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Abstract. Laminated Segment Timber (LST) is an engineered wood product. It is panel-

shaped and glued of trapezoidal spruce lamellas. As intermediate product, it is provided for 

the processing to layered LST, a glulam-like building material. The source material for LST 

are mechanically graded logs. This study aims at developing modelling and simulation 

techniques to assess the mechanical properties of LST. It is reported about 294 non-

destructive tensile tests on specimens from LST and about the corresponding results. Digital 

image correlation was used to examine the tensile stiffness. Both global and local stiffness of 

the LST specimens were analysed in terms of tensile MOE. It was found that the local MOE 

of modelling units for LST can be predicted by the dynamic MOE of the source material and 

a newly developed knot ratio referring to the cross-section of LST specimens. Using this 

correlation, two stiffness models were derived for the local MOE. Their response shows good 

agreement with that of reference models from the literature. The models are, therefore, 

suitable for incorporation into a layered LST finite element model which is intended for 

predicting the mechanical properties. 

 

1 Introduction 

1.1 General and Objective 

Laminated Segment Timber (LST) and layered LST are being technically developed by 

Stora Enso, Austria. Layered LST is a glulam-like secondary product composed of single 

LST layers. Both are engineered wood products made of spruce. Their structural 

application is being seen as an economic alternative to glulam. In contrast to boards for 

glulam, a segment cutting technique is used to produce trapezoidal cross-sections for 

LST. 

At present, there are no strength and stiffness values available for LST. A comprehensive 

R&D project was therefore initiated. Its superior objective is to provide mechanical 

properties for the design of layered LST structures. The paper presents first results of 

experimental examinations on tensile properties. They are provided for the modelling of 

layered LST in order to obtain mechanical properties on the basis of finite element-based 

simulation techniques. Due to the affinity between layered LST and glulam, modelling 

approaches for glulam will be further developed and adapted to the new product. 
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1.2 LST Manufacture 

Figure 1 illustrates the LST manufacture and that of secondary products like lengthwise 

finger jointed beams. After segment cutting and planing, a mutual gluing of the 

trapezoidal lamellas takes place resulting in panels. These LST panels are available in 90 

to 160 mm depth in 10 mm increments. They can be cut in arbitrary width for further 

processing, e. g. to layered LST, see Figure 2, where single LST lamellas are glued on 

top of each other. Segment cutting increases the yield up to 85 % compared to traditional 

rectangular cutting with a yield of up to 65 % [1]. 

 

Figure 1 LST manufacture 

 

Figure 2 Layered LST cross-section (120 x 270 mm, illustration turned by 90°) with 3 LST layers 

2 Theoretical Fundamentals 

2.1 Modelling and Simulation 

Experimental tests in the necessary magnitude are too cost-intensive to determine stable 

statistical distributions of mechanical properties like the bending strength of glulam or of 

layered LST. Hence, a stochastic computational model is developed at Karlsruhe Institute 

of Technology (KIT) in order to simulate bending tests on layered LST beams. It is based 

on the fundamentals of the Karlsruhe Rechenmodell (KAREMO) [2–4]. KAREMO is a 

computational model which was developed in the 1980ies. It uses the finite element method 

to compute the local stresses in the modelled structure and finally returns load-carrying 

capacities. It is comprehensively validated and shows good agreement between computed 

bending strength values of large glulam members and experimental ones. 

2.2 Tensile Stiffness for Glulam Modelling 

Blass et al. [5] reflect the set of regression equations used for the empirical representation 

of material properties in the latest KAREMO version for glulam. The tensile MOE of board 

sections or board cells is calculated with eq. (1): 
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3
t 0

R R

) 8.20 3.13 10 ρ 1.17 KAR ε

with r = 0.77 and ε N(0,s ) with s 0.180

ln(E       


  (1) 

where sR is the standard deviation of the error term . The model given by eq. (1) was 

derived by Glos, cf. [6]. It applies to cells containing clear wood as well as knots. Colling 

and Scherberger [7] found that the standard deviation sR of the error term can be subdivided 

into two parts because the scattering of the MOE within a single board is lower than within 

the entire population or around the general regression line, see Figure 3. Hence, the part ΔB 

of sR describes the distance of the board to the general regression line. The scattering within 

a single board is described by sR,B. For the given deviation of the error term sR = 0.180 this 

allocation results in ΔB = N(0;0.16) and sR,B = N(0.078;0.026) given by [8]. 

