, (6.1)

where, α0, h, p are the scaled dimensionless parameters controlling the width and the

position of the parabola. In the present study, α0 is taken as 0.02 to study the influence

of the dimensionless shape factor on the tip splitting position, see Fig. 6.5. Let us begin

the calculation of the analytical criterion, starting with the expression of curvature κ(x),

for a two-dimensional convex interface,
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κ(x) =
f ′′(x)

(1 + f ′(x)2)
3
2

. (6.2)

Now, the gradient of the curvature along the arc length s can be written as

∂κ

∂s
=
∂κ

∂x

∂x

∂s
, (6.3)

∂κ

∂s
=

1√
1 + ( ∂y

∂x
)2

∂κ

∂x
. (6.4)

Let the above equation be termed as g(x), thus

g(x) =
1√

1 + ( ∂y
∂x

)2

∂κ

∂x
. (6.5)

Finally, in order to calculate the surface Laplace, the surface divergence of the gradient

along the arc length is taken. Using Eq. (6.5) we get

∇2
sκ =

∂g(x)

∂x

∂x

∂s
=

1√
1 + ( ∂y

∂x
)2

∂g(x)

∂x
. (6.6)

The above derivation can be rewritten by substituting f(x) from Eq. (6.1) into Eq. (6.2)

as

∇2
sκ =

576α5
0(x−h)2

(1+4α2
0(x−h)2)4

− 24α3
0

(1+4α2
0(x−h)2)3√

1 + 4α2
0(x− h)2

. (6.7)
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Figure 6.6: Calculated analytical criterion for α0 = 0.02, as a function of the dimensionless

position. The positive and negative regions indicate the crest and the trough positions during

the tip splitting process. The forked region lies between the ∇2
sκ < 0 region, whereas the two

tips start to evolve at the ∇2
sκ > 0 positions.

Depicted in Fig. 6.6, Eq. (6.7) represents the analytically predicted position for a

convex parabolic interface. It is observed that the analytical criterion ∇2
sκ for α0 = 0.02

has two positive regions at x < 490 and x > 510, whereas, the negative region lies in-

between 490 < x < 510. During crystal growth, the minimum at ∇2
sκ = −0.000191

(red dot in Fig. 6.6) starts to evolve towards the solid in a retarded manner. The two

maxima at ∇2
sκ = 4.6× 10−5 (black dots in Fig. 6.6) will accelerate towards the opposite

direction in order to generate the foremost point during the freezing process. Therefore,

the tip splitting region is predicted where the interface undergoes a hindered growth, and

begins when the sharp-interface criterion passes through zero. The form of the plot in

Fig. 6.6 is a direct comparison with the normal flux reported by Glicksman [8], where the

solid-liquid interface evolved accordingly to undergo systematic branching.

6.3.2 Comparison between sharp interface criterion and phase-

field simulation

In the present section, two-dimensional phase-field simulations are performed and com-

pared with the analytically predicted sharp interface tip splitting position. To begin with,
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Figure 6.7: The temporal evolution of crests, at x = 490, y = 510, and the formation of a trough

region at 490 < x < 510 exhibits the tip splitting phenomenon in a two-dimensional phase-field

simulation. A direct comparison with the sharp-interface prediction reveals that the tips are

generated in the positive regions only, whereas the split region is determined by the negative

sharp-interface criterion region of the interface. The left and right arrows indicate the ∇2
sκ̂ and

the grid positions (y), respectively.

Figure 6.8: In accordance with the analytical criterion for a sphere, the absence of tip instability

is also observed in our simulations. The color bar illustrates the phase-field according to the

legend embedded near the simulation snapshots.

the initial seed condition is the same as the parabolic interface α0 = 0.2 in Fig. 6.5, and in

order to conserve the shape of the parabola, a weak anisotropic strength is imposed. Here,
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the simulation is performed in a domain of 1000×1000 numerical cells, in the absence

of numerical noise, and an interface width ε = 4 × ∆x is considered, where ∆x = 1.0.

The temporal evolution of the solid-liquid interface via the dashed isolines is shown in

Fig. 6.7. The red isoline in Fig. 6.7 depicts the formation of crest and trough positions,

which in turn indicate that the evolving crystal has undergone tip splitting. The projec-

tion of Fig. 6.6 (dashed green line) in Fig. 6.7 (solid red line) illustrates that the interface

evolves into a crest where the analytical criterion is positive, while the negative ∇2
sκ̂ cor-

responds to a hindered forked region. In Fig. 6.7, it can be seen that this segment now

proceeds in the opposite direction, compared with the two hillocks developed on either

side. The positions where ∇2
sκ passes through zero are known as Laplace or rotation

points, i.e. the sign of the analytical criterion reverses [183]. These points determine

the rotation of the crystal, where the hindered growth region transforms into an evolv-

ing region with solidification time. The present analysis agrees in spirits with Kesseler

and Koplik et al. [185, 186], where a geometrical approach proved that the curvature

at the tip decreases with time and finally the tip splitting event is initiated once the tip

curvature passes through zero. Additionally, an analytical criterion for sidebranching in

anisotropic dendrites was reported with similar remarks [187], wherein the evolution of a

perturbation was tracked, and the difference between the time-dependent curvature and

the curvature of a steady-state crystal (∆(κ, s) = κ(s, t)− κ∗(s)) was plotted to present

different scenarios for the generation of sidebranches. Moreover, since the tip splitting

phenomenon is simulated via a diffuse-interface approach, the selection of a finite inter-

face width is critical. Therefore, in order to investigate the role of diffuse interface width

and discretization noise, a convergence study is performed in Appendix B.

Here, the gradients developed parallel to the interface, relatively close to the bulk,

contribute towards the generation of an inflection point, especially at the tip region.

However, as these fluxes are proportional to the interfacial curvature, they recede signif-

icantly away from the tip, where the bulk fluxes are dominant. The surface accelerates

due to cooling and retards by virtue of heating. A combination of such effects sets in

the development of an inhibited interface at the negative ∇2
sκ region, facilitating the

forking process at the precise position. In other words, the initiation of the cusped region

transpires when ∇2
sκ turns negative. The concave portion of the interface also indicates

some sort of energy sink along the U-shaped interface. The present analysis agrees well

with a recent study by Mullis et al. [188], where it was illustrated that the location of

the tangential flux and the first perturbation are to be consistent at high undercoolings.

Finally, the two tips that are triggered by means of positive tangential flux dominate

the evolution process, and multiply into several tip splitting formations during the later

stages of the simulation.

While the initiation and the mechanism of a tip splitting event is discussed, the

absence of such instabilities is also observed when a sphere is considered as an initial
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condition, see Fig. 6.8. For a sphere with an isotropic interfacial energy, in a noise

less simulation environment, the curvature-dependent analytical criterion is defined by

the absence of crest and trough regions. With such an initial condition, the sphere

evolves consistently without forking in accordance with the sharp-interface analytical

theory. Lastly, as the simulated results are in accordance with the analytical prediction

for different shapes, it is now well established that the forking mechanism is not driven

by a particular initial condition. Nonetheless, a detailed study to address the importance

of a non-uniform curvature which varies non-linearly with its arc length is provided in

Appendix C.

6.3.3 Effect of lattice anisotropy

In the present section, the effect of lattice anisotropy on our numerical results is in-

vestigated in detail. In order to accurately analyze the tip splitting phenomenon, and

minimize the pinning effect of the lattice on the interface, the equilibrium shapes of a

spherical crystal seed are systematically compared between the phase-field simulation and

with its corresponding shape in the sharp-interface theory [189, 190], expressed in the

Cartesian coordinates as

x = R00

[
f(θ, ϕ) sin(θ) cos(ϕ) +

∂f(θ, ϕ)

∂θ
cos(θ) cos(ϕ)− ∂f(θ, ϕ)

∂ϕ
sin(ϕ)/ sin(θ)

]
, (6.8)

y = R00

[
f(θ, ϕ) sin(θ) sin(ϕ) +

∂f(θ, ϕ)

∂θ
cos(θ) sin(ϕ) +

∂f(θ, ϕ)

∂ϕ
cos(ϕ)/ sin(θ)

]
, (6.9)

z = R00

[
f(θ, ϕ) cos(θ)− ∂f(θ, ϕ)

∂θ
sin(θ)

]
, (6.10)

and,

f(θ, ϕ) = 1 +
4δeαβ

1− 4δeαβ

[
cos4(θ) + sin4(θ)(1− 2 sin2(ϕ) cos2(ϕ))

]
. (6.11)

Here, (θ, ϕ) are the spherical angles along the normal direction to the solid-liquid

interface. Since the study is restricted to two-dimensional simulations, the comparison

is performed for the equilibrium shapes of the sphere along the x − y plane only. Ad-

ditionally, in the above equation, δeαβ represents the effective anisotropic strength of the

solid-liquid interface, given as δeαβ = R10/R11−1
R10/R11+1

, where R10 and R11 are the radial distances

from the origin to the crystal-melt interface along the y axis, and along the x = y line,

respectively from the phase-field simulation.
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Figure 6.9: For an energetically isotropic interface δαβ, the simulation of a spherical seed with

radius R00 = 45 depicts a complete agreement with the sharp-interface theory. The obtained

effective anisotropy δeαβ = 0.0001 shows mininal effect from the underlying lattice on our nu-

merical results.
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Figure 6.10: For a weak anisotropic solid-liquid interface δαβ = 0.005 and radius R00 = 45,

a direct comparison with the sharp-interface equilibrium shape shows an excellent agreement.

Here, the obtained effective anisotropy δeαβ = 0.0045 has very minute variation when compared

with the imposed value.

To begin with, the equilibrium shape obtained from the phase-field study is first ini-

tialized with a spherical solid seed of radius R00 = 45. Moreover, the melt supersaturation

∆ = 0.8 is selected such that the bulk phases are in equilibrium, and the spherical seed

would neither shrink nor grow with time. As shown in the earlier section, the tip splitting
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microstructures are widely observed for δαβ < 0.01, and thereby, two different anisotropic

strengths, δαβ = 0 for the isotropic case, and δαβ = 0.005 for weakly anisotropic interfaces

is considered for the present section. Fig. 6.9 and Fig. 6.10 illustrates the equilibrium

shapes from the phase-field simulations, and an excellent agreement with the obtained

sharp-interface profiles for two different cases is observed. Henceforth, from the the above

analysis, the grid or lattice anisotropy has minimal effect on the crystal-melt shapes, and

therefore represents the accuracy of our phase-field results. Nonetheless, the direct com-

parisons for simulations with strong anisotropic strengths and different crystal radii have

been discussed in detail in the Appendix B.

6.3.4 Effect of numerical noise

In the present section, Fig. 6.11 portrays a comparative study between the phase-field

simulations conducted with and without numerical noise in the system. Here, the conven-
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Figure 6.11: Comparison between the phase-field simulations performed with and without nu-

merical noise. Both the interface isolines display the same splitting position, while simulations

with noise (black dotted line) depict the boosted growth of the tip. Additionally, few perturbations

also start to augment away from the tip which proceeds as branches.

tional Marsaglia polar method [134] is employed to generate a random pseudo-numerical

noise that obeys a typical Gaussian distribution. The green solid color in Fig. 6.11 refers

to an isoline for tip splitting in the absence of numerical noise, whereas the black dotted

isoline illustrates the augmented tip as a consequence of the numerical noise in the system.

When compared with Fig. 6.6, the trough position always lies within the negative ∇2
sκ

region, and the two tips emerge across ∇2
sκ > 0, which is in agreement with the present

criterion. The amplified tips that astride the trough region is attributed to the noise
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strength, whose growth seems to be inhibited in the case of simulations performed in the

absence of noise. In addition, the imposition of numerical noise causes an asymmetrical

growth of the tips, whereas the present criterion predicts a proportional growth of the

two tips. Henceforth, the presence of numerical noise has very little influence, especially

on the determination of the tip splitting position. A recent study by Glicksman [183]

has also reported that the added noise in the system purely aids the profound growth

of the tips or sidebranches during dendritic growth. Similarly, by performing rigorous

three-dimensional simulations, a phase-field study [191] concluded that the branching

mechanism was deterministic rather than a result of frivolous noise. As anticipated, the

presence of numerical noise merely contributes to the amplified and asymmetric growth

of the tip as well as to the appearance of small perturbations away from the tip region.

6.4 Structural transition of tip splitting microstruc-

tures under diffusive-convective regime

The formation of tip splitting patterns in the presence of melt convection is investigated

in the present section. In Fig. 8.4, a simulation setup is considered with 1000×1000

numerical cells and the grains ‘α1’ and ‘α2’ represent the solid phase, and β denotes the

liquid phase.

Figure 6.12: Schematic illustration of the simulation setup along with the imposed initial and

boundary conditions. A two-dimensional simulation box captures 1000×1000 cells in the x−y di-

mensions. The Neumann boundary condition is applied for the concentration fields at y = 1000,

and the direction of melt flow is perpendicular to the growth direction.

As illustrated in Fig. 6.12, the periodic boundary conditions for the concentration

fields in the x-direction assists the free growth of the two solid phases across the domain.
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Figure 6.13: (a)-(d) Structural transition of tip splitting microstructures under diffusive-

convection regime. Here, the colors blue and red refer to the two distinct grains of the solid

phase, and green color represents the liquid phase. The degenerate seaweeds at low convection

velocities gradually transform into strongly tilted seaweeds with an increase in the melt velocity.

At the top boundary, the Neumann boundary condition is applied for concentration and

phase fields. Along with the periodic boundary conditions at x = 0 and x = 1000, the

melt flow is introduced along the x-direction and perpendicular to the growth direction.

Additionally, the slip boundary condition is applied for the velocity fields at y = 1000. A

sliding window technique [192] at y = 1000 results in an infinite domain in the y-direction.

In order to increase the computational efficiency, the sliding window algorithm allows us

to simulate the region around the solid-liquid interface only. For the sake of convenience,

in this chapter, two solid grains are employed to represent a binary polycrystalline alloy.

