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Abstract

Background: Higher age and cognitive impairment are associated with a higher risk of falling. Wearable sensor
technology may be useful in objectively assessing motor fall risk factors to improve physical exercise interventions
for fall prevention. This systematic review aims at providing an updated overview of the current research on
wearable sensors for fall risk assessment in older adults with or without cognitive impairment. Therefore, we
addressed two specific research questions: 1) Can wearable sensors provide accurate data on motor performance
that may be used to assess risk of falling, e.g., by distinguishing between faller and non-faller in a sample of older
adults with or without cognitive impairment?; and 2) Which practical recommendations can be given for the
application of sensor-based fall risk assessment in individuals with CI? A systematic literature search (July 2019,
update July 2020) was conducted using PubMed, Scopus and Web of Science databases. Community-based studies
or studies conducted in a geriatric setting that examine fall risk factors in older adults (aged ≥60 years) with or
without cognitive impairment were included. Predefined inclusion criteria yielded 16 cross-sectional, 10 prospective
and 2 studies with a mixed design.

Results: Overall, sensor-based data was mainly collected during walking tests in a lab setting. The main sensor
location was the lower back to provide wearing comfort and avoid disturbance of participants. The most accurate
fall risk classification model included data from sit-to-walk and walk-to-sit transitions collected over three days of
daily life (mean accuracy = 88.0%). Nine out of 28 included studies revealed information about sensor use in older
adults with possible cognitive impairment, but classification models performed slightly worse than those for older
adults without cognitive impairment (mean accuracy = 79.0%).

Conclusion: Fall risk assessment using wearable sensors is feasible in older adults regardless of their cognitive
status. Accuracy may vary depending on sensor location, sensor attachment and type of assessment chosen for the
recording of sensor data. More research on the use of sensors for objective fall risk assessment in older adults is
needed, particularly in older adults with cognitive impairment.

Trial registration: This systematic review is registered in PROSPERO (CRD42020171118).
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Introduction
With increasing age, cognitive function and motor abil-
ities decline and risk of falling increases [1]. One in three
individuals over the age of 65 years experiences one or
more falls in any given year, and this prevalence in-
creases to 40% among individuals aged 80 years and
older [2]. Falling often leads to severe injuries,
hospitalization, loss of autonomy in activities of daily liv-
ing, reduced quality of life, and an accelerated need for
help in older adults [2, 3]. Furthermore, fall-related mor-
tality increases with age [4]. Individuals with cognitive
impairment (CI) fall twice as often as their unimpaired
peers and have a threefold increased risk of suffering a
bone fracture after a fall [5, 6].
A number of motor disabilities are known to be re-

lated to a higher risk of falling [7, 8], for example
negative changes in gait under single and dual task
conditions, balance or lower extremity strength [1, 3,
9]. In individuals with CI, accelerated decline of
motor performance is associated with an increased
risk of falling as compared to cognitively unimpaired
older adults [10, 11].
Physical exercise interventions in fall prevention are

promising, as they are associated with improved gait per-
formance, balance and mobility in older adults [12, 13].
Therefore, the identification and quantification of modi-
fiable fall risk factors may be important for the design of
effective physical rehabilitation or fall prevention pro-
grams that specifically address the needs and burdens of
older individuals at high risk of falling [14]. Since falling
events in geriatric settings are usually recorded by fall
diaries implying a higher risk to recall bias [15], there is
a need for the identification and investigation of fall-
related factors that may serve as more reliable indicators
of a person’s fall risk than recorded total number of
prior falls.
To date, such key factors of motor performance are

commonly assessed using questionnaires, scales or ob-
jective clinician-rated functional performance tests, such
as the Short Physical Performance Battery (SPPB) [16]
or the Timed- Up and Go Test (TUG) [17], usually eval-
uated by timekeeping or scoring. Nevertheless, not all of
these assessments are feasible, particularly for older indi-
viduals with CI [18] and the scales often show a high
inter-rater variability [19].
Within the last ten years, wearable technology pro-

viding objective data has become more prevalent in
clinical settings [20]. Small and lightweight body-worn
sensors like accelerometers or gyroscopes hold great
promise in the field of fall detection, but also in fall
risk assessment [2, 21]. Moreover, these devices are
more economic than gold standard methods of mo-
tion analysis systems [22] and more applicable in clin-
ical and non-clinical settings as their high level of

portability allows the examination of human motion
in field instead of laboratory testing [23].
Fall detection using wearable sensors can reduce fall-

related injuries and healthcare costs, and is often used as
an alarm system in case of an emergency, i.e. accidental
fall. The recognition of fall events can be used to trigger
helping systems (e.g. alarming signals to caregivers) and
may help to understand the mechanism underlying the
fall incident [24, 25]. Thereby, fall detection systems
may prevent an individual from remaining in a helpless
position on the floor for an extended period of time
[25]. A recent review on single and multiple sensor-
based fall detection concluded wearable sensor-based so-
lutions to be of accuracy to detect fall-events in older
adults [25]. Nevertheless, fall detection systems using
multiple input sources may lead to high costs and their
use is often restricted to indoor locations [25, 26]. Fur-
thermore, fall detection systems may help to identify ex-
ternal fall risk (e.g., uneven ground) but they are limited
in providing information about internal fall risk factors,
e.g., dysfunctional patterns of gait or required motor
tasks that are of interest to conceptualize fall prevention
strategies. To this end, using wearable sensors for fall
risk assessment may comprehensively capture character-
istics of different motor tasks allowing an estimation of
human motion (e.g. spatio-temporal characteristics of
balance or gait or transfer performance from sitting to
standing) [20, 27].
Current reviews on body-worn sensors for the assess-

