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Abstract

Ellipsometry is a widely-used technique for characterizing materials and thin
films. The principle is based on the polarization changes after light is reflected
or transmitted at a sample. In general, the shape of the sample should be flat or
nearly flat because ellipsometry is sensitive to the angle of incidence, tilt angle
and the sample position (height variation). For nonplanar surfaces, retroreflex
ellipsometry was proposed to solve the problem of the alignment. Despite of
the Mueller matrix, the coherency matrix is often used for depolarization and
noise reduction. In retroreflex ellipsometry, the measured Mueller matrix can be
seen as a dual-rotation transformation. Therefore, it is important to discuss the
changes of reference frames for Mueller matrices. In this report, the polarization
model of retroreflex ellipsometry will be introduced. Decompositions and
invariant quantities of a Mueller matrix with a dual-rotation transformation will
be discussed.

1 Introduction

Ellipsometry is a widely-used technique for characterizing materials and thin
films, e.g., in the semiconductor industry, biology and nanotechnology. The prin-
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ciple is based on the polarization changes after light is reflected or transmitted at
a sample. The polarization characteristics can be described by Fresnel equations.
The advantages of ellipsometry are non-destructive, fast measurements, and high
accuracy and sensitivity. In general, the geometric shape of samples should be
flat in order to fulfill the law of reflection or Snell’s law. For nonplanar samples,
the curvatures of the surface alter the reflected or transmitted light which causes
experimental errors due to the misalignment. The worst-case scenario is that
the detector cannot receive any signal. This restriction limits the feasibility
of in-line measurements for industrial applications. In the last two decades,
many approaches were proposed to overcome the shape restriction [19, 15, 10,
26, 14, 23, 16, 8]. However, these studies have some constraints, e.g., small
measurement ranges, a short working distance, and complicated system design.
In order to conquer these drawbacks, the concept of retroreflex ellipsometry
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Figure 1.1: Schematic of the retroreflex ellipsometer in the reflection and transmission config-
urations, showing the polarization state analyzer (PSA), polarization state generator (PSG) and
non-polarizing beam-splitter (NPBS).

(RRE) has been proposed at Fraunhofer IOSB[13, 4, 5, 18, 17]. Figure 1.1 shows
the configuration of RRE whose concept is based on return-path ellipsometry
[20, 2]. The key element in RRE is a retroreflector which returns the light
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along the same path and has the same polarization characteristics as an ideal
mirror regardless of the angle of incidence (within an angular range up to±30◦).
Therefore, the alignment of angles and position between the detector and the
sample is automatically achieved. In this paper, the polarization model of
retroreflex ellipsometry will be introduced, and decompositions and invariant
quantities of the measured Mueller matrices will be discussed.

2 Polarization model of retroreflex ellipsometry

The polarization characteristics of optical elements or the interaction at the
boundaries can be described by Jones vectors E, Jones matrices J, Stokes
vectors S and Mueller matrices M [3, 9]. Jones vectors and Jones matrices can
only be used for completely polarized light and nondepolarizing systems while
Stokes vectors and Mueller matrices can be used for partially polarized light and
depolarizing systems. A Jones matrix can be converted to the Mueller matrix by
the transformation:

M = A(J⊗ J∗)A−1, (2.1)

where ⊗ denotes the Kronecker product, the asterisk denotes complex conjuga-
tion, and A is the transformation matrix given by

A =


1 0 0 1
1 0 0 −1
0 1 1 0
0 i −i 0

 . (2.2)

Stokes vectors S (4× 1 vector) describe the polarization state of the electro-
magnetic waves including fully polarized, partially polarized, or unpolarized
light. Mueller matrices M (4× 4 matrix) characterize the interaction between
mediums and polarized light.

