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Abstract The business relevance of customer churn analysis is increasing due
to the growing availability of corresponding data and intensifying competition.
Here, especially the predictive accuracy of modeling approaches is in the focus of
researchers and practitioners alike, with deep neural networks recently becoming
an attractive method due to their high performance in a variety of fields. However,
from a practical point of view, other factors such as the ease of application and
model interpretability are also to be considered. These aspects are generally
viewed as shortcomings of deep neural networks. Therefore, a novel framework
for the application of deep learning in churn analysis is developed and tested in
a practical setting. It is shown, that a less complex application procedure and
more easily interpretable prediction modeling can be achieved.
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1 Introduction

In competitive markets with innovative technologies and global competition, the
existing customer base is considered one of a company’s most important assets
(Kumar and Reinartz, 2016). Accordingly, customer retention is a determinant
of persistent economic success (Larivière and van den Poel, 2005). In that
matter, the early identification and forecast of customer churn is of key relevance
(Hung et al., 2006). In the course of the digitization of customer relationships
and the resulting increase in data volume and complexity, currently, the demands
placed on the analytical methods used as well as on their forecasting quality
are rising (Keramati et al., 2014). At the same time, developments in the area
of artificial intelligence (AI) entail profound economic and societal changes,
particularly related to the increasing automation of information processing
and decision-making, supported by an almost unlimited flow of information
(LeCun et al., 2015). A central technique to the progress in a variety of
practical applications is deep learning based on artificial neural networks
(Zhang et al., 2018). However, in customer data analysis, the exploration and
practical integration of deep learning as an innovative forecasting method is still
in its infancy (Najafabadi et al., 2015).

The purpose of this paper lies in the investigation of the potential of deep
learning in customer churn analysis from a practical point of view by identifying
key model requirements for the users as well as examining propositions for
their implementation. Its main contribution is the development of an analytical
framework to increase the applicability of deep learning models with regard
to procedural complexity and interpretability. The remainder of this paper
is structured as follows: The next section gives a brief overview of deep
learning and discusses its current application potential in customer analysis.
Next, Section 3 provides an introduction to customer churn analysis and its
methodological challenges. Section 4 then defines the experimental design of
the study and introduces an analytical framework for the implementation of deep
neural networks in churn analysis with special focus on practical applicability
through reduced procedural complexity and increased model interpretability.
Subsequently, in Section 5, empirical findings are presented and applied methods
are assessed from a user perspective. Finally, a conclusion is drawn and practical
implications are derived in Section 6.
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2 Deep Learning and its Application in Customer
Analysis

2.1 Background and Functionality

Deep Learning, in the literature also referred to as deep structured learning
or hierarchical learning, has emerged since 2006 as a new area of machine
learning research (Hinton et al., 2006). The research field in its present form
builds on the neuroscientifically influenced development of plain linear models
and the subsequent evolution to simple artificial neural networks through
the structured interconnection of neurons and associated training methods
(Rumelhart et al., 1986). The aforementioned advances have enabled deep
learning methods, as a class of machine learning techniques, that use multiple
layers of information processing and abstraction to effectively exploit complex,
compositional nonlinear functions for supervised or unsupervised learning
of underlying feature representations (LeCun et al., 2015). While different
definitions for these techniques belonging to the category of deep learning exist,
two core elements of all approaches are identified by Deng (2014):

1. The structured composition of several layers or phases of nonlinear
information processing, and

2. the hierarchical way of learning from feature representations of different
levels of abstraction.

Accordingly, the characterizing depth of such models results from either a
greater amount of computational stages or of learned concepts. However, so
far no consensus among researchers on a quantifiable minimum depth for the
inclusion in this model category is reached (Schmidhuber, 2015).