ment of fall risk focus either on methodological aspects
such as applied classification methods and model assess-
ment outcomes, or on practical aspects such as type,
number and location of sensors and are often limited to
older people without CI [2, 20, 27–29]. Moreover, most
of published reviews are limited to either a supervised or
a unsupervised setting or included studies with other
quantitative measures like instrumented walkways or
motion capturing systems [30].
Therefore, the overarching aim of the present system-

atic review was to provide an overview and update of the
existing body of literature that examined the feasibility
of body-worn sensors for the assessment of motor fall
risk among older adults. Furthermore, we deliberately
aimed at including studies that focused on older adults
with CI to give practical advice on the use of wearable
sensors in individuals with CI. To this end, we addressed
two specific research questions: 1) Can wearable sensors
provide accurate data on motor performance that may
be used to assess risk of falling, e.g., by distinguishing
between faller and non-faller in a sample of older adults
with or without cognitive impairment?; and 2) Which
practical recommendations can be given for the applica-
tion of sensor-based fall risk assessment in individuals
with CI?
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The following paragraphs contain a detailed descrip-
tion of the methodological procedure of this systematic
review, i.e. search strategy, study selection and data syn-
thesis. In the results section we present study design, de-
tection of fall status, use of sensors to assess fall risk,
and classification models of the included studies. Fur-
thermore, results of studies including individuals with CI
are presented separately. Finally, we summarize our find-
ings in accordance with the objectives with this system-
atic review and discuss the strengths and limitations as
well as practical implications.

Methods
Protocol
We followed the Preferred Reporting Item for Systematic
review and Meta-Analysis (PRISMA) guidelines in prepar-
ing this systematic review [31]. Furthermore, we registered
this review in PROSPERO (CRD42020171118).

Search strategy and eligibility criteria
We performed a literature search using PubMed, Web
of Science and Scopus databases with no time filter set.
Articles were searched using the following combination
of key words: (fall risk OR fall risk factor*) AND (sensor*
OR objectively measured OR objective measurement OR
acceleromet*). Population or cognitive status were not
included in the search term because we did not want to
restrict our results, for example by potentially excluding
articles that had mixed study populations. Rather, we de-
liberately kept our literature search as inclusive as pos-
sible. No filter was applied at this stage. The complete
literature search can be found in supplementary material
(Additional file 1). We screened the reference lists of in-
cluded articles for relevant secondary literature. The ini-
tial database search was conducted in July 2019 with an
updated search in August 2020. The following inclusion
criteria for the studies were defined:

a) Original research articles in peer reviewed journals
in English language;

b) Studies including individuals with a mean age of 60
years or older, with or without presence of CI;

c) Studies assessing fall-related motor performance
using body-worn, sensor-based tools in a clinical or
community-based setting or in nursing homes, and;

d) Studies sub-dividing their sample into fallers and
non-fallers, or into individuals at high and low fall
risk based on prospective or retrospective falls,
clinical assessments or the combination of these
methods.

Studies were excluded if a) the mean age of the re-
ported sample was younger than 60 years, b) the individ-
uals showed concomitant severe chronical conditions (e.

g., stroke, Parkinson’s Disease), and c) only environmen-
tal sensor-based systems (e.g. 2D video analysis) were
applied. As the focus on fall risk assessment may provide
more pertinent information that enables the design of
new preventive approaches, i.e., physical exercise inter-
ventions, we also excluded studies with the purpose of
fall detection.

Study selection
After detection and removal of duplicates, two authors
(JB and JKR) independently screened all titles and ab-
stracts of the literature search. Both authors repeated
this process by screening the abstracts (or full texts if
more information was needed) of the remaining articles
based on the above defined inclusion criteria. In case of
any discrepancy, a third author (TE) was consulted. If
there was disagreement about the final inclusion of an
article, the third author read the full text and made a
final decision. Literature management was performed
using Citavi Software (Version 6.3.0.0, Swiss Academic
Software GmbH).

Data extraction and data synthesis
First, relevant data of the included studies were inde-
pendently extracted and systematically recorded by two
authors (JB and JKR) using a standardized data extrac-
tion form. Second, the collected data was cross-checked
to ensure complete and correct data extraction. We ex-
tracted first author’s name, publication date, study de-
sign, sample size and population characteristics (i.e., sex,
age, cognitive status). We also collected information on
fall classification methods that was used to differentiate
between fallers and non-fallers or individuals at high and
low fall risk. Additionally, the following specific charac-
teristics about the use of body-worn sensors were col-
lected: type of sensor(s), location of sensor(s), activities
while sensor data were collected (e.g., during clinical as-
sessment of the TUG) and the parameters of sensor data
collected. Furthermore, results of prediction models
were extracted and accuracy, sensitivity and specificity
were extracted. Accuracy is defined as the ability to dis-
criminate between fallers and non-fallers or between
people at high and people at low fall risk. Sensitivity de-
scribes the true-positive proportion and specificity de-
scribes the true-negative proportion. An accuracy of 50%
means that no discrimination exists and that this per-
formance can be achieved by chance [32]. After data ex-
traction, one author (JB) synthesized the data.

