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ABSTRACT
Phase-measuring deflectometry (PMD) is an optical inspection technique for full-field topography measurements
of reflective sample surfaces. The measurement principle relies on the analysis of specific patterns, reflected at
the sample surface. Evaluation algorithms often model the respective pattern screen as a planar light source.
However, the 32′′ pattern screen in our inspection setup exhibits a central bulge of its surface of about 2–3 mm.
This paper presents a simulation framework for PMD to evaluate the effects of a deformed screen surface. The
idea is to simulate image data acquired with screen surface deformations and to examine the effects on the PMD
evaluation results. The simulated setup consists of a 32′′ pattern screen with an adjustable central bulge height
of 0–3 mm and two cameras with a field of view (FOV) of approximately 225 mm by 172 mm on the sample
surface. A first experiment examines the reconstruction errors for a planar sample surface if the reconstruction
algorithm uses perfect calibration data (i.e. the same parameters used for the simulated image acquisition).
The reconstructed surfaces exhibit a tilt with a maximum height difference of 174 µm across the FOV. A second
experiment repeats the reconstruction process of the same sample surface, using camera parameters determined
in a simulated calibration process. The resulting surfaces possess irregular, wave-like errors with amplitudes of
up to 9 µm in the FOV. The presented simulation results reveal the accuracy limits if a deformation model of
the pattern screen is not explicitly included in the reconstruction process.

Keywords: surface inspection, deflectometry, simulation, printed electronics, calibration

1. INTRODUCTION
Printing of functional inks is a technology with great potential to realize innovative smart electronic devices. In
particular, flexible systems based on inks made of novel materials e.g. nanoparticles on foil substrates offer new
opportunities in many applications.1 The printing process however depends on a number of parameters related
to the ink properties (e.g. ink viscosity, surface energy, nanoparticle load), substrate properties (surface texture,
surface energy) and to the printing equipment proper. Aerosol-jet printers have a focal length of up to 5 mm
and are thus very tolerant with respect to nonplanar substrates. Ink-jet printers on the other hand require the
nozzle stand-off distance to be kept constant, typically at about 0.5 mm, to minimize droplet placement errors. A
significant effort goes into the clamping of the substrate to keep variations in the nozzle stand-off distance low.2
While pristine substrates usually are planar, this state frequently changes in multi-step printing processes where
printing steps and thermal sintering or curing steps alternate. These thermal processes, e.g. oven processes at
130 ◦C to sinter silver nanoparticle inks, can lead to substrate shrinkage and warpage.3 This results on the one
hand from internal strain in the foil substrates due to their fabrication process. On the other hand the printed
structures may also lead to local strain and thus to local warpage. These local or global substrate warpages may
alter the stand-off distance of the printing nozzle. Thus after the first thermal process the substrate cannot be
regarded as planar any more. Hence, to ensure a high printing quality by adapting the clamping of the substrate
or the nozzle stand-off distance, the substrate warpage has to be measured with high precision after each thermal
process.

Scanning processes such as optical profilometry allow characterization of substrate warpage with high precision
but are time consuming if high lateral resolution is required. Deflectometry on the other hand is much more
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time-efficient for this task, as it takes only few camera images for full-field topography inspection of reflective
surfaces. The measurement principle relies on imaging known patterns as they are reflected at the sample
surface. Qualitative information on the sample surface topography can be readily inferred by a visual analysis
of the reflected pattern, for instance by identifying deviations from an expected pattern image.4,5 If the relative
geometrical arrangement of the measurement setup, i.e. the pattern and the camera, is accurately known, it is
also possible to reconstruct a topographical representation of the sample surface. For this, the pattern – or more
often the series of patterns that are presented and imaged in temporal succession – must be specifically designed
to encode information of the point of origin of the light that is finally measured at a certain camera pixel.
In phase-measuring deflectometry (PMD), horizontal and vertical sinusoidal fringe patterns that are shifted in
several discrete steps serve this purpose; the phase information effectively encodes the pattern coordinates.6–9
Being able to associate a pattern coordinate to every camera pixel allows the inference of potential light paths
from the points of origin of the light on the pattern to the corresponding camera pixels. The information of
potential light paths is equivalent to a field of potential normal vectors of the surface in the measurement space.
Finally, with some additional constraints, e.g. the assumption of a differentiable and intergrable surface10 or the
requirement to conform to the measurement of a second camera in stereo deflectometry,6 the surface topography
can be reconstructed from this gradient field.11