2.2 Application Potential

The most distinguishing feature and strength of artificial neural networks in gen-
eral is their ability to automatically extract distinctive information by uncovering
underlying patterns in available data representations, which most notably results
in their excellent modeling power (Keramati and Ardabili, 2011). When it comes
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to the efficiency in putting this potential to use, especially for the representation
of complex functions, deep network architectures have an advantage over shallow
ones. According to Bengio and LeCun (2007) this is achieved by overcoming the
limitations of shallow models regarding the compactness of representation with
respect to the overall required number of computational units (depth-breadth
tradeoff), the amount of necessary training examples with increasing input
dimensionality (curse of dimensionality) and the computational cost of learning
with high volume of data. The resulting superiority of deep architectures in the
representation of abstract functions ultimately makes them applicable for highly
complex tasks (LeCun et al., 2015). To this end, various new architectures
beyond basic feedforward concepts, including recurrent networks (Hochreiter
and Schmidhuber, 1997), convolutional networks (LeCun et al., 1989) and
deep autoencoders (Hinton and Salakhutdinov, 2006) have been developed.

In the field of customer analysis, the strengths of deep learning algorithms
identified by literature are most recently viewed as a chance to cope with the
high demands caused by the accumulation of large amounts of customer data
(Najafabadi et al., 2015). Due to the associated rising data complexity, besides
classical data mining techniques, deep learning algorithms are increasingly
being used for classification and regression tasks to accurately predict cus-
tomer behavior and, therefore, optimize resource allocation and the companies’
responses to customer needs (Wedel and Kannan, 2016).

Looking at the application of deep learning models for customer analysis
in business practice however, there are still reservations and inhibiting factors
affecting the practical implementation. First, the complexity of model config-
uration and optimization is affected, as it is perceived as an unstandardized
and time-consuming process (Paliwal and Kumar, 2009). Another unappealing
characteristic trait of deep neural networks to practitioners involves the lack of
interpretability. By hiding their internal logic to the user, they fall in the category
labeled as black box models (Guidotti et al., 2019). This term characterizes
systems, that do not provide meaning in understandable manner to humans. This
implies in particular not enabling explanations for its reasoning, from which
e.g. inferences regarding the significance of certain variables could be drawn
(Doshi-Velez and Kim, 2017).

To overcome this weak point of low interpretability in many machine learning
systems, two general model properties worth striving for are proposed by Lipton
(2016). Accordingly, interpretability in supervised machine learning models
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can be achieved through transparency at the level of individual components
(simulatability), the entire model (decomposability) or the learning algorithm
(algorithmic transparency) as well as through post-hoc interpretations in the
form of text explanations, visualization, local explanations or explanation by
example. In this context, applied research in various scopes has, amongst others,
been provided by Baehrens et al. (2010) and Ribeiro et al. (2016b).

3 Customer Churn Analysis

3.1 Methodology and Central Challenges

Customer churn prediction as the early identification and forecast of threatening,
customer-initiated termination of the business relationship is a crucial part of
the broader field of churn management in customer relationship management
(CRM) (Lejeune, 2001). Its importance arises from its role as the analytical
basis for customer retention strategies implemented by companies to directly
deal with churn and its consequential influence on the profitability of businesses
(Ganesh et al., 2000). The economic value of long-term customers is widely
recognized in literature (Rosenberg and Czepiel, 1984). Desired targeted and
proactive concepts of churn management in that matter are characterized by the
aim of identifying customers with high inclination to abandon the company at
an early stage to specifically address them with customer retention programs and
incentives in time (Burez and van den Poel, 2007). For the purpose of a sound
analytical basis for this approach, researchers examine customer churn prediction
and potential strategies for improvement from two different perspectives. While
descriptive studies focus on understanding the underlying factors and main
drivers of customer churn (e.g. Ahn et al., 2006; Keaveney, 1995), predictive
research aims at improving churn prediction results by developing and enhancing
prediction models and classification algorithms (e.g. Verbeke et al., 2012).

