
KIT SCIENTIFIC WORKING PAPERS

Applying Evolutionary Algorithms Successfully
A Guide Gained from Real-world Applications

Wilfried Jakob

170

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KITopen

https://core.ac.uk/display/477847469?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Institute for Automation and Applied Informatics (IAI)

Impressum

Karlsruher Institut für Technologie (KIT)
www.kit.edu

This document is licensed under the Creative Commons Attribution – Share Alike 4.0 International
License (CC BY-SA 4.0): https://creativecommons.org/licenses/by-sa/4.0/deed.en

2021

ISSN: 2194-1629

Karlsruhe Institute of Technology
Institute for Automation and Applied Informatics
Hermann-von-Helmholtz-Platz 1
76344 Eggenstein-Leopoldshafen

www.iai.kit.edu

https://www.iai.kit.edu/english/index.php
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Applying Evolutionary Algorithms Successfully
A Guide Gained from Real-world Applications

Abstract
Metaheuristics (MHs) in general and Evolutionary Algorithms (EAs) in particular are well

known tools for successful optimization of difficult problems. But when is their application
meaningful and how does one approach such a project as a novice? How do you avoid beginner's
mistakes or use the design possibilities of a metaheuristic search as efficiently as possible? This
paper tries to give answers to these questions based on 30 years of research and application of the
Evolutionary Algorithm GLEAM and its memetic extension HyGLEAM. Most of the experience
gathered and discussed here can also be applied to the use of other metaheuristics such as ant al-
gorithms or particle swarm optimization.

This paper addresses users with basic knowledge of MHs in general and EAs in particular who
want to apply them in an optimization project. For this purpose, a number of questions that arise
in the course of such a project are addressed. At the end, some non-technical project management
issues are discussed, whose importance for project success is often underestimated.

Keywords: evolutionary algorithms; memetic algorithms; metaheuristics; real-world applica-
tions; application guide; application experiences; global optimization

Contents
1. Introduction...2

2. When Should MHs Be Used and When Better Not?...2
3. Which Metaheuristic Is Suited?..4

4. From the Problem Statement to an EA Project...5
4.1. Objectives, Decision Variables, and Constraints...5

4.1.1. What are the Goals of the Optimization?...5
4.1.2. What are the Changeable Variables...5
4.1.3. Which Restrictions are There?...6
4.1.4. Genotypic and Phenotypic Repair...7

4.2. Auxiliary Criteria...8
4.3. Application Examples..9

4.3.1. Coding and Interpretation Exemplified by the TSP...9
4.3.2. Scheduling with Extended Start Time Planning..10
4.3.3. Layout Planning as an Example for Smart Handling of Complex Constraints..............12

4.4. Pareto-Optimization or Fitness as Weighted Sum...14

5. Memetic Extension of EAs...16
6. Remarks on Comparison between Metaheuristics and their Variants................................18

7. Search Reliability and Population Structures..18
8. Handling Strategy Parameters and the Population Size in Particular................................20

9. Search Speed, Archive and Parallelization..22
10. Some Aspects of Project Management..23

- 2 -

1. Introduction

Evolutionary Algorithms (EAs) [1 - 6] reproduce certain mechanisms of biological evolution
as algorithms to improve solutions according to given objectives. These mechanisms include the
inheritance of information (crossover and recombination) that determines the solution, its random
variation (mutations) and the parallel treatment of a set of solutions (population). The chance of a
solution (individual) to produce offspring and/or to be present in the next iteration of the algo-
rithm (generation) depends on its quality (fitness).

This general mechanism of generating and (randomly) changing a set of solutions and evolving
them based on a quality measure can, with appropriate abstraction, be found in many other meta-
heuristics (MHs) such as ant colony algorithms [7] or particle swarm optimization [8] as well.
Therefore, many of the more general statements made here about EAs also apply to the other
methods. The focus of this paper is on population-based, stochastic search methods that globally
scan the search space and are independent of a specific application.

2. When Should MHs Be Used and When Better Not?

If there is an exact mathematical solution to a problem and one is satisfied with the results,
there is usually no reason to use a metaheuristic. If simplifications of the problem were necessary
to be able to apply an exact (established) solution method, the question arises, how large are these
simplifications and how far are the found approximate solutions from the original problem? This
question can only be answered application-related and in case of doubt only the application of a
suitable MH and a comparison of the results will help.

Exact mathematical solutions can generally not be expected for the following types of tasks:

• NP-complete problems [9], including most combinatorial tasks, such as the Traveling
Salesman Problem (TSP, cf. Section 4.3) or scheduling problems above a certain (usually
small) size,

• Tasks whose mathematical objective function is "difficult" because, for example, it is
characterized by non-linearities, discontinuities, or regions with definition gaps.

In all these cases, metaheuristic optimization is a promising solution approach. Here are some
examples:

• Design optimization, e.g. of turbines, aircraft wings, antennas, or printed circuit board lay-
outs,

• Scheduling tasks, like production planning, timetable generation for schools or public
transport, maintenance planning,

• Layout planning, like cutting planning (textile industry, shipbuilding, ...), container or
truck loading,

• Site planning based on standard tours and/or other restrictions, power plant or network ex-
pansion based on different load scenarios.

In addition, there are all kinds of model-based optimization. The creation of simulation models
usually aims at calculating and evaluating alternatives. The variation of parameters can be based
on experience and intuition or more comprehensively by a MH. Both can also be complemented

- 3 -

by using manually found solutions as starting points of a global search. Using e.g. an elitist EA1

the result can only get better.

Metaheuristics have advantages and disadvantages. The disadvantages include:

• Stochastic search, so results cannot be reproduced. This means that two runs will usually
return different results.

• No guarantee of finding the optimum. But (very) good solutions can be expected.

• Comparatively long run times. It must be possible to compute a large number of alterna-
tive solutions.

This is offset by the following advantages:

• General applicability (at least related to a problem class),

• Global search in the solution space,

• Simplifications of the problem are neither necessary nor indicated. The only exception is
for tasks requiring long run times for solution assessments. If they are e.g. simulation-
based, simplifications can be considered if they have only a small and estimable effect on
the results.

• Manually, heuristically or otherwise generated solutions can be integrated as initial indi-
viduals,

• Good parallelizability as acceleration measure,

• With faster hardware, better solutions or the possibility of scaling the task higher2 can be
expected with the same runtime. A third alternative is faster processing of the unchanged
task with comparable solution quality.

• Good combinability with local search methods to find good solutions more reliably and
faster.

Another advantage can be seen in the low prerequisites that are necessary for an EA applica-
tion:

• Essentially, only adherence to the principle of causality is expected, i.e., that like causes
have like effects, and the greater the strength of causality, i.e., the more strongly the mag-
nitude of a cause change is related to the magnitude of the effect change, the better. As is
true for almost all other search methods, EAs are unlikely to find the lone peak in an oth-
erwise flat search space. In such a situation, purely random-based approaches such as the
Monte Carlo method are most promising. This is because EAs try to learn from the search
space samples and if there is nothing to learn, search strategies based on that will not help.

• It must be possible to evaluate solutions in such a way that their quality is comparable.

• Sufficient time and/or computing power is available, whereby it depends on the applica-
tion what can be considered as "sufficient".

1 In an elitist EA, the best individual of a population can only be replaced by a better one.

2 e.g. in the case of a scheduling task by increasing the planning volume

- 4 -

The following properties of quality functions, on the other hand, are not an obstacle to EA ap-
plication:

• non-linearity,

• only section-wise definition,

• missing differentiability,

• missing continuity,

• missing convexity, or

• noisiness of the function.

3. Which Metaheuristic Is Suited?

Evolutionary Algorithms like GLEAM [6, 10, 11], their memetic extensions [12, 13] like Hy-
GLEAM [14, 11], ant colony optimization [7], and particle swarm optimization [8] belong the
oldest population based global searching metaheuristics. They are well researched and there are a
lot of applications, so it should be easy to find application examples for your own task in the liter-
ature. If not, at least reports of similar tasks should be found to learn from.

An important criterion for the selection of a MH is the question of how easily the decision vari-
ables and other degrees of freedom of a task, discussed below in Section 4.1, can be mapped to
the MH under consideration. For EAs, this would be the issue of easy assignment to genes and
chromosomes. Also for this question, which is important for success, one should try to learn from
the applications of others.

Next, the characteristics of the MH must fit the type of the task (see Section 4.1.2). In combi-
natorial problems, when using, for example, an EA, it is useful that its genetic operators enable
or, better, foster a change in gene order. Thus, it can be (very) helpful if, in addition to a simple
mutation for gene shifting, there are also those that shift entire gene sequences [15] or reverse
their internal gene order (inversion) [15]. In addition to suitable mutations, special crossover op-
erators may also be useful, such as order-based crossover [5, 16], which passes the relative gene
order to the offspring. This crossover is useful, for example, in scheduling tasks that have se-
quence constraints. The classification and categorization of an optimization task will be discussed
in more detail in Section 4.1.2.