The light path analysis requires a mathematical model of the measurement setup, specifically of the pattern
generator and the cameras, which are often modeled as pinhole cameras. The model parameters need to be
determined by a priori knowledge or a calibration process.6,12–16

The majority of PMD measurement setups described in the scientific literature use a computer screen to
present the patterns.7,9, 14,15,17,18 For the purpose of determining the origin of the signal measured in a camera
pixel, they are usually modeled in the PMD evaluation algorithms as a planar light source with a very regular grid
of light emitting square pixels. However, the assumption of a planar screen surface may not always be appropriate,
particularly when considering measurement setups with the screen mounted at an inclined orientation. For
instance, a 32′′ screen in our in-house setup, which is mounted at an angle of approx. 45° with respect to the
horizontal base plane, manifests a central outward bulge of the screen surface of approx. 2–3 mm. The screen
surface topography strongly depends on the mounting angle. It approaches a planar configuration when tilted
towards an upright orientation.

In this contribution, we present a simulation framework for PMD with deformable surface representations for
both the pattern screen surface and the sample surface, and a camera model to simulate the image acquisition
process by tracing the camera “view rays” to the pattern screen. The aim is to create simulated image data
of a setup with screen surface deformations and to examine the effects on the PMD evaluation results when
evaluation algorithms are applied that generally assume a planar screen.

Section 2 provides a detailed overview of the simulation framework, including the sample and screen surface
representations, the used camera model and the raytracing process. Sections 3 and 4 present the setup and
results of two experiments that use simulated image data. They both examine the effects of a non-planar pattern
screen surface on the reconstruction results, using either perfect a-priori knowledge of the simulated imaging
setup (Sec. 3) or simulated calibration results (Sec. 4) for the PMD evaluation process. In Sec. 5, we discuss the
limitations of the simple planar screen model with respect to the evaluation results and derive conclusions for
further developments.

2. SIMULATION FRAMEWORK
The purpose of the simulation framework is to simulate the image acquisition process during a deflectomet-
ric measurement, i.e. to generate image datasets that correspond to the image data acquired during such a
measurement. The framework supports the following components (cf. Fig. 1):

• One or more cameras, modeled as pinhole cameras with additional lens distortion terms,

• a pattern screen, modeled as a spline-based surface, and

• a sample surface, also modeled as a spline-based surface.
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Figure 1. The simulation framework implements models for the camera and the pattern screen of the simulated deflecto-
metric measurement system and for the sample surface. Each component model is described with regard to an individual
coordinate system (shown in red). The geometric relation between all components is specified by the coordinate transfor-
mations (shown in blue) between the individual component coordinate systems and a common world coordinate system
(xw, yw, zw).

The simulation of the imaging process focuses entirely on the effects of screen surface deformations. Its
function can be summarized as follows: from the implemented camera model, each camera pixel possesses a
well-defined corresponding view ray. The view ray is extended towards the reflective sample surface, where the
incident light ray is calculated according to the law of specular reflection, i.e. the surface normal bisects the
angle between the incident light ray and the camera view ray. The incident light ray is then traced back onto the
screen surface. The pattern intensity at this screen location is then simply used as the intensity value measured
at the camera pixel. Other real-world effects such as non-specular reflection components, limited depth of field,
measurement noise, angle-dependent light emission characteristics of the screen etc. are not taken into account in
the present examinations. The following paragraphs provide a brief mathematical description of the simulation
process, including the model parameters that fully define the simulated measurement setup.