Assessment of methodological quality
Two authors (JB and JKR) independently assessed the
methodological quality of each study included in this
systematic review using the Newcastle-Ottawa Scale
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(NOS) for cross-sectional and for prospective or cohort
studies [33, 34]. The scale uses an evaluation system
with stars across three categories, i.e. selection (cross-
sectional: 0–5 stars; prospective: 0–4 stars), comparabil-
ity (cross-sectional: 0–2 stars; prospective: 0–2 stars)
and outcome (cross-sectional: 0–3 stars; prospective: 0–
3 stars). A higher number of total stars (cross-sectional:
range 0–10; prospective: 0–9) reflects a higher study
quality with regard to the respective categories.

Results
After the identification of 527 studies and the screening
of 307 abstracts, 82 full-text articles were checked for
the inclusion criteria. Finally, a total of 27 studies were
included in this systematic review (Fig. 1). An updated
search in July 2020 resulted in one additional article.
Screening the reference lists resulted in no additional
articles.

Study design and sample characteristics
The included studies were published between 2009 and
2020. Sixteen of the included studies had a cross-
sectional design, ten studies had a prospective / longitu-
dinal design and two studies combined cross-sectional
with prospective design. The follow-up period of in-
cluded prospective studies differed between 2 and 24
months. Seventeen studies were conducted in a super-
vised setting (e. g., clinical setting), whereas six studies
collected unsupervised sensor data during daily life. Five
studies combined the two settings.
A total of 2896 participants (range = 35–303; 65% fe-

males) were included in the studies. Twenty studies in-
cluded community-dwelling participants, eight studies
were conducted in patients who were hospitalized or
residing in a geriatric care facility. The mean age of the
older participant groups ranged between 68 and 86 years.
Two studies [19, 35] included younger control groups
with a mean age between 21 and 35 years, however, we

Fig. 1 Flow chart of the literature search
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did not consider these groups for the purpose of this re-
view. CI was an exclusion criterion in most of the stud-
ies (n = 14) and only one study deliberately focused on
older people with dementia [36]. To determine cognitive
status, the Mini-Mental-State Examination (score 0–30)
[37], the MiniCog (score 0–5) [38] or the Short
Orientation-Memory-Concentration Test (score 0–26)
[39] were used. The remaining studies did not explicitly
state CI as an exclusion criterion but required to be able
to understand the test instructions. Further information
about study characteristics and the main findings of the
studies is presented in Table 1.

Detection of fall status
Classification into fallers and non-fallers or in older
adults at high risk or low risk of falling was conducted
using three different methods: retrospective assessment
(e.g., fall history questionnaire), prospective assessment
(e.g., fall diaries) or clinical assessment of fall risk (e.g.,
Tinetti Score, TUG, SPPB). Moreover, five of the studies
combined two of these methods (Table 1). The majority
of studies compared fallers and non-fallers. A faller was
defined as a person having at least one fall over a certain
period of time, usually the past or prospective 12
months. Eight studies compared older adults at high and
low risk of falling [19, 40–42] or non-fallers and multiple
fallers [43–46]. Multiple fallers were defined as partici-
pants that had fallen at minimum twice during the in-
vestigation period.

Use of sensors to assess fall risk
To obtain the data, the included studies used between
one and five inertial sensors. That were mainly located
close to the centre of the body at the lower back [40,
42–54] or legs [43, 50, 55–58] of the participants. Less
frequently used sensor locations were chest [19, 58–60],
pelvis [41, 56, 57], waist [61, 62], foot [19, 45, 46], head
[56, 57] and wrist [63]. The majority of the studies used
sensor-derived data to distinguish between the different
fall status groups or for fall classification during clinical
testing (e. g. gait analysis under single or dual task con-
ditions. Nine studies assessed walking and other related
tasks during daily life, i.e. in homes of participants with
a duration of three to eight days (Table 2).

Classification models
Nineteen studies applied different types of machine
learning models (e.g. receiver operating curves, Naïve
Bayes, decision tree) and logistic regression analysis in
order to correctly assign the study participants to the
right category (e.g. faller and non-faller) using the sensor
data. Besides sensor-derived variables, four studies also
included height, body mass index, age [19, 54, 58], fall
efficacy and information processing speed [50].

Prediction models achieved sensitivities between 48.1
and 91.3%, specificities between 66.3 and 100.0% and ac-
curacies between 68.0 and 90.0% (Table 3). When com-
paring the analysed classification models of the different
assessment conditions, the best model was found for
daily-life data of three consecutive days with accuracy of
90.6%, sensitivity of 91.7% and specificity of 89.2% [35].
The models with sensor-derived data of laboratory as-
sessment were on average not as precise, but accuracies,
sensitivities and specificities were still acceptable (best
in-lab data model [50]: accuracy = 89.4%, sensitivity =
92.7%, specificity = 84.9%).

Results for individuals with CI
Since most of the included studies were conducted in a
community setting, participants with severe CI are less
likely to have participated. In addition to the only study
that included individuals with severe dementia [36], five
studies were conducted in a geriatric or hospital setting
but provided no information concerning the cognitive
status of their participants [19, 42, 48, 61, 62] and three
more studies did not explicitly exclude participants with
CI [44, 52, 64]. Overall, these nine studies may reveal in-
formation about the use and ability of sensors and
sensor-derived data to distinguish between groups of fall
status or to predict fall risk in a sample of older individ-
uals with CI.
Six of the nine studies [36, 44, 48, 52, 62, 64] had a