A further criterion for selection is the availability of suitable software. Suitability issues in-
clude the support that can be expected and whether the sources are available for any necessary
extensions or modifications.

Recently, a variety of novel nature-inspired search methods have been reported [17], such as
bee [18], firefly [19] or gray wolf [20] algorithms to name only a few. An advantage over the
aforementioned methods is not apparent at first, and as long as these cannot report a comparable
depth of research and number of applications as the established MHs, caution is advised for the
beginner. Because when problems arise, there is a risk of finding rather little in the literature.

- 5 -

4. From the Problem Statement to an EA Project

This section describes how to derive an optimization project from a task definition. This step is
explained on the basis of the properties of an EA in order to keep the text simpler and more com-
prehensible. However, most of the statements can also be applied to other metaheuristics based
on a global search. The approach presented is illustrated in Section 4.3 by discussing some practi-
cal examples.

First, the following basic preliminary consideration: For EAs, the success of the search is based
on two main requirements: First, the information contained in the chromosomes must cover all
areas of the search space to be considered. Second, the assessment must be comprehensive in the
sense of the objectives. One must always keep in mind that a basic EA has no knowledge of the
optimization goals and will therefore proceed strictly according to the user-specified evaluation
criteria to steer the evolution. If, for example, a ship is to be planned, it is clear to everyone in-
volved that it must be able to swim. But if this requirement is not part of the evaluation, one
should not be surprised about too heavy ship designs.

4.1. Objectives, Decision Variables, and Constraints

In order to move from a task definition to an optimization project with an EA, the following el-
ements must first be identified in the task description.

4.1.1. What are the Goals of the Optimization?

Evaluation criteria are deduced from the goals. They are also called primary criteria, since they
can be derived directly from the task. The topic of evaluation and fitness calculation will be dis-
cussed further below in Section 4.4. Depending on the task, it may be useful to define additional
criteria that support the fulfillment of the primary ones, see Section 4.2. It should be noted at this
point that compliance with restrictions can also be included in the evaluation, see Section 4.1.3.

4.1.2. What are the Changeable Variables

What are the parameters that are to be determined by the optimization? Are there other degrees
of freedom that can or must be used to find a solution? The parameters to be set are called deci-
sion variables (DVs). Further degrees of freedom may concern the order in which solutions are
constructed from partial steps. This can be e.g. scheduling operations, where resources are as-
signed to a sub-operation like a work step. Or in a layout planning operation, an element to be
placed is selected and assigned to a location.

The DVs and any sequence information are mapped to genes, which then form the chromo-
some of an individual. This step is usually referred to as coding in the literature. To calculate the
fitness of an individual, the reverse step is required and a solution must be constructed from the
information contained in the chromosome, which can then be evaluated. This step is also called
interpretation of a chromosome. In this step, data that are not subject to optimization but are rele-
vant for the construction of a solution (static data) may also be used. Coding and interpretation
are usually developed jointly after the identification of the DVs, as they are closely interdepen-
dent.

- 6 -

DVs can be integer or continuous and it would be best if they could also become part of a chro-
mosome unchanged with this property. Unfortunately, many if not most EA implementations are
based on chromosomes with either real or integer numbers. In such cases, one must either round
or restrict real numbers to a suitable precision and map them to integers.

An optimization problem can be classified on the basis of its DV and other degrees of freedom
as follows, and this classification can be helpful in selecting and finding a suitable MH.

• Optimization of continuous and/or integer parameters. If both data types occur, it is also
called mixed-integer optimization. Example: Design optimization
Some appropriate MHs: Evolution Strategy [2, 3], real- or integer-coded GAs [4 ,21], Par-
ticel Swarm Optimization [8], HyGLEAM [14, 11]

• Combinatorial optimization. Examples: TSP (see Section 4.3.1), some scheduling tasks.
Some appropriate MHs: Ant Colony Optimization [7], Integer-coded GAs [4], GLEAM
[6, 10, 11]

• Combinatorial including mixed-integer optimization. Examples: some scheduling tasks
(see Section 4.3.2), layout planning (see Section 4.3.3)
Some appropriate MHs: real- or integer-coded GAs [4 ,21], GLEAM [6, 10, 11] or Hy-
GLEAM [15, 11]

The above list of suited MHs is by no means complete and contains mainly those MHs which
were designed for this field of application. For the other application classes, there are usually cor-
respondingly adapted variants.

A note on the classical genetic algorithms (GAs), since they are still relatively widespread.
They are based on a binary coding and represent everything as bit strings of different lengths.
Michalewicz already analyzed the serious disadvantages of this coding for all tasks not based on
Boolean DVs and/or integers of small ranges in his book about 30 years ago [4]. Real-coded GAs
or those based on integers can be considered as reasonable alternatives to the classical form.

4.1.3. Which Restrictions are There?

Real-world applications usually have some restrictions. The author has never seen a real-world
problem without them in about 30 years of research and EA application.

The value range of DVs is usually limited. Such restrictions are called explicit restrictions and
a good EA allows to specify their lower and upper bounds in such a way that the mutations re-
spect them. Restrictions that depend on multiple DVs are called implicit restrictions and can be
thought of as illegal regions in or at the edge of the search space.

The simplest and also worst way to deal with implicit restrictions is to set the fitness of such an
individual to zero. Instead, the degree of restriction violation should be determined and evaluated
so that the individual has a chance to move out of the forbidden area3. The more it approaches the
boundary of the impermissible zone, the better the fitness must become until it increases signifi-

3 The image used here of an individual moving based on fitness increases is intended to serve as an easier repre -
sentation of the search process. In reality, of course, a change occurs through improved offspring of the initial in-
dividual in the course of generations and since the best offspring replaces its parent in many EAs, the image of
the moving and improving individual arises over the generations.

- 7 -

cantly once the forbidden zone has been left. Only in this way do initially impermissible solutions
have a chance of becoming permissible ones.

Figure 1 may illustrate this. The left part (a) shows the original fitness function. It is usually
not sufficient to simply lower the fitness value in the forbidden zone, because then the peak la-
beled P in the figure will cause individuals to move there rather than to the restriction limits, see
Fig. 1b. Instead, use a suitable function in the forbidden region, e.g., a lowered spherical function
as in Fig. 1c. This helps the individuals to move to the boundaries and to get a significant fitness
increase after leaving the forbidden zone, which considerably counteracts a return.

Fig. 1: Handling of a restriction within the definition range of a DV. The original fitness function
(a), a simple and not sufficient modification (b), and a more promising adjustment (c).

Handling restrictions by evaluation is an option that always exists. Unfortunately, depending
on the application, it can also become quite laborious and make it more difficult for the search.
The better option is to look for ways to completely avoid violations of at least some of the restric-
tions by choosing a clever design of chromosomes and their genes, as well as their interpretation.
To this end, the examples in Section 4.3 will hopefully provide some ideas.

4.1.4. Genotypic and Phenotypic Repair

In a number of applications, it can be determined during interpretation whether certain restric-
tions are violated by the actual gene or not. This can be responded to by two fundamentally dif-
ferent types of repair, genotypic and phenotypic repair, in addition to the always possible lower-
ing of fitness discussed in Section 4.1.3. In the former, repair is accomplished by appropriately
altering the chromosome, whereas in the latter, only the interpretation is adjusted and the chromo-
some remains unchanged. As a consequence, in the case of phenotypic repair, this must also be
applied to the interpretation and output of the final result.

An example of this are all scheduling tasks in which there are sequence specifications for at
least some of the sub-steps. When processing a gene, it can now be determined whether all re-
quired sub-steps will be completed in time before the scheduling in question. If not, there is a re-
striction violation that can be easily remedied phenotypically: the processing of the affected gene
is simply postponed until all required predecessor sub-steps have been scheduled. In genotypic
repair, on the other hand, the affected gene is shifted towards the end of the chromosome until it

- 8 -

is behind all genes of the predecessor sub-steps. The disadvantage of this procedure is that it pre-
vents the restructuring of the gene sequence distributed over several appropriately modified off-
spring, which have restriction violations in between.

4.2. Auxiliary Criteria

Auxiliary criteria do not come from the original problem definition, but are intended to support
and accelerate the achievement of certain criteria. As an example, consider production planning
where one of the goals is to shape the energy demand resulting from the planning in such a way
that consumption peaks above a given limit are as low as possible or preferably avoided com-
pletely, see Fig. 2a. This results in the primary goals of a low peak count and a low peak maxi-
mum. But this is not sufficient, as the following consideration shows: If one of several peaks of
the same size is reduced by a suitable change in the schedule, this has no effect on either the num-
ber of peaks or their maximum, see Fig. 2b, 1st peak. However, the improvement that nevertheless
occurs would have to be evaluated positively, because it is probably a meaningful intermediate
step towards a better schedule. By the way, the same applies to the reduction of the temporal du-
ration of a peak, see Fig. 2b, 5th peak. Thus, the area of the peaks above the limit should be calcu-
lated and summed up and included in the overall evaluation. In use cases, where schedules with-
out energy peaks are possible, the evaluation of the peak maximum is probably no longer neces-
sary.