Here, the solid-solid and solid-liquid surface energies for both grains are identical. With

the current simulation setup and a supersaturated melt of composition ∆ = 0.5, the

structural transition of tip splitting morphologies is shown in Fig. 6.13 as a result of



96 6.4

various convection velocities.

Among the different types of seaweed morphologies, the directionally solidified mi-

crostructures in Fig. 6.13(a)-(c) are known as degenerate seaweeds, due to the presence

of small amount of degeneracy in their growth dynamics. The most striking feature for a

degenerate seaweed is generally spotted in their tip splitting behavior. The foremost tip

splits at alternate sides towards left and right, making them unique and distinct among

all other complex patterns [181]. It is important to note that the degenerate structures

are observed for the simulations performed at low convection velocities. With an increase

in the imposed convection velocity, a strong orientation of the growth front towards the

flow direction is noticed in Fig. 6.13(d)-(e). Such type of patterns as known as strongly

tilted seaweeds [193], characterized by their tips evolving in an inclined manner. Fur-

thermore, the large wavelengths λ, i.e., the mean spacing between the main branches are

a distinct feature in tilted seaweeds, wherein, after a tip splitting event, the growth of

a sidebranch is completely restricted. The stabilized growth of such tilted seaweeds is

explained from the spatiotemporal diagrams of Akamatsu et al. [37], where the presence

of wide liquid grooves assisted the tilted trajectory of the pattern.

Moreover, in the present scenario, a moderate growth competition between the two

solid grains is also observed. For most of the simulations performed, it is noticed that the

two grains compete and overgrow each other in a random manner, and this behavior tends

to neutralize as the melt velocity gradually increases. Generally, the competition between

isothermal microstructures happens in three different kinds of spacing adjustment mech-

anisms, namely, tip submergence, tip splitting and overgrowth of side branches. As these

microstructures are observed for isotropic interfaces, tip splitting and tip submergence are

the main factors that promote local growth competition of solid grains. This phenomenon

is quantitatively depicted in Figs. 6.14 and 6.15, where the temporal volume fractions

of the two solid phases at two different convection velocities are shown respectively. In

Fig. 6.14, the red colored grain looses the growth competition at an early stage, how-

ever, as shown in Fig. 6.15, the inclined nature of the tip splitting structure dominates,

the red colored grain parallelly to the blue grain. This behavior tends to increase with

the increase in the convection velocity. However, due to a degree of influence from the

numerical fluctuations, a prediction for such a behavior is still unclear.

Fig. 6.16 illustrates the early stages of the solidification process at two different con-

vection velocities. From an initial configuration, the interface contours are compared for

the instabilities developed at Ux = 1.0 × 10−2 and Ux = 3.0 × 10−1, respectively. In

Fig. 6.16(a), it is observed that the perturbations emerge across the two solid grains with

proportional amplification. Initialized across the grain boundary, these ridges spread lat-

erally with time across the bicrystal solid grain. Due to the presence of weak and symmet-

ric velocity fields across the planar interface, the morphological behavior in Fig. 6.16(a)

is analogous. However, when compared with its counterpart, the influence of convection
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Figure 6.14: Temporal volume fractions of

solid grains at Ux = 1.0× 10−2.
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Figure 6.15: Temporal volume fractions of

solid grains at Ux = 4.0× 10−1.

is clearly visible at Ux = 3.0× 10−1. Fig. 6.16(b) demonstrates that the tips at the grain

boundary are oriented towards the upstream (left) direction. Furthermore, as opposed

to Fig. 6.16(a), the symmetric and the augmented growth across the planar interface is

completely absent. Herein, as a result of strong convection fields at Ux = 3.0× 10−1, the

solute is completely swept away and henceforth the ridges at the grain boundary amplify

at a faster rate. Consequently, the advected solute ensures the development of asymmet-

ric velocity fields and thereby the protuberances at the center of the grain are hindered

in nature. The present findings are in qualitative agreement with an experimental work

[25], where the effect of natural convection in a transparent organic alloy was examined

in detail. In Fig. 6.16(b), the combined presence of convex ridges and convection fields at

the grain boundary strikingly influences the propagation of the tip splitting instabilities

across the planar interface. The ridges at the center of the grains proceed with time and

generate an inclined seaweed structure. Another interesting feature of the solidification

process is the growth direction of the perturbations. The tilting nature of the hills to-

wards the inflow direction results in a grid like pattern. Shorter the distance from the

grain boundary, the larger the tilt angle. This hallmark of the primary ridges results in

the growth competition between the two solid grains throughout the solidification pro-

cess. Therefore, through the above distinct attributes, it is now well established that

convection in the liquid phase plays a vital role in the propagation and amplification

of instabilities in a bicrystal sample. Although a critical value for the transition is not

determined, the transition region is predicted to be around 1.0×10−1 ≤ Ux ≤ 3.0×10−1.
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Figure 6.16: A comparative study between the morphological evolution of two solid grains is

depicted for different convection velocities. (a) The perturbations are aligned in the initial

growth direction across the domain. The lateral development of the hillocks at the center of the

grain is significant and symmetric. (b) In contrast, in the presence of strong convection fields,

the ridges are amplified and oriented at the grain boundaries only. The small humps at the

center of the bicrystal grains evolve slowly.

6.4.1 Morphological features

Next, in order to explain the morphological differences and the tip splitting behavior

in degenerate and strongly tilted seaweed structures, the interface isolines (φ = 0.5)

are depicted in Fig. 6.17. The two morphologies when compared with each other in

Fig. 6.17 display remarkable differences in their patterns. An initial examination suggests

that the tip splitting event occurs more frequently at low convection velocities while the

same phenomenon occurs scarcely as the velocity gradually increases. Similar to an

experimental study [181], in Fig. 6.17(a), during crystal growth the tip characteristically

splits left and right sides. Whenever a tip undergoes forking, one of the two lobes survives,

while the other is left behind. These leftover branches either evolve in the growth direction

of the parent lobe or they are completely inhibited due to the presence of an adjacent

tip.

However, for a strongly tilted seaweed, the post-splitting process is completely dif-
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Figure 6.17: The distinct morphological features are schematically illustrated via the interface

isolines φ = 0.5. The degenerate seaweed structures with an alternating tip splitting event am-

plify along the growth direction. Since there is no preferred orientation, the tips proportionately

incline from −70◦ to +70◦. However, in the case of a strongly tilted seaweed, the branches are

always oriented at −35◦ to −75◦ along the x-direction. Here, x and z are the dimensionless

grid points. The black arrows indicate the growth direction for both cases. The wavelength λ,

is defined as the mean distance between the main branches of a structure. In general, large

wavelengths are a characteristic feature for the patterns generated in regime II.

ferent. Owing to the influence of velocity and concentration gradients, the tips and

the sidebranches incline in the opposite direction. In Fig. 6.17, the mean spacing λ is

schematically shown and defined as the distance between the medial axis of the main

branches. The leftover small branches are neglected due to the overgrowth of the nearby

tips. Here, the width of an individual branch is generally of an order greater than the tip

radius. In Fig. 6.17(b), the oriented nature of the individual branches is schematically

illustrated via the black arrows, thereby representing the vast differences in the growth

directions of the structures, respectively.

6.4.2 Effect of surface energy

As discussed in the previous chapter, depending upon the imposed surface energies, the

initial shape of the grain boundary groove is modified, and subsequently the propagation

of primary ridges is affected. Here, in a constitutionally undercooled melt, the lateral

spread of the perturbations towards the center of the grain is elucidated for different

scenarios. Fig. 6.18 depicts the influence of the grain boundary energy γgb and the solid-

liquid interfacial energy γsl on the inception of a tip splitting microstructure. As the

solidification of the interface commences from an initial configuration, for R0 = 2.0 in
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Figure 6.18: The influence of R0 on the initiation of morphological instabilities along a bicrystal

is illustrated for two different cases. (a) R0 = 2.0 and (b) R0 = 2.0. With the decrease in the

ratio R0, the enhancement of protrusions along the bicrystal interface decreases.

Fig. 6.18(a), it is observed that in both regimes the perturbations amplify in a robust

manner. The crests and troughs are uniformly generated with minimum spacing between

the primary branches, especially at the core region of the solid grains. In contrast, when

R0 = 1.4, the sideward advancement is concentrated at selective positions, as the interfa-

cial energy is decreased shown in Fig. 6.18(b). Although, the hillocks develop into seaweed

structures, there exists sporadic colonies where neither depressions nor fluctuations are

developed. This populous and limited growth of the tips along the solid-liquid interface

are consistent with the previous experimental and phase-field studies [23, 25, 194], where

the localized growth of the protuberances due to the grain partitions were reported for

a binary polycrystallite. Here, the joint ridges that are involved during the birth of the

instabilities are largely dependent on the driving force and the interfacial energy of the

system. Although the melt supersaturation in the present case is considered to be con-

stant, in general, these two aforementioned thermodynamic parameters can be further

manipulated to generate tip splitting to cellular microstructures [195].

6.4.3 Determination of local tilt angles

Visual examination of the tip splitting patterns indicate a preferential orientation for

the instabilities along the x-direction. Consequently, a quantitative image analysis is

performed through an open source ImageJ software plug-in, OrientationJ [196]. Based
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Figure 6.19: A quantitative image analysis is performed with an open source ImageJ software

plug-in, OrientationJ [196], for the patterns generated at two different convection velocities.

(a) The local orientation properties of the solid phases show the distinctive features observed

in degenerate and strongly tilted seaweed structures. The color bar indicates the orientation of

each pixel from −90◦ to +90◦, where 0◦ is orientation of the y-axis. (b)-(c) The local angle

distribution confirms the preferred direction, where the maximum number of pixels orient at

+70.5◦, −67.5◦ and at −52.5◦ for Ux = 1.0× 10−2 and Ux = 3.0× 10−1, respectively.

on the structure tensors, i.e. the matrix representatives that are derived from the gradient

of the image, the directional change in the image intensity. This method calculates the

local orientation and the isotropic properties of every pixel in an image, commonly used

in several pattern formation investigations [197, 198]. The local orientation θ [196] is

calculated as

θ =
1

2
arctan

(
2

< fx, fy >w

< fy, fy >w − < fx, fx >w

)
. (6.12)

Here, fx and fy are the partial spatial derivatives of the image intensity function f(x, y),

along the principal directions x and y, respectively. The weighted inner product between

the two arbitrary images g and h is defined as < g, h >w=
∫ ∫

R2 w(x, y)g(x, y)h(x, y)dzdx,

where w(x, y) is the Gaussian weighting function that specifies the area of interest.
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Fig. 6.19(a) describes the local tilt angles of the solid phases at two different melt ve-

locities. The color bar indicates the orientation from −90◦ to +90◦, where 0◦ represents

orientation along the y-axis. The random tip splitting pattern observed in Fig. 6.19(a)

lays out a distinct characteristic when compared with the inclined framework. The al-

ternative tip splitting event along with the presence of low melt velocities produces a

wide range of local tilt angles, thereby indicating the disordered nature of the structure.

In contrast, in the presence of strong velocity fields at the tip, a formidable inclination

against the flow direction is observed universally among strongly tilted seaweeds.

The local angle distributions for both regimes provides a clear evidence in Fig. 6.19(b)-

(c), where The y-axis in Fig. 6.19(b)-(c) represents the total number of pixels in each

image with the same orientation. In Fig. 6.19(b), it is observed that the generated

patterns have no favored orientation. Most of the tips in the microstructure tend to

incline from +70◦ to −70◦ in the same proportion, with two peaks observed at +70.5◦

and −67.5◦. However, as shown in Fig. 6.19(c), the inclined patterns evolve in such

a manner that the local angles always vary in-between −35◦ to −75◦. The generation

of a single peak emphasizes that a large number of branches incline at −52.5◦. The

sidebranches in inclined microstructures tend to amplify in the opposite direction, i.e.

with a local orientation of +50◦. Lastly, findings in Fig. 6.19 strongly testify that the

tilting structure is mainly influenced by the presence of strong convection fields near

the solid-liquid interface. For all the structures, the image analysis also confirms the

symmetric and the skewed nature of the local orientation distribution for degenerate and

strongly tilted seaweeds, respectively.

6.4.4 Effect of interfacial anisotropy

In this section, a novel microstructural selection map is depicted to investigate the effect

of interfacial anisotropy on the structural transition of tip splitting patterns. Fig. 6.20

illustrates a morphological selection map, where the random tip splitting pattern are

limited to weak anisotropic strengths and low convection velocities only. As the imposed

velocity increases, a strongly tilted seaweed is observed upto δαβ = 0.02. However,

the presence of stronger anisotropic strengths produce columnar dendrites for various

convection velocities. The microstructural selection map shows a direct resemblance

with the selection map in Chapter 2, where the structural transition of microstructural

patterns under various growth conditions was discussed. As the contribution from the

surface energy dominates, the dendrite tip aligns along the heat flow direction, and the

effect of liquid phase convection on the tip orientation diminishes. Henceforth, the critical

velocity to predict the transition between tip splitting patterns is also dependent on the

anisotropic strength of the solidifying interface. In addition, for anisotropic strengths

δαβ ≥ 0.02, columnar dendrites are always generated irrespective of the strength of the
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Figure 6.20: Microstructural map illustrating the effect of anisotropic strength and convection

velocity. Based on the dynamic competition between δαβ and Ux, three different morphologies

are discerned, namely, degenerate seaweed, strongly tilted seaweed and columnar dendrite.

convective forces in the liquid phase.