S =


s0
s1
s2
s3

 , M =


m00 m01 m02 m03
m10 m11 m12 m13
m20 m21 m22 m23
m30 m31 m32 m33

 (2.3)
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The Mueller matrix of an isotropic sample MS can be expressed by the NSC
representation:

MS =


1 −N 0 0
−N 1 0 0

0 0 C S

0 0 −S C

 , (2.4)

where N = cos 2Ψ , S = sin 2Ψ sin ∆, and C = sin 2Ψ cos ∆. Ψ and ∆, which
are functions of the angle of incidence and the refractive index of the sample,
represent amplitude ratio and phase difference. When Mueller matrices are
presented with different coordinate frames, the coordinate transformation should
be applied. The Mueller matrix of a coordinate rotation MR(α) can be described
as

MR(α) =


1 0 0 0
0 cos 2α − sin 2α 0
0 sin 2α cos 2α 0
0 0 0 1

 , (2.5)

where α is the rotation angle.
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Figure 2.1: Definitions for the angle of incidence θ and the tilt angle φ of a tilted sample rotated
around the y-axis.

Figure 2.1 shows that a flat sample on the x-y plane rotates around y-axis. If
the surface is in parallel to x-y plane, the surface normal is the z-axis and the

22



Mueller matrices in retroreflex ellipsometry

plane of incidence is determined by the z-axis and the incident beam. When the
sample rotates around the y-axis, the surface normal of the sample becomes the
vector ~n. The tilt angle φ is defined by the surface normal ~n and the z-axis, and
the angle of incidence θ is determined by the surface normal ~n and the incident
beam. This model can be extended to nonplanar surfaces. A nonplanar surface
can be seen as a flat surface rotates around y-axis. The incident angle θ and
the tilt angle φ define the surface normal. The Mueller matrix model of the tilt
sample for RRE is shown as [14]

MR(αPSA) ·MS ·MRetroreflector ·MS ·MR(αPSG), (2.6)

where αPSA and αPSG are the rotation angles of the polarization state analyzer
(PSA) and the polarization state generator (PSG). Assuming that the system is
perfectly aligned, we can use the relation MR(αPSA) = MR(αPSG) = MR(φ)
to simplify the equation as

M2 = MR(φ) ·M1 ·MR(φ), (2.7)

where M1 = MS ·MRetroreflector ·MS . The ellipsometric parameters (Ψ ,
∆) and the tilt angle φ from the Mueller matrix M2 can be solved by a numerical
fitting method. M2 can be seen as a dual-rotation transformation of M1[11].

3 Decompositions of Mueller matrices with dual-
rotation transformations

Figure 3.1 shows the different domains of 4×4 matrices. Mueller matrices are a
subset of real 4×4 matrices because Mueller matrices contain physical properties
(polarization). Mueller-Jones matrices are matrices which are derivable from
Jones matrices. Therefore, not all Mueller matrices can be transformed from
Jones matrices because Jones matrices only deal with nondepolarized systems.
There have been many studies discussing necessary and sufficient conditions for
a Mueller matrix [6, 21]. A Mueller matrix is a linear transformation of Stokes
vectors. Hence, Mueller matrices must fulfill Stokes criterion:

s0 ≥ (s2
1 + s2

2 + s2
3) 1

2 . (3.1)
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4⨉4 real matrices

Mueller matrices

Mueller-Jones matrices

Figure 3.1: Different domains for 4×4 matrices.

For every Stokes vector S satisfies the criterion, the product of the Mueller
matrix M and Stokes vector S also satisfies the criterion. Then the Mueller
matrix fulfills the Stokes criterion.

In order to analyze depolarization, the wave coherency matrix Φ is proposed as
[24]:

Φ = E(t)⊗E(t)∗ =
[
Ex(t)E∗

x(t) Ex(t)E∗
y(t)

Ey(t)E∗
x(t) Ey(t)E∗

y(t)

]
=

[
j00 j01
j10 j11

]
, (3.2)

where E(t) is a quasi-monochromatic wave whose amplitudes and phases
depend on the time t. We can see depolarisation is related to second order
products of the quasi-monochromatic wave. This concept can be applied to
Mueller matrices. The covariance matrix H is defined as Kronecker product of
the corresponding Jones covariance vector [22]:

H = 1
2T⊗T∗, (3.3)

where T = [j00 j01 j10 j11]T and jij is the element of the 2×2 Jones matrix.
Hence, H is a 4×4 matrix. It is obvious that H and M are linearly related.
Therefore, H can be written in terms of the elements mij of M as:
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H(M) =
1
2



m00 + m01
+m10 + m11

m02 + m12
+i(m03 + m13)

m20 + m21
−i(m30 + m31)

m22 + m33
+i(m23 − m32)

m02 + m12
−i(m03 + m13)

m00 − m01
+m10 − m11

m22 − m33
−i(m23 + m32)

m20 − m21
−i(m30 − m31)

m20 + m21
+i(m30 + m31)

m22 − m33
+i(m23 + m32)

m00 + m01
−m10 − m11

m02 − m12
+i(m03 − m13)

m22 + m33
−i(m23 − m32)

m20 − m21
+i(m30 − m31)

m02 − m12
−i(m03 − m13)

m00 + m01
+m10 + m11


(3.4)