prospective design with between six- and 24-months
follow-up. Three studies had a cross-sectional design
[19, 42, 61] and collected sensor-derived data during
clinical assessments. Sensors were placed at the lower
back [44, 48, 52, 64], the shank [36], the waist [61]
and the chest [19, 42] and sensor data were collected
within seven [36, 44] or eight [52] days of daily-life, a
20-m gait analysis [48, 61], the TUG [42, 62], the
Tinetti Test [19] or a walking test [64]. Only two
studies gave information on how the sensor was ap-
plied to the participant’s body. In the study of Giet-
zelt et al. [36], sensors were applied by instructed
nursing staff while in the study of van Schooten et al.
[52] study participants had to attach the sensor by
themselves.
For daily-life data of gait quality (e.g. gait velocity, step

frequency) classification models of those studies includ-
ing older adults with CI revealed accuracies between
68.0–76.0%, sensitivities of 67.0–78.2% and specificities
of 66.3–80.0% [36, 44, 52] and therefore performed
worse than the best model found for individuals without
CI [35]. For sensor data collected during clinical assess-
ments accuracies of 70.0–90.0%, sensitivities of 50.0–
86.0% and specificities of 73.9–100.0% were achieved
[19, 61, 62, 64].
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Table 1 Study design, sample characteristics and main results

Author,
year

Study design, sample
including number of
participants, mean age
(SD) and sex

Cognitive Status Record of falls/ fall
history

Main findings

Bautmans,
2011 [40]

Cross-sectional
Community-based
Total n = 121, 80 (5), 50%
female; Younger adults n =
40, 22(1), 50% female

Cognitively intact according
to MMSE (MMSE≥24)

Retrospective 6
months, Tinetti
Assessment Tool,
Timed-Up and Go
HFR n = 40, LFR n =
41

- Participants with HFR showed slower gait
speed (p < 0.05)

- With cut-off value 1.58 m/s gait speed discrimi-
nates between HFR and LFR with 78% sensitiv-
ity and 76% specificity

Bizovska,
2018 [43]

Prospective study
Community-based
Total n = 131, 71 (6), 82%
female

CI as exclusion criterion Prospective 1 year
SF = 35, MF = 15,
NF = 81

- Trunk medial-lateral acceleration in short-term
Lyapunov exponent differed between MF and
NF (p < 0.05) but not after Bonferroni
correction;

- Poor MF predictive ability of trunk medio-lateral
short-term Lyapunov exponent but results im-
proved when combining with clinical
examination

Brodie, 2017
[59]

Cross-sectional
Community-based
Total n = 96, 75 (8), 59%
female

CI as exclusion criterion
according to MiniCog

Retrospective 12
months
F = 33, NF = 63

- Fallers showed significantly reduced gait
endurance and increased within-walk variability
(p < 0.05)

Brodie, 2015
[47]

Cross-sectional
Community-based
Total n = 96, 80 (4), 67%
female

No information about CI Retrospective 1 year,
Physiological Profile
Assessment Tool
F = 35, NF = 61

- 8-step mediolateral harmonic ratio identified
significant differences in between F and NF
based on age, walking speed and physiology
(p < 0.05)

Buckinx,
2015 [48]

Prospective study
Nursing homes
Total n = 100, 86 (6), 80%
female

No information about CI Prospective 2 years
F = 75, NF = 25

- Gait characteristics were not predictive of long-
term falls

Buisseret,
2020 [64]

Prospective study
Nursing homes
Total n = 73, 83 (8)
62% female

CI included,
16% with dementia

Prospective 6 months
F = 23, NF = 50

- When the Timed-Up and Go test results are
coupled with indicators of gait variability mea-
sured during a six-minute walk test, accuracy of
fall prediction improved from 68 to 76%

Ejupi, 2017
[60]

Cross-sectional
Community-based
Total n = 94, 80 (7), 68%
female

CI as exclusion criterion
according to MiniCog and
MMSE

Retrospective 12
months
F = 34, NF = 64

- F showed significantly lower maximum
acceleration, velocity and power during sit-to-
stand movements compared to NF (p < 0.05)

Gietzelt,
2014 [36]

Cohort-study
Nursing homes
Total n = 40, 76 (8), 50%
female

CI included (MMSE 9.3 ± 8.0) Prospective for 2, 4
and 8months
F = 13, NF = 27

- It is possible to classify gait episodes of F and
NF for mid-term monitoring (4 months) during
daily life using body-worn sensors (75.0%
accuracy)

Greene,
2012 [55]

Prospective study
Community-based
Total n = 226, 72 (7), 73%
female

CI as exclusion criterion Prospective 2 years
F = 83, NF = 143

- Sensor-derived features yielded a mean classifi-
cation accuracy of 79.69% for 2-year prospect-
ive falls

Howcroft,
2016 [56]

Cross-sectional
Community-based
Total n = 100, 76 (7), 56%
female

CI as exclusion criterion
according to self-reports

Retrospective 6
months
F = 24, NF = 76

- Best fall classification model using pressure-
sensing insoles and head, pelvis and shank ac-
celerometers (84.0% accuracy)

- Best single-sensor model with parameters de-
rived from a head sensor during single task
(84.0% accuracy)

Howcroft,
2018 [57]

Prospective study
Community-based
Total n = 75, 75 (7), 59%
female

CI as exclusion criterion
according to self-reports

Prospective 6 months
F = 28, NF = 47

- F had significantly lower dual-task head
anterior-posterior Fast Fourier Transform first
quartile, single-task left shank medial-lateral Fast
Fourier Transform first quartile, and single-task
right shank superior maximum acceleration
(p < 0.05)

Hua, 2018
[41]

Cross-sectional
Community-based
Total n = 67, 76 (6), 100%
female

No information about CI Retrospective 1 year,
Short Physical
Performance Battery
HFR = 19, LFR = 48