6.5 Summary

In the present chapter, the directional solidification of tip splitting microstructures is

extensively discussed, wherein the formation and the temporal evolution of perturba-

tions along a solidifying interface as a result of the constitutional supercooling near the

solid-liquid interface is showcased. It is shown that the presence of grain boundaries in

polycrystalline samples promote ridge shaped perturbations near the GB grooves. Fur-

thermore, a methodology to predict the tip splitting positions in a solidifying pattern is

investigated, where the calculated analytical criterion acts as the focal point to analyze

the tip splitting position for a convex profile. The analytically obtained tip splitting po-

sition is dynamically compared and validated via performing phase-field simulations, and

an excellent agreement with the sharp interface theory is observed. In this chapter, the

discussed tip splitting behavior builds upon the previous experimental and theoretical

studies, and successfully provides the regions for tip splitting for the first time. Besides,

through the present analytical criterion, it is suggested that a tip splitting phenomenon

is deterministic and predictable vis-á-vis the interfacial curvature of the crystal varies
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non-linearly with its arc length.

In addition, the structural transition of tip splitting microstructural patterns in the

presence of melt convection is studied for a binary polycrystalline alloy. In the absence

of crystalline anisotropy, initiated at the grain boundaries, the protuberances generated

along the bicrystal periodically split into random fork like structures, namely seaweeds.

The traditional degenerate seaweeds observed at weak convection velocities transform

into strongly tilted patterns. In particular, it is observed that the ridges and tips amplify

uniformly at low convection velocities. It is interesting to note that the alternative tip

splitting event in a degenerate type develops into an oriented splitting after the formation

of strong velocity fields around an unstable tip. The role of surface energies at the triple

junction is also demonstrated through the comparison of microstructures. The relative

GB grove angle and with the decrease in the solid-solid grain boundary energy σgb, we

observe that the localization of the tip splitting instabilities along the solid-liquid interface

is limited.

The local orientation for different microstructures is classified via an open source plug-

in OrientationJ, where the local tilt angles are calculated through the structure tensors.

Quantitatively, the symmetric feature of the distribution results in the generation of peaks

at +70.5◦ and −67.5◦. In contrast, the skewed distribution provides a clear evidence that

the strongly tilted structures incline with a preferred local tilt angle at −52.5◦.

A novel microstructural selection map is also showcased, wherein three different den-

dritic morphologies are illustrated. The present chapter also captures the important

transition between seaweed and columnar dendritic morphologies and sheds light on the

role of convective transport near a directionally solidified isotropic interface. As we

have studied and simulated the structural transition of tip splitting microstructures into

columnar dendrites, the prediction of primary dendrite arm spacing is investigated in the

forthcoming chapter.
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Prediction of inter-dendritic spacing

From a practical viewpoint, an understanding of dendritic and cellular structures is crit-

ical since they commonly occur during the solidification of binary alloys in casting and

welding processes. In earlier chapters, the role of grain boundaries and the mechanism by

which an unstable planar interface re-stabilizes into a complex tip splitting or a dendritic

pattern were investigated. However, the inter-dendritic spacing selection of unidirec-

tionally solidified microstructure remained unanswered. The prediction as well as the

understanding of primary dendrite arm spacing in the mushy zone is among the most

important unsolved problems [35]. Nonetheless, owing to experimental conditions, pre-

vious studies [34, 54, 199, 200] were limited to the constrained growth of transparent

organic alloys and cellular structures, and an investigation of an unconstrained columnar

growth is missing. Therefore, in this chapter, the prediction of inter-dendritic primary

and secondary arm spacing is explored under diffusive regime, and subsequently the role of

convective transport in the bulk liquid phase is elucidated in detail, wherein a reasonable

agreement with the experimental microstructures is also established.

7.1 Initial and boundary conditions

In the present chapter, the prediction of inter-dendritic arm spacing is simulated in two

dimensions, and as shown in Fig. 7.1, a computational domain of 1500∆x × 750∆y nu-

merical cells is selected, where ∆x = ∆y = 1.0, see Table. 7.1. As an initial condition, the

simulation starts with a single large solid crystal with no misorientation at the bottom

of the domain. The solid-liquid interface is perturbed with numerical noise such that

thermal fluctuations are realistically induced at the solidification front. Here, the blue

and green colors in Fig. 7.1 represent the solid and the liquid phases respectively. The

boundary conditions for the left and right side of the simulation domain is considered pe-

riodic for all the fields. In order to account for convection in the liquid phase, lateral melt

flow is introduced from the left boundary wall and travels along the horizontal direction

105
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perpendicular to the axisymmetric dendrite. In addition, on the top and bottom sides,

the Neumann boundary condition is applied for the phase and solutal fields, whereas, a

slip condition is applied for the velocity fields. Similar to previous chapters, a moving

frame method [192] is applied when the total number of cells between the foremost solid-

liquid interface and the top boundary is less than 450 numerical cells. Thereafter, for

every time step, the bottom cells along the y-direction are shifted downwards and cutoff.

This method generally saves time and computational effort, and also ensures that the

concentration fields are unaffected by the boundary conditions.

Figure 7.1: Schematic setup with initial and boundary conditions to predict the primary dendrite

arm spacing under diffusive-convective regime.

Table 7.1: Simulation parameters to predict inter-dendritic spacing.

Description Parameter Value

Convection velocity Ux 0.45

Anisotropic strength δαβ 0.04

Interface width ε 4.00

Simulation Domain Nx×Ny 1500×750

Discretized grid space ∆x = ∆y 1.0

7.2 Primary dendrite arm spacing under diffusive

regime

It has been well known that the variation of solutal gradients between the advancing den-

drite and the surrounding inter-dendritic region gives rise to microsegregation within the

solidified crystal [201, 202]. Normal to the dendrite growth direction, this segregation is

generally characterised by the primary dendrite arm spacing (PDAS). The inter-dendritic
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arm spacing usually controls the maximum length scale for the microsegregation [203],

the solutioning heat treatment times [204], and the mechanical properties of a direction-

ally solidified cast alloy [205–207]. In addition, the PDAS directly influences the mushy

zone convection, the formation of low melting point secondary phase eutectics, as well as

the inception of incoherent precipitates and pores in the inter-dendritic region [208–210].

Therefore, the characteristics of a steady-state dendritic array morphology is important

for investigating the selection mechanism of primary dendrites, and for scrutinizing the

growth behavior of a cast alloy.

In the present section, the primary dendrite arm spacing is first simulated under pure

diffusive regime, where the spatiotemporal evolution of a solidification front is illustrated

in Fig. 7.2. At an imposed supersaturation ∆ = 0.52, Fig. 7.2(a)-(d) shows that the

transient patterns exhibited by the interface reorganizes into a periodic array of colum-

nar dendrites with time. This behavior is consistent with previous experimental and

numerical studies [22, 24, 127, 176], where the initial perturbations at the solidification

front developed into microstructural patterns. Moreover, the general evolution of the

dendritic pattern in Fig. 7.2(a)-(d) is profoundly comparable to that described by Huang

and Glicksman [127], where the columnar dendrites were grown from an undercooled

transparent SCN alloy. As the velocity of the advancing interface becomes equal to the

externally imposed velocity, a steady state growth of the advancing interface is noticed

in Fig. 7.3. Likewise, Morris and Winegard [28] also observed that the initial break-up

of a planar interface in a cubic crystal produced elongated cross sections if the growth

direction was 〈110〉, and a regular hexagonal pattern was generated for crystals growing

in the 〈100〉 direction.

7.2.1 Selection mechanism of primary dendritic spacing

The selection mechanism of primary dendrites transpires in the following manner

• Initial planar instability

• Adjustment of primary dendrites via systematic elimination

• Stable growth of primary arms

During the inaugural stages of solidification, the imposed supersaturation in the alloy

melt decreases the solutal distribution ahead of the solid-liquid interface. Correspond-

ingly, the solidification front travels forward in order to maintain the local thermody-

namic equilibrium, and a boundary layer ahead of the planar interface is formed. Once

the critical wavelength is reached, the solid-liquid interface undergoes the Mullins-Sekerka

instability [30] and the interfacial instability amplifies as a random hill type perturba-

tion across the planar interface. As the instability becomes visible, the forward pointing
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Figure 7.2: (a)-(d) Temporal development of a solid-liquid interface in a supersaturated melt

∆ = 0.52. Initial perturbations develop into an array of primary dendrites with time. Local

growth competition enhances the adjustment of primary arm spacing, where the lagging dendrites

are eliminated, a process widely known as dendritic submergence.
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Figure 7.3: Columnar dendrites in a two-dimensional simulation domain, where the primary

arms adjust themselves to produce a stable array spacing. Here, λmin and λmax represent the

minimum and maximum array stability limits.

perturbations develop into an array of dendritic tips with secondary arms in a nonlinear

regime, see Fig. 7.2(b)-(c).

After the initial amplification of the perturbations across the solidification front, a lo-

cal growth competition along the planar front is discovered, where the primary dendrites

tend to overgrow via competing with each other, see Fig. 7.2(c). As the solute redistri-

bution near the lagging dendrites is insufficient due to the neighbouring interactions in

an array growth, the lagging dendrite will be eliminated by its neighbours. Depicted in

Fig. 7.2(d), this process is widely known as dendritic submergence [34, 50] in directional

solidification. Here, the columnar dendrites locally compete with each other until the

array stability limit is recovered, and the total number of primary arms is constant un-

der a given set of growth conditions. Moreover, in order to depict the intensity of the

solutal interaction in-between the primary arms, the concentration fields at two different

positions is shown in Fig. 7.4. The distinct solutal fields in the inter-dendritic region

promote the overgrowth of primary arms to attain a steady-state morphology. Further-

more, in the early stages, the repetitive submergence of primary arms also indicates that

the corresponding primary arm spacing is much smaller than the lower array stability

limit. Herein, the total number of primary arms decreases with time, and subsequently

a constant number of primary arms is established in the simulation domain, see Fig. 7.5.

The dendritic morphology in Fig. 7.2(d) shows the absence of tertiary arms, which re-

iterates that the submergence of columnar dendrites is the main selection mechanism

under pure diffusive regime. Nonetheless, tip splitting, another possible mechanism for

primary spacing adjustment is also not observed in Fig. 7.2(c), which is attributed to the

the imposed interfacial anisotropy of the solid-liquid interface. As reported in previous

studies [34, 50] and discussed in the previous chapter, the selection mechanism via tip

splitting usually occurs in seaweed or cellular growth [211].
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Figure 7.4: Concentration fields depicting the one-dimensional solutal profiles at two different

positions during the selection of primary dendrite arm spacing.

Next, the two-dimensional simulations are repeated for various melt supersaturations,

and a relation between the primary dendrite arm spacing λPDAS and the imposed melt

supersaturation ∆ is depicted in Fig. 7.6 and Fig. 7.7, wherein the primary dendrite arm

spacing decreases with an increase in the imposed supersaturation in the alloy liquid

melt. A non-linear best fit provides us with a relation of the form λPDAS ∝ ∆k1 , with

k1 = −8.5. The distinct columnar dendrites under various growth conditions is shown in

Fig. 7.7, where the inter-dendritic spacing decreases and a prominent morphology change

is observed. The present numerical results are in tune with earlier experimental and

theoretical studies [34, 54, 199], where Kurz and Fisher [199] predicted that the primary

dendrite arm spacing decreases as the driving force at the solidification front increases.

As the melt supersaturation and the solidification velocity increases, the diffusion length

near the solid-liquid interface becomes small, and thereby the presence of strong solutal

gradients decreases the primary dendrite arm spacing. Here, all the simulations are

run long enough such that the total number of primary arms are constant for a long
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Figure 7.5: Changes in the number of primary arms in the simulation domain. The total number

of primary arms along a solidification front attain a steady state spacing with solidification time.
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Figure 7.6: Primary dendrite arm spacing as a function of melt supersaturation. Inter-dendritic

spacing decreases with an increase in the melt supersaturation. The best fit follows an non-linear

analytical fit of the form λPDAS ∝ ∆k1. Error bars indicate the maximum and minimum array

stability limits.

period of time, see Fig. 7.5. For the present study, the primary dendrite arm spacing

λPDAS is calculated by averaging the number of primary arms across the computational

domain under steady state conditions. The possible range with minimum and maximum

limits of the primary arm spacing is also included in Fig. 7.6. If the spacing is too wide

and greater than the maximum stability limit, a tertiary arm catches up the front and
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Figure 7.7: Primary dendrite morphology under various growth conditions. The inter-dendritic

spacing decreases with an increase in the imposed melt supersaturation. Amplified secondary

arms diminish as the primary arm spacing decreases.

becomes a new primary arm. Correspondingly, when the spacing is too narrow for cells

and dendrites, a slightly smaller member of the array gets smaller and becomes over-

grown by its neighbours. From the above discussion it is now clear that the lower and

upper array stability limits depends on the inter-dendritic interactions, and the allowable

range of spacing limits can be predicted by the inter-dendritic solutal distribution ahead

of the foremost interface. This physical feature is in agreement with the primary dendrite

arm spacing studies by Warren-Langer stability [35] and Hunt-Lu multi-dendrite model

[50].

7.2.2 Effect of computational domain size
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Figure 7.8: Effect of domain size on the spacing selection of primary dendrites.

Several numerical and experimental studies [35, 212–214] have reported that the ini-
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tial spacing evolution determines the selection of the final primary arm spacing. Inherent

to alloy melts, thermal fluctuations are generally weak to affect the dynamics of pattern

formation. However, they do have an important role in situations where the perturba-

tions become amplified to a macroscopic scale by intrinsic linear instabilities. It was also

concluded that the primary arms observed in experiments must depend on the sample

preparation, and thereby the dendritic spacing must be history dependent [212, 213].

Likewise, because of the lateral boundaries, the transient spacing adjustment process and

the steady state selection in the present study are affected by the domain size. Hence-

forth, several simulations are performed with different domain sizes, and the variation of

the primary dendrite arm spacing is determined, see Fig. 7.8, where it is observed that

the PDAS is less sensitive to domain sizes as the melt supersaturation in the liquid phase

increases. Even though big simulation domains promote large scale interfacial perturba-

tions along the planar interface, the primary arms adjust themselves such that the final

configuration is proportional to the imposed growth conditions. From these results, it is

now clear that the prediction the primary dendrite spacing at a given melt supersatu-

ration means that there exists a range of growth velocities over which a given primary

dendrite arm spacing is stable.