Fig. 2: Assessment of energy peaks exceeding a given maximum. The situation in the right part
of the figure shows an improvement in the 1st and 5th peak compared to the left one.

The above application example can be used to demonstrate another use of auxiliary criteria. As
a rule, compliance with the latest completion times of the orders represents an important evalua-
tion criterion. In order to shorten this if necessary, all processing steps of the order must start as
early as possible and delays between the steps must be kept as short as possible. Therefore, sim-
ply evaluating compliance with the deadlines is not sufficient; instead, the waiting times of the in-
dividual processing steps should also be recorded and included in the evaluation as an auxiliary
criterion, especially for late orders. Figure 3 illustrates this: Although the earlier processing of
sub-step d does not change the completion time of the order, it does make it possible to start sub-
step e earlier and thus to complete the order earlier.

time

en
er

gy
 c

on
s u

m
pt

io
n

1 2 3 4 5 6 7

a)

given limit

time

en
er

gy
 c

on
s u

m
pt

io
n

1 2 3 4 5 6 7

b)

given limit

- 9 -

Fig. 3: Example of late completion of an order consisting of the five work steps a - e. The earlier
processing of step d does not yet result in earlier completion and therefore does not improve the

assessment of compliance with the deadlines. However, it is a necessary intermediate step to
achieve this primary criterion and therefore earlier start of work-steps like step d must be evalu-

ated positively as an auxiliary criterion.

4.3. Application Examples

Since the possibilities for designing an evaluation suitable for search have already been dis-
cussed in the previous sections and the topic will be addressed again in Section 4.4, this section is
mainly concerned with aspects of coding and interpretation.

The different approaches to coding presented in the examples are intended to illustrate that
there is no one solution, but rather a greater or lesser variety of design options. It is important to
consider the coding that best serves a search, based on the circumstances of the task. A guideline
can be the question, which coding corresponds rather to the causality principle, that is that small
changes have also only small effects. The appropriate MH would then have to be selected. Fur-
ther requirements for a suitable coding concern the coverage of the entire search space and the
complexity of the interpretation, whereby the latter has rather subordinate importance in case of
doubt.

In the first subsection, a number of alternative coding options for a rather simple combinatorial
problem, the TSP, are discussed. In the use case presented in the second subsection, the impact of
an encoding alternative on the options for repairing restriction violations during interpretation is
considered. Finally, for the application presented in the third subsection, the discussion focuses
around clever interpretation to avoid restrictions and the resulting consequences for coding.

4.3.1. Coding and Interpretation Exemplified by the TSP

As a first example for the design possibilities in coding and interpretation, the TSP may serve,
in which a given set of cities is to be visited in any order and no city may be visited more than
once. The shortest tour is sought. This NP-complete problem is considered a classical benchmark
for combinatorial tasks in general and tour planning in particular.

For an EA that has genetic operators to change the gene order, the simplest way is to assign a
number from 1 to n to each of the n cities and map it directly to the n genes of the chromosome.
This number assignment remains unchanged. A gene order changed by mutations and crossover

- 10 -

is directly interpreted as a tour and its length is calculated. Since each city occurs only once in the
chromosome, the restriction of a single visit to each city is always satisfied.

But if the available EA leaves the gene order unchanged, one can, for example, encode the de-
cision about the next city in the genes. Then the genes represent the index of the next city to be
visited, where this index is related to a list of cities not yet visited. For the first gene, this list in-
cludes all n cities, for the second the remaining n-1 cities, and so on. Accordingly, the value set of
the genes decreases continuously. This procedure also avoids the multiple visit of a city. How-
ever, the interpretation effort is considerably higher, since new lists of the remaining cities have
to be generated for each evaluation and each gene. Also, the EA must allow own value ranges per
gene.

But what to do if it is a simple EA that limits the range of values uniformly for all DVs? In this
case, a genetic repair can be considered, which, if the index is too large, simply dices it out again
in the respective applicable range, whereby the new value is to be entered into the affected gene.
The alternative idea of a phenotypic repair by reducing too large indices by modulo operation has
a significant disadvantage: Thus, smaller indices occur more frequently after the adjustment than
larger ones, which leads to a drift in the direction of the table beginning of the respective selec-
tion lists. However, mutations must be undirected, and this phenotypic repair gives them a quasi-
subsequent favored direction. Therefore, genotypic repair is preferable in this case.

As another alternative possibility with an EA without sequence variations of the genes, one can
use a chromosome consisting of up to n genes, which can take a value between 1 and n-1. The
gene values are subject to mutation. At the beginning of the interpretation, the n cities are in a list
in a fixed order from 1 to n. The genes are interpreted in the order pecified by the chromosome,
with the i-th gene causing a shift of the city at the i-th position in the list by the gene value mod-
ulo n. The resulting city order in the list after processing the chromosome is the resulting tour,
where again each city can occur only once. It should be noted that the minimum chromosome
length should be n/2.

In this application, the first presented coding with an EA changing the gene order can be con-
sidered as the first choice.

4.3.2. Scheduling with Extended Start Time Planning

In Section 4.2, a scheduling task was discussed with the constraint that energy consumption
peaks are to be minimized or better avoided at all. Such consumption peaks can be caused by en-
ergy intensive operations like heating, electric welding or shock freezing. Without this constraint,
one of the common goals of scheduling tasks, namely a short total completion time, would lead to
scheduling all work steps as early as possible, i.e. as soon as the first suitable resource (e.g. work
station) becomes available. However, in order to smooth energy consumption, it may be neces-
sary to delay the start of some energy-intensive work steps. Consequently, all such work steps
must be scheduled with a start time. This can be specified as an absolute value or as a delay com-
pared to the earliest possible start.

The decision on this alternative has, among others, effects on the remaining repair possibilities
for such applications, where additionally also sequence restrictions of the processing steps have
to be observed. The genotypic repair discussed in Section 4.1.4 is thus no longer possible with
absolute start times, since the order of the genes in the chromosome has only limited relevance to

- 11 -

the resulting processing order due to the absolute time specifications. And this the more, the more
energy-intensive processing steps are to be planned. The gene order mainly influences the sched-
uling of the standard work steps and is reduced to the solution of possible allocation conflicts4 for
the others. The situation is different with phenotypical repair: Since for this the scheduling is
postponed until all necessary preceding steps have been completed, the absolute start time speci-
fication is basically ignored. Ergo, absolute start time specifications and repair approaches are a
poor fit.

If, on the other hand, one decides for delays in the start times, both types of repair are still pos-
sible. A genotypic repair moves the gene of the affected work step behind the last gene of the pre-
decessor work steps and the phenotypic repair postpones its processing until all predecessor steps
have been completed. In both cases, the delay stored in the gene is then added to the earliest pos-
sible start time.

Another consequence of the decision on the alternative described at the beginning concerns the
character of the resulting task. When choosing start time delays, the combinatorial character is
largely preserved. Absolute start times, on the other hand, reduce the importance of gene order
the more steps and thus genes are affected. A combinatorial task thus increasingly becomes an in-
teger optimization problem and the gene order only decides on the solution of allocation con-
flicts, i.e. it plays a lesser role than before.

The last question to be addressed is how to map the above gene model to chromosomes. As an
example, an integer-coded EA is assumed, which does not provide for sequence changes of the
genes. The gene model with start time delays is used, and similar procedures can be followed for
the other variant. It should be emphasized that other coding alternatives are possible and refer-
ence is made to the literature. The chromosome is first divided into two parts, one determining
the gene order and the second containing the DVs of those genes with start time delays. The inter-
pretation is such that the genes of the first chromosome part determine the order of the work steps
by swapping the steps in a list. In this process, the i-th gene interchanges the work step at the i-th
position in the list with the list entry at position (i+d)mod(n+1) , where the distance d is given
by the gene and n is the number of work steps. If the end of the list is exceeded, the modulo oper-
ation causes a continuation of the determination of the exchange partner at the beginning of the
list.

Figure 4 shows a simple example consisting of genes for five work steps, three of which may
have a start time delay. Let the work steps be labeled by a through e, and steps b, d, and e can be
delayed. The genes for determining the sequence are located in the chromosome at positions 1 - 5
and those for determining the time delay at positions 6 - 8.

Fig. 4: Example chromosome for five work steps of which three can be started delayed

4 Allocation conflicts can arise when more than one gene claim a resource at the same time. Then, typically, the
gene that is interpreted first, i.e. is closer to the beginning of the chromosome, is given preference.