2.1 Geometric Model
The geometrical relations of the setup components are defined by their respective three-dimensional Cartesian
coordinate systems. They are described uniquely by the 4× 4 coordinate transformation matrices Tcw (or Tciw

in case of several cameras), Tpw and Tsw that transform a point or vector given in a common reference or
world coordinate system (in homogeneous coordinates) into the respective component coordinate system (cf.
Fig. 1). Each coordinates transformation is defined by six parameters: three for the translation vector and three
rotation components (we use three Givens rotation angles for that purpose19,20). The transformation matrices
are inverted and combined to provide the transformation matrix from any origin coordinate system (index o) to
any destination coordinate system (index d) by

Tdo = Tdw · T−1
ow . (1)

2.2 Pinhole Camera Model
The pinhole camera model is well established and frequently used in deflectometric applications. An exhaustive
introduction can be found in Ref. 19. In short, the projection of a point ~p(c) = (xc, yc, zy)T

(c) given in the camera
coordinate system onto the corresponding image pixel coordinates ~p(i) = (xi, yi)T

(i) of the resulting image is
modeled as a three-step process.20 Note that throughout the text, subscripts in parentheses are meant to denote
the coordinate system in which a vector is given; (c) and (i) denote the camera and image coordinate systems,
respectively.
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Figure 2. Model for a non-planar surface, based on interpolating cubic spline functions. The height values h (x, y) at the
grid of support points (at coordinates x0 . . . x4 and y0 . . . y4) are provided. Surface points along the grid lines are directly
interpolated by the pre-calculated base spline functions sxi and syi (black), surface points at arbitrary coordinates (xq, yq)
are interpolated in a two-step process by intermediate spline functions sxq and syq (red, see text).

The first step projects ~p(c) onto the image plane (i.e. the plane perpendicular to the optical axis and a
distance equal to the focal length fl in front of the pinhole):

~pip =
(
fl
xc

zc
, f l

yc

zc
, f l

)T

= fl (xip, yip, 1)T
. (2)

The second step applies lens distortion effects21 to the normalized image coordinates xip and yip, parameterized
by the radial lens distortion coefficients k1 and k2 and the tangential lens distortion coefficients p1 and p2:(

x′ip
y′ip

)
=
(
xip

yip

)
+
(
xip

(
k1r

2 + k2r
4)

yip

(
k1r

2 + k2r
4) )+

(
2p1xipyip + p2

(
r2 + 2x2

ip

)
2p2xipyip + p1

(
r2 + 2y2

ip

) ) (3)

where r2 = x2
ip +y2

ip is the squared distance (in normalized coordinates) of the projected point on the image plane
from the optical axis. The third step is the transformation of the distorted coordinates to pixel coordinates. The
transformation is described by the camera intrinsics matrix K that contains the focal length parameters flx and
fly (the focal length described in direction-dependent image pixel units) and the principal point coordinates ppx

and ppy (also specified in image pixel units):

~p(i) =
(
flx 0 ppx

0 fly ppy

) x′ip
y′ip
1

 = K

 x′ip
y′ip
1

 . (4)

Finally, the view ray associated with a given image pixel ~p(i) is defined as the line that passes through the
pinhole (i.e. the origin of the camera coordinate system) and has the direction vector (xip, yip, 1)T

(c). It is readily
calculated by inverting the last two steps of the imaging process, the second one numerically. As the simulation
only requires the view rays associated with the integer-valued pixel coordinates given by the image sensor size,
they can be pre-calculated and stored for a given simulated camera.

2.3 Pattern Screen and Sample Surface Model
The mathematical representations for both the screen surface and the reflective sample surface support non-
planar geometries. The simulation framework models them with standard (one-dimensional) interpolating cubic
spline functions22 over a two-dimensional grid of support points (cf. Fig. 2). The surface representations are
defined in their respective coordinate systems, i.e. the pattern screen surface in the pattern screen coordinate
system and the sample surface in the sample coordinate system. The following description of a surface model is
applicable to both the pattern screen and the sample without changes. Later sections will amend the resulting
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height function h with subscripts (s) or (p), to differentiate between the sample and the pattern screen surface,
respectively.