7.2.3 Secondary dendrite arm spacing

The dominant morphological features of a dendritic network are the primary arm spacing,

the secondary dendrite arm spacing SDAS, and the dendrite tip radius. In general, once

the primary arm spacing is established in a system, it does not change during or after

solidification. Nonetheless, during the course of solidification, the secondary arms undergo

a ripening process [211], whereby, the secondary dendrite arm spacing determines the

microsegregation pattern as well as the cooling rate of cast alloys. Several experimental

studies on secondary dendrite spacing have been carried out, for example, Sharp and

Hellawell [215] studied the secondary dendrite arm coarsening in the A1-Cu system. It

was suggested that the initial secondary dendrite spacing may be of the order of twice

the dendrite tip radius. For metallic systems, the ripening phenomenon in secondary

arms was observed experimentally through examining the microstructure after a period

of steady-state growth [216]. Thereafter, the rate of coarsening was limited by the rate of

mass diffusion in alloys, and the SDAS was related to solidification time by a kinetic law

of the form λ3
SDAS = KSDt, where λSDAS is the average secondary dendrite arm spacing

and KSD is the materials constant [217]. Generally, the secondary dendrite arm spacing

is manually measured on micrographs, which involves counting the number of secondary

arms that intersect a straight line drawn along a primary dendrite arm [218]. In the

present section, the secondary dendrite arm spacing (SDAS) is measured by the most

common methodology, namely, the linear intercept method. As reported and suggested

in an earlier study [218], the SDAS was measured using the following equation
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λSDAS =
LPA

NSA − 1
. (7.1)
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Figure 7.9: Measured secondary dendrite arm spacings as a function of solidification time. The

non-linear analytical fit provides us with the relationship λSDAS ∝ t0.32.

Here, LPA is the length of the primary arm dendrite and NSA represents the total

number of secondary dendrites along the primary arm. Fig. 7.9 illustrates the secondary

arm spacing with time, where at short times there is a single relationship of the form

λSDAS ∝ t0.32. Furthermore, from a morphological point of view, this process of back

diffusion is further complicated by the coarsening of secondary and higher order arms

as observed by Kattamis [219], whereby the smaller arms dissolve into the melt and

solid is effectively transferred to the larger arms. The melting of small arms dilutes the

composition of the liquid phase and thus contributes indirectly to homogenization [220].

Besides, in the absence of any convective transport, a symmetric nature of the secondary

arms across the dendritic array is noticed in Fig. 7.10.

Next, the secondary arm spacing is calculated in a similar manner for different growth

conditions, and a scaling law between λSDAS and ∆ is established. As shown in Fig. 7.11,

the SDAS decreases with the increase in the alloy melt supersaturation. This behavior

is consistent with previous experimental and numerical studies [216, 221, 222], where the

secondary arm spacing was reduced as a result of increasing driving force in the liquid.

Nonetheless, while the secondary arms are always arranged linearly along the primary

arm, the two-dimensional calculation in the present section gives us a good estimation

for the arm spacing in three-dimensions.
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Figure 7.10: Formation of symmetric secondary dendrites under diffusive regime.

0

50

100

150

200

0.48 0.5 0.52 0.54 0.56 0.58 0.6

S

e



o

n

d

a

r

y

d

e

n

d

r

i

t

e

a

r

m

s

p

a



i

n

g

λ

S

D

A

S

Melt supersaturation ∆

Phase-�eld simulation

Fit

Figure 7.11: Secondary dendrite arm spacing as a function of melt supersaturation. Inter-

dendritic spacing decreases with an increase in the melt supersaturation. The best fit follows a

non-linear analytical fit of the form λSDAS ∝ ∆k3.

7.3 Primary dendrite arm spacing under diffusive-

convective regime

7.3.1 Selection mechanism

In the present section, the prediction of inter-dendritic spacing under the influence of

melt convection is studied, where the direction of melt flow is perpendicular to the ax-

isymmetric dendritic growth direction. At an imposed convection velocity Ux = 0.45, the
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Figure 7.12: (a)-(d) Primary dendrite arm spacing with solidification time, where inclined

perturbations develop along the solid-liquid interface as a result of lateral convection. Presence

of strong convective transport mechanism enhances the splitting of dendritic tips, which in turn

modify the selection mechanism of the primary dendrite array. Formation of a stable dendritic

array under the influence of melt convection, where secondary branches are biased along the

upstream (left) direction only as result of convection driven solute enrichment in the inter-

dendritic spaces.
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Figure 7.13: Concentration and velocity fields near a dendritic array under diffusive-convective

conditions. Strong convective transport near the dendritic tip stimulates the tip splitting insta-

bility to modify the selection mechanism of primary dendrite arm spacing. The side branches

also undergoes splitting to generate isotropic seaweed type branches.

Figure 7.14: Comparison between solutal profiles near the foremost dendritic tip under dif-

fusive and diffusive-convective regime. The presence of strong concentration gradients assist

tip-splitting driven selection mechanism of primary arms.

spatiotemporal evolution of the dendritic array is depicted in Fig. 7.12(a)-(d), wherein

the primary arms developed along a planar interface front transform into a steady state
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dendritic array. As a result of an additional convective transport mechanism in the bulk

liquid phase, it is discovered that the solutal fields near the dendritic tips as well as the

inter-dendritic interaction are completely affected, see Fig. 7.13. Similar as in the earlier

sections, the Mullins-Sekerka instability [30] initiates the amplification of random per-

turbations along the length of the planar interface. However, from the initial stages of

solidification itself and as depicted in Fig. 7.12(a), the perturbations evolve towards the

downstream direction (right boundary). Since the rejected solute at the boundary layer

is swept away by the imposed convection velocity, an axial tilt of the primary arms is no-

ticed throughout the later stages of directional solidification, see Fig. 7.13(b). This tilting

behavior is consistent with previous numerical and experimental studies [85, 223], where

the imposed lateral flow modified the axial orientation of the primary arms. As shown in

Fig. 7.12(c), the presence of convective solute flow nearby the dendritic array enhances the

solutal gradients, and encourages the secondary branches arms to grow into new primary

dendrites. This behavior is captured through the comparison of one-dimensional solutal

fields near the foremost dendritic tip. Depicted in Fig. 7.14, the steeper diffusion length

near the primary arm tip promotes the dynamic branching of the tips, and consequently

new dendritic arms are developed in order to maintain the stability limit of the primary

arm spacing. Afterwards, due to flow-induced solutal gradients near the axisymmetric

dendrites, the selection mechanism of the primary dendrites under diffusive-convective

regime is modified by the successive branching of secondary arms developed along the

upstream direction.

Similar as to pure diffusive conditions, the primary arm spacing is calculated at various

melt supersaturations and the relation between PDAS and ∆ in the presence of melt

convection is shown in Fig. 7.16, and the best fit follows an analytical relationship λPDAS ∝
∆k2 , where the exponent k2 = −9.8. When compared with the primary dendrite arm

spacing under diffusive conditions, it is observed here that the PDAS decreases, and the

magnitude of the exponent k2 is also smaller than for diffusive regime. It is also important

to note that the primary arm spacing under diffusive-convective regime is smaller than the

minimum array stability limit for approximately all growth conditions. Thereby, although

the primary arms attain a stable configuration, the generation as well as the amplification

of secondary arms for large supersaturations are completely inhibited. Furthermore, the

PDAS as a function of solidification velocity R is also depicted in Fig. 7.15, where the

non-linear fit also follows the scaling law of the form λPDAS ∝ Ra2 . As well as the

proportionality constant, the exponent a2 decreases when compared with the exponent

a1 under pure diffusive regime. When the solidification velocity is small, the interface

movement is controlled by the presence of a large solutal diffusion boundary layer ahead

the dendritic tip. Subsequently, with the increase of the interface velocity, the solutal

boundary layer becomes thinner and thinner, which sequentially results in decrease in the

arm spacing. From the simulations, it can be elucidated that the secondary branches grow

opposite to the flow direction, and thereby establish a tertiary arm. As a consequence, a
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Figure 7.15: Primary dendrite arm spacing as a function of melt supersaturation under diffusive-

convective regime. Inter-dendritic spacing decreases in the presence of lateral melt convection.

The best fit follows an non-linear analytical fit of the form λPDAS ∝ ∆k2. When compared with

diffusive regime, the exponent decreases k2 < k1.

new primary stem is generated to systematically reduce the primary dendrite arm spacing.

Therefore, based on the series of two-dimensional simulations, it can thus be concluded

that the introduction of lateral convection in the bulk alloy melt modifies the selection

mechanism of a dendritic array, and the primary dendrite arm spacing decreases when

compared with pure diffusive conditions.

The present observation is in complete agreement with an experimental study [224],

where it was concluded that the magnetically driven melt created an inter-dendritic flow,

which subsequently carried the enriched solutal liquid through the mushy zone. Later,

the primary dendrite arm spacings were fitted with the Hunt and Lu [50] theory, and

the best fit scaling law elucidated that the primary arm spacing systematically decreased

as the solidification velocity was increased. Furthermore, simulations with Ux < 0.45

have also shown that due to the presence of weak convection velocities in the melt,

the primary dendrite arms spacing is unaffected. Similarly, while Sharp and Hellawell

[215] concluded that the alloy composition has little effect on the prediction of primary

dendrite arm spacing, Spittle and Lloyd [225] found that for steady-state growth under low

temperature gradients, the primary arm spacing decreased as the alloy concentration was

increased in the liquid phase. It was also concluded that the experimental observations

were independent of alloy composition for high temperature gradients. Nevertheless,

in many cases it was assumed that the inter-dendritic spacing decreased as the alloy
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Figure 7.16: Primary dendrite arm spacing as a function of solidification velocity under

diffusive-convective regime. Inter-dendritic spacing decreases in the presence of lateral melt

convection. The best fit follows an non-linear analytical fit of the form λPDAS ∝ Ra2. When

compared with diffusive regime, the exponent decreases a2 < a1.

concentration increased for any growth condition [61, 226].

7.3.2 Morphology of secondary dendrites

Figure 7.17: Comparison of secondary dendrite morphology under diffusive and diffusive-

convective regimes. Symmetric side branches transforms into an asymmetric morphology as

a result of convective transport in-between the inter-dendritic spaces. Convection induced tip

splitting generate new primary arms.

From the stable dendritic array, the most notable effect is observed through the de-

velopment of asymmetric secondary arms along the primary trunks. As a result of non-

uniform distribution of the solute concentration between the inter-dendritic spaces, the
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secondary arms amplify along the upstream direction. Shown in Fig. 7.17, the high so-

lute concentration at the downstream side of the dendrites inhibits the formation of sec-

ondary branches, thereby altering the microstructural characteristics of a cast alloy [224].

Fig. 7.17 also depicts the distinct characteristics of secondary branches when compared

with the primary dendrite morphology under diffusive. In accordance with the present

observation, the formation of asymmetric side branches was reported by Shevchenko et

al. [85], wherein the solute accumulation was caused by the obstructed of solute drain

off via forced flow. It was also concluded that the melt flow perpendicular to the growth

direction provokes a preferential growth of the secondary arms at the upstream side.

Moreover, it is also important to note that the morphology of the secondary arms also

depends on the direction of melt flow.

In Chapter 6, the formation of tip splitting microstructures was attributed to sys-

tems with isotropic interfaces. The ramified pattern underwent tip splitting alternatively

to generate a degenerate seaweed microstructure. In the present scenario, even for an

anisotropic columnar dendrite there exists a possibility to observe the branching mecha-

nism in the presence of convective transport near the dendrite tip. As shown in Fig. 7.17,

the isotropic behavior of secondary arms is enhanced by the curl of the convective forces

near the solid-liquid interface. From an imposed anisotropic strength δαβ = 0.03, under

the cooperative effect of diffusive and convective transport near the primary dendrite

tip, the side branches transform into a frequent tip splitting structure along the inflow

direction. After an initial branching event, the side branch now develops towards the di-

rection of its steepest gradient, and thereafter transform into a tip-splitting branch with

coarsening. Lastly, this phenomenon is noticed only in the upper range of the stability

limit, where the inter-dendritic spacing is wide enough for the secondary arms to evolve

perpendicular to the primary branch.

7.4 Summary

In this chapter, the prediction of primary dendrite arm spacing is investigated under the

cooperative effect of diffusion and convection in the liquid phase. Firstly, under pure

diffusive regime, it is has been established that there exists a wide allowable range of

primary dendrite spacing for a given set of growth conditions. The selection mechanism

of primary stems is driven by the dendritic submerging instability limit at the minimum

rather than the branching instability. Besides, the microstructural evolution from the

onset of planar instability during directional solidification can be divided into three stages:

an initial competition stage, a submerging stage and a lateral adjustment stage. It is

shown that the primary dendrite arm spacing decreases with the increase in the melt

supersaturation, and a scaling law of the form λPDAS ∝ ∆k1 is established. Next, the

coarsening behavior of secondary arms is captured which follows the well known kinetic
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law. In addition, the calculated secondary dendrite arm spacing also decreases with the

increase in the alloy composition in the liquid phase.

The role of liquid phase convection is also studied, where it is observed that the inter-

dendritic arm spacing decreases with an increase in the melt supersaturation. Similar to

as pure diffusive conditions, a scaling law is established, where the exponent appreciably

decreases k2 < k1 when compared with pure diffusive conditions. The submerging and the

overgrowth mechanism of the dendritic arms are analyzed via the inter-dendritic solutal

distribution. From the numerical results it is concluded that the presence of an additional

mass transport in the bulk liquid phase advects the solute near the dendritic tips, which

in turn modifies the selection mechanism of the primary dendrites. The present numer-

ical results suggest that the convection-drive selection mechanism is a dominant regime

at Ux = 0.45 and if is chosen larger, the selection mechanism of PDAS is dominated

by branching instability along the upstream direction. Furthermore, the morphology of

secondary dendrites is significantly different for simulations with and without convec-

tion. The symmetric amplification of the side arms translates into an asymmetric growth

along the upstream direction in the presence of lateral convection. Moreover, due to the

presence of convective rolls in the inter-dendritic spaces, a seaweed type behavior of the

secondary arms is also captured.