Customer churn analysis has been described in literature as a five-step process,
that is closely linked to the stages of the general data mining procedure (Datta
et al., 2000; Hadden et al., 2007). It consists of the following phases:

1. Data selection, which is about identifying the optimal customer data with
regard to relevant data sources and input volume to fit the predefined
problem statement and methodological intent (Hung et al., 2006),
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2. Data semantics, where the focus is on understanding and interpreting
the data in the given context for a correct usage in the following phases
(Datta et al., 2000),

3. Feature selection as the process of subsetting the customer feature space
by removing redundant, irrelevant or noisy variables to decrease the
computational complexity of the prediction model (Huang et al., 2010),

4. Model development, where a predictive model is built to forecast the
customers’ churn behavior based on underlying patterns in the input data
(Neslin et al., 2006; Verbeke et al., 2011),

5. Validation of results, that includes validating the model performance and
evaluating its prediction results (Verbeke et al., 2012).

For the application of recent advances beyond traditional data mining like
machine learning methods in this context however, adaptions and alterations
seem indispensable.

Along with the different angles in research to churn analysis as a managerial
or statistical prediction problem, specific challenges to the overall procedure
can be identified. From a predictive point of view, class imbalance stemming
from low churn rates is a central problem, as the objects of interest are located
in the minority class and, therefore, pose a challenge to model learning as
well as performance evaluation (Zhu et al., 2017). Moreover, apart from
structural aspects of the data, the higher relative economic significance of
churners compared to non-churners results in asymmetric misclassification costs
(Weiss, 2004). When it comes to the managerial and practical application aspects
of churn analysis, the need for a probabilistic classification output as the basis for
subsequent customer retention activities is to be considered (Burez and van den
Poel, 2007). Besides, not only the segmentation of customers as a feature of the
prediction output, but also insights in the drivers of customer churn as a result of
that process are of crucial importance (Ahn et al., 2006). Therefore, according
to Verbeke et al. (2011), churn prediction models have to be interpretable and
overall comprehensible to fulfill the demands of practical use.
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3.2 Prediction Modeling

The selection of the optimal classification technique can be identified as one of
the most widely studied fields of churn analysis and is therefore credited with
high relevance for its outcome. The present churn prediction task consists of
the binary classification of the future behavior of, by then, unknown customers
as churners or non-churners based on historical data that is used for model
training (Lima et al., 2011). For that purpose, various categories of prediction
models such as logistic regression (Kumar et al., 1995), decision trees and
random forests (Lemmens and Croux, 2006) as well as neural networks (Huang
et al., 2012) have been applied and tested in the literature so far.

While the first two techniques are considered as the most popular due to
their fast and robust functioning, results regarding the model performance in
churn prediction are ambiguous and commonly depend on the research setting
and the methodological focus (Buckinx and van den Poel, 2005; Verbeke
et al., 2012). Exemplarily, Neslin et al. (2006) and Huang et al. (2012) found
logistic and tree approaches to perform best in the early identification of churning
customers, while Mozer et al. (2000) and Hung et al. (2006) describe simple
neural networks as superior to the aforementioned techniques. In addition,
innovative machine learning methods such as deep learning algorithms are
increasingly included in the discourse. Deep feedforward neural networks are
found to outperform flat architectures as well as standard linear techniques by
Castanedo et al. (2014) and Keramati et al. (2014). Furthermore, architectural
evolutions like recurrent and convolutional neural networks are gaining in
importance due to the expansion of customer churn analysis from established
industries such as telecommunications, finance and retail to online services
and platforms (e.g. Sung et al., 2017). Thus, excellent predictive performance
of deep learning is particularly achieved for churn problems characterized by
data-related challenges like multidimensionality, time dependencies or generic
input complexity (Zhang et al., 2018).

Consequently, the addition of machine learning methods to the range of churn
prediction techniques leads to a higher variety and concentration of similarly
strong methods and subsequently to more complicated model comparison and
selection problems. Therefore, not only from a managerial standpoint, regarding
the trust in and further usability of results, but also from a predictive research
perspective, a need for additional measures beyond mere performance figures
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for the expanded evaluation of churn prediction models is determined. Taking
on this issue for classification models in general, Martens et al. (2011) identify
three key requirements that are supposed to be fulfilled from a user perspective
and apply them to a churn scenario (see also Verbeke et al., 2011): Besides
being able to predict correctly, models should be comprehensible and justifiable
to achieve greater acceptance in practical settings.
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Figure 1: Analytical framework for the implementation of deep learning in churn analysis. R-packages
and functions used: mice, Boruta, recipes, SMOTE, corrr, LIME, ggplot2, and caret.