- Coefficient of variance, cross-correlation with
anteroposterior accelerations, and mean accel-
eration were the top features for classification
in HFR and LFR group

Ihlen, 2018 Prospective study Including CI (MMSE≥19) Prospective 6 months - Higher phase-dependent multiscale entropy of
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Table 1 Study design, sample characteristics and main results (Continued)

Author,
year

Study design, sample
including number of
participants, mean age
(SD) and sex

Cognitive Status Record of falls/ fall
history

Main findings

[44] Community-based
Total n = 303, 76 (7), 50%

SF = 58, MF = 46,
NF = 199

trunk acceleration at 60% of step cycle in F
compared to NF (p < 0.05)

- PGME has predictive ability of falls among SF

Ihlen, 2016
[49]

Cross-sectional
Community-based
Total n = 71, 78 (5), 65%
female

Cognitively intact according
to MMSE score (≥24)

Retrospective 12
months
F = 32, NF = 39

- Refined composite multiscale entropy and
refined multiscale permutation entropy of trunk
velocity and trunk acceleration can distinguish
between daily-life walking of F and NF (75.0–
88.0% sensitivity, 85.0–90.0% specificity)

Iluz, 2016
[35]

Cross-sectional
Community-based
Older adults total n = 71, 78
(5), 65% females;
Younger adults Total n = 30,
28 (4), 57% female

Cognitively intact according
to MMSE score (≥24)

Retrospective 1 year
F = 33, NF = 38

- Temporal and distribution-related features from
sit-to-walk and sit-to-stand transitions during
daily-life differed significantly between F and
NF

- Mean classification accuracy was at 88.0% and
better than traditional laboratory assessment

Mancini,
2016 [45]

Cross-sectional, prospective
Community-based
Total n = 35. 85 (5), 66%
female

Dementia as exclusion
criterion according to Clinical
Dementia Rating Scale and/
or MMSE

Retrospective 12
months, prospective
6 months
Retrospective analysis:
SF = 12, RF = 7, NF =
16
Prospective analysis:
F = 7, NF = 28

- Quality of turning (mean turn duration, mean
peak speed of turning, mean number of steps
to complete a turn) were significantly
compromised in RF compared to NF (p < 0.05)

Marschollek,
2009 [61]

Cross-sectional
Geriatric setting
Total n = 110, 80 (−), 74%
female

no information about CI Retrospective n/a
F = 26, NF = 84

- Pelvic sway while walking, step length and
number of steps in TUG differed significantly
between F and NF (p < 0.05)

- Adding sensor-based gait parameters to geriat-
ric assessment improves specificity in fall pre-
diction from 97.6 to 100.0%

Marschollek,
2011 [62]

Prospective
Geriatric setting
Total n = 46, 81 (−), −

No information about CI Prospective 1 year
n/a

- Sensor-derived parameters can be used to as-
sess individual fall-risk (58% sensitivity, 78% spe-
cificity) and identified more persons at fall risk
than a conventional clinical assessment tool

Pozaic, 2016
[63]

Cross-sectional
Community-based
Total n = 136, 73 (6), 69%
female

CI as exclusion criterion
according to Screening of
Somatoform Disorders (> 10)

Prospective 1 month
Fn = 13, NF = 123

- Time and frequency domain-based features de-
rived from a wrist-worn accelerometer on the
dominant and non-dominant hand can signifi-
cantly distinguish between F and NF (p < 0.05)

Qui, 2018
[50]

Cross-sectional
Community-based
Total n = 196, 72 (4), 100%
female

No information about CI Retrospective 5 years
F = 82, NF = 114

- Sensor-based data distinguished accurately be-
tween F and NF (89.4% accuracy)

Rivolta, 2019
[19]

Cross-sectional
Hospital setting
Older adults total n = 79, 69
(17), −
Younger adults total n = 11,
35 (−), −

No information about CI Tinetti Assessment
Tool
HFR = 33, LFR = 46

- Sensor-based balance and gait features
assessed during Tinetti Test differed signifi-
cantly between individuals with HFR and LFR
(p < 0.05)

- Linear model and artificial neural network had
a misclassification error of 0.21 and 0.11,
respectively, in predicting Tinetti outcome

Sample,
2017 [58]

Cross-sectional
Community-based
Total n = 150, 76 (9), 59%
female

No information about CI Retrospective 12
months
F = 59, NF = 91

- Sensor-based data collected during Timed-Up
and Go resulted in a more sensitive model
(48.1% sensitivity, 82.1% specificity) than includ-
ing Timed-Up and Go time duration only
(18.2% sensitivity, 93.1% specificity)

Senden,
2012 [51]

Cross-sectional
Community-based
Total n = 100, 77 (6), 56%
female

CI as exclusion criterion Tinetti Assessment
Tool
HFR = 19, LFR = 31,
NFR = 50

- Walking speed, step length and root mean
square had high discriminative power to
classify the sample according to the Tinetti
scale (76.0% sensitivity, 70.0% specificity).

van
Schooten,
2015 [52]

Cross-sectional, prospective
Community and residential
care home

CI included (MMSE≥18) Retrospective 6
months; prospective
6 months

- Sensor-derived parameters of the amount of
gait (number of strides), gait quality (complex-
ity, intensity, smoothness) and their interactions
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Quality assessment
All studies included in this systematic review used rea-
sonable methodology (Table 4) measured with NOS.
Most studies did not apply randomized stratified sam-
pling. Furthermore, not all included studies controlled
for age and sex differences or other important factors
resulting in a lower evaluation of the category “compar-
ability”. Overall, cross-sectional and prospective studies
achieved a mean score of six stars out of ten and nine
total stars.

