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Abstract
In this paper we study spaces of Riemannian metrics with lower bounds on intermedi-
ate curvatures. We show that the spaces of metrics of positive p-curvature and k-positive
Ricci curvature on a given high-dimensional Spin-manifold have many non-trivial homotopy
groups provided that the manifold admits such a metric.
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1 Introduction

Given a compactmanifoldM with possibly nonempty boundary, the classification ofRieman-
nian metrics on M satisfying a given curvature condition is a central problem in Riemannian
geometry. In the present article wewill study the uniqueness question. Of course, open condi-
tions like positive scalar, Ricci or sectional curvature are preserved under small perturbations
of a metric and so there cannot be a unique metric satisfying them. Therefore it is more
reasonable to study uniqueness “up to continuous deformation”, which translates into the
following question:

Is the space of Riemannian metrics on M satisfying a given curvature condition con-
tractible?

In recent years, a lot of effort has gone into understanding the homotopy type of the space
Rscal>0(M)h of metrics of positive scalar curvature which restrict to h + dt2 in a collar
neighborhood of the boundary. For example, Botvinnik–Ebert–Randal-Williams in [2] have
studied this space for d-dimensional Spin-manifolds using the secondary index-invariant
inddiff which is a well-defined homotopy class of a map

inddiff : Rscal>0(M)h ×Rscal>0(M)h → �∞+d+1KO

first defined byHitchin in [29]. Fixing a base-point g ∈ Rscal>0(M)h one obtains a homotopy
class of a map inddiffg : Rscal>0(M)h → �∞+d+1KO and they showed that this induces a
nontrivial map

Am−1(M, g) : πm−1(Rscal>0(M)h) −→ KO−d−m(pt) ∼=
{

Z if d + m ≡ 0(4)

Z/2 if d + m ≡ 1, 2(8)

on homotopy groups, provided that d ≥ 6, M admits a Spin-structure and the target is
nontrivial. This shows that the space Rscal>0(M)h is at least as complicated as the infinite
loop space of the real K -theory spectrum. For more results on this space see [12,16,40].

In this paper we generalize the main result from [2] to a greater class of curvature condi-
tions. The most prominent examples of these are given by two of the intermediate curvature
conditions, namely positive p-curvature and k-positive Ricci curvature, for precise defini-
tions see Sect. 2.2.

The notion of “p-curvature is an extension of the scalar curvature proposed by Gromov”
[35, p.301]. It interpolates between scalar and sectional curvature and has been studied for
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example in [6,34]). For p ≥ 0 let Rp-curv>0(M)h ⊂ Rscal>0(M)h denote the subspace of
metrics of positive p-curvature.

Theorem A Let p ≥ 0 and let M be a Spin-manifold of dimension d ≥ 6 + 2p. Let g ∈
Rp-curv>0(M)h. Then for all m ≥ 1 such that d + m ≡ 0(4) the composition

πm−1(Rp-curv>0(M)h) −→ πm−1(Rscal>0(M)h)
Am−1(M,g)−→ KO−d−m(pt) ∼= Z

is nontrivial.

In [41]Wolfson introduced the notion of k-positive Ricci curvaturewhich has been studied
for example in [13,42]. A manifold is said to have k-positive Ricci curvature if the sum of the
k smallest eigenvalues of the Ricci curvature is positive. This gives an interpolation between
positive scalar curvature being d-positive Ricci curvature and positive Ricci curvature which
is 1-positive Ricci curvature. For 1 ≤ k ≤ d let Rk-Ric>0(M)h ⊂ Rscal>0(M)h denote the
subspace of metrics of k-positive Ricci curvature. For technical reasons it is more natural to
state our result for (d − k)-positive Ricci curvature instead of k-positive Ricci curvature.

Theorem B Let k ≥ 1 and let M be a Spin-manifold of dimension d ≥ 4 + 2k. Let g ∈
R(d−k)-Ric>0(M)h. Then for all m ≥ 1 such that d + m ≡ 0(4) the composition

πm−1(R(d−k)-Ric>0(M)h) −→ πm−1(Rscal>0(M)h)
Am−1(M,g)−→ KO−d−m(pt)

is nontrivial.