In this context, the comprehensibility of a model considers how well it is under-
stood and approved by the user and is thus synonymous with its interpretability
(Freitas, 2014). It is frequently deployed as a subjective measure for the mental
fit of a model. At the same time, making model predictions and the logic behind
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them understandable to the user also facilitates examining whether the provided
results are in line with domain knowledge and hence justifiable. To obtain more
comprehensible classification models, three different strategies are proposed by
Martens et al. (2011):

1. Building rule-based models or using rule extraction,

2. combining output types, and

3. visualization.

Hence, regarding the interpretability issue of deep learning models as well
as their postulated strengths in providing accurate predictions for classifica-
tion and regression tasks, the churn literature offers promising approaches.
Thereby, further research, especially regarding the practical application from
a user perspective, is encouraged.

4 Experimental Design

4.1 Data and Analytical Framework

The experimental design of this study is chosen to address the inhibiting factors
of the practical application of deep learning models in churn analysis. To
pursue the goal of lower complexity in usage and higher overall interpretability
and to assess the progress made in that matter, a well-documented data set
in customer churn research is selected. Moreover, to ensure clarity through
unambiguous classification of customers as churners, a contractual churn setting
is examined (Ascarza et al., 2018). The Cell2Cell data set used in this research
was originally published by Duke University’s Fuqua School of Business as a
case study on customer churn of a real US telecommunications provider. The
data contains 51,047 individual customer objects, which are described by 56
potential explanatory variables from the fields of demographics, service usage
and previous contact. In addition, a target variable indicating the future churn
behavior of the customers in the period of 31 to 60 days after the elicitation of
the predictor variables is provided in binary form. The corresponding churn
rate in the data amounts to 28.8 %. Extensive research using the present data
or conformant customized subsets has e.g. been done by Neslin et al. (2006),
Lemmens and Croux (2006), Verbeke et al. (2012) and de Caigny et al. (2018).
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According to these studies, best prediction results can be achieved with decision
tree-based methods. Nevertheless, the seemingly unfavorable data conditions
for high neural network performance are accepted in the present study in favor
of the comprehensive documentation of data set properties.

The following churn analysis is based on a specifically developed analytical
framework aggregating the acquired knowledge on procedural as well as
practical application aspects from machine learning and churn literature as
shown in Figure 1. In the process, particularly the perceived complexity of
model configuration and optimization as well as the lack of interpretability
are addressed by proposing a structured course of action through the example
of deep feedforward neural networks. Implemented exemplary methods and
functions can be adapted according to individual prerequisites and needs along
the suggested steps. The starting points for their implementation are derived
from the identified relevant properties of interpretable machine learning as
well as the proposed strategies to obtain comprehensible classification models.
Conforming to the relevance of these areas to churn prediction and considering
the previous extent of research, of the suggested means in literature, increasing
the model transparency at an individual component level and providing post-hoc
interpretations through local explanations and visualizations are selected as the
most promising approaches. A detailed explanation of the proposed procedure
and applied techniques is given in the subsequent Sections 4.2, 4.3 and 4.4. As
a whole, preprocessing of the raw data to ensure the facilitated processability by
and trainability of deep learning models is implemented as well as a modeling
phase, where churn prediction models are built, trained and optimized for the
present classification task, and an evaluation and interpretation phase using test
data. As a first step towards an increase in practicability, the schematic integration
and guideline itself is supposed to provide a clearer and more standardized
application process and thus make the use of deep learning methods for churn
prediction less complex and time-consuming for practitioners.