Discussion
As a consequence of the aging process, falls are a major
issue in geriatric populations and require special consid-
eration in the design and conduct of effective physical
exercise interventions. Therefore, a comprehensive un-
derstanding of motor performance is required to detect
underlying fall risk factors more precisely. Assessment of
motor performance in geriatric settings is usually based
on scales, questionnaires and time-keeping, and wearable
sensors may present a more objective and reliable ap-
proach. This systematic review provides an update of the
existing body of literature concerning the assessment of
fall risk factors in motor performance using wearable
sensors with a special consideration of older adults with
CI.
All studies included in this systematic review, except

for one prospective study [48], found that sensor-derived

data are successful in distinguishing between groups of
faller status, or are useful in fall classification models.
When classification ability of sensor data was compared
to conventional clinical assessment, sensor-derived vari-
ables outperformed data of clinical assessment [56].
Wearable sensors may thus be considered a good alter-
native to conventional clinical assessment methods for
fall risk assessment.
With regard to the setting of data collection, our re-

view shows that data derived from both daily-life and
clinical assessments was used to predict, classify or dis-
tinguish between groups of fall status. For in-lab sensor-
based gait analysis, using the mean of at least two walks
for more reliable data was recommended [40]. Further-
more, gait features may differ depending on walking dis-
tance [40] and longer walking distance in clinical
assessment may better reflect everyday walking [57].
Nevertheless, sensor data of in-lab assessments might be
biased because participants might be affected by the
awareness of direct observation or cameras and therefore
might not behave naturally (e. g. adjustment of gait) [35,
41, 45, 46]. Hence, daily-life data might better represent
everyday functioning and fall-risk than data collected in
an in-lab setting [35, 45, 65].
With regard to sensor wearing time, some studies

comprised data collection from three up to eight con-
secutive days. A full week of recording sensor data may
cover the range of motor performance of older adults

Table 1 Study design, sample characteristics and main results (Continued)

Author,
year

Study design, sample
including number of
participants, mean age
(SD) and sex

Cognitive Status Record of falls/ fall
history

Main findings

Total n = 169, 75 (7), 54%
female

Retrospective analysis:
F = 60, NF = 109
Prospective analysis:
F = 59, NF = 110

can predict prospective falls (67.9% sensitivity,
66.3% specificity).

Wang, 2017
[46]

Prospective
Community-based
Total n = 81, 84 (4), 44%
female

No information about CI Prospective 12
months
MF = 11, NF = 70

- Rate in stair descent was higher in MF than in
NF (p < 0.05).

Weiss, 2011
[53]

Cross-sectional
Community-based
Total n = 41, 72 (7), 66%
female

Cognitively intact according
to MMSE score (≥24)

Retrospective 1 year
F n = 23, NF n = 18

- Sensor-derived Timed-Up and Go duration was
significantly higher in F compared to NF (p <
0.05)

- Jerk Sit-to-Stand, SD and average step duration
correctly classify 87.8% of F and NF (91.3% sen-
sitivity, 83.3% specificity)

Weiss, 2013
[54]

Prospective
Community-based
Total n = 71, 78 (5), 65%
female

Cognitively intact according
to MMSE score (≥24)

Prospective 6 months
F = 39, NF = 32

- Gait variability differed significantly between F
and NF (p < 0.05);

Zakaria,
2015 [42]

Cross-sectional
Hospital setting
Total n = 38, 67 (7), 47%
female

No information about CI Timed-Up and Go
HFR = 21, LFR = 17

- Sensor-derived parameters of Timed-Up and
Go phases can classify into people at HFR and
people at LFR.

SD: standard deviation, n: number, MMSE: Mini-Mental State Examination, HFR: high fall risk, LFR: low fall risk, CI: cognitive impairment, SF: single faller, MF:
multiple faller, NF: non-faller, F: faller, NFR: no fall risk
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better than a time span of only three days [54], however,
drop-out rate may be higher and feasibility may worsen
with increasing wearing time. In addition, it may be im-
portant to not only take into account sensor data from
gait but also from different activities, like sit-to-stand
transitions [52].
When assessing sensor data during daily-life, various

environmental conditions cannot be controlled. More-
over, movement behaviour in daily-life does not fol-
low a protocol, so the amount of sensor data might
differ significantly between study participants [35]. In
contrast, in a supervised setting (e. g. nursing homes
or hospitals), all participants are assessed in the same
facility and environmental conditions are standardized
and comparable [48].
The placement of the sensors differed within the in-

cluded studies. The most-often used sensor location was
the lower back for which a high user acceptance was re-
ported in previous studies [66]. However, Howcroft et al.