The support points of a surface are given as height values over a regular, rectangular, axis-parallel grid of
points in the x-y-plane of their respective coordinate system. They are therefore fully specified by the sets Xs

and Ys of (ordered) x- and y-coordinates of the support points, respectively,

Xs = {x0, . . . , xm | x0 < . . . < xm} (5)
Ys = {y0, . . . , yn | y0 < . . . < yn} (6)

and by a matrix

Zs =

 z0,0 · · · z0,m

... . . . ...
zn,0 · · · zn,m

 (7)

containing the height values of the surface at the control points. Note that, of course, positive and negative
height values are interpreted with respect to the orientation of the z-axis, so the orientation of the respective
coordinate system has to be kept in mind when specifying concave or convex surfaces. In order to avoid the need
for extrapolation outside of the grid, the smallest and largest coordinate values in Xs and Ys implicitly define
the bounds of the (rectangular) surface.

The regular grid of control points decomposes the surface into separate surface patches, with the patch
borders of each patch forming a rectangle when projected at the x-y-plane. The surface sections along each
vertical or horizontal grid line, i.e. at each of the x- or y-coordinates in Xs and Ys, respectively, are given by the
one-dimensional interpolation cubic spline function uniquely defined by the control points along the respective
grid line. Let sx0 (y) , . . . sxm

(y) be the (vertical) spline functions interpolating the surface sections at the x-
coordinates in Xs and sy0 (x) , . . . syn

(x) the (horizontal) spline functions interpolating the surface sections at
the y-coordinates in Ys (all using the “not-a-knot” end condition, i.e. forcing the third derivative at the second
and second-to-last control points to be continuous23). These spline functions provide a (sparse) set of surface
sections, as well as the first and second partial derivatives in the direction of the spline functions at every point
on these sections (cf. Fig. 2).

The interpolated surface height h (x, y) at arbitrary query coordinates (xq, yq) with x0 ≤ xq ≤ xm and
y0 ≤ yq ≤ yn is derived from the given support grid as follows. If the coordinates lie on one of the grid lines, i.e.
xq = xi for any xi ∈ Xs or yq = yi for any yi ∈ Ys, the surface height h (xq, yq) is given by the function value
of the respective spline function along the grid line. In all other cases, we calculate the one-dimensional cubic
spline function syq

(x) to interpolate the surface section at yq, using the height values sx0 (yq) , . . . , sxm
(yq) as

control points. The surface height is then given by the function value

h (xq, yq) = syq
(xq) . (8)

In addition to the surface position, we will also require the surface gradient later on. In order to obtain both
partial derivatives ∂h

∂x and ∂h
∂y of the surface function at (xq, yq), we further determine the cubic spline function

sxq
(y) (that interpolates the surface section at xq) using the height values sy0 (xq) , . . . , syn

(xq) as control points.

2.4 Simulated Imaging Process
Based on the models described in Sec. 2.1–2.3, the imaging process can be simulated. As mentioned above, the
idea is to trace a camera view ray to the pattern screen – or more physically correct, to back-trace the incident
light ray to its origin – in order to find the resulting intensity values for each camera pixel.

Given a camera pixel of interest, let ~v(c) be the direction vector and ~o(c) = (0, 0, 0)T
(c) the origin of the

associated view ray, both given in the camera coordinate system. Applying the transformation matrix Tsc

transforms them into the sample coordinate system, yielding ~v(s) = (xv, yv, zv)T
(s) and ~o(s) = (xo, yo, zo)T

(s). The
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point of intersection ~p(s) = (xp, yp, zp)T
(s) of the view ray with the sample surface is calculated iteratively. The

initial step is to find the intersection of the view ray with the x-y-plane,

z(0)
p = 0, (9)

t(0) = z
(0)
p − zo

zv
, (10)

x(0)
p = xo + t(0)xv, (11)
y(0)

p = yo + t(0)yv. (12)

The iteration then proceeds with the following steps until convergence, using the spline-based surface function
h(s) (x, y) from Sec. 2.3:

z(i)
p = h(s)

(
x(i−1)

p , y(i−1)
p

)
, (13)

t(i) = z
(i)
p − zo

zv
, (14)

x(i)
p = xo + t(i)xv, (15)
y(i)

p = yo + t(i)yv. (16)

Once the point ~p(s) is known, the raytracing process continues along the reflected view ray ~r(s), which is
calculated as

~r(s) = ~v(s) − 2
~v(s)~n(s)

~n(s)~n(s)
~n(s) (17)

according to the law of reflection. Here, ~n(s) is the surface normal vector at the point of intersection. It is defined
as ~n(s) = (−dx,−dy, 1)T , where dx and dy are the partial derivatives of the surface height function h(s) (x, y) at
~p(s). Note that ~r(s) points away from the surface if ~v(s) points towards it.