In the spirit mentioned above, these results can be paraphrased by saying that the spaces
Rp-curv>0(M)h andR(d−k)-Ric>0(M)h are at least as complicated as the infinite loop space of
the real K -theory spectrum, provided that M is Spin and the dimension of M is big enough.

Remark 1.1 (State of the art)

(1) The corresponding results in degrees d+m ≡ 1, 2(8) can also be shown by our methods.
This however is already known by the work of Crowley–Schick–Steimle [12] for all
d ≥ 6. They showed that the orbitmapρ : f 
→ f ∗g induces for every g ∈ Rscal>0(Dd)h
a surjective map

πm−1(Diff∂ (Dd))
ρ−→ πm−1(Rscal>0(D

d)h) −→ KO−d−m(pt) = Z/2.

By extending diffeomorphisms by the identity, we get a map Diff∂ (Dd) → Diff(M)

and the result above holds if Dd is replaced by any Spin-manifold M of positive scalar
curvature. Furthermore, since the orbit map factors through any Diff∂ (Dd)-invariant
subspace ofRscal>0(Dd)h , the results from [12] are true for any curvature condition that
implies positive scalar curvature and is satisfied by M . [12] is a strict generalization of
the results from [11,29].

(2) In [31], Krannich–Kupers–Randal-Williams showed that the image of the orbit map
π3(Diff(HP

2)) → π3(Rsec>0(HP
2)) ↪→ π3(Rp-curv>0(HP

2)) contains an element of
infinite order for every p ≥ 0. Furthermore, the rational homotopy type of Diff(M)-
invariant subspaces of Rscal>0(M) has been studied by Reinhold and the first named
author in [18]. Here it is shown that this space has non-vanishing higher rational coho-
mology, provided thatM is a high-dimensional Spin-manifold and given by N#(S p×Sq)
for p, q in a range. This is a generalization of the main result from [4]. To the best of
our knowledge, those are the only other known result about non-triviality of the higher
rational homotopy type of spaces of positive p-curvature metrics (resp. k-positive Ricci
curvature metrics) for p ≥ 1 (resp. k ≤ d − 1).
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(3) Concerning k-positive Ricci curvature, there is one other results besides [31] and [18]
we would like to mention. Namely, Walsh–Wraith have shown in [42] that for d ≥ 3 and
k ≥ 2 the space Rk-Ric>0(Sd) is an H -space and the component of the round metric is
in fact a d-fold loop space.

The present article grew out of an attempt to extract the necessary geometric ingredients
from [2]. The main one is a parametrized version of the famous Gromov–Lawson–Schoen–
Yau surgery theorem [23,38] which is due to Chernysh [10] and has been first published by
Walsh [39], see also [15]. It states that the homotopy type of Rscal>0(M) is invariant under
surgeries with certain dimension and codimension restrictions. It turns out, that the above
theorems follow from amore general result about so-called surgery-stableDiff(M)-invariant
subsets F(M) ⊂ Rscal>0(M) with a few extra properties. We will give the general statement
of our main result Theorem 2.21 in the course of Sect, 2, after we introduced the relevant
notions.

Outline of the argument

Let F(M)h ⊂ Rscal>0(M)h be a Diff∂ (M)-invariant subset. The strategy for proving Theo-
rems A and B for manifolds of dimension 2n is to construct maps ρ : �∞+1MT θc−1(2n) →
F(M)h from the infinite loop space of the Madsen–Tillmann–Weiss spectrum MT θc−1(2n)

associated to θ the tangential (c− 1)-type of M (cf. Sect. 2.7 for the definition). Afterwards
one has to show that the composition with the maps from those theorems is weakly homo-
topic to the loop map of Â : �∞MT θc−1(2n) → �∞+2nKO(pt) which is accomplished by
index theoretic arguments from [2]. Computations then show that �Â induces a surjection
on rational homotopy groups, whenever the target is nontrivial.