[56] examined different sensor positions and concluded
that sensors placed at the head or pelvis provided the
best classification capability among single-sensor models.
Only one study group used wrist-worn sensors for detec-
tion of sit-to-stand transitions, but the performance was
comparable to studies using waist-worn devices [63]. An
advantage of wrist-worn sensors might be the non-
intrusiveness and the similarity to a wristwatch [67].
Several parameters of motor performance identified

through sensor data may provide valuable information
about motor deficits that are associated with fall risk, as
well as indications for further fall prevention programs.
Interestingly, sensor-derived parameters that were asso-
ciated with fall risk were not associated with clinical fall
risk assessments (e.g. TUG). This may indicate that not
all fall-related movements can be detected by conven-
tional clinical assessments [55], thereby highlighting
the importance of body-worn sensors. To overcome
the potential limitations of clinical assessments, a

Table 2 Use of body-worn sensors to assess fall risk

Assessment while sensor was
used

Applied sensors (range of sampling rates in Hertz) Body location Assessed variables

gait analysis (between 7.62 and
400m)
[35, 40, 41, 43, 47, 48, 51, 56, 57, 62]

DynaPort, Trigno wireless systems, Locometrix, X16-1C,
ActiGraph, GT3X+, Freescale, DAAF, ETB-Pegasus
(30 Hz–296.3 Hz)

head, waist, lower back,
pelvis

temporal and spatial gait
variables,
local dynamic stability
variables,
variables of gait symmetry,
acceleration variables,
angle variables

daily-life walking between three to
eight days
[35, 36, 44, 49, 52, 54, 59]

Senior Mobility Monitor, SHIMMER platform, DynaPort,
Opal, BMA280
(50 Hz–128 Hz)

chest, lower back, wrist,
upper legs, lower legs

temporal and spatial gait
variables,
variables of gait symmetry
and gait variability,
variables of gait complexity
and gait smoothness,
angle variables,
acceleration variables

Timed-Up and Go Test
[42, 53, 55, 58, 61, 62]

SHIMMER platform, Freescale, Opal, Mobi8 System,
combined sensor
(100 Hz–256 Hz)

chest, waist, lower back,
upper legs, foot

temporal and spatial gait
variables,
angular velocity variables,
energy variables,
angle variables

Tinetti Test [19] GENEActiv
(50 Hz)

chest temporal and spatial gait
variables, balance variables

six-minutes walking test [64] DYSKIMOT
(100 Hz)

lower back acceleration variables,
variables of gait variability

others

standardized protocol with walking
and sit to stand transitions [60]

not specified
(50 Hz)

around the neck temporal gait variables,
acceleration variables

specially developed test battery
[50]

Xsens
(100 Hz)

lower back, upper legs,
lower legs

temporal and spatial gait
variables,
angle variables,
angular velocity variables,

semi-unsupervised walking and
stair ascent and descent [46]

Opal (128 Hz) lower back, ankle temporal gait variables,
variables of gait variability,
variables of movement
vigour

All applied sensors contained an accelerometer, a gyroscope or a combination of both
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combination of daily-life sensor data and outcomes of
clinical assessments to improve fall prediction was
recommended [43, 44].
Although individuals with CI represent the group with

the highest risk of falling in older adults, they are often
excluded from studies examining sensor-based methods
to assess fall risk. Therefore, the secondary aim of this
systematic review was to provide practical recommenda-
tions for using sensors in fall risk assessment in individ-
uals with CI. Since recording of data during daily-life
provides slightly better results, this may be one approach
to consider for individuals with CI. The daily-life record-
ing in the included studies ranged from three to eight
days and was considered feasible regardless of the cogni-
tive status of included participants. Previous studies with
individuals with CI and dementia also reported good
feasibility of sensor-based data collection of up to three
days [68–70]. Recording of daily-life data should thus be
preferred to in-lab data collection as individuals with CI
are more likely to be affected from test instructions or

external distraction [71].However, individuals with CI
may be less active during the day which may hamper
collection of high-quality data [72].
Furthermore, it must be noted that both the location

and the method of attachment of sensors appear to be of
high importance when collecting sensor-based data on
individuals with CI. The application of more than one
sensor may provide more detailed information but is less
practicable in this target group [19]. In addition, particu-
larly in individuals with CI, researchers or instructed
nursing staff need to be present to assume or supervise
the placement and correct wearing position of the sensor
[36, 61]. From a practical point of view, the location of
the sensor should be carefully chosen, and clinicians and
researchers may want to ensure that participants are not
disturbed by the device [67, 73]. Moreover, researchers
and/ or clinicians may need to consider technical aspects
such as battery life span, data transmission or storage
capacity when selecting an appropriate sensor for re-
search or clinical practice [19].

Table 3 Fall risk classification models

Author Model Acc (%) Sen (%) Spe (%)

Bautmans et al. [40] logistic regression analysis, ROC 77.0 78.0 78.0

Bizovska et al. [43] logistic regression analysis, ROC – 53.0 85.0

Buisseret et al. [64] a binary classification, ROC 85.7 50.0 73,9

Greene et al. [55] ROC 79.7 73.1 82.6

Gietzelt et al. [36] decision tree 75.0 78.2 71.2

Howcroft et al. [56] support vector machine and neural networks 80.0–
84.0

50.0–
66.7

89.5

Hua et al. [41] random forests 73.7 81.1 –

Ihlen et al. [44] Partial Least Square Regression Analysis 76.0 (SF)
68.0
(MF)

71.0 (SF)
67.0
(MF)

80.0 (SF)
69.0
(MF)

Ihlen et al. [49] Partial Least Square Discriminatory Analysis – 59.0–
88.0

77.0–
92.0

Iluz et al. [35] Ada Boost, Support Vector Machine, Bag, Naïve Bayes 87.1–
90.6

83.8–
89.2

87.2–
94.4

Marschollek et al. [62] logistic regression, classification model 70.0 58.0 78.0

Marschollek et al. [61]
a

classification trees 90.0 57.7 100.0

Qui et al. [50] a logistic regression, Naïve Bayes, decision tree, boosted tree, random forest, support vector
machine