4.2 Preprocessing

First, after performing an 80-20 split of the data to obtain training and test
sets and to ensure the individual application of the intended data preprocessing
steps, missing values are dealt with by multivariate imputations via chained
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equations (MICE) to maintain the full extent of the size-wise limited data
set ( van Buuren and Groothuis-Oudshoorn, 2011). Another way of ensuring
stability of test results in this case, besides a validation split, is k-fold cross
validation. However, its implementation along the proposed framework has not
yet been developed and tested. For values missing at random, several imputations
are generated to account for uncertainty by a series of regression models for
continuous and categorical variables, conditional upon their distribution and
dependence on other variables (Schafer, 1997). Next, feature selection is
performed using the random forest-based wrapper method Boruta (Kursa and
Rudnicki, 2010). By reducing the feature space based on variable importance
regarding predictive power and considering underlying inter- and multivariable
relationships, higher model stability through elimination of collinearity and
noise in the data and better generalization ability of deep learning models due
to reduced risk of overfitting are strived for (Dash and Liu, 1997; Guyon and
Elisseeff, 2003). Moreover, a limited number of input variables makes the model
easier to grasp for the users and, therefore, produces higher interpretability
(Piramuthu, 2004). Subsequently, variable transformations are carried out for the
remaining features to improve learning by a deep neural network. Depending on
the individual necessity for each feature, the addressed transformations include
appropriate data type conversions, reduction of the number of categories and
one hot-encoding of categorical variables as well as logarithmic transformation,
discretization and normalization of numerical variables (Kotsiantis et al., 2006;
Sola and Sevilla, 1997). The variable specific, sequential preprocessing steps
are pre-defined in what might be referred to as a custom preprocessing function,
that allows for future single-step application. This not only ensures consistent
transferability of variable-level preprocessing between training and test set, but
also straightforward reproducibility of data preparation for future data. As a
result, data preparation in the form of variable transformations for machine
learning is supposed to be less unwieldy and time-consuming and hence
less complex in practical application.

The final preprocessing phase is formed by oversampling the training data to
deal with class imbalance to the disadvantage of churner as the objects of interest
for an effective training of the deep learning algorithm. The synthetic minority
oversampling technique (SMOTE) is applied to this end (Chawla et al., 2002). As
a variant of regular oversampling, here, instead of exact replications, new objects
belonging to the minority class are artificially created by interpolating randomly
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selected samples. Finally, the effectiveness of the implemented preprocessing
stages regarding positive influence on predictive power of various deep neural
networks with initial as well as optimized hyperparameter configurations
is verified by a back test.

4.3 Network Modeling and Hyperparameter Tuning

The modeling phase of churn analysis is about building, optimizing and selecting
the optimal prediction model. In this study, three different feedforward neural
networks with one to three hidden layers are optimized and contrasted with
respect to their classification performance to confirm the predictive impact of
neural network depth on churn prediction. Since, according to the literature,
the stage of prediction modeling plays a crucial role in the perception of
complexity and comprehensibility by the users, a more well-arranged procedure
for the configuration and optimization of deep learning models in this context
is implemented. A human user should be able to contemplate the coherence
between the parameters of the model and its prediction in reasonable time
(Lipton 2016). This capability is moderated by the size of the model and the
computational effort for inferences. But in that matter, for neural networks in
particular, it can be argued, that also the structured mapping of hyperparameters
and the consequential clarification of their effects on the prediction output can
play a crucial role in an increase of transparency at the model component level
(simulatability) from a practical user perspective.

Accordingly, the key hyperparameters of the networks are predefined in a lucid
register and represented by placeholders in the actual code for model definition.
This not only enables convenient access to the core of the configuration of
deep learning models and ease of application to the user, but also lays the
foundation for the following optimization procedure. Instead of manual, iterative
adaptation and evaluation of hyperparameter settings, automatic grid search
within specified value limits is applied. For better traceability of the effects of
individual configuration changes in the hyperparameter space and, therefore,
maximum transparency at the model component level, this method is chosen
over random search in the present analysis (Bergstra and Bengio, 2012).