In casting processes, randomly oriented seeds nucleate first on the chill casting surface,

and later grow along their preferred crystalline orientations in the shape of columnar

dendrites. Since the competitive growth of multiple grains with different orientations has

a profound influence on the final microstructure as well as on the segregated pattern [72],

the inter-dendritic growth competition is addressed in detail in the forthcoming chapter.
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Prediction of inter-dendritic growth

competition

Over the last few decades the unidirectional solidification of metallic alloys has garnered

interest in industrial as well as in scientific domains [227, 228]. Especially, in the form

of single-crystals, high performance materials have been routinely produced through the

directional solidification of Ni-based super alloys. Depending upon the interplay between

heat and solute, a wide range of oriented dendritic grains are produced. In polycrystals,

the misaligned dendrites typically interact and compete with each other to affect the

microstructural and crystallographic hallmarks of a cast alloy, and thereby a competitive

growth between various oriented grains is a key factor to obtain the desirable texture. In

the presence of a grain boundary, the dendritic sidebranches may become new primary

dendrites, making sidebranching the principal mechanism for the creation of new primary

spacings, and hence for the selection of inner grain structure. Moreover, the dendritic

growth competition determines which of the two grains will occupy the liquid space in

between the two crystals, and thereby governs the shape of the resulting GB. In order to

improve the applicability, and to understand the microstructural evolution, it is important

to investigate the mechanism of grain selection in columnar dendrites. In this regard, the

inter-dendritic growth competition at a converging grain boundary under the cooperative

effect of diffusion and convection is investigated in this chapter. The results described in

this chapter have been published in Computational Materials Science [10].

8.1 Dendritic overgrowth theory

The classical overgrowth model by Walton and Chalmers [229] addressed the inter den-

dritic growth competition in converging and diverging crystals. Whenever two grains

converged at the solid-solid grain boundary (GB), the overgrowth model predicted that a

favorably oriented (FO) dendrite shall overgrow an unfavorably oriented (UO) dendrite.

123
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Predominantly, the dendrites that evolve along the direction of heat flow are called as

favorably oriented (FO) dendrites, and the dendrites that grow with a finite inclination

with respect to the growth direction are called as unfavorably oriented (UO) dendrites, as

diagrammatically illustrated in Fig. 8.1. It was suggested by Walton and Chalmers that

the UO dendrites typically require a larger undercooling to keep up with the position of

a FO dendrite, and thus the persistent lag of a misoriented UO dendrite results in the

overgrowth of a FO dendrite. This widely accepted conventional overgrowth model was

later reported by Rappaz et al. [230, 231], where an UO dendrite was sequentially blocked

by the primary arms of a favorably oriented dendrite. Additionally, for diverging grains,

the development of secondary and tertiary branches along the arms of FO dendrites was

regarded as the deterministic factor to eliminate an UO dendrite arm.

Figure 8.1: (a)-(b) A schematic illustration of converging and diverging dendritic growth com-

petition at the grain boundary. In accordance with the Walton and Chalmers theory [229], a

conventional overgrowth phenomenon is showcased where the favorably oriented (FO) dendrites

overgrow the unfavorably oriented (UO) dendrites at the grain boundary.

8.2 Oriented dendritic array

Generally, the inter-dendritic growth competition is affected by several thermodynamic

material parameters. Nonetheless, the main factors that affect the overgrowth behavior

of columnar dendrites are briefly discussed. To begin with, the growth of a single den-

dritic array with different crystal orientations is studied, where the growth direction is

misaligned when compared with the axial direction.

8.2.1 Role of tip undercooling

Since the leading dendritic tip with a small undercooling blocks the growth of an adjacent

dendrite with a large tip undercooling, the variation of tip undercooling with crystal ori-

entation angle is first investigated. In an supersaturated melt of composition ∆ = 0.525
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and an anisotropic strength δαβ = 0.03, the dendritic arrays with different misorientation

angles are depicted in Fig. 8.2. As shown, the tip position of the dendritic array lowers as

the misorientation angle of the dendritic array increases, and therefore, the undercooling

at the tip position increases with the increase in the misorientation angle. Thereafter,

in order to overgrow an aligned dendrite and dominate the inter-dendritic growth com-

petition, the misoriented dendrites require a larger tip undercooling. However, the sole

position of dendritic tips cannot explain the growth competition at the grain boundary.

Figure 8.2: Dendritic morphologies with various misorientation angles (a) θ = 0◦, (b) θ = 15◦,

(c) θ = 30◦.

8.2.2 Role of inter-dendritic spacing

As discussed in the previous chapter, it is well known that the imposed melt supersat-

uration produces a wide range of inter-dendritic spacing along a solidifying interface.

However, the study was limited to axis-symmetric primary dendrites only, and there-

fore in the present section, the variation of tip concentration for different inter-dendritic

spacing and misorientations is shown in Fig. 8.3. In tune with an earlier experimental

observation [232], our simulations have also indicated that the tip concentration decreases

with large inter-dendritic spacing. It is important to note that for the tilted dendrites,

the difference in the tip concentration is significant when compared with the aligned ones.

Fig. 8.3 also indicates that when the spacing of the misaligned dendrite array is larger

than that of the aligned one, its tip concentration can be smaller and its tip position can

be higher. Nevertheless, it should be noted that these simulations are carried out for a

single-oriented dendritic array, and therefore any conclusion remarking that the UO den-

drite array with large spacing may be ahead of the FO dendrite that is obtained only by

comparing the individual growth behavior of differently oriented dendrites is insufficient.

A direct comparison with Fig. 8.1 also illustrates that the impingement of converging

dendrites brings out new dynamics at the grain boundary. Henceforth, the prediction

of the inter-dendritic overgrowth is incomplete by only analyzing the growth behavior of

single grains, and hereafter systematic simulations of two converging dendritic arrays are

needed to explore the manner of the overgrowth.
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Figure 8.3: Variation of tip concentration with inter-dendritic spacing for different misorienta-

tion angles.

8.3 Growth competition in converging dendrites

The growth competition among converging dendritic grains is studied in this section,

where the UO dendrite with a misorientation angle of θUO = 15◦ is simulated. The

competition of converging dendrites under different growth conditions is systematically

analyzed so as to reveal the mechanism of grain selection in polycrystallites.

8.3.1 Initial and boundary conditions

Figure 8.4: Schematic illustration of the simulation setup along with the imposed initial simula-

tionand boundary conditions. Ten equidistant spherical seeds are initialized in a supersaturated

melt of composition ∆. Here, the blue seeds are oriented favorably along the growth direction at

θFO = 0◦, whereas, the unfavorably oriented seeds green in color are misoriented at θUO = 15◦

in the anticlockwise direction.
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As shown in Fig. 8.4, a computational domain of 1000∆x× 750∆y numerical cells is

selected for the present chapter. As an initial condition and in an uniformly supersatu-

rated melt of composition ∆ = 0.525, the phase-field simulation starts with 10 equidistant

spherical seeds at the bottom of the computational domain with the simulation param-

eters shown in Table. 8.1. Depicted in blue and green colors in Fig. 8.4, the first five

seeds are named as favorably oriented (FO) dendrites with θFO = 0◦, whereas, the next

five seeds are called unfavorably oriented (UO) dendrites, inclined at θUO = 15◦ in the

anticlockwise direction with respect to the growth direction. In this study, the crystal

orientation along the y-direction is defined as θ0 = 0◦ and the anticlockwise direction is

always taken as positive. Moreover, based on their orientation and position, all the spher-

ical seeds have been numbered accordingly in Fig. 8.4. As the present chapter explores

the role of liquid phase convection, the initial distance between the spherical seeds is kept

constant for all the simulations. Similar to previous chapter, the boundary conditions for

the left and right side of the simulation domain is considered periodic for all the fields.

The lateral flow is introduced from the left boundary wall and travels along the horizontal

direction of the domain. Likewise, on the top and bottom sides, the Neumann boundary

condition is applied for the phase and solutal fields, whereas, a slip condition is applied

for the velocity fields. Additionally, a moving frame method [192] is applied whenever the

total number of cells between the foremost solid-liquid interface and the top boundary is

less than 450 numerical cells. Thereafter, for every simulation time step, the bottom cells

along the growth direction are shifted downwards and cutoff. This methodology typically

saves computational time, and also ensures that the concentration fields at the dendritic

tips are unaffected by the imposed boundary conditions.

Table 8.1: Parameters to simulate inter-dendritic growth competition under diffusive-convective

regime.

Description Parameter Value

Melt supersaturation ∆ 0.525

Anisotropic strength δαβ 0.03

Interface width ε 4.00

Simulation Domain Nx×Ny 1000×750

Misorientation θUO 15◦

Discretized grid space ∆x = ∆y 1.0

8.3.2 Inter-dendritic growth competition under diffusive regime

At first, a two-dimensional competitive growth of converging dendrites is simulated in

pure diffusive regime. During the progressive solidification of a dendritic network in

Fig. 8.5(a), it is observed that the favorably oriented dendrites overgrow the unfavorably
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Figure 8.5: (a) Under pure diffusive regime, simulation screenshots demonstrate the growth

competition of columnar dendrites converging at the grain boundary. The blue colored dendrites

represent the favorably oriented dendrites, whereas, the green colored dendrites correspond to un-

favorably oriented dendrite. (b)-(e) The temporal evolution of converging dendritic morphologies

in a supersaturated melt, where the FO1 dendrite impinges and subsequently blocks the primary

arm of the UO1 dendrite. This dendritic overgrowth at the grain boundary is commonly known

as the conventional overgrowth phenomenon. Highlighted in Fig. 8.5(a), the dendrites that over-

grow and dictate the growth process at the grain boundary are named as ‘GB dendrite’.
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oriented dendrites over a period of time. The temporal evolution of the concentration

fields in Fig. 8.5(b)-(e) depicts the overgrowth mechanism of columnar dendrites con-

verging at the grain boundary. At t = 1000 in Fig. 8.5(b), it is found that the tip

position of the dendrite UO1 is already behind the FO1 dendrite. As the solidifying

front advances, the dendrite FO1 migrates towards the UO1 dendrite without producing

amplified secondary arms, such that the GB orientation remains in parallel to the FO1

dendrite. Subsequently, the inter-dendritic spacing decreases and the position of the UO1

dendrite tip rapidly descends. After the elimination of an unfavorably oriented primary

arm at t = 3700, the dendrite FO1 now becomes a GB dendrite, as schematically denoted

in Fig. 8.5(a). Such an overgrowth phenomenon usually happens due to the overlap of

the concentration fields at the solid-solid grain boundary and the difference in the tip

undercooling between the FO1 and UO1 dendrites. Since the position of the tips differ

and the lag of a misaligned dendrite is significant, the UO1 dendrite is always blocked

by the primary arm of the FO1 dendrite. Besides, as reported recently by Takaki et

al. [76], the rate of elimination of an UO dendrite also increases with an increase in

the orientation angle of UO dendrites. From a morphological point of view, the simu-

lated inter-dendritic structure at the grain boundary is completely in agreement with an

experimental micrograph [68].

The present observation in Fig. 8.5, commonly known as the conventional overgrowth

phenomenon is corroborated by the classical dendritic overgrowth theory of Walton and

Chalmers [229], where the FO dendrites overgrew as a consequence of low undercooling at

the tip position. Furthermore, as described by Li et al. [71], the conventional overgrowth

phenomenon is also independent of the inter-dendritic seed spacing. Since the lateral

migration of an UO dendrite is principally towards the FO dendrite, its spacing with

an adjacent dendritic neighbour decreases, and thereafter the misoriented dendrite is

invariably blocked at the grain boundary.

8.4 Growth competition under diffusive-convective

regime

In the present section, the microstructural evolution of converging dendrites is systemat-

ically investigated under the cooperative effect of diffusion and convection in the liquid

phase, where the direction of melt flow is perpendicular to the dendritic growth direction.

The first two microstructures in Fig. 8.6 represent the competitive growth of converging

columnar dendrites at low melt velocities, from Ux = 1.5×10−1 to Ux = 1.5×10−1, where

Ux is the magnitude of convection velocity along the x-direction. Similar as in the pre-

vious section, from the outset, the FO1 dendrite primary arm blocks the UO1 dendrite,

and appropriately dominates the inter-dendritic growth competition. This impingement
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Figure 8.6: (a)-(e) Competitive growth of columnar dendrites under the influence of melt con-

vection converging at the grain boundary. The conventional overgrowth behavior transforms into

an unusual overgrowth behavior as the convection velocity gradually increases. (a)-(b) While the

FO1 dendrite arm dominates the inter-dendritic growth competition upto Ux = 1.5× 10−1, (c)-

(e) the misoriented UO1 dendrite overgrows and sequentially eliminates the favorably oriented

dendrites at high melt velocities. The lateral migration of the converging grain boundary towards

the upstream direction (left direction) is observed for Ux > 1.5 × 10−1. The overgrowth events

are highlighted schematically for each case.
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of FO and UO dendrites at low melt velocities in Fig. 8.6(a)-(b) is associated with the

conventional overgrowth phenomenon, and accordingly, the influence of velocity fields

near the dendrite tips is marginally noticed, where the growth front deflects the primary

trucks towards the downstream (right) direction, see Fig. 8.6(a)-(b). Since the evolution

of the FO1 dendrite is controlled by the interfacial anisotropy under pure diffusive regime,

the lateral tilt is completely absent. However, the presence of convective transport near

the solidifying front tilts the FO1 dendrite arm along the flow direction. Corroborated

by previous experimental and computational studies [85, 223], the solutal gradients are

weakened as a result of an overgrowth event, and the solute distribution near the FO1

tip shifts entirely along the outflow (right) direction, thereby generating different tilting

modes under diffusive-convective regime.