79.7–
89.4

87.2–
92.7

69.2–
84.9

Rivolta et al. [19] a linear model, artificial neural network – 71.0–
86.0

81.0–
90.0

Sample et al. [58] a stepwise logistic regression, max-rescaled R2 value – 48.1 82.1

Senden et al. [51] linear regression analysis, ROC – 76.0 70.0

van Schooten et al.
[52]

logistic regression analysis, ROC – 67.9 66.3

Weiss et al. [54] a binary logistic regression analysis 71.6 62.1 78.9

Weiss et al. [53] binary logistic regression analysis 87.8 91.3 83.3
a These models also include data of clinical assessment (e. g. body mass index)
Acc: accuracy, Sen: sensitivity, Spe: specificity, ROC: receiver operating curve, SF: single faller, MF: multiple faller
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Furthermore, some studies concluded, that additional
information concerning other fall-risk related factors (e.
g. age) might improve fall prognosis [36], and more
studies are needed to examine the interplay between
cognitive functioning and motor performance for fall
risk assessment [45].

Strength and limitations
To the best of our knowledge, this review was the first
to particularly focus on, and to also provide practical

implications for using body-worn sensors in fall risk as-
sessment in individuals with CI. However, several limita-
tions must be noted. For example, we included studies
with different study designs, which may limit the com-
parability of findings between studies. Furthermore, re-
garding our secondary aim, we only identified one study
particularly focusing on individuals with CI. Therefore,
we also considered studies not explicitly excluding indi-
viduals with CI for our practical recommendations.
Nevertheless, this limits our ability to make assumptions

Table 4 Evaluation of study quality according to Newcastle-Ottawa Scale

Cross-sectional studies Selection
(5 stars)

Comparability
(2 stars)

Outcome
(3 stars)

Total Score
(10 stars)

Bautmans et al., 2011 ★★★ ★ ★★★ 7

Brodie et al., 2015 ★★ ★ ★★★ 6

Brodie et al., 2017 ★★★ ★ ★★★ 7

Ejupi et al., 2017 ★★ ★ ★★ 5

Howcroft et al., 2016 ★★★ ★ ★★★ 7

Hua et al., 2018 ★★★★ ★ ★★★ 8

Ihlen et al., 2016 ★★ – ★★★ 5

Iluz et al., 2016 ★ ★ ★★★ 5

Mancini et al., 2016* ★★★ ★ ★★★ 7

Marschollek et al., 2009 ★★★ ★ ★★★ 7

Pozaic et al., 2016 ★★★ ★ ★★★ 7

Qui et al., 2018 ★★★ ★ ★★★ 7

Rivolta et al., 2019 ★★★ ★ ★★★ 7

Sample et al., 2017 ★★★ ★ ★★★ 7

Senden et al., 2012 ★★★ ★ ★★★ 7

van Schooten et al., 2015* ★★★ – ★★★ 6

Weiss et al., 2011 ★★ – ★★★ 5

Zakaria et al., 2015 ★★ – ★★★ 5

Prospective studies Selection
(4 stars)

Comparability
(2 stars)

Outcome
(3 stars)

Total score
(9 stars)

Bizovska et al., 2018 ★★★ ★ ★★ 6

Buckinx et al., 2015 ★★ ★ ★★★ 6

Buisseret et al., 2020 ★★★ ★ ★★★ 7

Gietzelt et al., 2014 ★★ ★ ★★★ 6

Greene et al., 2012 ★★★ ★ ★★★ 7

Howcroft et al., 2018 ★★★ – ★★★ 6

Ihlen et al., 2018 ★★ ★ ★★ 5

Marschollek et al., 2011 ★★ ★ ★★★ 6

Mancini et al., 2016 a ★★ ★ ★★ 5

van Schooten et al., 2015 a ★★★ ★ ★★ 6

Wang et al., 2017 ★★ – ★★ 4

Weiss et al., 2013 ★★★ ★ ★★ 6
a Mancini et al. [45] and van Schooten et al. [52] had a mixed study design and were therefore considered for both types of study design
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about the use and practicability of wearable sensors in
persons with CI. More research is needed to address this
important topic, particularly as individuals with CI ex-
hibit more gait abnormalities such as asymmetry as
compared to persons without CI. In addition, besides
motor performance, cognitive abilities as well as other
factors such as medication intake, mental health, or sup-
port from caregivers also play a significant role when
assessing risk of falling [11]. However, this review solely
focused on sensor-based characteristics of motor per-
formance. Of note, wearable sensors are also widely used
in fall detection which we did not address with our sys-
tematic review. Combining wearable sensors for both fall
risk assessment as well as fall detection may thus be an
effective prevention strategy in clinical settings.

Conclusion
In conclusion, wearable sensors appear to be feasible
tools to assess fall risk in older adults regardless of CI, in
both an in-lab setting and during daily-life when mea-
sured for a period of up to eight days. Overall, sensor-
derived data of daily-life were more useful in distinguish-
ing between or predicting groups of faller status, indicat-
ing that the wide range of variables from daily-life data
provides more valuable information about fall risk as
compared to data collected in an in-lab setting. Similar
results were observed when focusing on older adults
with CI. Nonetheless, there exists a considerable lack of
studies particularly examining sensor-based fall risk as-
sessment in individuals with CI. Future research is
needed to further specify which sensor-derived parame-
ters of motor performance measured in daily life are
most accurate and reliable predictors of fall risk. Fur-
thermore, more research should focus on use of wear-
able sensors for fall risk assessment in older adults with
CI to improve exercise programs for fall prevention.
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