The covariance matrix H provides necessary and sufficient conditions for a
Mueller matrix to be derivable from a Jones matrix [1]. The form of H is
a positive semidefinite Hermitian matrix, which means its eigenvalues are
non-negative. In other words, a matrix is a physical realizable Mueller matrix if
its coherency matrix H has non-negative eigenvalues. This concept can be used
to determine physical Mueller matrices and reduce experimental errors [7].

Experimental errors in ellipsometry might induce nonphysical Mueller matrices
(negative eigenvalues in corresponding covariance matrices H). For example,
a depolarizing Mueller matrix is measured due to the noise from the light
source and the detector. The idea of sum decomposition or matrix filtering
for experimental Mueller matrices is proposed by Cloude [7]. The covariance
matrix of a physically realizable Mueller matrix can be decomposed to four
covariance matrices of Mueller-Jones matrices as:

H = λ1H1 + λ2H2 + λ3H3 + λ4H4. (3.5)

If a Mueller matrix is nonphysical, at least one eigenvalue of its covariance
matrix is negative. The filtering concept is to remove any negative contributions
and covert the remaining term to a Mueller matrix, which can be described as:

4∑
i=1

1
2(1 + sgn(λi))Hi ⇒Mfiltering, (3.6)

where sgn is the sign function and λi is the eigenvalue of H. Finally, The
nearest non-depolarising Mueller matrix is obtained. This method is proved as
an optimal filtering [25].

We can apply covariance matrices in retroreflex ellipsometry. The Mueller
matrix for a gold sample at a wavelength of 632.8 nm and an incident angle of
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70◦ is given by

Mgold =


1 −0.094 0 0

−0.094 1 0 0
0 0 0.802 −0.589
0 0 0.589 0.802

 . (3.7)

The eigenvalues of the covariance matrix H(Mgold) are [1, 0, 0, 0], which
means the matrix Mgold is a Mueller-Jones matrix. When the gold sample is
tilted with 5◦. The Mueller matrix Mgold becomes

M′
gold =


1 −0.093 −0.016 0

−0.093 0.946 0.309 −0.102
0.016 −0.308 0.748 −0.580

0 −0.102 0.580 0.802

 (3.8)

We can observe that the off-diagonal 2× 2 blocks are nonzero elements.
The eigenvalues of the covariance matrix H(M′

gold) are [1, 0.015,−0.015, 0].
Minus eigenvalue means that M′

gold is not a physically realizable Mueller matrix.
The change of plane of incidence caused the anisotropic and depolarizing effect.

We can prove the Mueller matrix with a dual-rotation transformation M2 is
not positive semi-definite by Sylvester’s criterion [12]. A Hermitian matrix is
positive semi-definite if and only if all principal minors of it are non-negative.
For a 4×4 matrix, there are 15 principal minors Dk, where k is the order. The
principal minors of M2 is shown as

D1 = [0,
1
2(1− C)(1− cos 4φ), 1

2(1− C)(1 + cos 4φ), 1 + C]

D2 = [0, 0, 0, 0, 0, 0]

D3 = [0, 0, 0,
1
2S2(1− C)(−1 + cos 8φ)]

D4 = 0

(3.9)

Since C, S ∈ [−1, 1] and φ ∈ [−90◦, 90◦], the principal minor in D3 is negative
when the tilt angle is not zero. The special cases are S = 0 and C = 1. S = 0
means Ψ = 45◦ and the corresponding Mueller matrix is an ideal depolarizer
which output randomly polarized light. C = 1 means Ψ = 45◦ and ∆ = 0◦ or
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360◦ and the Mueller matrix of this case is the same as the Mueller matrix of
air. Except of these two cases, we can use this property to find the tilt angle by
maximizing the hfidelity index[7]:

hfidelity = 10log
∑
|λ−|∑
λ+

, (3.10)

where λ+ and λ− are positive and negative eigenvalues of the correspingding
covariance matrix.