The construction is first done for M a certain θ -nullcobordism of S2n−1 which itself is
θ -cobordant to the disk relative to the boundary. By gluing in k copies of K := ([0, 1] ×
S2n−1)#(Sn×Sn) along the boundary, we obtain themanifoldMk := M∪k ·K .Wewill show
that there is a metric gst ∈ F(K )h◦,h◦ for h◦ the round metric on S2n−1 with the property,
that the map F(W )hN ,h◦ → F(W ∪ K )hN ,h◦ gluing in gst is a homotopy equivalence for any
cobordism W : N � S2n−1 and any metric hN ∈ R(N ). Therefore F(M)h◦ ↪→ F(Mk)h◦
and in particular

F(M)h◦ → hocolim
k→∞ F(Mk)h◦ (1)

are homotopy equivalences. Consider the Borel construction

F(M)h◦ −→ EDiff∂ (M) ×
Diff∂ (M)

F(M)h◦︸ ︷︷ ︸
=:F(M)h◦�Diff∂ (M)

−→ BDiff∂ (M).

Since there are stabilization mapsF(Mk)h◦ → F(Mk+1)h◦ and Diff∂ (Mk) → Diff∂ (Mk+1)
we get stabilization maps for the associated Borel constructions and after passing to the
(homotopy) colimit, this yields the following fibration:

p∞ : hocolim
k→∞ F(Mk)h◦ � Diff∂ (Mk) → hocolim

k→∞ BDiff∂ (Mk) (2)

The space hocolim k→∞BDiff∂ (Mk) admits an acyclic map to

� : hocolim
k→∞ BDiff∂ (Mk) → �∞MT θc−1(2n)
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by the work of Galatius–Randal-Williams [25]. By an obstruction argument the fibration
from (2) extends to a fibration p+∞ : T+ → �∞MT θc−1(2n), meaning that the associated
diagram of fibrations

hocolim
k→∞ BDiff∂ (Mk) �∞MT θc−1(2n)

hocolim
k→∞ F(Mk)h◦ � Diff∂ (Mk) T+

�

p+∞p∞

is homotopy-cartesian, i. e. a homotopy pullback diagram. The main input for solving this
obstruction problem is the fact that the pullback action Diff∂ (Mk) � F(Mk)h◦ factors up to
homotopy through an abelian group for all k, which follows from surgery-stability combined
with an argument in the style of Eckmann–Hilton. The desired map ρ is then given by the
fiber transport map associated to the fibration p+∞ composed with the homotopy-inverse
of the stabilization map from (1). Using the additivity theorem for the index, this result is
the propagated from M to any Spin-manifold of the same dimension. Jumping to the next
dimension requires the spectral flow index theorem and the additional assumption that the
map F(M) → F(∂M) restricting a metric to the boundary is a fibration.

Outline of the paper

In Sect. 2 we develop the basic notions needed in this paper, starting with the definition of
Riemannian functors in Sect. 2.1. These will be contravariant functors on the category of
manifolds with codimension 0 embeddings to the category of spaces, assigning to a manifold
a subspace of Riemannian metrics. The main examples are given by curvature conditions,
which is reviewed in Sect. 2.2 where we also give precise definitions of the intermediate
curvature conditions. Afterwards we introduce the notions of surgery-stability and fibrancy
for Riemannian functors in Sects. 2.3 and 2.4.We give a list of Riemannian functors satisfying
these two conditions after proving a criterion for fibrancy. In Sect. 2.5 we are finally able to
state the general version of our main result. The computations of the image of the map Â⊗Q

mentioned above is then carried out in Sect. 2.7, where Madsen–Tillmann–Weiss spectra are
introduced. The final Sect. 2.8 of the preliminaries is a recollection of the index-theoretic
arguments from [2] involved in the proof of our main result, which we included to give some
context.

In Sect. 3 we carry out the proof of our main theorem. In Sect. 3.1 we show that the
pullback action factors through an abelian group which builds the basis for the obstruction
argument used in Sect. 3.2 to construct themapρ mentioned above.Afterwardswe deduce the
propagation result in Sect. 3.3 which enables to extend the result from a particular manifold
to all of them. For convenience we show how the proof of our main result assembles in
Sect. 3.4.