 

 

Figure 3 Allocation of the remaining total error [2] 

2.3 Concept for layered LST 

Like KAREMO, the computational model for layered LST uses a Monte-Carlo simulation 

for properties of single finite elements. That enables a probabilistic assessment of 

characteristic bending and tensile strength values by means of thousands of repeated 

computations. So far, KAREMO for glulam is a 2-D model because the influence of the 

width of the lamellas is considered implicitly by using the KAR value as predictor variable. 

However, since trapezoidal lamellas originating from different logs are systematically 

arranged in width direction of a LST panel, the computational model for layered LST was 

extended towards an advanced 3-D version. In order to determine the input data for the 

finite element simulation and to assess the influence of the different logs on the strength 

values, an easy-to-handle specimen with rectangular cross-section and an appropriate 

modelling unit were to be defined and examined. According to this idea, each LST beam 

was divided into three so called elementary lamellas (EL) as shown in Figure 4, left. Each 

of them consists of two half trapeziums where the originally adjacent half trapezium is 

part of the next elementary lamella. 

2.4 Alternative Modelling 

An analysis of the tensile stiffness on graded boards of Norway spruce from southern 

Germany was performed by Fink and Köhler, see [9]. The sample size was 200. 100 

boards each were graded into the strength classes L25 and L40 according to 



 

4 

 

DIN EN 14081-4:2009 [10]. Two models to predict the tensile stiffness were developed: 

One describes the stiffness properties of clear wood sections (CWS); the other one can be 

used to calculate the MOE in sections with knots (KS), see eq. (2). Values for the model 

parameters are given in Table 1. In contrast to the study on LST, the CWS in their study 

had varying lengths. Both models are based on eigen frequency values of the boards. In 

case of KS, the tKAR value [9] is an additional predictor variable. Both models combined 

can be used to calculate a MOE that is constant for CWS over the entire board length. In 

areas where knots are present, the MOE is significantly reduced by the result of the second 

model. 

t,0,i 1 dyn,l 2 3ln ) E R(E tKA       (2) 

Table 1 Parameters for Fink's and Kohler's model/eq. (2) 

Parameter CWS KS 

β1 7.12∙10-5 7.69∙10-5 

β2 0 -0.902 

β3 8.52 8.41 

σε 5.47∙10-2 0.10 

3 Materials and Methods 

3.1 Raw Material and Elementary Lamellas 

Prior to cutting the trapezoidal segments, the dynamic MOE of the spruce logs was 

determined by longitudinal vibrations through the manufacturer. Thereby, only logs with 

a dynamic MOE higher than 8500 N/mm² were processed to LST. Since merely 0.5 % of 

the logs had lower dynamic MOEs than this threshold, the resulting trapezoidal lamellas 

are essentially ungraded. The mean value of the dynamic log MOE amounted to 

13280 N/mm² with a standard deviation of 1890 N/mm². According to the scheme in 

Figure 4, left, 300 ELs were cut off on a circular saw at KIT. The amount of ELs suitable 

for the further examinations was 294. 6 ELs were to be rejected due to cutting problems 

and deformations resulting from induced stresses during the manufacturing process. The 

final depth (d), and length (ℓ) of the examined elementary lamellas amounted to 90 mm and 

2000 mm, respectively, whereas the width (b) had varying values in a range of 32 mm to 

41 mm. 