Next, as the convection velocity is increased, from Ux = 1.5× 10−1 to 3.0× 10−1, the

overgrowth behavior at the grain boundary is unconventional. As shown in Fig. 8.6(c)-

(e), the unfavorably oriented dendrites with θUO = 15◦ overgrow at the expense of FO

dendrites. From Fig. 8.6(c)-(e), it is noticed that the primary arm of the UO1 dendrite

converges at the GB and sequentially retards the growth of the FO1 dendrite. This

anomalous behavior of dendrites in Fig. 8.6(c)-(e), namely, the unusual overgrowth phe-

nomenon [66, 68], has been primarily observed in various experimental [64, 66, 68] and

phase-field studies [71, 72, 76]. Recently, the in-situ findings of D‘souza et al. [68] and

Zhou et al. [66] concluded that a misoriented primary dendrite shall indeed overgrow at

the expense of a well oriented columnar FO dendrite. The study argued and proposed

that the solute interaction at the grain boundary plays a key role during the dendritic

growth competition which was neglected in the earlier overgrowth models [229, 231, 233].

Based on the available literature, such an overgrowth transition in a bicrystal dendritic

network in Fig. 8.6 has never been reported before, especially under the cooperative

influence of diffusion and convection in the liquid phase.

The dendritic growth competition is further analyzed in Fig. 8.7, where the tem-

poral volume fractions of favorably and unfavorably oriented grains are depicted. The

dominance of favorably oriented dendrites in a conventional overgrowth phenomenon is

depicted in Fig. 8.7(a), where the grain volume fraction diverges after the initial stages of

columnar solidification. After the first overgrowth event at the grain boundary Fig. 8.7(a),

the favorably oriented dendrites dominate the growth competition as a result of physi-

cally blocking the primary dendritic arms of UO dendrites. In contrast, due to successive

unusual overgrowth events at the grain boundary, the volume fraction of an UO grain

overtakes the FO dendritic grain in Fig. 8.7(b). Since the UO1 dendrite drifts towards

the grain boundary to protrude a favorably oriented dendrite, the volume fraction of

UO dendrite increases with time. Once the overgrowth mechanism is entrenched at the

grain boundary, the GB dendrite dictates the growth competition. Furthermore, the

lateral spacing between the UO1 and the FO1 dendrite tip position increases with the
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misorientation angle such that the leading FO1 dendrite continuously blocks the lagging

UO dendrites with time. As a result, the volume fractions of UO dendrites diverge im-

mediately in a conventional overgrowth. Conversely, the solutal layer near the UO1 tip

becomes thinner and the UO1 dendrite overcomes the leading FO1 dendrite in an unusual

overgrowth model. In order to travel laterally towards the converging grain boundary and

to overgrow a FO dendrite, the time taken by the UO1 dendrite increases, and therefore

the temporal volume fractions diverge during the later stages of inter-dendritic growth

competition. In both overgrowth behaviors, the diverging nature of volume fractions

indicates the individual grain superiority during the inter-dendritic growth competition.

Hereafter, for a polycrystalline solidification with several grains oriented with various

misorientations, the dendritic growth competition can be predicted via analyzing the

individual grain volume fractions at the grain boundary.

Figure 8.7: (a)-(b) Temporal volume fractions of favorably and unfavorably oriented grains at the

grain boundary. (a) The diverging point for each case indicates the most preferred and dominant

grain during the dendritic growth competition. FO dendrites dominate growth competition in a

conventional overgrowth behavior, while the unfavorably oriented dendrites protrude consistently

to outgrow the FO dendrites during an unusual overgrowth phenomenon at the grain boundary.

Likewise, from the present set of two-dimensional simulations, it is noteworthy that

the minute secondary and tertiary branches play no major role in the overgrowth mech-

anism and thus far the imposed numerical noise has also no influence on the dendritic

growth competition. Again, as mentioned in the previous section, the unusual growth

phenomenon shown here does not depend on the inter-dendritic spacing and therefore

a FO dendrite shall always be eliminated for conditions greater than the melt velocities

Ux > 1.5× 10−1.
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8.4.1 Drift velocity

Whenever the misoriented UO1 dendrite travels laterally towards the grain boundary,

the drift velocity of the primary arm is calculated as

Vd =

∣∣∣∣dxtdt

∣∣∣∣ (8.1)

where, xt is the position of the UO1 arm along the x-axis, and t is the solidification

time. As depicted in Fig. 8.8, an analytical fit provides us with a relationship V avg
d ∝ Pef,

where, Pef = UxL/2Dβ
i is the flow Peclet number, the inter-dendritic seed spacing L = 100

is considered as the reference length and V avg
d is the drift velocity averaged across the

simulation time. For the present set of two-dimensional phase-field simulations, the inter-

seed spacing is considered as the reference length, as it does not influence the results. As

shown in Fig. 8.8, the average drift velocity of the UO1 primary arm increases linearly

with an increase in the flow Peclet number. During a conventional overgrowth behavior,

the FO1 overgrows at the grain boundary and the UO1 dendrite position significantly

lags behind. Contrarily, a considerable increase in the average drift velocity with Pef

indicates that the displacement of the unfavorably oriented primary arm towards the

inflow direction is larger than its counterpart, which in turn translates to an unusual

overgrowth event at the grain boundary. As solidification progresses along the y-direction,

the UO1 dendrite lateral drift towards the regions of higher chemical potential gradients

result in the systematic elimination of an individual FO dendrite at the grain boundary.

This linear dependency of the drift velocity reaffirms that the advected solute near the

solid-liquid interface has a significant role on the overgrowth behavior among converging

dendrites.

8.4.2 Effect of misorientation angle of UO dendrites

It is important to note that the above set of two-dimensional simulations have been per-

formed at a fixed misorientation angle θUO = 15◦, and the critical velocity to predict the

inter-dendritic overgrowth behavior depends on the inclination angle of the UO dendrites.

In this regard, the effect of the misorientation angle of the unfavorably oriented dendrites

is investigated in detail. In order to have a direct comparison, the total number of den-

drites and the boundary conditions have been kept the same in the present section, and

the misorientation angle of the unfavorably oriented dendrites is systematically modified.

A microstructural selection map is depicted in Fig. 8.9, wherein the inter-dendritic

overgrowth behaviors are diversified over a wide spectrum of misorientation angle θUO and

flow Peclet numbers Pef. As shown, the unusual overgrowth phenomenon is restricted to

higher flow Peclet numbers and lower misorientation angles only. On the other hand, it is

observed that the conventional overgrowth region increases with an increase in the inclina-
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tion angle of the unfavorably oriented dendrites. As the imposed misorientation restricts

the inclination of the UO1 dendritic tip towards the grain boundary, the inter-dendritic

growth competition results in the elimination of an unfavorably oriented dendrite at the

solid-solid grain boundary. Henceforth, the critical lateral melt velocity to predict the

transition between the two dendritic overgrowth behaviors at the grain boundary increases

with the increase in the misorientation angle θUO, and for θUO ≥ 20◦, the conventional

overgrowth behavior is always observed at the solid-solid grain boundary.

8.5 Unusual overgrowth mechanism

Figure 8.10: (a)-(b) For Ux = 1.0 × 10−1, the concentration and velocity fields during a con-

ventional overgrowth event at the grain boundary. The FO1 dendrite impinges and eliminates

the UO1 dendrite and undergoes the conventional overgrowth mechanism at the grain boundary.

The size of the black arrows indicate the magnitude of the velocity fields. The dashed lines

indicate the position at which the 1D concentration fields are extracted.

From the above two-dimensional phase-field simulations, it is evident that the liquid

phase convection modifies the overgrowth mechanism at the solid-solid grain boundary.

Therefore, in the present section, the unusual overgrowth phenomenon during the com-

petitive growth of converging dendrites is analyzed in detail. Figs. 8.10 and 8.11 portrays

the solutal and velocity fields of FO and UO dendrites at low and high convection veloc-

ities, respectively. Due to the presence of an additional convective mass transport in the

bulk liquid phase, the amount of solute advected varies, and as illustrated at t = 3000, the

solutal fields near the solidification front are different in Figs. 8.10(a) and Figs. 8.11(a).

At Ux = 1.0× 10−1, the FO1 dendrite is already ahead of the UO1 dendrite, and as the

rate of evolution of the UO1 dendrite arm is much lower than the FO1 dendrite arm, the

UO1 dendrite is subsequently blocked by the FO1 dendrite primary arm. In contrast,
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Figure 8.11: (a)-(b) Concentration and velocity fields during an unusual overgrowth event at

Ux = 2.5×10−1. Here, the UO1 dendrite shifts towards the GB and subsequently eliminates the

FO1 dendrite. Since the imposed melt velocity and the amount of advected solute near the tip

is high, the UO1 dendrite outgrows its counterpart at the grain boundary. The size of the black

arrows indicate the magnitude of the velocity fields. The dashed lines indicate the position at

which the 1D concentration fields are extracted.

due to the imposed misorientation θUO = 15◦, the misoriented UO1 dendrite initially falls

behind the FO1 dendrite tip in Fig. 8.11. However, on account of the imposed convection

velocity and the resultant solute, the relative driving force at the UO1 dendrite tip is

high for Ux = 2.5 × 10−1. The enriched solute layer around the unfavorably oriented

dendritic network becomes thinner on the upstream direction, which in turn assists the

lateral movement of the UO1 dendrite. Hereafter, the UO1 dendrite retains its position

and eventually outgrows the FO1 dendrite at t = 4500 in Fig. 8.11(b). For an unusual

overgrowth behavior in Fig, 8.11, the dendrite UO1 migrates towards the upstream direc-

tion and reduces its inter-dendritic spacing with the FO1 dendrite rapidly. Additionally,

the lag of a misaligned dendrite is not so large for Ux = 2.5 × 10−1 which compels the

UO1 dendrite be also able to overgrow the FO1 dendrite. Therefore, when the GB den-

drite cannot recover form the overgrowth of its FO neighbor, it shall always be blocked

by the approaching UO dendrite. This behavior is elucidated via the one-dimensional

solutal fields near the FO1 and UO1 dendrites in Fig. 8.12. The contrasting nature of the

lateral profiles causes an asymmetric field at the grain boundary, which in turn enforces

a restricted motion of the FO1 dendrite, resulting in an unusual overgrowth event at the

GB. Besides, the absence of the UO1 concentration peak in Fig. 8.12 at Ux = 1.0× 10−1

signifies the lag of the UO1 dendrite at the grain boundary.

For both dendritic overgrowth mechanisms, it is interesting to note that the solutal

movement in-between the FO5-FO2 and UO2-UO5 dendrites promotes an asymmetric
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Figure 8.12: Lateral solutal profiles near the FO1 and UO1 dendrites at two different convec-

tion velocities. Contrasting nature of the solutal field modifies the overgrowth mechanism for

converging dendrites at the grain boundary. The fluctuations indicate the imposed noise in the

supersaturated melt.

formation of secondary dendrites. It is observed that the sidebranches are found to be

largely favored on the upstream (left) direction of the primary arms and completely sup-

pressed on the otherside. The presence of the left-to-right melt flow causes a cumulative

solute enrichment at the downstream direction, which in-turn lowers the local under-

cooling and correspondingly hinders the growth of the secondary dendrites along the

downstream (right) direction.

The unusual overgrowth mechanism in the present chapter agrees in spirits with the

previous experimental investigations [66, 67, 69], where the overgrowth behavior of con-

verging dendrites was studied for bicrystal samples. From the systematic in-situ exper-

iments, it was concluded that the overgrowth of a well aligned columnar dendrite was

hindered and the dendritic spacing with its immediate neighbour decreased at the grain

bounary. Similarly, previous phase-field investigations [71, 76] have also reported the

presence of an unusual overgrowth phenomenon for a binary alloy system. While the uni-

directional solidification study of Li et al. [71] reported that the modification of diffusion

length for GB dendrites at low pulling velocities was influential for the overgrowth of UO

dendrites, Takaki et al. [76] analyzed the trajectories of the dendritic tips and reported

that the presence of an asymmetric diffusion layer in front of the FO and UO dendrites

was responsible for the unusual overgrowth phenomenon among columnar dendrites at

the solid-solid grain boundary.
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8.6 Effect of interfacial anisotropy

Over past many years, it is well known that the solid-liquid interfacial anisotropy is an

important parameter to determine the shape of a dendrite [91]. In general, the strength

of the imposed solid-liquid interfacial anisotropy dictates the morphology and in turn

modifies the solutal fields near a dendritic tip. As the inter-dendritic growth competition

deals with the overlap of the concentration fields at the solid-solid grain boundary, the role

of the solid-liquid interfacial anisotropy on the grain selection mechanism is investigated

in the present section.

Figure 8.13: Inter-dendritic growth competition of columnar dendrites at various anisotropic

strengths δαβ. The unusual overgrowth phenomenon observed for δαβ ≤ 0.04 translates into

a conventional overgrowth behavior at the grain boundary as the anisotropic strength gradu-

ally increases. A degenerate and a branched UO1 dendrite is generated for weaker anisotropic

strengths.