A coordinate system transformation of ~r(s) and ~p(s) using Tps provides the direction vector of the reflected
view ray ~r(p) and its origin point ~p(p) with respect to the pattern screen coordinate system. Finding the point of
intersection ~q(p) = (xq, yq, zq)T

(p) of the ray with the pattern screen surface is entirely analogous to the intersection
of the original view ray with the sample surface.

The coordinates (xq, yq) are interpreted as pattern coordinates. Assuming that the pattern intensity function
uses the same domain as the simulated camera image, for example both using the value range [0, 255], the pattern
intensity at those coordinates can be directly used as the intensity value measured at the corresponding camera
pixel. Note that the simulated imaging process of an entire pattern sequence does not require the view ray
tracing to be repeated multiple times. As the result of the ray tracing is a mapping of camera pixels and pattern
screen locations, this mapping can be reused as long as the specification of the camera, screen and sample setup
remains unchanged.

The simulated images are finally saved as image files, which can be used for deflectometric analyses in place
of images from real measurements.

2.5 Experimental Setup
Table 1 provides the parameters of the simulated deflectometric measurement setup (cf. Fig. 3) that is used for
the experiments described in the following two sections. It roughly resembles our real measurement setup and
comprises two ideal pinhole cameras (i.e. all lens distortion coefficients are 0), arranged symmetrically with a
distance of 180 mm in between. Both are directed at an angle of 45° at the sample surface, where they capture
a field of view (FOV) of approximately 225 mm by 172 mm. A 32′′ screen at the opposite side of the simulated
setup is also mounted at a 45° angle with respect to the sample surface.

In order to quantify the influence of screen surface deformations on the calibration and surface reconstruction
processes, the screen surface is modeled by a 3× 3 grid of control points. The eight border points are all given a
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Table 1. Model parameters for the simulation experiments

Camera internal parameters (both cameras)
Focal length [image pixels] flx fly 4400 4400
Principal point [image pixels] ppx ppy 960 600
Lens distortion coefficients k1 k2 p1 p2 0 0 0 0
Image size [image pixels] 1920 1200
Left camera external parameters
Coordinate system origin [mm] x0,(w) y0,(w) z0,(w) −90 295 −295
Coordinate system rotation [°] αx,(w) βx,(w) γx,(w) 45 10 10
Right camera external parameters
Coordinate system origin [mm] x0,(w) y0,(w) z0,(w) 90 295 −295
Coordinate system rotation [°] αx,(w) βx,(w) γx,(w) 45 −10 −10
Pattern screen surface parameters
Support grid coordinates (x) [mm] Xs,(p) 0 354 708
Support grid coordinates (y) [mm] Ys,(p) 0 199 398
Support grid central height [mm] ∆h variable (0, 1, 2, 3)
Pattern screen external parameters
Coordinate system origin [mm] x0,(w) y0,(w) z0,(w) −354 −78 −400
Coordinate system rotation [°] αx,(w) βx,(w) γx,(w) 135 0 0
Sample surface external parameters
Coordinate system origin [mm] x0,(w) y0,(w) z0,(w) −200 −200 0
Coordinate system rotation [°] αx,(w) βx,(w) γx,(w) 0 0 0

left camera
right camera

camera distance
180 mmsample surface

pattern screen

field of view (right camera) principal ray (right camera)

z [mm]

y [mm] x [mm]

Figure 3. Draft of the simulated deflectometric inspection system that is used for the experiments in Sec. 3 and 4.
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Table 2. Characteristics of surface reconstruction results in experiment 1