3.2 Preliminary Works and Definitions 

The 294 elementary lamellas were to be tested in tension. It was intended to evaluate them 

systematically in terms of tensile stiffness and to find out any lengthwise distribution of 

structural properties and stiffness. The lamellas were, therefore, provided with a grid pattern 

in longitudinal sense with nine 150 mm long cells each, cf. Figure 5. That resulted in a total 

of 2646 cells. Based on this subdivision, the local MOE and global MOEs of cells and 

whole ELs, respectively, were determined. 
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The cell length corresponded to the gauge length of the cells. This gauge length differs from 

that in DIN EN 408:2012 [11], where five times the larger width is stipulated. In case of the 

elementary lamellas, this would result in 450 mm gauge length or rougher discretisation in 

terms of local MOE. However, for a finer discretisation as much as possible it was purposeful 

to reduce the gauge length to 150 mm and to match the grid pattern. Due to clamping at both 

ends, the total gauge length of an elementary lamella amounted to 1350 mm. 

3.2.1 Knot measurement 

The size of knots was determined. Due to the particular cross-sectional structure of 

elementary lamellas, no standard methods for knot size ratios, which capture the 

knottiness in squared timber, can be used. The criteria for a single knot of DIN 4074-

1:2012 [12] were, therefore, adapted to the present case and the value EEL was 

established as knot size ratio for elementary lamellas. EEL is calculated with eq. (3) where 

the sum of max bi is defined in Figure 4, right. max bi is the respective maximum width 

of a knot appearing on the narrow side of the elementary lamella in each predefined cell. 

EEL was determined on all ELs. However, only knots with a diameter larger than 5 mm 

were considered. 

max
EEL

2




 ib

b
 (3) 

 

Figure 4 Left: Idealised division of an LST cross-section into three elementary lamellas. 
Right: Definitions for the knot size ratio EEL 

3.2.2 Measurement of the eigen frequency and density  

The eigen frequency f0 of a longitudinal vibration of each EL was measured; the gross 

density ρEL of the whole EL was determined by its mass and dimensions. After testing, 

the density, the moisture content w, and the oven-dry density ρ0 were measured. By means 

of the moisture content w the density ρEL was corrected to the oven-dry density ρEL,0. 

Based on the measurements, the corresponding dynamic MOE of each EL (Edyn,EL) was 

calculated according to eq. (4), see [13] for a detailed description. The dynamic MOE 

represents an average value over the entire length of the lamella. It is comparable to a 

global MOE. 

2
dyn,EL 02E ( f )      (4) 
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3.3 Test Procedure for the Tensile Stiffness 

Digital image correlation (DIC) was used to track the relative movement during the 

tension tests and to measure the strain in each predefined cell of the elementary lamellas. 

Beforehand, a stochastic high contrast speckle pattern was applied by means of an 

airbrush system. Both narrow sides were tracked simultaneously, since the DIC system 

measures strains for the MOE only on the surface of the EL. That enabled the calculation 

of a mean value from the measurements of both opposite sides. 

Additionally, data for the global MOE of the whole lamella was recorded. During testing, 

a maximum load of F = 20 kN was applied through clamping jaws with a speed of 

5 kN/min. Figure 5 illustrates the principle of the test setup. It shows one pair of cameras 

in stereo setup provided for the one-sided measurement on the narrow side of nine cells. 

The other pair of cameras on the opposite side is not depicted. 

The stereo setup enables the software to produce a 3D image of the measured surface. 

Hence, each point on the tracked surface can be viewed in a three dimensional space. For 

the evaluation of the MOE, only the strains in x-direction of the given coordinate system 

are used. Figure 6 shows an example of the strains in x-direction of one measured cell. 

This cell contains a knot with an EEL value of 0.44. It is visible that in the directly 

adjacent area around the knot the strains are considerably higher than in the surrounding 

clear wood, resulting in a reduced local MOE for this specific cell. 