We close this paper by giving an overview of other recent results about the homotopy
type of Rscal>0(M) in Sect. 4. The proofs of those also depend mainly on the parametrized
surgery theorem from a geometrical point of view. We believe that many of them can also be
generalized to hold for positive p-curvature and k-positive Ricci curvature, too.
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2 Preliminaries

2.1 Riemannian functors

LetM be a smooth compactmanifoldwith (possibly empty) boundary ∂M . If ∂M �= ∅wewill
always assume that M is equipped with a collar, i.e. with an embedding c : ∂M×[0, 1) → M
such that {0}×∂M is canonically identified with ∂M ⊂ M . We denote byR(M) the set of all
smooth Riemannian metrics g on M , which additionally satisfy (c|∂M×[0,ε))∗g = g|∂M+dt2

for some ε > 0. Hence, themetrics on amanifold with boundary are assumed to be of product
form within a collar region of the boundary. We endow R(M) with the C∞-topology, i.e.
the subspace topology of the Fréchet topological space of smooth, symmetric (0, 2)-tensor
fields on M . The diffeomorphism group Diff(M) of M acts on R(M) by push-forward of
Riemannian metrics, i.e. via Diff(M)×R(M) → R(M), ( f , g) 
→ ( f −1)∗g.

LetMfd denote the categorywhich has compactmanifoldswith (possibly empty) boundary
as objects and morphisms are given by smooth codim 0-embeddings.

Definition 2.1 AfunctorF : Mfd → Topop is calledRiemannian ifF(M) ⊂ R(M),F( f ) =
f ∗ : F(N ) → F(M) and the canonical homeomorphism R(M) × R(N ) → R(M � N )

restricts to a homeomorphism F(M)× F(N ) → F(M � N ).

Remark 2.2 (1) Since diffeomorphisms are codim 0-embeddings, F(M) is a Diff(M)-
invariant subset of R(M).

(2) The pull-back of Riemannian metrics along a smooth embedding is a continuous map
with respect to the C∞-topology on the spaces of Riemannian metrics.

Definition 2.3 We say that a Riemannian functor F implies positive scalar curvature, if
F(M) ⊂ Rscal>0(M) for every manifold M .

Example 2.4 (1) One of the most studied examples for a Riemannian functor arises from
positive scalar curvature metrics, i.e. by the assignment

Rscal>0 : M 
→ {g ∈ R(M) | scal(g) > 0},
where scal(g) : M → R denotes the scalar curvature function of the metric g. It is
immediately clear that for g ∈ Rscal>0(N ) and a codim 0-embedding f : M → N the
pull-back f ∗g is a metric of positive scalar curvature on M .

(2) Clearly, this example can be extended to more general (open) curvature conditions,
which we will recall in the subsequent section. Note, however, that for the most common
conditions “positive Ricci curvature” and “positive sectional curvature” on a manifold
with non-empty boundaryM , the spaceF(M) is empty.This is implied byour assumption
on boundary collars, since the cylindrical metric g+dt2 on ∂M×R has neither positive
Ricci, nor positive sectional curvature.

Definition 2.5 A Riemannian functor is called

• open if for every manifold M the space F(M) ⊂ R(M) is an open subspace.
• cellular if for every manifold M the space F(M) is dominated by a CW -complex.

Remark 2.6 An open Riemannian functor F is cellular by [36, Theorem 13]. Recall that for
CW -dominated spaces a weak homotopy equivalence is an actual homotopy equivalence by
Whitehead’s theorem.
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2.2 Curvature conditions

Let (Md , g) be a Riemannian manifold of dimension d . Recall that different notions of
curvature of the metric g at a given point p are encoded in the Riemann curvature operator
Rp at p. Any choice of an orthonormal basis in the tangent space TpM yields a description of
Rp in terms of a self-adjoint endomorphism on

∧2
E
d , whereE

d denotes the euclidean inner
product space. This object lies in the vector space of algebraic curvature operators CB(Ed),
which consists of all self-adjoint endomorphisms of

∧2
E
d satisfying the Bianchi identity

(cf. [3, p.45ff]). Changing orthonormal bases gives rise to an action of O(d) and subsets
C ⊂ CB(Ed) invariant under this action are referred to as curvature conditions. We say that a
Riemannian metric g on a smooth manifold M satisfies a curvature condition C ⊂ CB(Ed),
if for every point p ∈ M the description of Rp in terms of an orthonormal basis in TpM is
contained in C .