Screen bulge height ∆h 0 mm 1 mm 2 mm 3 mm
Camera (L = left, R = right) L R L R L R L R
Max. height difference [µm] 0.0 0.0 49.7 57.8 99.6 115.8 149.5 174.1
Max. deviation from best-fit-plane [µm] 0.0 0.0 14.6 10.8 29.1 21.7 43.7 32.6
Best-fit plane tilt angle [µrad] 0.0 0.1 278.5 259.8 557.4 520.3 836.6 781.5

height value of 0 to model a rigid screen frame that coincides with the x-y-plane of the screen coordinate system.
The height value ∆h of the central control point is varied in the experiments. Although the simulation framework
supports non-planar sample surfaces, as described in Sec. 2.3, the experiments presented in the following two
sections uniformly use a planar mirror model.

The surface reconstruction is performed using a simple stepwise integration approach.12 Starting from a
(given) initial surface point, the surface is iteratively expanded in all directions, driven by the surface normal
at the borders of the current reconstruction. Let ~s(p) be a sample surface point, given in the pattern screen
coordinate system. The surface normal vector at ~s(p) is the bisection vector between the camera view ray vector
~v(p) = ~s(p) − ~o(p) associated with that point and the incident light ray vector ~r(p) = ~s(p) − ~p(p). The incident
light ray is calculated as follows: If (xi, yi) are the camera image coordinates onto which ~s(p) is projected (cf.
Sec. 2.2) and (xp, yp) are the corresponding pattern coordinates (according to the deflectometric registration),
then ~p(p) = (xp, yp, 0)T . It is precisely here, that the reconstruction algorithm implicitly assumes the x-y-plane
of the pattern screen coordinate system to be the planar light source.

3. EXPERIMENT 1
The first experiment is designed to examine the errors in the reconstruction of a planar sample surface if the
reconstruction algorithm uses the same camera intrinsic and extrinsic parameters as specified in the simulated
setup (cf. Tab. 1) as a priori knowledge. Since the reconstruction algorithms and the simulation framework
use the same camera model, the only difference between both in this experiment is their implicit assumption or
explicit model, respectively, regarding the screen surface.

Four different height values ∆h of the central screen bulge are examined in this experiment: 0 mm, 1 mm,
2 mm, and 3 mm. The simulated imaging process is performed for each value. The first value specifies a planar
screen as a control experiment. In this case, the expected reconstruction result is a surface identical to the
sample model used for the simulation.

For ∆h = 0 mm, the reconstructed surface exhibits minimal deviations from the plane in which it was
measured, in the order of magnitude of approx. 0.03 µm (cf. Fig. 4). These errors result from the digitization
of the pixel measurements in the simulated cameras, when the measured intensities are saved as 8-bit images.
For ∆h = 3 mm, the reconstructed surfaces exhibit a tilt with a maximum height difference of 174 µm across
the examined FOV. Notably, the two surfaces reconstructed from the two camera data, respectively, are tilted
in opposing directions (cf. Fig. 4). Table 2 lists the maximum height difference of the reconstructed surfaces
inside the FOV, their maximum deviation from the best-fit plane and the tilt angle of the best-fit plane for all
reconstruction results.

4. EXPERIMENT 2
For real deflectometric inspection systems, perfect a priori knowledge of the true setup parameters – as assumed
in the first experiment – is generally not available. Estimating these parameters is the purpose of calibration
procedures. A second experiment therefore simulates a holistic calibration procedure13 and examines the surface
reconstructions using the camera internal and external parameters determined by the simulated calibration
process.
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Figure 4. Reconstructed topography of a planar sample surface from deflectometric measurements in experiment 1. The
first row shows the results from simulated measurements with a planar pattern screen. The results in the second row are
from a simulation with a concave bulge of 3 mm height in the center of the pattern screen surface (note the difference
of a factor of roughly 104 regarding the color scales in the top and bottom row). The left and right columns show the
reconstructions from the left and right camera data, respectively.
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Figure 5. Reconstructed topography of a planar sample surface from deflectometric measurements in experiment 2. The
results are reconstructions from the left and right camera data from a simulation with a concave bulge of 3 mm height
in the center of the pattern screen surface. The results from simulated measurements with a planar pattern screen are
identical to experiment 1 (cf. Fig. 4).
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Table 3. Characteristics of surface reconstruction results in experiment 2