At an imposed convection velocity Ux = 2.5 × 10−1, Fig. 8.13 depicts the simula-

tion screenshots of the two-dimensional simulations of converging dendrites at different

anisotropic strengths δαβ. With an increase in the imposed anisotropic strength, the un-

usual overgrowth in Fig. 8.13 translates into a conventional overgrowth phenomenon at



Chapter 8 139

the grain boundary. The growth competition shown in the previous section is recaptured

for weaker strengths δαβ ≤ 0.04, wherein the UO1 dendrite protrudes and retards the pri-

mary arm of the FO1 dendrite. However, for δαβ = 0.05, a strong crystalline anisotropy

in the solid-liquid surface energy completely locks the preferred growth direction of the

dendritic tips, and thus the inter-dendritic growth competition is in accordance with the

conventional overgrowth model by Walton and Chalmers [229]. For a directionally so-

lidified columnar dendrite, the advected solute near the solid-liquid interface and the tip

shape oversees the behavior of columnar dendrites. At higher δαβ, the contribution from

the anisotropy in the surface energy dominates, and therefore the dendritic tip responds

to the concentration field in order to change its growth direction towards the steepest

chemical gradient in the alloy melt. Subsequently, the FO1 dendrite arm eliminates an

unfavorably oriented dendrite at the grain boundary. The interfacial energy and advected

solute in the liquid melt near the dendritic tip dynamically compete with each other to

determine the overgrowth mechanism at the grain boundary. Besides, since the imposed

crystalline anisotropy is weak for δαβ = 0.02, the flow pattern near the solid-liquid inter-

face induces oscillations to the UO1 dendrite tip and triggers tip splitting events. There-

after, any further decrease in the solid-liquid interfacial anisotropic strength (δαβ) results

in the formation of strongly tilted seaweed microstructures as discussed in Chapter 6.
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Figure 8.14: At an imposed convection velocity Ux = 2.5×10−1, the grain boundary orientation

θGB at various anisotropic strengths. The by-product of a positive GB orientation is the elim-

ination of a FO dendrite, whereas, a negative GB orientation indicates the overgrowth of FO

dendrites. A linear fit provides us with a scaling law θGB ∝ δαβ. The blue colored line indicates

the transition region between the two overgrowth behaviors.

Next, the grain boundary orientation θGB as a function of anisotropic strength is

determined in Fig. 8.14, where θGB is the inclination angle of the grain boundary with re-

spect to the growth direction. A best linear analytical fit provides us with the scaling law
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of the form r1 + r2δαβ, where r1 and r2 are proportionality constants. Until δαβ ≤ 0.04,

the grain boundary with an anti-clockwise orientation monotonously tilts towards the

upstream direction, whereas, at δαβ = 0.05, the GB is inclined along the downstream di-

rection as a result of an unfavorably oriented dendrite elimination. In Fig. 8.13, although

the lateral displacement of the GB is profound for weak δαβ, a restricted lateral drift of

GB dendrite is noticed for higher anisotropic strengths. Here, the GB orientation sys-

tematically goes negative (clockwise direction), which means that well-oriented dendrites

shall never get eliminated by misoriented dendrites at the solid-solid grain boundary. It

is also observed that the rate at which the UO1 dendrite impinges the favorably oriented

dendrites decreases with an increase in the anisotropic strength.
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Figure 8.15: A microstructural selection map for inter-dendritic growth competition at various

combinations of (δαβ,Pef). While the unusual overgrowth phenomenon dominates at higher melt

velocities, an increase in the anisotropic strength produces the widely known conventional over-

growth behavior at the solid-solid grain boundary. The schematic transition zone is represented

by the solid line.

Lastly, a novel microstructural selection map is depicted in Fig. 8.15, wherein the

overgrowth behaviors are diversified over a wide range of anisotropic strength δαβ and

flow Peclet numbers Pef. On one hand, it is observed that the unusual overgrowth

phenomenon is restricted to higher Peclet numbers and lower anisotropic strengths only,

while on the other hand, it is noticed that the conventional overgrowth region increases

with an increase in the anisotropic strength. Since the imposed anisotropic strength

restricts the movement of the UO1 dendritic tip towards the upstream direction, the

inter-dendritic growth competition results in the elimination of an unfavorably oriented

dendrite at the grain boundary. Furthermore, this tendency to restrict the displacement

of the UO1 dendrite decreases with the decrease in the imposed anisotropic strength. It

is noteworthy that the critical convection velocity to predict the transition between the
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overgrowth behaviors increases with an increase in the anisotropic strength. From the

microstructural selection map, it is also emphasized that the solid line in Fig. 8.15 is a

schematic division of the two overgrowth mechanisms and not a strict transition zone.

Nevertheless, based on the series of two-dimensional simulations, it is concluded that the

strength of the solid-liquid interfacial anisotropy also plays a key role in determining the

overgrowth mechanism among columnar dendrites at the grain boundary.

8.7 Summary

In this chapter, systematic two-dimensional phase-field simulations are performed to in-

vestigate the growth competition of columnar dendrites under the cooperative presence

of diffusion and convection in the liquid phase. Illustrated in previous experimental stud-

ies, the overgrowth behaviors of columnar dendrites at the grain boundary is captured

and analyzed. Under pure diffusive regime, it is shown that the growth competition

in converging dendrites follows the classical grain selection mechanism of Walton and

Chalmers, where a favorably oriented dendrite impinges and eliminates an unfavorably

oriented dendrite at the grain boundary. However, after the introduction of melt con-

vection, the overgrowth model translates into an anomalous overgrowth phenomenon.

Distinguished as an unusual overgrowth behavior, it is concluded that the presence of an

additional mass transport in the bulk liquid phase advects the solute near the FO and UO

dendrite tips, which in turn modifies the overgrowth mechanism at the grain boundary.

The findings in this chapter further broaden our understanding on the overgrowth mech-

anism under diffusive-convective conditions, which has been ignored in earlier phase-field

studies.

The role of solid-liquid interfacial anisotropy on the prediction of inter-dendritic

growth competition is also emphasized in the present chapter. For anisotropic strengths

δαβ ≤ 0.04, the unusual overgrowth behavior is always observed for columnar dendrites at

the grain boundary. A major conclusion from the present chapter is that a strong solid-

liquid anisotropic strength δαβ > 0.04 locks the direction of the dendritic tips resulting in

a conventional overgrowth phenomenon, in accordance with the classical model of Walton

and Chalmers. The numerical results also indicate that that the critical melt velocity to

predict the overgrowth mechanism increases with an increase in the anisotropic strength.

The results shown in the present chapter can be further extended to a polycrystalline

dendritic network with several misoriented grains, where the role of combined presence of

diverging and converging grains shall be investigated. Furthermore, although the present

chapter provides realistic insights into the grain selection mechanism, in future, three-

dimensional phase-field simulations are planned to study the growth competition among

columnar dendrites for converging and diverging grains, and the role of solute interaction

in the presence of melt flow.
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Conclusions and Outlook

9.1 Summary

Microstructures are strategic link for governing and processing materials behavior. In

solidification processes, the convective transport near a solid-liquid interface is an integral

part of microstructure formation. The cooperative effect of diffusive and convective fields

can modify the morphology of a dendrite, induce the structural transition from equiaxed

to a globular microstructure, or coarsen dendritic networks in cast products. Building

upon previous experimental and theoretical studies under pure diffusive regime, in this

dissertation, the behavior of unidirectionally solidified microstructures is predicted under

diffusive-convective conditions. A graphical summary of the topics covered in this thesis

is depicted in Fig. 9.1.

Following the motivation and outlook for the present study, Chapter 2 addresses the

essential topics in directional solidification. Beginning with the development of mor-

phological perturbations, the theory of constitutional supercooling along with the linear

morphological instability for a planar interface is discussed. Afterwards, the formation

of equiaxed and columnar dendrites under different growth conditions is reviewed. The

fundamental aspects of the phase-field method is summarized in Chapter 3, where a thor-

ough literature review highlighting the recent developments of the phase-field approach

in dendritic solidification is presented. Moreover, the dynamics of conserved and non-

conserved order parameter is interpreted through classical examples. In Chapter 4, the

governing equations for phase, concentration and velocity fields to model unidirectionally

solidified microstructures in the diffusive-convective regime are elucidated in detail.

The next part of the thesis pertains to results and discussion section, where the theory

of liquid grooving at the grain boundaries is extensively studied in Chapter 5. At first,

the present phase-field model is validated and benchmarked via comparing the groove

kinetics as well as the groove geometries with the seminal theory of Mullins [6]. Next,

145
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Figure 9.1: Graphical representation of the topics addressed in this dissertation.

for the first time through phase-field simulations, the theory of grain boundary grooving

is reported in the diffusive-convective regime. It is observed that the groove kinetics

under convective transport is completely modified when compared with the volume dif-

fusion governed groove profiles. Besides, the simulated groove profiles depict an excellent

agreement when compared dynamically with previous experimental and sharp interface

theory. Consistent with experimental studies, it is shown that the interfacial instabilities

are first observed at the grain boundary ridges. In unidirectional solidification, these

perturbations develop into a complex network of tip splitting microstructures. Although

these microstructures display a random morphology, the deterministic behavior of tip

splitting structures is examined in Chapter 6. Having found a very good agreement with

the sharp interface analytical criterion, it is revealed that the curvature driven fluxes

stimulate the formation of rotation points at the solid-liquid interface, which in turn

promote systematic tip splitting events in a complex microstructure. In addition, the

structural transition of seaweed microstructures is shown in the presence of lateral flow.

Herein, the degenerate seaweed structures transformed into strongly tilted structures as

the convective forces dominated near the solidifying isotropic interface. Furthermore, a

novel seaweed to columnar dendrite transition due to the dynamic competition between

bulk and interfacial forces at the interface is showcased.

The variation of composition in-between the advancing primary dendrites and the sur-

rounding interdendritic region gives rise to microsegregation within the solidified crystal.

Normal to the growth direction, this segregation is characterized with a stable dendritic

array. In the presence of lateral convective flow, it is shown that the selection mechanism

as well as the primary dendrite morphology is modified in Chapter. 7. Interestingly, the
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spacing selection after planar destabilization yielded reduced spacings with the introduc-

tion of convective transport in the inter-dendritic spaces. While the selection mechanism

in diffusive conditions is driven by the overgrowth of neighbouring dendrites in the array

stability limit, the generation as well as the amplification of the tertiary branches is the

underlying principal during the cooperative effect of convection and diffusion in the liquid

phase. Under realistic situations, the formation of axisymmetric dendrites is sensitive to

growth conditions, and more often the growth of several misoriented dendrites is widely

observed in castings. In Chapter 8, it is demonstrated that the converging dendrites

at the grain boundary follow the widely accepted overgrowth theory of Chalmers and

Walton [229], and the advection of solutal fields near the UO dendrites enhance the re-

cently observed unusual overgrowth behaviour at the grain boundary. Lastly, through

morphological maps, for the first time the effect of interfacial anisotropy is also investi-

gated, where the strength of the imposed anisotropy transformed the overgrowth behavior

among converging dendritic networks at the grain boundary.

9.2 Future directions

Although the present study comprehensively unravels the unidirectional solidification

of microstructures in the diffusive-convective regime, the following open topics can be

addressed in future.

Firstly, the network of solid-solid grain boundary represents a key microstructural

element in nanocrystalline thin films. Accordingly, they determine the physical, mechan-

ical and functional properties of diverse applications. While the common mode of failure

in thin films has been studied extensively through the groove kinetics in Chapter 5, the

morphological development as well as the growth kinetics of a three-dimensional polycrys-

talline thin film could be investigated in future. Widely observed in metallic and ceramic

applications [147–150], a study on the preferential intergranular liquid penetration at the

solid-solid grain boundary network shall furnish more quantitative information on thin

film breakups. The role of grain size, temperature gradient, surface energies and other

parameters could be investigated too. In order to provide realistic insights into thin film

dynamics, the corrosive behavior of polycrystals via condensation and evaporation of

vapour phases could also be incorporated in the model formulation. Furthermore, in this

study, the diffusion of solutal species has been restricted to liquid phase only, thereafter,

a phase-field study to address the role of an additional transport mechanism along the

grain boundaries could be performed.

Secondly, from the preceding chapters, it has been shown that the phenomenon of mi-

crosegregation in binary alloys detrimentally modifies the solidification microstructures.

In a three-dimensional dendritic network, since the melt flow is impeded by the primary

arms, it is important to study the flow permeability in the mushy zones and obtain precise
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microsegregation results in castings and ingots [234]. Therefore, predicting flow perme-

abilities via three-dimensional simulations shall be a promising topic to systematically

evaluate various solidification conditions. Likewise, the phase-field model could be ex-

tended to include the role of natural convection driven by local density gradients in the

alloy melt.

Thirdly, apart from dendritic microstructures, the equilibrium solidification of three

phases trigger rod-like microstructures in binary eutectic and monotectic alloys [235]. In

general, the monotectic alloys with a homogeneous liquid phase L1 generates liquid phase

L2 droplets embedded in the solid matrix through the monotectic reaction at a constant

monotectic temperature [235]. Systems such as Al-Bi, Fe-Sn, Al-In undergo liquid phase

separation and offer interesting pathways for alloy development [236]. Due to the pres-

ence of thermocapillary forces near the liquid-liquid interfaces in monotectic alloys, the

present work could be extended to investigate the behavior of polyphase microstructures

in potential materials for automotive applications.
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Appendix A

Effect of numerical parameters on

grain boundary grooving

A1 Effect of temporal and spatial discretization

In most alloy systems, the solid-liquid interfaces are roughly atomic scale, that is, the

transition between the ordered solid and the disordered liquid takes place gradually over

a distance of several atomic spacings. It is impractical and computationally challenging

to perform phase field simulations in the realistic length scale, and the only viable path

is to use models in which the numerical interface thickness is much larger than the

thickness of the physical interface. Therefore, through the advantage of thin interface

limit [5, 88, 110], the phase-field simulations are generally performed at micrometer length

scale and thereafter replicate the atomistic scale interfacial features. To show that the

results presented in this dissertation are not affected by the chosen numerical parameters,

a systematic convergence study is performed to illustrate that the temporal and spatial

discretizations do not effect the kinetics as well as the morphology of the grain boundary

grooving phenomenon.

Firstly, the effect of temporal discretization ∆t is shown in Fig. A1, where the grain

boundary groove profiles for different ∆t are simulated and compared. As depicted in

Fig. A1, the groove profiles corresponding φα = 0.5 are extracted and compared. Here, the

complete overlap of the groove profiles at various ∆t confirm that the groove geometries

are unaffected by the magnitude of the time step.