The investigated hyperparameters include standard compositional details
to improve prediction performance (Zhang, 2000) as well as regularizers of
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layer parameters (Nowlan and Hinton, 1992) and dropout rate (Srivastava
et al., 2014) to prevent overfitting. Subsequently, the best neural network is
selected regarding the classification performance measured via a validation
split by the area under the receiver operating characteristics curve (AUC or
AUROC) as most commonly used performance criterion in churn prediction and
in logical continuation of the applied hyperparameter optimization objective
(Fawcett, 2006). An extensive debate about appropriate evaluation criteria is
conducted in the literature (e.g. Burez and van den Poel, 2009). To benchmark
the quantitative results and provide a broader context, the deep learning models
are additionally compared with a fully optimized random forest classifier.

4.4 Evaluation and Interpretability of Results

On the basis of the final churn predictions on the test set, a conclusive eval-
uation of the predictive performance of the investigated models is carried
out. In addition, the results provided by the best deep neural network are
interpreted with particular consideration of the special requirements of cus-
tomer churn analysis regarding the informative value and interpretability of
results for practical application. The proposed solutions in the literature to
a higher comprehensibility of classification models built for tasks like churn
prediction are brought together with the suggested approaches for the increase
of interpretability of black box models by the means of post-hoc interpre-
tations. The concept of post-hoc interpretations describes the extraction of
useful information, such as the variable importance of customer features for
a model’s classification decision in churn prediction, from learned models
for practitioners and end users. One emerging approach in that matter is the
use of local explanations for the decision-making behavior of neural networks
(Lipton, 2016). Comparably, the extraction of symbolic rules from trained
models, rather than directly from the data, is proposed to make classification
decisions more comprehensible (Martens et al., 2011).

In this connection, the local interpretable model-agnostic explanations (LIME)
algorithm proposed by Ribeiro et al. (2016b) is applied in the present study to
interpret the deep learning churn classifier by giving faithful characterizations
of the underlying mechanisms of the black box model on an individual instance
level through local approximations with a separate sparse linear model. At the
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same time, this explanation technique provides a way of graphically representing
the latent operations leading to the results and thus also complies with another
proposition made to achieve greater comprehensibility of the displayed model
output for practitioners. The visualization of data in a more interpretable
graphical or tabular format also entails higher intelligibility as well as easier
validation and plausibility of information for the user and therefore also leads to
corresponding justifiability of the model (Martens et al., 2011). To pick up the
justifiability issue and to enhance the users’ trust in the explanatory value of
local findings, correlation analysis and scatter plots are then implemented for
specific variables as supplementary graphical visualization elements.

5 Results

5.1 Preprocessing Effectiveness

First, the impact of the implemented preprocessing techniques is assessed. For
this purpose, four different preprocessed data sets were created, three of which
are adapted forms of the proposed complete procedure, where the stages of
missing value treatment, feature selection or over-sampling of training data are
left out. Then, the influence of the individual preprocessing phases on prediction
performance of various neural networks with different numbers of hidden layers
and diverse levels of hyperparameter optimization is evaluated. An overview of
the obtained results is provided exemplarily for the network with three hidden
layers with and without hyperparameter optimization in Table 1. Overall, for
the majority of the investigated deep learning models, the best classification
performance regarding the AUC is achieved through the implementation of the
full range of preprocessing stages. Only the elimination of missing values instead
of their imputation is found to lead to slightly better results in certain cases.
This is attributed to the relatively low proportion of missing values in the data
and the corresponding small impact of the deletion of customer objects. With
regard to the magnitude of influence, the implemented sampling of the training
data via SMOTE is detected to be the most influential preprocessing stage in
the present case. This adds to existing research on dealing with class imbalance
in churn analysis (Burez and van den Poel, 2009; Zhu et al., 2017).
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When it comes to the applicability of the process, especially the pre-definition
of variable transformation steps is to be highlighted as an advancement towards
a less complex and less time-consuming procedure of data preparation for deep
learning in the eyes of the users. In the context of churn prediction, greater
transparency of the requisite steps for practitioners and higher reproducibility
of feature transformations for newly incoming customer data is achieved.
Additionally, the crucial challenge of leakage of information between training and
test data for legitimate and utilizable results is dealt with by strict data separation
and individual application of the preprocessing methods (Zhang, 2007).