 2 1 3 0 1 7 5 12gene value:

gene position: 1 2 3 4 5 6 7 8

- 12 -

Table 1 shows the stepwise change of the work step list when working through the first five
genes of the example chromosome from Fig. 4. The row for gene 4 is omitted since it leaves the
sequence unchanged.

Processing of Work Steps

initial list a b c d e

gene 1 c b a d e

gene 2 c a b d e

gene 3 b a c d e

gene 5 e a c d b

result list e a c d b

Table 1: Determination of the work step sequence by permutations according to the gene values
of the example chromosome from Fig. 4

In the last step, the delays are assigned: The value 7 of gene 6 to step b, the 5 of gene 7 to step
d, and the 12 of gene 8 to step e. This assignment would leave the delays associated with the re-
spective steps. Of course, one could also proceed differently and assign the delays to the work
steps in their changed order, so that step e would be started 7 time units, d 5 and b 12 units later.
Whether one of the two interpretation variants leads to better results, and if so which one, is prob-
ably application-dependent.

4.3.3. Layout Planning as an Example for Smart Handling of Complex Constraints

The last example is intended to illustrate how the search space can be meaningfully reduced by
clever interpretation and how some restrictions can be taken care of at the same time. The follow-
ing simplified task from the field of arrangement planning may serve this purpose: On a rectangu-
lar surface of width w and length l five different geometric types of objects are to be arranged in
such a way that as little area as possible remains unused. These are triangular, square, rectangu-
lar, circular and oval objects of given dimensions, with the triangles being equilateral. The ob-
jects can be rotated and must not overlap after placement. Approximately the same number of all
five types of objects are to be planned, whereby deviations of up to 10% are tolerable.

Two primary objectives arise from the task description: The unused area should be as small as
possible, and the difference between the least and greatest number of placed objects per type
should be no more than 10% of the least scheduled. In addition to the prohibited overlapping of
objects, another restriction is that all objects must be located entirely on the surface.

The coordinates of the centers of the objects and a rotation can be considered as DVs. It makes
sense to reduce the ranges of rotation angles in such a way that the isomorphisms of the geomet-
ric figures are exploited, which among others eliminates the rotation angle for the circular ob-
jects.

The approach that seems obvious at first glance is to let a MH determine the remaining rotation
angles together with the center coordinates. However, this will lead to a large number of restric-
tion violations due to overlaps and is therefore a possible approach, but not a clever one.

- 13 -

It makes more sense to replace the "free placement" by coordinate specifications with the fol-
lowing: In addition to the rotation, only the position along the width is determined by the MH and
the rotated object is moved to the left in the direction of the length until it either arrives at the end
or meets another object, see Figs. 5a and 5b. The value range of the coordinate w may only be re-
stricted in such a way that a fitting placement of the suitably rotated object to the respective edge
remains possible, as shown in Fig. 5a below. For other rotation angles, this may result in edge
protrusions. These are eliminated by a phenotypic repair in which the object is moved away from
the edge as far as necessary, see Fig. 5a, upper rectangle and small green arrow indicating the re-
pair. In addition, the MH determines the order of the objects to be placed in this way and thus en-
sures mixing on the surface, which can lead to favorable space utilization if placement order and
rotations are appropriate. Overlaps and edge protrusions are thus avoided.

Fig. 5: Positioning of objects on a rectangular surface. On the left, a phenotypic repair (green ar-
row) is shown for the upper object. In the right part, the movement is stopped by contact with an-

other object.

Since the number of plannable objects depends on the packing density and is thus not known a
priori, a chromosome must contain an unknown but sufficient number of genes. This requires an
estimation of the maximum conceivable objects on the surface. If an object could not be placed
on the surface because it protrudes beyond the right edge of the surface despite a left shift, the
gene is discarded5. Therefore, slightly more genes are to be foreseen than the estimation showed.

The interpretation ends when the chromosome ends or when the surface is filled. An indicator
for a possible filling can be if an object could not be placed on the surface, for example, three
times in succession because it protrudes beyond the right edge. Then it is checked whether the
smallest object can still be placed with a suitable rotation. If not, the surface is considered filled.
Otherwise, it should be checked whether the remaining space is sufficient for another smallest
object. If yes, the surface is considered not filled and the chromosome is further interpreted. Oth-
erwise, the placement of the first smallest object is valid and the surface is filled. Variants to this
procedure can be considered, e.g. the termination due to reaching the end of the chromosome can
be avoided by continuing the interpretation with the genes at the beginning of it, so that only the
detection of the surface filling ends the interpretation.

Thus, in the described solution for coding and interpretation, the task contains a combinatorial
part and an optimization of parameters (coordinate w and rotation angle α for all non-circular ob-
jects), where their reasonable value ranges depend on the object type and dimensions.

In the case of an EA, a problem-oriented mapping of DVs would result in genes that determine
the object type and each have two or one DVs with object type-specific value ranges, namely w

5 Alternatively, a phenotypic repair in the form of an appropriate rotation of the object can be attempted.

- 14 -

and α, if applicable. The DVs of the genes and the order of the objects are subject to evolutionary
change. If we want to apply the approach to coding of the previous example here, the following
problems arise: While in the previous scheduling task the number of elements (work steps) to be
scheduled was fixed, in this task it is not only variable overall, but moreover it is a priori unclear
how many of which object type are to be placed. This makes the use of an EA based on fixed-
length chromosomes consisting of integers or real numbers considerably more difficult, and refer-
ence is made to the literature on comparable applications.

However, there is at least one EA that offers a simple solution for the described coding task,
namely GLEAM [6, 10, 15, 11]. In GLEAM the genes are typed6 and have accordingly a gene
type ID. Under this ID, the respective configurable number of integer and/or real parameters for
the DVs is stored, for each of which a suitable range of values can be specified that is observed
by the mutation operators. In the present example, there is one gene type per object type with the
DVs constrained accordingly and a chromosome consists of any number of genes of the five gene
types, see Fig. 6. The sequence is relevant to meaning and the number of genes of a chromosome
is subject to evolution and would correspond to the estimated maximum size when generated. If
chromosomes that are too short arise during evolution, the beginning of the chromosome can be
used to continue the interpretation, as described previously. However, it is recommended to de-
value too short chromosomes somewhat, e.g. according to the number of objects that could still
be placed after reaching the end of the chromosome.

Fig. 6: Part of an example chromosome for the above gene model in GLEAM. Each gene con-
tains the DVs assigned to the gene type as parameters and is an element of a linearly linked list.
The list representation greatly facilitates gene sequence mutations. This includes the shifting of

single genes as well as whole gene segments and the inversion of gene segments. In this example,
the angles are restricted to integers, since it is assumed that this granularity is sufficient.

4.4. Pareto-Optimization or Fitness as Weighted Sum

Practical applications of MHs are usually multi-objective optimizations, i.e., they have multiple
criteria to be optimized simultaneously. A common approach to computing the quality or fitness
of a solution is to map the fulfillment of each criterion to a uniform quality scale, weight them,
and add the weighted quality values to an overall quality or fitness. Restrictions can be treated as
additional criteria, see Section 4.1.3, or alternatively as penalty functions, where the extent of a
restriction violation is mapped to a scale from 0 (maximum violation) to 1 (no violation). The
factor obtained in this way is then multiplied by the previously calculated raw fitness to obtain
the final fitness. This can also be done with more than one penalty function. This procedure is

6 Therefore they have their own data type comparable to a struct of the programming language C or the data
part of a class of the object-oriented languages.

type: 2

w = 5.34
α = 8

type: 5

w = 3.72
α = 128

type: 4

w = 11.4

type: 3

w = 0.79
α = 165

type: 2

w = 8.25
α = 82

type: 1

w = 15.3
α = 105

 square oval circle rectangle square triangle

- 15 -

known as weighted sum and the combination with penalty functions is a frequent extension, see
[22]. Sometimes the criteria are also converted to costs and a cost function is created. In the end,
however, this is also nothing else than a weighted sum, only that here money is taken as a quality
measure.

Using the weighted sum to aggregate different criteria into one fitness value is relatively sim-
ple, but it has some disadvantages. One disadvantage is that weights must be assigned prior to op-
timization, i.e., at a time when one does not even know what is achievable and how difficult it is.
Indeed, it may be useful and necessary to give higher weights to difficult-to-achieve objectives.
Moreover, such aggregated criteria can compensate each other in an undesirable way. Measures
against this are described in [22, Sect. 3]. In general, the exact determination of the normalization
and possible penalty functions, the weights, and the allocation of the treatment of restrictions to
additional criteria or penalty functions will be an iterative process.