Let dC ≥ 0 and let C = {Cd}d≥dC with Cd ⊂ CB(Ed) be a sequence of curvature
conditions. We define a Riemannian functor

RC : Md 
→ {g ∈ R(M) | g satisfies Cd}.
Our convention will be that RC : Md 
→ ∅ for all Md ∈ Mfd with 0 ≤ d < dC . As can be
seen from the following examples, dC can be thought of as the lowest dimension in which it
makes sense to consider the curvature condition C .

Example 2.7 (1) There exist corresponding subsets to all classical curvature bounds, e.g.
bounds on the sectional, Ricci or scalar curvature. For example, we can express (globally
point-wise) positive sectional, Ricci and scalar curvature as conditions

(sec > 0)d := {R ∈ CB(Ed) | sec(R) > 0},
(Ric > 0)d := {R ∈ CB(Ed) | Ric(R) > 0},

pscd := (scal > 0)d := {R ∈ CB(Ed) | tr(R) > 0}.
Here wewrite sec(R)(X , Y ) := 〈R(X∧Y ), X∧Y 〉 for X , Y an orthonormal basis of a 2-
plane in E

d , Ric(R)(X) = ∑d
i=2 sec(X , Ei ) for (X , E2, . . . , Ed) an orthonormal basis

of E
d and tr(R) denotes the trace of the algebraic curvature operator, which coincides

with its scalar curvature up to a factor of 1
2 . In these cases we have dsec>0 = dRic>0 =

dscal>0 = 2.
(2) The notion of p-curvature, where p is an integer, was proposed by Gromov (cf. [35,

p.301]) and is a natural generalization of scalar and sectional curvature which provides
an interpolation between both. Let (M, g) be a Riemannian manifold of dimension
d ≥ p+ 2 and let Gp(TM) denote the p-Graßmannian bundle over M andU (P⊥x ) be a
neighborhood around 0 in the plane perpendicular to a p-plane Px ⊂ TxM . The map

sp : Gp(TM) → R Px 
→ scalx
(
expx (U (P⊥x ))

)
is referred to as p-curvature function. If sp is positive on all of Gp(TM), the metric g is
said to have positive p-curvature.
The term p-curvature coincides with scalar curvature for p = 0 and with (the double
of) sectional curvature for p = d − 2. Without much effort, one can show that posi-
tive p-curvature implies positive (p − 1)-curvature and thus ultimately positive scalar
curvature. If {Ei }1≤i≤d−p is an orthonormal basis of P⊥x ⊂ Tx M we have sp(Px ) =∑d−p

i, j=1 sec(Ei , E j ), where for convenience we set sec(Ei , Ei ) := 0. It is easy to see in
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this description that s1(span(v)) = s0− 2Ric(v) for any element v ∈ S(Tx M), which is
precisely double the value of the Einstein tensor E(v, v) = 1

2 scalg(v, v)− Ric(v).
Positive p-curvature can be described as a curvature condition given by an open convex
cone

(p-curv > 0)d := {R ∈ CB(Ed) | sp(R)(P) > 0

∀P ≤ E
d with dim P = p},

where sp(R) : Gp(R
d) → R is the map P 
→ ∑d−p

i, j=1 sec(R)(Ei , E j ) for an orthonor-

mal basis {Ei } of P⊥. Hence for every fixed p ≥ 0, we obtain a sequence Cd :=
(p-curv > 0)d of curvature conditions that yield a Riemannian functor as above with
dp-curv>0 = p + 2.