On the other hand, the effect of spatial discretization is studied, whereby the ratio
∆x

ε
is systematically decreased and then the steady state groove root position dssg is

evaluated for all the simulations with finite bicrystal grains. Here, Fig. A2 depicts the

groove root position as a function of the ratio
∆x

ε
, where it is observed that the chosen

grid spacing has little influence on the growth rate, and primarily does not change its
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Figure A1: Effect of temporal discretization ∆t on the grain boundary groove profile. The

complete overlap of the isolines illustrate that the chosen numerical parameters have no influence

on the groove geometry.
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Figure A2: For finite bicrystal grain, steady state groove root position dssg as a function of the

ratio
∆x

ε
. For all two-dimensional simulation in Chapter 6,

∆x

ε
= 0.25 is chosen, and thereby

the grid discretization has no influence on our numerical results.

value by more than 2%. For the present study grain boundary grooving, the chosen

discretization spacing ∆x = 0.50 and interface width ε = 2.0, and therefore the ratio
∆x

ε
= 0.25 accounts very well for all our two-dimensional phase-field simulations.
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Figure A3: Effect of spatial discretization ∆x on the grain boundary grooving. The convergence

of groove root velocities indicate that the spatial discretizations does not play any role in the

present work.

In addition, at different spatial resolutions, the steady state velocity is shown in

Fig. A3 where the groove root velocity vroot is calculated numerically from the position of

the groove root between the successive time for various mesh sizes. As shown in Fig. A3,

it is observed that for different grid resolutions ∆x the convergence in the root velocities

is systematically achieved, thereby confirming that the groove kinetics are unaffected by

the grid effects.

A2 Effect of third order parameter

By performing the simulations with different interface energy parameters, artificial third

phases appear in the two-phase interfaces [125]. In the phase-field model, the appearance

of artificial third phases at the trijunction is suppressed by the addition of a third order

term in the obstacle potential. In addition, the magnitude of the artificial phase value

does not only depend on the ratio of the interface energies, but also on the interface

width. Henceforth, in the present section, the effect of the third order term on the

groove profiles is illustrated in Figs. A4 and A5. As depicted in Fig. A4, the presence of

an additional third order term modifies the groove profile in finite grains, especially for

δαβδ = 10. Furthermore, the groove depth is calculated for various δαβγ in Fig. A5, where
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an increase in the third order term seemingly modifies the temporal evolution of the

groove root. A pinning effect is also observed at the root positions, wherein oscillations

arise and relatively affect the dynamics at the root position.

In order to model liquid grooving at the grain boundaries, the magnitude of the third

order parameter is chosen as δαβγ = 2.0, and thereby from the simulated profiles in this

section, it is confirmed that the third order parameter has no influence on the numerical

results in Chapter. 5.
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Figure A4: Effect of third-order term on the groove profiles. A pinning effect is observed for

γαβδ = 10.0, where the grain boundary groove profile is significantly altered under steady state

conditions.

A3 Determination of equilibrium angle

The equilibrium angle at the groove root derived from the phase-field simulations is

verified in this section. Assuming that the phase boundaries are isotropic, the equilibrium

angle Φ at the groove root with respect is given by Φ = 2 cos−1

(
γgb

2γsl

)
. In Chapter 5, the

ratio
γgb

γsl

= 1.0 is considered, and the equilibrium angle Φ at the groove root is calculated

as 120◦. Consequently, the angle at the groove root is derived from the simulated two-

dimensional grain boundary profile. In order to calculate the equilibrium, the φ = 0.5

isoline is fitted on the either side of the grain boundary with a fourth order polynomial,

as shown in Fig. A6 with a solid black line, and the point of intersection between these

two polynomials is first determined. Next, the equilibrium angle made by the tangent

to the polynomial at this point of intersection is calculated analytically to be 120.8◦.

A direct comparison of the theoretically obtained equilibrium angle Φ, and the fourth

order polynomial fit of the interface shapes shows an excellent agreement between the
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Figure A5: Effect of additional third-order term on the groove root position. For γαβδ = 10.0

the groove root position is affected under steady state conditions where a pinning effect at the

trijunction is observed.

two methods. Henceforth, the present analysis also concludes that the chosen obstacle

potential does not effect the equilibrium angle at the groove root.

A4 Parameters

Although the numerical and material parameters used in this study are dimensionless,

for better understanding, the typical order of magnitudes are given below.

Table A.1: Typical order of magnitudes for key phase-field parameters.

Description Parameter Value

Discretized grid space ∆x = ∆y 1.0× 10−7m

Interface width ε 4.0× 10−7m

Diffusivity Dβ
i 1.0× 10−9m2/s

Kinematic viscosity ν 1.00× 10−6m2/s

Fluid density ρ 1.00× 103Kg/m3



156 Appendix

Figure A6: Determination of the equilibrium groove angle from the phase-field simulations. A

fourth-order polynomial is fitted to the extracted φ = 0.5 isolines. Subsequently, the equilibrium

angle made by the tangent to the polynomial at the point of intersection is calculated. The

equilibrium angle is schematically represented at the trijunction.



Appendix B

Effect of grid discretization and

lattice anisotropy on tip splitting

phenomenon

B1 Effect of interface width and spatial discretiza-

tion

In order to show that the tip splitting phenomenon discussed in Chapter 6 is not an

numerical artifact due to the chosen finite interface width thickness, the convergence of

interface velocity is shown. Here, all other numerical parameters have been kept same

and several two-dimensional simulations are performed at different interface thickness ε,

through the advantage of thin interface limit. Moreover, all the simulations are run long

enough to attain steady state velocities. In Fig. B1, it is systematically observed that

with the decrease in ε the convergence in the interface velocities is completely achieved

at ∆x = 1.0 spatial discretization. Thereby, confirming that simulations with a large

interface thickness do not influence our results.

Furthermore, the role of discretization spacing on our numerical simulations is also

studied, where a four-fold anisotropic dendrite in an supersaturated melt of composition

∆ = 0.5 and with an anisotropic strength δαβ = 0.02 is simulated. In order to investigate

the effect of discretization spacing, the ratio
∆x

ε
is systematically decreased and then the

steady state tip velocity Vtip is evaluated for all the simulations. Here, Fig. B2 depicts

the tip velocity as a function of the ratio
∆x

ε
, where it is observed that the chosen grid

spacing has little influence on the growth rate and primarily does not change its value

by more than 3%. For the present study, the chosen discretization spacing ∆x = 1.0 and

interface width ε = 4.0, and therefore the ratio
∆x

ε
= 0.25 accounts very well for all our

two-dimensional phase-field simulations.
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Figure B1: Convergence at various interface widths confirms that the numerical result is not

influenced by the finite width of the diffuse interface.
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Figure B2: Tip velocity as a function of the ratio
∆x

ε
. For all two-dimensional simulation in

Chapter 6,
∆x

ε
= 0.25 is chosen, and thereby the grid discretization has no influence on our

numerical results.

B2 Effect of lattice anisotropy

In continuation with the study on lattice anisotropy in Chapter 6, the procedure is re-

peated for stronger anisotropic strengths δαβ and a direct comparison is shown in Fig. B3.

For stronger δαβ, an excellent agreement between the phase-field simulated equilibrium

shape and the sharp-interface crystal shape is achieved.
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Figure B3: (a)-(b) For an equilibrium shape with radius R00 = 15, the effect of lattice anisotropy

at two different anisotropic strengths. A direct comparison shows an excellent agreement with the

sharp interface theory for both cases. Here, the obtained effective anisotropies are δeαβ = 0.0096

for δαβ = 0.01, and , δeαβ = 0.028 for δαβ = 0.03 respectively.

Furthermore, for various spherical crystal radii R00, the role of lattice anisotropy is

also investigated. For three different seed radius, it is noticed from Fig. B4, Fig. B5 and

Fig. B6 that the effective anisotropy depends weakly on the selected R00. Lastly, it is

important to note and emphasize that for all cases, the effective anisotropy δeαβ varies

less than 5% of the imposed value, and in turn represents the accuracy in our phase-field

results.
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Figure B4: Effect of lattice anisotropy on an equilibrium crystal seed with radius R00 = 15, where

an excellent agreement with the sharp interface theory is observed, and the obtained effective

anisotropy δeαβ = 0.0005.
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Figure B5: Effect of lattice anisotropy on an equilibrium crystal seed with radius R00 = 30, where

an excellent agreement with the sharp interface theory is observed, and the obtained effective

anisotropy δeαβ = 0.0002.
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Figure B6: Effect of lattice anisotropy on an equilibrium crystal seed with radius R00 = 60, where

an excellent agreement with the sharp interface theory is observed, and the obtained effective

anisotropy δeαβ = 0.00009.
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Influence of interfacial curvature on

tip splitting phenomenon

In order to further testify, the tip splitting phenomenon is elucidated for various interfa-

cial curvatures during initialization. While a crystal growth follows the typical Mullins-

Sekerka theory [30], the formation and the position of the two symmetric tips are pre-

dicted by the sharp interface analytical criterion only. Based on the present theory, any

shape with a non-uniform curvature that varies non-linearly with its arc length undergoes

splitting. An example in Fig. C1 shows the influence of interfacial curvature on the tip

splitting mechanism. Fig. C1(a)-(b) depicts that for any initial condition where ∇sκ is

large, the tip splitting is pronounced. The two tips symmetrically evolve on either side of

the trough region. Now, from the crystal shapes with decreasing ∇sκ in Fig. C1(c)-(d), it

is discovered that the splitting process diminishes, and with∇sκ = 0, it is finally observed

that the time evolution of a planar interface has no branching or perturbances. This is in

accordance with the sharp-interface theory, since ∇sκ = 0, the analytical criterion ∇2
sκ

disappears and therefore in practice, the tip splitting is completely restricted. Now, if the

aforementioned comparison is carried out for the interface profiles where ∇sκ decreases,

is also observed that the magnitudes of surface fluxes subsides. Therefore, the two tips

in Fig. C1(c) shall never acquire the pronounced state as α0 = 0.02 or α0 = 0.04, as long

as the simulation domain is exhausted. Surface fluxes at the tip are considered to be

negligible for the cases where ∇sκ is small, as the difference between the two magnitudes

is relatively large. On the other hand, weak gradients throughout the profile do not gen-

erate any protuberances too. Lastly, through the present study, it is reaffirmed that the

tip splitting mechanism is deterministic and initiated by the presence of the curvature

driven fluxes.
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Figure C1: The influence of non-uniform curvature during the morphological evolution of tip

splitting microstructure. Pronounced tips observed for large ∇sκ diminish as ∇sκ decreases.

Finally, as predicted by the theory, the absence of splitting and perturbeances for ∇sκ = 0 is

observed. Here, α0 is the dimensionless shape factor in f(x) = −α0(x− h)2 + p.
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[25] N. Noël, H. Jamgotchian, and B. Billia. Influence of grain boundaries and natural

convection on micro structure formation in cellular directional solidification of dilute

succinonitrile alloys in a cylinder. Journal of Crystal Growth, 187(3-4):516–526,

1998.

[26] D. Benielli, N. Bergeon, H. Jamgotchian, B. Billia, and Ph. Voge. Free growth

and instability morphologies in directional melting of alloys. Physical Review E,

65:051604, May 2002.

[27] K Murakami, H Aihara, and T Okamoto. Growth direction of columnar crystals

solidified in flowing melt. Acta Metallurgica, 32(6):933–939, 1984.

[28] LR Morris and WC Winegard. The development of cells during the solidification

of a dilute Pb-Sb alloy. Journal of Crystal Growth, 5(5):361–375, 1969.

[29] AG Borisov. Pattern formation during directional solidification of bicrystals. Jour-

nal of Crystal Growth, 156(3):296–302, 1995.

[30] William W Mullins and RF Sekerka. Stability of a planar interface during solidifi-

cation of a dilute binary alloy. Journal of Applied Physics, 35(2):444–451, 1964.

[31] James S Langer. Instabilities and pattern formation in crystal growth. Reviews of

Modern Physics, 52(1):1, 1980.

[32] S De Cheveigne, C Guthmann, and M-M Lebrun. Nature of the transition of the

solidification front of a binary mixture from a planar to a cellular morphology.

Journal of Crystal Growth, 73(2):242–244, 1985.

[33] W Losert, BQ Shi, and HZ Cummins. Evolution of dendritic patterns during alloy

solidification: Onset of the initial instability. Proceedings of the National Academy

of Sciences, 95(2):431–438, 1998.

[34] James A Warren and JS Langer. Stability of dendritic arrays. Physical Review A,

42(6):3518, 1990.

[35] James A Warren and JS Langer. Prediction of dendritic spacings in a directional-

solidification experiment. Physical Review E, 47(4):2702, 1993.

[36] T Ihle and H Müller-Krumbhaar. Fractal and compact growth morphologies in

phase transitions with diffusion transport. Physical Review E, 49(4):2972, 1994.



166 Bibliography

[37] Silvere Akamatsu, Gabriel Faivre, and Thomas Ihle. Symmetry-broken double

fingers and seaweed patterns in thin-film directional solidification of a nonfaceted

cubic crystal. Physical Review E, 51(5):4751, 1995.

[38] GP Ivantsov. Temperature field around a spherical, cylindrical, and needle-shaped

crystal, growing in a pre-cooled melt. Temperature field around a spherical, 58:567–

569, 1985.

[39] DE Temkin. Growth rate of the needle-crystal formed in a supercooled melt. Soviet

Physics Doklady, 5:609, 1960.

[40] GF Bolling and WA Tiller. Growth from the melt. III. dendritic growth. Journal

of Applied Physics, 32(12):2587–2605, 1961.

[41] GF Bolling and WA Tiller. Erratum: Growth from the melt. III. dendritic growth.

Journal of Applied Physics, 33(7):2400–2400, 1962.

[42] R Trivedi and WA Tiller. Interface morphology during crystallizationI. single fila-

ment, unconstrained growth from a pure melt. Acta Metallurgica, 26(5):671–678,

1978.

[43] JS Langer and H Müller-Krumbhaar. Theory of dendritic growth I. elements of a

stability analysis. Acta Metallurgica, 26(11):1681–1687, 1978.

[44] M Rappaz and Ph Thevoz. Solute diffusion model for equiaxed dendritic growth.

Acta Metallurgica, 35(7):1487–1497, 1987.
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