The Pareto optimization [23, 24, 25] is an alternative to the weighted sum. It aims at finding
good compromises, i.e. solutions where each of the criteria can be improved only by worsening at
least one of the others. Therefore, the Pareto optimization returns a set of solutions that lie on a
line called Pareto front and partially limit the set of permissible solutions P. Figure 7 shows an
example for the case of two criteria to be maximized.

Fig. 7: Pareto front (green part) of two objectives to be maximized

With a suitable weighting, each point on a convex Pareto front can be approximated by the
weighted sum, as shown in Fig. 8 on the left for the point S. If, on the other hand, the Pareto front
has a non-convex part, this part is unreachable for optimization with the weighted sum. In Fig. 8
right, this would be the region between points A and B. A detailed discussion of this topic can be
found in [22].

The advantage of Pareto optimization is that all points on the front are reachable regardless of
their shape, that no weights have to be assigned a priori, and that it provides an overview of
equivalent alternative solutions. The disadvantage is the increased effort of computing a large
number of Pareto optimal solutions and the fact that presenting and evaluating their results from
four criteria onwards becomes very difficult, to say the least. This issue is discussed in detail in
[22] and [24]. Therefore, if there are more than three criteria, it is recommended to summarize
part of them using the weighted sum.

max(f2)

f2

f1

P

max(f1)

- 16 -

Fig. 8: The left side shows that a point S of the Pareto front can be found by suitable weights w1

and w2. The non-convex part of the front between points A and B in the right picture, on the other
hand, cannot be reached.

The question of when to use which evaluation type advantageously is dealt with in detail in
[22]. At this point, it should only be pointed out that this depends on the type and objective of the
optimization project. For dealing with a new problem for which there is little prior knowledge,
Pareto optimization with possible necessary aggregation of part of the criteria is meaningful. If,
on the other hand, similar tasks from the same field of application are to be processed again and
again, as may be the case, for example, in job shop scheduling, then, after a previous analysis of
the alternatives by means of Pareto optimization, it is in many cases no longer of interest to deter-
mine the entire Pareto front each time and to have a human decision maker select a solution from
it. Rather, one will be interested in a solution with a corresponding weighting of the alternatives,
which is obtained in an automated process. In such cases, the weighted sum will be purposeful
with less effort.

Special EAs for the determination of the Pareto front have been developed, which can deter-
mine the front in one run if the population is sufficiently large. To these belong the two algo-
rithms NSGA II [26] and NSGA III [27, 28], which can be considered as standard procedures,
and the SPEA2 [29].

5. Memetic Extension of EAs

Among the strengths of EAs is the global nature of their search and among their weaknesses
the poor convergence properties to an optimum. With local search methods and local hill
climbers it is just the other way round, many show good convergence properties, but ignore better
(local) optima in the vicinity, if a valley would have to be crossed to reach them, i.e. a decrease in
quality would have to be accepted. The obvious idea is to combine both methods in order to ex-
ploit the respective advantages.

There are two approaches to this that have proven successful and can be used in a complemen-
tary manner:

f2

f1

P

S

w2

w1

.
f2

f1

B

A

P

.
.

- 17 -

● When forming the initial population, some or all of the randomly generated individuals
are locally enhanced, or heuristics are used to generate some initial individuals. In the lat-
ter case, only a small fraction (e.g., 20% at most) should be "pre-generated" to ensure suf-
ficient search space coverage of the initial population. Also, heuristics tend to generate
more or less similar solutions.

● All or part of the offspring generated by the genetic operators are locally improved. This
means that the local search is parallel to the global one and, from the EA's point of view,
virtually only the mountain tops matter. This form is also called Memetic Algorithms
(MA) [12 - 14] and is the basis for an own sub-discipline of EAs, see e.g. [30].

The decisive question is: Is the effort for the local search worth it? It could be shown that espe-
cially in the area of continuous and mixed-integer optimization considerable performance in-
creases measured in the number of calls to the fitness function can be achieved [13, 14, 31]. De-
pending on the application, reductions in the number of average fitness calculations on the order
of factors up to 103 were observed [14, 32]. Another advantage is that the range of favorable pop-
ulation sizes (cf. Section 8) with an MA is significantly smaller than when using the associated
base EA [14]. It should be emphasized, however, that an unfavorable choice an LS or a heuristic
can also lead to failures [13, 14, 31, 33].

In general, the supplementation of the evolutionary search by suitable local methods or also ap-
plication-related heuristics is also theoretically justified by the no-free-lunch theorems [34, 35].
In summary, these theorems state that, with respect to the set of all mathematically possible prob-
lems, all search algorithms are on average equally good (or equally bad). Conversely, this means
that there is no universal algorithm that solves all optimization problems most efficiently. So it
makes sense to integrate application-related knowledge into an optimization procedure, be it
through initial solutions generated otherwise or through LS or heuristics that serve as memes of
an MA.

An MA introduces a number of design issues that are either hard-coded or lead to further strat-
egy parameters:

1. Which local searcher (LS) should be used?
Should it be simple, imprecise and fast or more elaborate, precise and slow (i.e. require
more fitness calculations)? Should it be general or application-specific? The choice of a
suited LS can be of crucial importance to success, see e.g. [13, 31, 32, 33].

2. Should the LS result be used to update the chromosome or not?
This issue is discussed controversially in literature and depends on other measures taken
to prevent premature convergence, like using a structured population [36] instead of a
panmictic one. This question is discussed in more detail in [14].

3. How are offspring selected to undergo local search?
By chance or according to fitness? See also [13].

4. How often should local improvement be applied or to which fraction of the generated off-
spring per generation?

5. How long should the local search be performed and how precise should it be as a result?

- 18 -

The last two questions determine the proportion between local and global search. The answer
to most of the above questions will be application-dependent, prohibiting hard coding. However,
since additional strategy parameters also increase the possibility for inappropriate settings, cost-
benefit-based adaptation was experimented with early on [31, 37]. This allows adaptive selection
of an LS from a given set as well as favorable adjustment of the parameters associated with de-
sign questions 4 and 5 [14].

6. Remarks on Comparison between Metaheuristics and their Variants

A comparison between alternative MHs, different settings of their strategy parameters such as
population size (see also Section 8), the efficiency of different LHCs in a memetic algorithm, or
the like cannot be based on a comparison of single runs because of the stochastic nature of the
methods. Rather, multiple runs comparing the means or medians of the measured quantities are
required. If the differences are small or the measured values are (highly) scattered, statistical
evaluation methods are required. When comparing two alternatives, the calculation of confidence
intervals and a simple t-test may be sufficient; when there are more alternatives to be compared,
an analysis of variance (see e.g. [38]) is indicated.

There are two different measurement methods for a comparison: Either a certain target quality
is specified and the number of evaluations required to achieve it is counted, or the quality
achieved is measured for a specified number of evaluations. The latter approach is more manage-
able in terms of effort and, with a suitable limit on the number of individuals evaluated, usually
yields the more significant results. If the application allows, at least 30 or better 50 runs should be
performed per procedure setting to be compared. If this value has to be reduced for reasons of ef-
fort, the significance of the results decreases as the number of runs is reduced. Less than 10 runs
are not recommended.

When comparing different MHs, ensure that the application-dependent strategy parameters are
appropriately set for each MH separately before comparison. In any case, for EAs and MAs, the
population size should be appropriately selected as described in Section 8.

7. Search Reliability and Population Structures

MHs like EAs cannot in principle guarantee that the global optimum will be found in finite
time. Since the optimum is usually not known in practical applications, there is always some un-
certainty as to whether the present result may not be surpassed. The algorithm is usually allowed
to run until either a given time is used up or a predefined number of generations or quality has
been reached. However, it is better to measure the stagnation and to stop, if e.g. no fitness
progress can be observed after n successive generations. Then the population is considered as
converged. We will come back to this at the end of this section.

Populations have been shown, however, to converge quite rapidly and before reaching the
global optimum or at least a good sub-optimum if a (slightly) better offspring can spread undis-
turbed over several generations. This may be comparatively common in unstructured populations,
where any individual can in principle produce offspring with any other. In such a case, depth
search becomes too predominant over breadth search. Such populations are called panmictic pop-

- 19 -

ulations and they do not correspond to the biological paragon of EAs. In nature, a population of
basically reproductive individuals is relatively separated by spatial distance. Therefore, early in
the evolution of EAs, structured populations were experimented with and shown to effectively
counteract premature convergence, making them superior to unstructured populations in terms of
achieving good to optimal solutions [36, 39]. Moreover, they scatter less from run to run [40, 41].
This has been experimentally verified not only for GAs and the evolution strategy [36, 39 - 42]
but also corresponds to the author's long experience with the various GLEAM and HyGLEAM
applications [10, 14, 15].