(3) In [41] J.Wolfson introduced the notion of k-positive Ricci curvature, which interpolates
between positive scalar curvature (for k = d) and positive Ricci curvature (for k = 1).
A Riemannian metric g on a manifold Md of dimension d ≥ 3 is said to have k-positive
Ricci curvature for 1 ≤ k ≤ d , if the eigenvalues k1 ≤ . . . ≤ kd of the Ricci curvature
satisfy

∑k
i=1 ki > 0. This defines a curvature condition given by an open convex cone

(k-Ric > 0)d := {R ∈ CB(Ed) |
k∑

i=1
Ric(R)(Ei ) > 0

∀{E1, . . . , Ek} orthonormal in E
d}.

For technical reasons it ismore convenient for us to replace k by (d−k) (cf. Remark 2.13).
For fixed k ≥ 0 we define a sequence of curvature conditions Cd := ((d − k)-pos Ric)d
and obtain a Riemannian functor with d(d−k)-pos Ric = max{2, k + 1}.

(4) Another interesting condition is positive isotropic curvature, of which S. Brendle and R.
Schoen showed in [8] that it is preserved under Ricci flow. For d ≥ 4 =: dpic we define
the open convex cone

(pic)d := {R ∈ CB(Ed) |
sec(R)(E1, E3)+ sec(R)(E1, E4)

+ sec(R)(E2, E3)+ sec(R)(E2, E4)

− 2 〈R(E1 ∧ E2)E4 ∧ E3〉 > 0

for any{E1, . . . , E4}orthonormal basis of a 4-plane inEd}.
There are further examples for curvature conditions such as positive s-curvature, point-

wise almost non-negative curvature (cf. [30]) or positive 
2-curvature (cf. [6]).

All of the above examples are given by open convex cones C ⊂ CB(Ed).

2.3 Surgery stability

Let ι : N ↪→ M be a codim 0-embedding and h ∈ F(N ). We define

F(M, ι; h) := {g ∈ F(M) : ι∗g = h}.
This space can be thought of as the subspace of those metrics which have a fixed (standard)
form on N . If M has boundary ∂M there is a restriction map res : F(M) → R(∂M) and for
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h∂ ∈ R(∂M) we write

F(M)h∂
:= res−1(h∂ )

Since the boundary of N is collared, there is a collar of ι(N ) ⊂ M . If additionally ι(N ) lies
in the interior of M , then prolonging the collar yields a homotopy equivalence F(M, ι; h) �
F(M \ ι(N \ ∂N ))ι∗(h|∂N ). We denote by gk◦ ∈ R(Sk) the round metric on the k-dimensional
sphere.

Definition 2.8 Let c, d ∈ N. A Riemannian functorF is called codimension c surgery-stable
on d-dimensional manifolds if for every k ≤ d − c there exists a metric gk ∈ F(Sk ×
Dd−k)gk◦+gd−k−1◦ such that for every embedding ϕ : Sk × Dd−k ↪→ M into a d-manifold M
we have that

F(M) �= ∅ ⇒ F(M, ϕ; gk) �= ∅.
A Riemannian functor F is called parametrized codimension c surgery-stable on d-
dimensional manifolds if additionally the map

F(M, ϕ; gk) ↪→ F(M)

is a homotopy equivalence. We will abbreviate F(M, ϕ; gk) = F(M, ϕ). Usually there will
be no chance of confusion and we will omit “on d-dimensional manifolds”.

Let us first give an explanation for thewording “surgery-stability”. For this, let c−1 ≤ k ≤
d−c and let ϕ : Sk×Dd−k ↪→ M be an embedding.We denote byMϕ the manifold obtained
by performing surgery on M along ϕ. Let ϕop : Dk+1 × Sd−k−1 ↪→ Mϕ be the obvious
reversed surgery embedding.We nowhave the following observation: IfF is codim c-surgery
stable, then

F(M) �= ∅ ⇐⇒ F(M, ϕ) �= ∅
⇐⇒ F(M \ im (ϕ)︸ ︷︷ ︸

=Mϕ\im (ϕop)

)gk◦+gd−k−1◦ �= ∅

⇐⇒ F(Mϕ \ im (ϕop))gk◦+gd−k−1◦ �= ∅
⇐⇒ F(Mϕ, ϕop) �= ∅ ⇐⇒ F(Mϕ) �= ∅

If F is parametrized codim c-surgery stable, all of these spaces are homotopy equivalent:

Corollary 2.9 Let F be a parametrized codimension c surgery stable Riemannian functor
and let ϕ : Sk × Dd−k ↪→ M be an embedding with c−1 ≤ k ≤ d− c. Then we get a zigzag
of weak homotopy equivalences

SF,ϕ : F(M)
�←↩ F(M, ϕ)

∼=−→ F(Mϕ, ϕop)
�
↪→ F(Mϕ).