 

Figure 5 Schematic of the test setup for the determination of the tensile stiffness (only one side shown) 

 

Figure 6 Local strains around a knot in an elementary lamella 
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Uniform stress distribution in a cross-section was assumed for the calculation of the local 

MOE in each cell. Figure 7 shows the stress-strain curves of one side of an EL. Due to 

knots in cell 4 and 11, the measured strains in these cells are significantly higher than the 

ones in the remaining 7 cells with clear wood. The evaluation of the MOE for each cell 

is based on the linear region of the determined stress-strain relationship. The same stress 

range was chosen for both sides of an EL. The global MOE was determined by means of 

a strain value measured over all 9 cells. For the calculation the same stress range as for 

the local MOE was used. 

 

Figure 7 Stress-strain curves referring to the narrow side of an elementary lamella 

with a knot each in cell 4 and 11 

4 Test Results  

Taking the 2646 cells into account, the mean value and the standard deviation of the local 

MOE amounts to 12800 and 2836 N/mm², respectively. The minimum and maximum 

value is 2423 and 29040 N/mm², respectively. In contrast to the cells seen as a whole, the 

averaged standard deviation of the local MOE (calculated each with 9 cells of a single 

EL) amounts to 2310 which is lower than 2836 N/mm². Figure 8 shows the local MOE in 

dependence of the knot size ratio EEL. Histograms for both values are arranged beside 

the vertical and below the horizontal axis. The local MOE is approximately normally 

distributed and decreases with increasing knot size ratio EEL. The knot size ratio is right-

skewed distributed. About 75 % of the cells have a knot size ratio of 0.0, and merely 

1.5 % a ratio higher than 0.4. There is a gap between 0.0 and 0.05 without symbols, 

because only knots larger than 5 mm were recorded. 

Figure 9 shows the correlation between local and global MOE as well as the frequency 

distribution of the global MOE which is approximately normally distributed. The mean 

value and the standard deviation amounts to 12348 and 1712 N/mm², respectively. The 

minimum and maximum value is 7629 and 16613 N/mm², respectively. 

The mean oven-dry density ρ0 was 411 kg/m³ with a standard deviation of 26.8 kg/m³. 

The mean moisture content was 10.8 % with a standard deviation of 0.6 %. All stated 

MOE values are corrected to the reference moisture content of 12 %. 



 

8 

 

 

Figure 8 Local MOE in dependence of the knot size ratio EEL with corresponding distributions 

 

Figure 9 Correlation between local MOE and global MOE with density function 

of the measured global MOE 

5 Models for the Tensile Stiffness 

5.1 Global MOE 

In order to improve the quality of the model for the global MOE, the sample size of 294 

was extended with another 451 global MOE values originating from elementary lamellas 

provided for bending tests. However, the corresponding analysis will be the subject of a 

future publication. Due to the merged samples, in total 745 global MOE values are 

available. Hence, the statistics marginally changed: The mean global MOE and the 

standard deviation of the combined sample is 13442 and 2201 N/mm², respectively. 
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The dynamic MOE of the ELs (Edyn,EL) is significantly correlated with the global static 

MOE (Et,0,glob). The correlation coefficient amounts to r = 0.87. However, the dynamic 

MOE cannot be a suitable predictor variable for the global MOE. An elementary lamella 

was exclusively created for experimental examinations and considerations, and the 

structure of an EL does not exist as an independent object prior to any mechanical 

grading. Hence, it is impossible to grade them during manufacture. The following 

approach was therefore defined: As an elementary lamella consists of two half 

trapeziums, which have their origin in different logs, two dynamic log MOEs each 

effective in the EL can be used for the prediction of the stiffness. Since both trapeziums 

have the same share in the cross-section, the correlation with the mean dynamic MOE of 

both logs (Ēdyn,log) was tested on the global MOE of the ELs (Et,0,glob). Figure 10 shows 

their mutual relationship. The correlation coefficient amounts to r = 0.76. Furthermore, 

the oven-dry density ρ0,EL is also a good predictor variable for the global MOE. The 

correlation coefficient amounts to r = 0.573. Though, a strong correlation between oven-

dry density and dynamic MOE Ēdyn,log also exists. Both predictor variables in the same 

regression model would result in multicollinearity, e.g [14]. In order to avoid that and to 

allow for the better correlation to the global MOE, merely the mean dynamic MOE is 

used in eq. (5) as predictor variable for the global MOE of ELs made of LST. The model 

is independent of the presence of knots within an elementary lamella. 