The following two principally different types of structuring can be distinguished: First, the sep-
aration of a population into sub populations (islands) that evolve separately over a longer period
of time and exchange individuals only from time to time, and second, the division into overlap-
ping neighborhoods. Island models have the disadvantage of adding a larger number of new strat-
egy parameters: size and number of islands as well as their connections and the control of ex-
change: how many and which individuals migrate to another island and who is replaced there?
When does exchange occur: statically every n generations or depending on local stagnation? Pop-
ulations structured according to the island model are thus much more difficult to handle and will
therefore not be considered further here.

Fig. 9: Diffusion model based on overlapping neighborhoods, called demes. The demes of the
two individuals "X" and "Y" have a minimum overlap, while "A" and "B" have a maximum one.

Typical deme sizes range from 7 to 11, depending on population size.

In the alternative of overlapping neighborhoods, the individuals are arranged, for example, on a
ring that implies a geographic neighborhood, regardless of their phenotypic characteristics. The
exemplary neighborhood of individual "X" shown in Fig. 9 consists of the two individuals to the
right and to the left. Together with "X" they form the so-called deme of "X". Each deme repre-
sents a panmictic sub population within which mates are selected and the acceptance of offspring
by replacing the parent occurs. The rules for offspring acceptance are based on the neighborhood:
for example, it may be specified that the best offspring must be better than the parent being re-
placed or, less strictly, only better than the worst individual in the deme. Because demes overlap,
as shown in Fig. 9, genotypic information can spread across neighborhood boundaries. Therefore,
they are also referred to as diffusion models. Because this spread is much slower than in panmic-

- 20 -

tic populations, niches of more or less similar individuals can emerge, evolve, spread, clash, and
compete. This maintains genotypic diversity over a longer period of time. In addition, diffusion
models such as this induce an adaptive balance between breadth and depth search. Further details
and alternatives to the ring structure can be found in [10, 36, 39, 40, 42].

Regarding the organization of the population, the following is recommended when selecting an
EA or MA:

● When runtime is limited and fast solutions are important, with suboptimality being ac-
ceptable, one can work with panmictic populations. The population size should be suffi-
ciently large to avoid too fast premature convergence.

● If one aims at a good trade-off between runtime and solution quality, diffusion models
based on a two-dimensional mesh are a good approach. Such neighborhoods are also
known as cellular EAs or MAs [39, 40, 42].

● If, on the other hand, the goal is to achieve the best possible quality while accepting
longer runtimes, then ring-based neighborhoods are the first choice [10, 14, 40].

The neighborhood model also allows a more sophisticated definition of two stagnation indica-
tors that can serve as termination criteria for a run. In each case, the generations are counted for
which, in succession

● no improvement of the best individual of each deme occurs

● there is no acceptance of a descendant per deme.

As a rule, the improvement of the demes will stop at first. At the latest when there is no more
acceptance for several generations, the population can be considered as converged. Meaningful
limit values are application-dependent, whereby it can be assumed that with the duration of miss-
ing acceptance the probability drops that it comes nevertheless still to an accepted or even better
descendant.

8. Handling Strategy Parameters and the Population Size in Particular

In general, it is easier for a novice to choose a MH that requires the setting of as few strategy
parameters as possible. It is also strongly advised to consult the literature for experience reports
on the selected MH, if possible applied to comparable tasks, and to take the settings reported
there as a basis. When experimenting with strategy parameters, one is reminded of the hints given
in Section 6.

For population-based MHs, however, one parameter will always have to be adjusted to the cur-
rent task, namely the population size µ. For structured populations, this should be at least twice as
large as the deme size, although significantly more is certainly better. A favorable population size
depends not only on the application but can also be determined by the chosen coding and inter-
pretation. For example, if all decision variables are encoded in the chromosome, this results in a
different search space than if, for example, a part is determined by heuristics during interpreta-
tion, see Section 4.3.3 and [15].

To explain the general approach for determining a suitable population size µ, we draw on expe-
rience with benchmark functions whose optimum is known. Fig. 10 shows the effort measured in

- 21 -

fitness calculations (blue line) necessary to achieve a given target fitness for different population
sizes. For very small values of μ, an otherwise high effort (dashed line) may have been limited by
another termination criterion such as stagnation, see Section 7. If μ is too low, more or less runs
do not reach the target fitness and are therefore considered unsuccessful. As μ increases, success
occurs more frequently until finally all runs are successful (working area). If μ is increased fur-
ther, the effort also increases without being necessary or useful.

Fig. 10: Relationship between population size μ and success as well as effort

For a new application, the attainable fitness is usually unknown and it must be determined ex-
perimentally what should be considered a good solution and thus a success. The determination of
a suitable starting value for μ can be seen as a more or less well estimated guessing and it is rec-
ommended to begin with a rather to the large μ. For an EA, values of some 100 individuals are
nothing unusual, whereas for an MA based on this EA, much lower values are sufficient, e.g. μ/8
or μ/10 of a good value of μ for the EA involved, see also Section 5. The determination of a suit-
able target fitness is begun with the starting value for μ thus determined with at least 10 runs. If
these runs all yield similar fitness values with similar effort, the result should be secured with 10
or better 20 more runs. Such a result also shows that the target quality for the found population
size is stably reached and we are somewhere in the green zone. Otherwise, μ must be increased
until such a result is obtained. Based on the runs for the population size found, two termination
criteria are now determined for the further runs: The average of the achieved fitness values gives
the target fitness, and the maximum of the required fitness calculations plus an additional amount
is taken as the effort limit. Runs that exceed this limit without reaching the target fitness are con-
sidered unsuccessful. Depending on the time spent, the surcharge can be small (e.g. 20%) or
larger (50-100% of the calculated effort maximum).

In order to determine the limits of the working area, μ is reduced step by step as long as the tar-
get fitness is reliably achieved with decreasing effort. As soon as the values for the effort begin to
scatter more strongly, we approach the left limit of the working range. In Fig.10, this is the light
green area. When the first non-successful runs occur, we are in the red/green area and the popula-
tion size is too small. The size we are looking for is then in the area to the right of this and we
should choose it so that the effort does not scatter too much.

- 22 -

9. Search Speed, Archive and Parallelization

As mentioned in Section 2, EAs require the evaluation of a large number of alternative solu-
tions, which can be assumed to be in the tens of thousands or more, depending on the application.
For linguistic simplicity, the steps involved in evaluating a solution represented by an individual,
which may require simulation or other calculations of the evaluation criteria, are collectively re-
ferred to as evaluation. The result is the values of the assessment criteria of an individual. This
would then be followed by either calculating the weighted sum or determining the dominance
properties in Pareto optimization.

EAs, like other population-based MHs, are inherently parallel. Individuals evolve in parallel
and independently, except for mating and crossover of offspring production. Thus, it is natural to
distribute a population across multiple computers. Appropriate approaches have also existed at an
early stage [36, 43, 44, 10]. On the other hand, in almost all application projects it can be as-
sumed that the evaluation takes much longer than the creation and manipulations of the chromo-
some from which the solution to be evaluated has emerged. Thus, the question arises, should one
parallelize the population or distribute the evaluations?

When parallelizing the population, the underlying population model plays an important role. In
the neighborhood model (see also segment 7), a high degree of parallelization is possible up to a
one-to-one assignment of individuals to computer nodes, whereby the neighbors of the demes of
the individual(s) of a computer node must be available to this node. In the early stages of evolu-
tion, this leads to frequent updates and a correspondingly high but local communication over-
head. Another positive property is the lack of a central coordinating instance as would be required
in a panmictic population. Thus, parallelization according to the neighborhood model is espe-
cially suitable for parallel computers that support local communication, see also [36, 43, 45]. The
situation is different, however, for parallelization according to the island model, where the com-
munication overhead is significantly lower if each island is managed by one computer node [44,
45, 46]. However, this limits the possible degree of parallelization. If, on the other hand, the eval-
uations are distributed, one has to deal with a mostly constant communication overhead and con-
stant computational load, provided that the computational time required to evaluate a solution is
independent of the solution itself. Both parallelization approaches can, of course, be advanta-
geously combined [47]. Modern parallelization and virtualization techniques such as microser-
vices, container virtualization and the publish/subscribe messaging paradigm allow flexible and
scalable implementations that, due to their generic approach, enable easy interchangeability of the
software used, especially for evaluation [46, 47, 48]. Since evaluation is always application-de-
pendent, this application-specific component of metaheuristic optimization can thus be replaced
more easily than in most other implementations.

In addition to these basic and diverse possibilities for increasing the practicable field of appli-
cation for EAs through parallelization, there is also the use of a solution archive. The idea behind
this is that in evolutionary search it can happen that a solution is generated multiple times, so that
there are multiple tests of the same point in the search space. Or that two solutions are sufficiently
similar in terms of practical realization so that they can be considered equivalent. This can occur
especially in the optimization of continuous decision variables. For example, the dimensions of
work pieces may be mathematically different even if these differences cannot be represented in a
practical production and would not matter. Such similarity measures are of course to be deter-
mined application-dependently and they can serve as a basis for tracing similar solution proposals

- 23 -

back to a once evaluated individual. Thus, in the course of optimization, an archive of representa-
tive solutions is created, which can be referred to before performing an evaluation.