LetM, N be (c−2)-connected BO(d+1)〈c−1〉-manifolds. If there is a (c−2)-connected
BO(d + 1)〈c − 1〉-cobordism X : M � N with a handle decomposition H consisting only
of handles of indices between c and (d − c + 1), we get a well-defined homotopy class
of a homotopy equivalence SF,X ,H : F(M) → F(N ). We call the map SF,X ,H the surgery
map corresponding to (X , H) and we note, that it depends on the choice decomposition. Any
BO(d+1)〈c−1〉-cobordism can be turned into a (c−2)-connected one by performing surgery
in the interior and then admits such a handle decomposition by the handle cancellation lemma
from the proof of the h-cobordism theorem (cf. [37]). Thus, ifM and N are BO(d+1)〈c−1〉-
cobordant, we have F(M) � F(N ). In the case of positive scalar curvature this map has
been studied by the first named author in [19].

123



Geometriae Dedicata

Remark 2.10 (1) Note that with our definition codim c-surgery-stability obviously implies
codim c′-surgery-stability for every c′ ≥ c.

(2) We do not explicitly assume the existence of a metric g̃k ∈ F(Dk+1× Sd−k−1)gk◦+gd−k−1◦
on the opposite surgery embedding in our definition of surgery stability, the reason being
that it is not required in the proof of our main result. However, such a metric exists in all
of the examples we know for surgery stability or if there is the symmetric lower bound
on the index k of the surgery embedding.

(3) Note that for all c ≤ d we have that codim c-surgery-stability ofF implies that g◦+dt2 ∈
F(Sd−1 × [0, 1])g◦,g◦ by Proposition 2.15.

For some of the constructions later on, we will need that fixing a metric on only one disk
instead of S0 × Dd also gives a homotopy equivalence. This is guaranteed by the following
proposition if F is cellular.

Proposition 2.11 LetF be a parametrized codimension d surgery stable Riemannian functor.
Let g0,1�g0,2 = g0 ∈ F(S0×Dd)g◦,g◦ . Then for any embedding ι : Dd ↪→ M the inclusion

F(M, ι) := F(M, ι; g0,1) ↪→ F(M)

is a weak homotopy equivalence.

Proof Without loss of generality we may assume that F(M) �= ∅. Let ϕ : S0 × Dd ↪→ M
be an embedding that extends ι and consider the composition

F(M, ϕ) ↪→ F(M, ι; g0,1) ↪→ F(M)

which is a homotopy equivalence by parametrized surgery stability. Hence the second
inclusion is surjective on all homotopy groups. For injectivity on homotopy groups let
ϕ : S0 × Dd ↪→ M � M denote the disjoint union of ι with itself and consider the fol-
lowing diagram:

F(M) F(M � M) F(M)× F(M)

F(M, ι; g0,1) F(M � M, ϕ) F(M, ι; g0,1)× F(M, ι; g0,2)
�

The horizontal maps are inclusions into the product and hence injective on homotopy groups
and it follows that the inclusion F(M, ι) ↪→ F(M) is injective on homotopy groups. ��
Example 2.12 1. It is well-known by the work of [23] and [38] that positive scalar curvature

is codimension 3 surgery-stable on d-manifolds in all dimensions d ≥ 3. Chernysh
showed in [10] that it is in fact parametrized codimension 3 surgery-stable.

2. A similar result is true for other open curvature conditions, which satisfy a condition
specified by Hoelzel in [30]. This includes curvature conditions such as positive p-
curvature and k-positive Ricci curvature, which are codimension p+3 (resp. max{3, d−
k + 2}) surgery-stable on d-manifolds for d ≥ 3. By work of the second named author
[33] these conditions are in fact parametrized surgery-stable with the same codimension
restriction.