1.256 E 2914dyn,logt,0,glob

with r 0.76 and N(0,1413)

E     

 

 (5) 

 

Figure 10 Global MOE of ELs and mean dynamic MOE of logs 

5.2 Local MOE 

5.2.1 Preliminary considerations 

The global MOE and the knot size ratio EEL are suitable predictor variables for the local 

MOE which refers to individual cells 150 mm in length. Hence, they at least should be 

included in a regression model predicting the local MOE. 
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In order to find out whether further parameters like the oven-dry density ρ0 have an 

influence on the local MOE, a correlation analysis was made. In contrast to Glos' model, 

however, no significant influence of the oven-dry density was found. It is noted that the 

oven-dry density of merely one cell was determined in this study and that examining the 

density of more than one cell can change that influence towards a stronger correlation. 

The two subsequent regression models for the local MOE, hereafter referred to as 

combined model, were derived on the basis of stiffness values obtained by the tensile 

tests. Local MOE values determined in the bending test were not used because they are 

effective in three consecutive cells and are, therefore, not local enough for the intended 

modelling. The two models follow Fink's and Kohler's principle [9]. Hence, it is 

differentiated between clear wood sections and those with knots. The total sample was 

subdivided into the sample A and B with 1954 and 692 cells, respectively, see Table 2 

and Figure 11. The respective statistics obviously differ: Subsample A (1954 cells without 

knots) exhibits a lower standard deviation than that of the total sample and subsample B 

(692 cells with knots) a higher one than the total sample. For comparable purposes, a 

universal model based on data of the 2646 cells is also derived and proposed. 

Table 2 Subsamples without and with knots 

Sub- 

sample 
Name 

No. 

of 

cells 

�̅� 

[N/mm²] 

s 

[N/mm²] 

CWS A 1954 13344 2586 

KS B 692 11274 2912 

 

Figure 11 Frequency distributions of the local MOE of clear wood sections (CWS) 

and cells with knots (KS) 

5.2.2 Combined model - CWS 

The model for clear wood sections was derived without the knot size ratio EEL as 

predictor variable. In contrast to Fink's and Kohler's analysis, no mean stiffness of the 

CWS is calculated, but the individual local MOEs are predicted. A detailed analysis of 
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the stress-strain curves referring to the single cells of the tested ELs showed each an 

unstable strain line for the two outermost cells 03 and 11. This was due to the 

measurement configuration where the photographic lenses show decreasing focusing and 

precision in their periphery. Therefore, it was examined whether an exclusion of 

outermost cells would enhance the model but no significant change was found. Hence, 

the total number of 1954 cells in sample A were used in the regression analysis and eq. 

(6) was derived. It describes the individual local MOE of clear wood sections in 

elementary lamellas made of LST. 

5
t,0,loc,CWS t,0,glob

R

) 6.56 10 E 8.66

with r 0.60 and s 0.143

ln(E      

 
 (6) 

Due to the inhomogeneous structure of wood where two cells with the same global MOE 

have different local MOEs, an error term needs to be considered. The standard deviation 

of the error term ε in eq. (6) is sR = 0.143. As stated in section 2.2, the standard deviation 

referring to cells within a board is lower than that of all tested cells. It was therefore 

checked whether this is also true for ungraded ELs. It was found that the distance of an 

EL ΔEL to the general regression line can be described with ΔEL = N(0;0.060). The 

remaining deviation within an EL can be described by sR,EL = N(0.137;0.052). Both values 

give evidence that the deviation within an EL is higher than the distance of an EL to the 

general regression line (0.137/0.060). The error term of each cell is calculated according 

to Colling's approach [2]: 

1) For each EL a random distance ΔEL from N(0;0.060) is chosen. 