10. Some Aspects of Project Management

Engineers tend to consider technical tasks in a project more important than interpersonal prob-
lems of the people involved in the project. Therefore, it is expressly warned against underestimat-
ing the possible negative consequences of group dynamic processes and possible animosities or
diverging interests of the project participants. In the following, two scenarios are examined in
more detail: An optimization project to improve existing processes or products and aspects of
presenting the results of an optimization project.

If existing products or processes such as production planning are to be optimized, there are
usually already employees in the company or organization who are involved in this and who usu-
ally enjoy a high reputation for their difficult high-quality work. Intervening here as an external
service provider or new specialist department can be perceived as an attack on the position and
disempowerment of the previous expert department. Also at least a part of the (middle) manage-
ment will be skeptical of new procedures designed to replace established ones. Especially since
these new methods are based on randomness and cannot even ensure to always provide the opti-
mal solution at all times. The fact that the methods used up to now usually could not do this either
is often conveniently overlooked.

It is therefore recommended to involve the affected technical department as far as possible. If
you work as an optimizer against the previous experts, they might tend to look for relevant infor-
mation that they can withhold inconspicuously in order to let the project fail and to maintain their
status. An important counter-argument can be to make the results of previous planning or product
design the basis for optimization with the MH. For this the data of previous results must be trans-
ferred suitably as start individuals or start solutions. This additional effort can be justified by the
fact that now the optimization results can only become better than the previous solutions. This
creates security and confidence, makes it more difficult for critics and involves the representa-
tives of the previous approach in the project. A success of the optimization project is now also
their success, because their previous work is now a valuable basis for the new procedure. Apart
from that, it is also reasonable not to start a metaheuristic search from scratch, but to take previ-
ous or qualitatively inferior solutions as starting points, see also Section 5.

In many optimization projects, the results serve as the basis for decisions on how to proceed. In
such cases, the presentation of the results in the form of a Pareto front is not only descriptive, but
it also shows the possible decision alternatives that are equivalent in terms of the evaluation crite-
ria, see also Section 4.4. Depending on the audience and the presentation possibilities, one has to
limit oneself to the comparison of two target criteria or - provided that the projection technique is
suitable - one can present the Pareto plane of three criteria.

This approach has several advantages: First, it involves the client or the higher-level manage-
ment in the decision-making process; second, it delegates part of the responsibility upwards from
the optimization team; and third, the decision-makers will identify much more with the project
and defend it if necessary than if they had been presented with a finished result. After all, they
have participated in the discussion, subjectively understood the alternatives, and finally decided.

- 24 -

Literature

[1] H. J. Holland: Adaptation in Natural and Artificial Systems. The University of Michigan
Press, Ann Arbor. 1975.

[2] I. Rechenberg: Evolutionsstrategie - Optimierung technischer Systeme nach Prinzipien der
biologischen Evolution. (in German) Frommann-Holzboog, Stuttgart-Bad Cannstatt, 1973.

[3] H.-P. Schwefel: Numerical Optimization of Computer Models. John Wiley & Sons, Chich-
ester, 1981. doi. 10.1002/oca.4660030109

[4] Z. Michalewicz: Genetic Algorithms + Data Structures = Evolution Programs. Springer
Verlag, Berlin, 1992. doi: 10.1007/978-3-662-03315-9

[5] A.E. Eiben, J.E. Smith: Introduction to Evolutionary Computation. Natural Computing Se-
ries, Springer, Berlin, Germany, 2003.

[6] C. Blume, W. Jakob: GLEAM - An Evolutionary Algorithm for Planning and Control Based
on Evolution Strategy. In: E. Cantù-Paz (ed.): Conf. Proc. of Genetic and Evolutionary
Computation Conference (GECCO 2002), New York, Vol. Late Breaking Papers (LBP),
2002, pp.31-38. doi: 10.5445/IR/170053025

[7] A. Colorni, M. Dorigo, V. Maniezzo: Distributed Optimization by Ant Colonies. In: Proc. of
the First Eur. Conf. on Artif. Life (ECAL), Paris, Elsevier Publishing, Amsterdam, 1991,
pp.134–142.

[8] J. Kennedy, R. Eberhart: Particle swarm optimization. In: Proc. of IEEE Int. Conf. on Neu-
ral Networks, 1995, Perth, Australia, pp.1942–1948. doi: 10.1109/ICNN.1995.488968.

[9] M. R. Garey, D. S. Johnson: Computers and Intractability: A Guide to the Theory of NP-
Completeness. Freeman, San Francisco 1978 doi: 10.5555/578533.

[10] C. Blume, W. Jakob: GLEAM - General Learning Evolutionary Algorithm and Method: Ein
Evolutionärer Algorithmus und seine Anwendungen. In German. KIT Scientific Publishing,
Karlsruhe, 2009. doi: 10.5445/KSP/1000013553

[11] W. Jakob: GitHub repository. https://github.com/KIT-IAI/Gleam, last visited: 03/29/2021.

[12] P. Moscato: On Evolution, Search, Optimization, Genetic Algorithms and Martial Arts - To-
wards Memetic Algorithms. Tech. rep. 826, California Inst. Technol., Pasadena, 1989.

[13] W. E. Hart: Adaptive Global Optimization with Local Search. PhD thesis, University of
California, USA, 1994.

[14] W. Jakob: A general cost-benefit-based adaptation framework for multimeme algorithms.
Memetic Computing, 2(2010) 201-18 doi: 10.1007/s12293-010-0040-9.

[15] W. Jakob, S. Strack, A. Quinte, G. Bengel, K.U. Stucky, W. Süß: Fast Rescheduling of
Multiple Workflows to Constrained Heterogeneous Resources Using Multi-Criteria
Memetic Computing. Algorithms, 6(2), pp.201-18, 2013. doi: 10.3390/a6020245

[16] L. Davis: Handbook of Genetic Algorithms. V. Nostrand Reinhold: New York, NY, USA,
1991. doi: 10.1017/S0269888900006068

[17] Wikipedia: Table of metaheuristics. Link: https://en.wikipedia.org/wiki/Table_of_meta-
heuristics, last visited: 03/22/2021.

[18] D.T. Pham, A. Ghanbarzadeh, E. Koc, S. Otri, S. Rahim, M. Zaidi: The Bees Algorithm.
Technical Note, Manufacturing Engineering Centre, Cardiff University, UK, 2005.

[19] X. S. Yang: Nature-Inspired Metaheuristic Algorithms. Luniver Press, 2008.
doi: 10.5555/1628847

https://doi.org/10.5555/1628847
https://en.wikipedia.org/wiki/Table_of_metaheuristics#cite_note-41
https://en.wikipedia.org/wiki/Table_of_metaheuristics#cite_note-41
https://doi.org/10.1017/S0269888900006068
https://doi.org/10.3390/a6020245
https://doi.org/10.1007/s12293-010-0040-9
https://github.com/KIT-IAI/Gleam
https://doi.org/10.5445/KSP/1000013553
https://dl.acm.org/doi/10.5555/578533
http://dx.doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.5445/IR/170053025
https://doi.org/10.1007/978-3-662-03315-9
https://doi.org/10.1002/oca.4660030109

- 25 -

[20] S. Mirjalili, S. M. Mirjalili, A. Lewis: Grey Wolf Optimizer. Advances in Engineering Soft-
ware, 69, 2014, pp.46–61. doi: 10.1016/j.advengsoft.2013.12.007

[21] F. Herrera, M. Lozano, J. Verdegay: Tackling Real-Coded Genetic Algorithms: Operators
and Tools for Behavioural Analysis. Artificial Intelligence Review 12, pp.265–319, 1998.
doi: 10.1023/A:1006504901164

[22] W. Jakob, C. Blume: Pareto Optimization or Cascaded Weighted Sum: A Comparison of
Concepts. Algorithms, 7(2), S.166-85, 2014. doi: 10.3390/a7020188

[23] V. Pareto: Cours d’Économie Politique. (in French); F. Rouge: Lausanne, Switzerland,
1896.

[24] J.Branke, K. Deb, K. Miettinen, R. Słowiński (Eds): Multiobjective Optimization: Interac-
tive and Evolutionary Approaches. LNCS 5252; Springer: Berlin, Germany, 2008.

[25] K. Deb: Introduction to Evolutionary Multiobjective Optimization. In [24].