4 Invariant quantities of a Mueller matrix with a
dual-rotation transformation

There are polarimetric quantities which keep invariant under reference frame
rotations. These invariant quantities can be used for determination of orientations
of anisotropic materials and provide physical information. The Muller matrix
model of a sample with a tilt angle in retrorelfex ellipsometry can be seen as a
Mueller matrix with a dual-rotation transformation. The full form of M1 and
M2 are expressed as:

M1 =


1 + N2 −2N 0 0
−2N 1 + N2 0 0

0 0 S2 − C2 −2CS

0 0 2CS S2 − C2

 , (4.1)

M2 =


1 + N2 −2N cos 2φ 2N sin 2φ 0

−2N cos 2φ 1 − S2 + (1 − C2) cos 4φ −(1 − C2) sin 4φ 2CS sin 2φ

−2N sin 2φ (1 − C2) sin 4φ S2 − 1 + (1 − C2) cos 4φ −2CS cos 2φ

0 2CS sin 2φ 2CS cos 2φ S2 − C2

 .

(4.2)

Compared M1 with M2, the following parameters are rotation invariant:

m00, m03, m30, m33, (4.3)

m2
00 + m2

02, m2
10 + m2

20, m2
13 + m2

23, m2
31 + m2

32, (4.4)

m2
11 + m2

12 + m2
21 + m2

22, (4.5)

27



Chia-Wei Chen

Det(M), (4.6)

λ1 + λ2 + λ3 − 3λ4, (4.7)

where Det denotes determinant and λi is the eigenvalue of the correspingding
covariance matrix.

From M2, the tilt angle φ can be obtained by

φ = tan−1 m02

m01
= tan−1 m20

m10
= tan−1 m13

m23
= tan−1 m31

m32
. (4.8)

The NSC parameters can be determined by

N2 = m2
01 + m2

02
4 = m2

10 + m2
20

4
S2 = 1

2(
√

m2
31 + m2

32 + m2
33 + m33) = 1

2(
√

m2
13 + m2

23 + m2
33 + m33)

C2 = 1
2(

√
m2

31 + m2
32 + m2

33 −m33) = 1
2(

√
m2

13 + m2
23 + m2

33 −m33).
(4.9)

Finally, the ellipsometric parameters Ψ and ∆ can be determined by the NSC
parameters. It is worthwhile to mention that the NSC parameters can be
caulculated without knowing the tilt angle φ. In other words, NSC parameters
are only related to the angle of incidence and material properties. If the refractive
index of the sample is known, the angle of incidence can be solved analytically.

For isotropic materials, tilt angles induce anisotropic Mueller matrices. There
are variant and invariant polarimetric quantities in the anisotropic matrices.
These invariant quantites provide the information of rotation of reference frames.
Moreover, the invariant quantities can be extended to anisotropic materials for
separating azimuthal orientation and tilt angles.

5 Summary

In this report, the principle of retrorefelx ellipsometry, coherency matrix,
Cloude’s decomposition and invariant quantities for nonplanar surfaces have
been introduced. The concept of RRE can measure samples with nonplanar

28



Mueller matrices in retroreflex ellipsometry

shapes. The retroreflector acts as an ideal mirror regardless the incident
angle (< 30◦). The polarization model of the tilt sample can be seen as a
dual-rotation transformation and the form of an isotropic Mueller matrix after
rotation becomes anisotropic. The coherency matrix H provides necessary and
sufficient conditions for a Mueller matrix which can be derivable from a Jones
matrix. The Cloude’s decomposition can reduce the experimental noise by
filtering nonphysical contribution (negative eigenvalues) and can also be used
to determine the tilt angle φ. While the sample has a tilt angle, H becomes
nonphysical. This nonphysical Mueller matrix provides indication of tilt angles.
Compared to the physical matrix (without tilting) and nonphysical matrix (with
tilting), invariant quantities provide another way to calculate tilt angles and
ellipsometric parameters. In the future, we plan to use these properties of
Mueller matrices to improve the procedure of determination of the tilt angle
φ and ellipsometric parameters (Ψ, ∆) and extend this method to anisotropic
materials.
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