Table 1: Influence of preprocessing steps and hyperparameter tuning on model performance for the
test data.

AUC NA Elimination No Feature Selection No Sampling Full Process

NN3 (default) .617 .617 .615 .622
NN3 (optimized) .638 .641 .614 .645

5.2 Model Performance

The comparison of the implemented neural networks with regard to their
classification performance on the test data shows, that the deep learning model
with three hidden layers, and therefore with the greatest depth among the
investigated networks, achieves the biggest AUC. An overview of the obtained
results is provided by Table 2. In practical terms, the likelihood of assigning a
randomly selected churning customer a higher churn probability than a randomly
selected non-churner is 64.5 % for the best deep learning classifier. Considering
the given data conditions explained above, the classification results of the best
deep neural network are very convincing and the model even outperforms
previous predictions results achieved by various decision tree-based methods
found in literature (see e.g. de Caigny et al., 2018).

Moreover, the value of these results is confirmed as it is the first analysis to
obtain good prediction results using deep neural networks on this data set and, at
the same time, provide insights on the model selection and optimization process.
For the favorable data case at hand, the optimized random forest, included as
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a comparison method, even beats the network’s prediction performance, but
does not show as significantly better results as in similar studies before. The
maximum attained AUC of 0.645 means an increase in test data performance of
3.698 % through the hyperparameter optimization process.

To factor in class imbalance and asymmetric misclassification costs in churn
analysis, the weighting of classes within the target variable is considered as a
cost-sensitive component in the learning algorithm. The setting determining
these weights is identified as a salient network argument.

Table 2: Overview of quantitative prediction model performances for the test data.

Model NN NN NN Random
(1 hidden layer) (2 hidden layers) (3 hidden layers) Forest

AUC .636 .644 .645 .678
Precision .436 .419 .401 .457

Recall .232 .378 .484 .423

In this connection, for practical utilization purposes, the recall value, influ-
enceable by the selected classification threshold, is highlighted as an important
performance measure. The proposition to approach the issue of high complexity
and insufficient interpretability by adding structure and tidiness and therefore
more transparency to the individual component level of model configuration
and optimization is assessed as highly promising. On the one hand, the ease of
application is increased by a more user-friendly access to and clear arrangement
of network hyperparameters, on the other hand the optimization procedure
gains in interpretability. The latter is achieved by making the individual effects
of hyperparameter adjustments traceable over the course of implemented grid
search, as exploited for the class weight argument. Moreover, the accomplished
high transparency and accessibility allow for better control over the tendency to
overfit during network training for the practical user.
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5.3 Interpretability of Results

The application of the LIME algorithm gives insights in the local feature
importance of the neural network’s classification decision for single customer
objects, first of all, in form of a bar graph as shown in Figure 2. This includes
information regarding the predicted class, the determined churn probability, as
well as the most influential customer variables and the extent and direction of
impact on the prediction made for every customer investigated. Moreover, a
condensed visualization for a relatively bigger subset of customer objects can
be examined by the means of a heatmap. Results for the present Cell2Cell data
show, for the local window of 16 classified customer objects, four variables
standing out as most relevant for model predictions. Those are the features “Cur-
rentEqDays”, “MonthlyMinutes”, “MonthlyRevenue” and “PeakCallsInOut”,
which are associated with the service usage of the customers as well as with
the up-to-dateness of the telephone equipment used as a trigger of customer
switching intentions.