[26] K. Deb, A. Pratab, S. Agarwal, T. Meyarivan: A Fast and Elitist Multiobjective Genetic Al-
gorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), pp.181-197,
2002. doi: 10.1109/4235.996017

[27] K. Deb, H. Jain: An Evolutionary Many-Objective Optimization Algorithm Using Refer-
ence-Point-Based Nondominated Sorting Approach, Part I: Solving Problems With Box
Constraints. IEEE Transactions on Evolutionary Computation, 18(4), pp.577-601, 2014.
doi: 10.1109/TEVC.2013.2281535

[28] H. Jain, K. Deb: An Evolutionary Many-Objective Optimization Algorithm Using Refer-
ence-Point-Based Nondominated Sorting Approach, Part II: Handling Constraints and Ex-
tending to an Adaptive Approach. IEEE Transactions on Evolutionary Computation, 18(4),
pp.602-622, 2014. doi: 10.1109/TEVC.2013.2281534

[29] E. Zitzler, M. Laumanns, L. Thiele: SPEA2: Improving the Strength Pareto Evolutionary
Algorithm. Technical Report 103, Computer Engineering and Networks Laboratory (TIK),
ETH Zürich, 2001. doi: 10.3929/ethz-a-004284029

[30] Memetic Computing, Springer. Web: https://www.springer.com/journal/12293, last visited:
4/21/2021

[31] Y. S. Ong, A. J. Keane: Meta-Lamarckian Learning in Memetic Algorithms. IEEE Trans.
on Evol. Comput. 8(2), pp.99-110, 2004. doi: 10.1109/TEVC.2003.819944

[32] W. Jakob: HyGLEAM ‒ an Approach to Generally Applicable Hybridization of Evolution-
ary Algorithms. In: J. J. Merelo et al. (eds) Conf. Proc. PPSN VII, LNCS 2439, Springer,
Berlin, pp.527–536, 2002. doi: 10.1007/3-540-45712-7_51

[33] N. Krasnogor: Studies on the Theory and Design Space of Memetic Algorithms. PhD thesis,
University West of England, Bristol, UK, 2002.

[34] D. H. Wolpert, W. G. Macready: No free lunch theorems for search. Technical Report SFI-
TR-95-02-010, Santa Fe Institute, Sante Fe, NM, USA, 1995.

[35] D. H. Wolpert, W. G. Macready: No free lunch theorems for optimization. IEEE Transac-
tions on Evolutionary Computation, 1(1), S.67-82, 1997. doi: 10.1109/4235.585893

[36] M. Gorges-Schleuter: Genetic Algorithms and Population Structures - A Massively Parallel
Algorithm. PhD thesis, Dept. Comp. Science, University of Dortmund, Germany, 1990.

[37] W. Jakob, C. Blume, G. Bretthauer: Towards a Generally Applicable Self-adapting Hy-
bridization of Evolutionary Algorithms. In: Conf. Procs. of GECCO 2004, LNCS 3102,
Springer, Berlin, pp. 790–791, 2004. doi: 10.1007/978-3-540-24854-5_81

https://doi.org/10.1007/978-3-540-24854-5_81
https://doi.org/10.1109/4235.585893
https://doi.org/10.1007/3-540-45712-7_51
https://doi.org/10.1109/TEVC.2003.819944
https://www.springer.com/journal/12293
https://doi.org/10.3929/ethz-a-004284029
https://doi.org/10.1109/TEVC.2013.2281534
https://doi.org/10.1109/TEVC.2013.2281535
https://doi.org/10.1109/4235.996017
https://doi.org/10.3390/a7020188
https://doi.org/10.1023/A:1006504901164
https://doi.org/10.1016/j.advengsoft.2013.12.007

- 26 -

[38] M. G. Larson: Analysis of Variance. Circulation 117(1), pp.115–121, 2008, doi: 10.1161/
CIRCULATIONAHA.107.654335

[39] V.S. Gordon, K. Mathias, D. Whitley: Cellular Genetic Algorithms as Function Optimizers:
Locality Effects. In: Conf. Proc. ACM Symposium on Applied Computing (SAC’ 94),
pp.237–241, 1994. doi: 10.1145/326619.326732

[40] M. Gorges-Schleuter: A Comparative Study of Global and Local Selection in Evolution
Strategies. In: A. E. Eiben, T. Bäck, M. Schoenauer, H.-P. Schwefel (eds): Conf. Proc.
PPSN V, LNCS 1498, Springer, Berlin, pp.367-377, 1998. doi: 10.1007/BFb0056879

[41] M. Gorges-Schleuter: An Analysis of Local Selection in Evolution Strategies. In: W.
Banzhaf et al. (eds) Conf. Proc. of GECCO 1999, Morgan Kaufmann, San Francisco,
pp.847–854, 1999.

[42] E. Alba, B. Dorronsoro, H. Alfonso: Cellular Memetic Algorithms. Journal of Computer
Science and Technology, 5(4), S.257-263, 2005. Web: journal.info.unlp.edu.ar/JCST/arti-
cle/view/845

[43] C. Blume, W. Jakob: Verbesserte Planung und Optimierung mit Hilfe eines erweiterten
genetischen Algorithmus. In German, In: J. Hektor, R. Grebe (eds): Parallele Datenverar-
beitung mit dem Transputer (TAT'93). Informatik aktuell. Springer, Berlin, Heidelberg,
1993. doi: 10.1007/978-3-642-78901-4_6

[44] E. Cantú-Paz: A Survey of Parallel Genetic Algorithms. Calculateurs paralleles, reseaux et
systems repartis 10(2), pp.141–171, 1998.

[45] E. Alba, G. Luque, S. Nesmachnow: Parallel metaheuristics: recent advances and new
trends. Intl. Trans. in Op. Res., 20(1), pp.1-48, 2013.
doi: 10.1111/j.1475-3995.2012.00862.x

[46] H. Khalloof, P. Ostheimer, W. Jakob, S. Shahoud, C. Düpmeier, V. Hagenmeyer: A Distrib-
uted Modular Scalable and Generic Framework for Parallelizing Population-based Meta-
heuristics. Conf. Proc. of Int. Conf. on Parallel Processing and Applied Mathematics
(PPAM 2019), LNCS 12043, Springer, pp.432-444, 2019. doi: 10.1007/978-3-030-43229-
4_37

[47] H. Khalloof, M. Mohammad, S. Shahoud, C. Düpmeier, V. Hagenmeyer: A Generic Flexi-
ble and Scalable Framework for Hierarchical Parallelization of Population-Based Meta-
heuristics. Conf. Proc. of Int. Conf. on Management of Digital EcoSystems (MEDES ‘20),
pp.124–131, 2020. doi: 10.1145/3415958.3433041

[48] J. Swan, S. Adrænsen, C. G. Johnson, A. Kheiri, F. Krawiec, J. J. Merelo, L. L. Minku, E.
Özcan, G. L. Pappa, P. García-Sánchez, K. Sörensen, S. Voß, M. Wagner, D. R. White:
Metaheuristics “In the Large”. European Journal of Operational Research, article in press,
2021. doi: 10.1016/j.ejor.2021.05.04

https://doi.org/10.1016/j.ejor.2021.05.04
http://dx.doi.org/10.1145/3415958.3433041
https://doi.org/10.1007/978-3-030-43229-4_37
https://doi.org/10.1007/978-3-030-43229-4_37
http://dx.doi.org/10.1111/j.1475-3995.2012.00862.x
https://doi.org/10.1007/978-3-642-78901-4_6
https://journal.info.unlp.edu.ar/JCST/article/view/845
https://journal.info.unlp.edu.ar/JCST/article/view/845
https://doi.org/10.1007/BFb0056879
https://doi.org/10.1145/326619.326732
https://doi.org/10.1161/CIRCULATIONAHA.107.654335
https://doi.org/10.1161/CIRCULATIONAHA.107.654335

KIT Scientific Working Papers
ISSN 2194-1629

www.kit.edu
KIT – The Research University in the Helmholtz Association

	KIT-SWP_Titel
	KIT-SWP_Impressum
	EA-Guide_v1-4
	1. Introduction
	2. When Should MHs Be Used and When Better Not?
	3. Which Metaheuristic Is Suited?
	4. From the Problem Statement to an EA Project
	4.1. Objectives, Decision Variables, and Constraints
	4.1.1. What are the Goals of the Optimization?
	4.1.2. What are the Changeable Variables
	4.1.3. Which Restrictions are There?
	4.1.4. Genotypic and Phenotypic Repair

	4.2. Auxiliary Criteria
	4.3. Application Examples
	4.3.1. Coding and Interpretation Exemplified by the TSP
	4.3.2. Scheduling with Extended Start Time Planning
	4.3.3. Layout Planning as an Example for Smart Handling of Complex Constraints

	4.4. Pareto-Optimization or Fitness as Weighted Sum

	5. Memetic Extension of EAs
	6. Remarks on Comparison between Metaheuristics and their Variants
	7. Search Reliability and Population Structures
	8. Handling Strategy Parameters and the Population Size in Particular
	9. Search Speed, Archive and Parallelization
	10. Some Aspects of Project Management

	KIT-SWP_RS_en