Screen bulge height ∆h 0 mm 1 mm 2 mm 3 mm
Camera (L = left, R = right) L R L R L R L R
Max. height difference [µm] 0.0 0.0 2.6 2.6 7.6 7.2 8.5 8.6
Max. deviation from best-fit-plane [µm] 0.0 0.0 1.6 1.6 4.3 4.3 5.3 5.2
Best-fit plane tilt angle [µrad] 0.0 0.1 6.3 6.5 20.1 16.7 10.5 11.0

The holistic calibration with a planar mirror requires deflectometric measurements with several different
mirror poses.13 These are obtained by simulating the imaging process for 16 different poses of a planar front-
surface mirror. They follow the scheme we use for real calibrations: one measurement with the mirror lying
on the base table; three with the mirror parallel to the table but elevated by different amounts; and a total of
twelve measurements with the mirror rotated around the x- or y-axis by different angles (three positive and three
negative rotation angles per axis).20

For ∆h = 0 mm, the calibration procedure yields the correct internal and external camera parameters,
i.e. they are identical with the parameters used for the simulated measurements. The reconstruction results are
therefore also identical to those in experiment 1. For all other screen bulge heights ∆h, the surfaces reconstructed
in this experiment are not tilted, but possess irregular, wave-like errors with an amplitude of up to 9 µm in the
examined FOV (cf. Fig. 5). Table 3 lists the maximum height difference of the reconstructed surfaces inside the
FOV, their maximum deviation from the best-fit plane and the tilt angle of the best-fit plane for all reconstruction
results.

5. CONCLUSIONS
In comparison with real physical experiments, simulation approaches in general often offer easier, more precise
and potentially more wide-ranged control over the examined parameters. Simulated experiments also can be
repeated arbitrarily. With regard to the current contribution, it would be very challenging to perform the
simulated examinations in real-world experiments. Even accurately measuring the screen surface deformation is a
difficult task, considering in particular that it has to be performed in the inclined pose used for the measurements.
Manipulating the screen surface deformation in a controlled manner for experiments does not seem feasible with
a reasonable amount of resources.

The incentive for the initial development of the simulation framework has been to explore and explain re-
construction results from real-world measurements of a mirror surface (cf. Fig. 6) that were not reproduced
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Figure 6. Reconstructed topography of a (nominally planar) front-surface mirror from real deflectometric measurements.
The left and right plots show the reconstructions from two different cameras. The setup of the inspection system resembles
the simulation model used in the simulation experiments.
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with scans of the same mirror surface using an interferometer. Even if the simulation results (in experiment 2)
do not exactly reproduce these real surface reconstructions, they manifest a similar tendency to create warped
surface topographies, as a result from pattern screen deformation. The presented simulation results show that a
deformation of the pattern screen with a central ∆h = 3 mm limits the accuracy of surface reconstruction from
PMD measurements to about 10 µm with respect to the analyzed FOV, if a planar screen model is assumed in
the reconstruction process.

If this limitation is not tolerable for a given application, there are in principle two potential solutions. One
approach is to change the setup properties to reduce or prevent the pattern screen deformation. This may be
achieved by using a different pattern screen with a stiffer, more stable surface. Alternatively, the entire inspec-
tion setup may be altered towards a vertical arrangement of the screen and, in consequence, a non-horizontal
arrangement of the sample surface. The second category of solutions for the presented accuracy limitation is to
enhance to measurement processes on the algorithmic side by including the screen surface topography into the
reconstruction algorithms as part of the measurement setup model.24 Of course, this information then also needs
to be determined in the calibration process. This is the focus of current research efforts. Some major questions
in this respect are how much flexibility (i.e. how many free variables) the screen model requires for good results,
and how to determine them in a robust calibration process.

It may further be of interest to examine the effects of a non-planar calibration mirror on the holistic calibration
process, given that the current implementations assume the mirror surface to be a perfect plane.20 Finally, future
developments could extend the simulation framework with features such as alternative camera models or depth-
of-field effects.
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