2) For each EL a remaining deviation sR,EL from N(0.137;0.052) is chosen. 

3) For each CWS the predicted linear part of Et,0,lok,CWS is calculated 

according to eq. (6). 

4) For each CWS of an EL a random value Xi from the remaining deviation 

N(0; sR,EL) is chosen. 

5) The final value of the local MOE is calculated according to eq. (7). 

i reg,i EL il ) EE Xn(     (7) 

5.2.3 Combined model - cells with knots 

A linear regression is based on the assumptions of normally distributed response variables 

and homoscedasticity meaning that the variance is constant throughout the range of the 

predictor variables, see e.g. [14]. However, Figure 8 shows a decreasing variance of local 

MOE with increasing values of EEL (heteroscedasticity). In order stabilise the non-

constant variance, the logarithm of the response variable is used. Since the local MOE of 

cells with knots highly depends on the knot size or rather the knot size ratio, the value 

EEL is included as second predictor variable. The regression analysis was performed with 

the 692 observations of sample B. Eq. (8) is the result. This model is provided for cells 

with knots. 
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5
t,0,loc,KS t,0,glob

R

) 7.30 10 E 1.11 EEL 8.60

with r 0.75 and s 0.171

ln(E        

 
 (8) 

The standard deviation of the error term ε is sR = 0.171. It is also subdivided into two 

parts: ΔEL = N(0;0.094) as distance of an EL to the general regression line and 

sR,EL = N(0.156;0.091) as remaining deviation within an EL. The same procedure described 

above applies to calculate local MOE values for KS of elementary lamellas. 

5.2.4 Universal model  

The universal model is derived to describe both clear wood sections and those with knots. 

The global MOE and the knot size ratio EEL are used as predictor variables. The result is 

eq. (9). 

5
t,0,loc t,0,glob

R

) 6.80 10 E 0.98 EEL 8.63

with r 0.72 and s 0.152

ln(E        

 
 (9) 

The standard deviation of ε is sR = 0.152. For the subdivision ΔEL = N(0;0.043) and 

sR,EL = N(0.149;0.044) apply. 

6 Discussion 

It has been found out that the standard deviation of the local MOE (referring to a cell) 

within a single EL is lower than that of the whole sample of 2646 cells, see section 4. 

Hence, the subdivision of the error term into ΔEL and sR,EL is in accordance with this 

finding. In terms of modelling, ΔEL and sR,EL represent the distance to the general 

regression line and the remaining deviation within an EL, respectively. Although the 

variation of the local MOEs within an EL is comparably high, cf. Figure 9, its scattering 

is more or less independent of the level of the global MOE. The value range is nearly the 

same for the local and global MOE. Therefore, the averaged standard deviation of the 

local MOE within an EL needs to be lower than that of all the measured cells. 

Figure 12, top shows an evaluation of the combined model based on the eqs. (6) and (8). 

The diagram exemplifies the predicted local MOE depending on the measured values. 

CWS are represented by black dots and knot sections by circles. In order to prove the 

quality of the model, error terms are not considered. In a range from 10E3 to 15E3 N/mm² 

the mean of the ratios is 1.008 with a standard deviation of 0.12. Hence, the MOE is 

predicted very well in this range. In case of lower MOEs the predicted values are (much) 

higher, and in case of higher MOEs the predicted ones are lower. 

The green dots in Figure 12, top, represent a comparable evaluation of Glos' model. For 

the evaluation, the single value of the oven-dry density available per EL could be used 

for all cells of an EL because of the minor variance of the density in boards or ELs, see [8]. 