These findings are in line with insights from the general literature on deter-
minants of subscriber churn in the service provider and telecommunications
industry as well as with previous research conducted on variable importance in
the present Cell2Cell data (Ahn et al., 2006; Verbeke et al., 2012). This also
applies to the two additional features “Handsets” and “TotalRecurringCharge”,
that are identified as crucial influencing factors for only certain customer objects
via heatmap representation. Their scattered impact indicates, that selected
variables only affect the classification results when specific parameter values
are reached or certain interrelations with other feature characteristics exist. This
exhibits a problem area of the algorithm in general and for the application in
churn analysis in particular, that is traced back to the eminently local view on the
decision-making behavior of the deep learning model (Ribeiro et al., 2016a).

Case: 1               Probability: .67

Label: No           Explanation Fit: .25

Case: 2               Probability: .55

Label: No           Explanation Fit: .25

CurrentEqDays

MonthlyRevenue

MonthlyMinutes

DirectorAssCalls

CurrentEqDays

MonthlyRevenue

MonthlyMinutes

onOffersAcc_oth

Supports

Contradicts

-0.08 -0.04 -0.00 0.04 -0.05 0.00

Figure 2: Excerpt of LIME bar diagram for local feature importance.
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Thus, for practical implementation in churn analysis, user awareness of the
exclusively local mechanisms is needed. To reflect the global value of customer
features in the model’s prediction as closely as possible, but at the same time
limit the review effort in a practical setting, a trade-off between the investigation
of a preferably large subset with a wide range of characteristics and the related
time requirement of the analysts has to be found. To further illustrate the
intuitiveness of the model’s decision-making behavior with respect to certain
crucial decision criteria and, therefore, to increase its justifiability, proceeding
feature investigations and comparison with domain knowledge are proposed. In
total, the implementation of algorithms like LIME in customer churn analysis
can contribute to eliminate a key problem area of deep learning by increasing the
interpretability of results through post-hoc interpretations. These interpretations,
in the form of local explanations and corresponding visualizations, not only
establish greater confidence in the models’ churn prediction procedure, but also
provide information on feature importance and churn drivers for subsequent
customer retention activities. In the present case of the telecommunications
provider, for instance, this could mean providing special offers for replacing
equipment to customers who are using old equipment.

6 Conclusion and Practical Implications

Deep learning algorithms represent a powerful method for the modeling of com-
plex problems, with particular strength in capturing non-linearities in intricate
data. Beyond high prediction power however, the ease of application and the
interpretability of the implemented model are identified as central requirements
from a practical user perspective in customer churn analysis. So far, these
necessities are considered to fall into the area of shortcomings of deep neural
networks as black box models. To overcome this state of affairs, various strategies
to enhance the interpretability of models are proposed by machine learning
literature as well as classification and churn prediction research. Of the suggested
means, increasing the model transparency at an individual component level and
providing post-hoc interpretations through local explanations and visualization
are selected as the most promising approaches for churn analysis.

This paper introduces an analytical framework for the implementation of
deep learning in customer churn prediction, that defines a structured application
procedure for the practical user and recommends approaches and methods in the
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above-mentioned areas of improvement. Applied exploration of the framework
and its components shows, that the perceived complexity of deep learning
model configuration and optimization is reduced by deploying pre-defined
variable transformation steps during data preprocessing as well as enabling more
convenient access to and grid optimization of key network hyperparameters
through scheduling and placeholders. Furthermore, higher interpretability is
achieved by the means of feature selection, traceability of the individual impact
of hyperparameter adaptation and, especially, through enhanced plausibility of
churn classifications and the underlying decision-making process of the model
by the LIME algorithm. At the same time, the enumerated techniques do not
involve any loss in prediction accuracy, so that satisfying model performance is
achieved in the empirical test of the present churn problem.

For the practical application of deep learning models in churn analysis,
in conclusion, a high future potential can be attested. On the one hand, the
digitization of customer relationships and the related increase in data volume
and complexity requires the modeling strengths of deep learning algorithms,
on the other hand recent and ongoing development of innovative methods
successfully deals with reservations regarding their application complexity and
interpretability from a user perspective. This trend offers new opportunities for
research and practical use of deep learning in customer analysis.
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