Since no KAR values could be determined for elementary lamellas, the knot size ratio 

EEL was inserted instead. The markers in green show a similar trend to the ones of the 

predicted values referring to the combined model. However, Glos' model deviates from 

measured values slightly more than the combined model does.  
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Figure 12, bottom, shows a comparison with Fink's and Kohler's model. Even here, EEL 

is used instead of KAR for the comparable evaluation. The MOEs of both cell types can 

be predicted very well, and only a minor difference between both models exists. Overall, 

for the here tested ELs, Fink's and Kohler's model shows a better fit than Glos' model. 

However, the combined model developed for the ELs provides the best agreement. All 

three examined models have in common that loc. MOE values higher than 18E3 N/mm² 

cannot be calculated neglecting the error term. 

Figure 13 compares the calculated linear parts of the universal model with the respective 

linear parts of the combined model. The values shown differ by cell type. For high MOEs 

and cells with knots, the universal model results in lower values than the combined model 

does, and for low MOEs, higher values are calculated. For clear wood sections, both 

models almost yield the same values. As the universal model underestimates high MOEs 

and overestimates low ones, it is not appropriate to represent the local MOE. 

 

Figure 12 Comparison of predicted to measured MOEs. Top: combined model (black) and Glos' model 

(green). Bottom: Fink's and Kohler's model (green)  
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Figure 13 Comparison between universal and combined model 

 

Figure 14 Comparison between simulated and experimental local MOEs 

Taking into account the preceding model comparisons and discussions, the combined 

model is seen to be appropriate to represent the local MOE of cells in elementary lamellas. 

Figure 14 shows a comparison between almost 10000 simulated local MOEs (green) and 

the experimental ones (black). The modelled values origin from complete simulated 

elementary lamellas, but only cells with knots are pictured. Randomly distributed error 

terms were considered. The simulation shows that its general trend fits the experimental 

values quite well. However, the simulation overestimates the experimental mean value 

and the standard deviation. The histogram of the knot size ratio EEL shows deviations in 

the respective frequency distributions. It is, therefore, possible that the overestimation 
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results from the knot model used in the simulation. This issue will be the subject of future 

research. 

7 Conclusions 

The following conclusions can be drawn from this study: 

 Experiences during the experimental examination of LST and glulam-like layered LST 

have proved that segment cutting is a promising new sawing technology to produce an 

economic engineering wood product. 

 Modelling and simulation techniques developed for the prediction of mechanical 

properties of glulam can be basically adopted for layered LST. However, the three-

dimensional structure of layered LST required a new approach. 

 Essential differences between glulam and LST concern the basic modelling unit. In 

contrast to boards as modelling unit for glulam, so called elementary lamellas and an 

appropriate knot size ratio were to be defined. Elementary lamellas are composed of 

two glued trapezoidal battens to obtain an easy-to-handle rectangular cross-section. 

 Digital image correlation and simultaneous tensile tests were successfully employed 

to examine the stiffness properties of elementary lamellas in terms of global and local 

stiffness. 

 Based on the data obtained, models were developed to predict the tensile stiffness of 

sections in elementary lamellas. It was found that a combined model, where the 

stiffness of sections with and without knots is predicted independently of each other, 

is most suitable. Main drivers in the combined model are the dynamic log MOE 

available from strength grading and the newly defined knot size ratio for elementary 

lamellas. 

 So far, the combined model will be used in a finite element model to analyse the 

bending strengths of large layered LST members. 

 Future research will concern tensile and bending strength of finger joints and interaction 

between tensile and bending stress in cross-sections of elementary lamellas. 

Annotation 

This paper was accepted for publication on the occasion of the World Conference of 

Timber Engineering (WCTE) 2020 in Santiago, Chile. Due to the unforeseeable 

circumstances of the global pandemic, it was withdrawn as contribution to the WCTE and 

is published as KIT Working Paper instead. Further information on the manufacturing 

process and first results of simulated bending strengths are reported in [15]. 
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