3. The condition sec < 0 gives rise to aRiemannian functor, which is codimension 2 surgery
stable on 2-manifolds.

4. The Riemannian functor, which assigns to a manifolds its metrics that are simultaneously
conformally flat and have scal ≥ 0 is codimension d surgery stable on d-manifolds (cf.
[30, Theorem 6.3]).

123



Geometriae Dedicata

Remark 2.13 Since we want the codimension restriction arising from surgery-stability to be
independent of the dimension, we choose to replace k-positive Ricci curvature by (d − k)-
positive Ricci curvature, which is parametrized codimension max{3, k + 2}-surgery stable.

2.4 Fibrancy

In order to compare spaces of metrics on manifolds with different dimensions, we need the
restriction map res : F(M) → R(∂M) to satisfy the properties from the following definition.

Definition 2.14 A Riemannian functor F is called fibrant if

(1) res(F(M)) ⊂ F(∂M) for all M ∈ Mfd with ∂M �= ∅ and
(2) the restriction map res : F(M) → F(∂M) is a Serre-fibration.

The Riemannian functor given by positive scalar curvature is fibrant. This was shown
utilizing the method we generalize here in [15].

Proposition 2.15 A Riemannian functor F satisfies (1) in the above definition if and only if
for every closed N ∈ Mfd and every g ∈ R(N ) with g + dt2 ∈ F(N × [0, 1]) we have
g ∈ F(N ).

Proof Let N ∈ Mfd be closed with g ∈ R(N ) such that g + dt2 ∈ F(N × [0, 1]). For
res : F(N×[0, 1]) → F(N

∐
N ) = F(N )×F(N )we get that g = prF(N )(res(g+dt2)) ∈

F(N ).
Now let M ∈ Mfd with ∂M �= ∅ and let g ∈ F(M). Since we assumed M to be collared

and the metric to be cylindrical in a neighborhood of the boundary, there is a codim 0-
embedding c : [0, 1] × ∂M ↪→ M such that c∗g = res(g) + dt2 ∈ F(∂M × [0, 1]). By
assumption, this implies that res(g) ∈ F(∂M) ��

LetF be a Riemannian functor. For every closedmanifold N ∈ Mfd we have a continuous
stabilization map

stab : R(N ) → R(N × [0, 1]), g 
→ g + dt2.

The following is a criterion for curvature conditions for which RC is fibrant.

Theorem 2.16 Let C = {Cd}d≥dC with Cd ⊂ CB(Ed) be a sequence of open curvature
conditions. Let us assume that stab(RC (N )) ⊂ RC (N × [0, 1]) for all closed N ∈ Mfd and
res(RC (M)) ⊂ RC (∂M) for all M ∈ Mfd with ∂M �= ∅. Then RC is fibrant.

Before diving into the proof, let us give the consequences most important to us.

Proposition 2.17 Both positive p-curvature and (d− k)-positive Ricci curvature are fibrant.

Proof It remains to show that g has positive p-curvature (resp. (d − k)-positive Ricci cur-
vature) if and only if g + dt2 has positive p-curvature (resp. (d + 1 − k)-positive Ricci
curvature).

If g has positive p-curvature, then the p-curvature of g + dt2 is positive by the com-
putation in Lemma A.1. Now let g + dt2 have positive p-curvature and let P ⊂ TxM be
a p-dimensional subspace. Then there is an orthonormal basis (∂t , . . . , Ed+1−p) of P⊥ in
T(x,t)M × [0, 1] and we can compute

sp,g(P) = sp,g+dt2(P)−
d+1−k∑
i=2

sec(∂t , Ei )︸ ︷︷ ︸
=0

> 0.
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Concerning (d − k)-positive Ricci we note that the eigenvalue of the Ricci curvature
corresponding to ∂t equals 0, the first sum of the first (d+1−k) eigenvalues ofRic(g+dt2)
is positive if and only if the sum of the first (d − k)-eigenvalues of Ric(g) is positive. ��

We have the following observation:

Lemma 2.18 Under the assumptions in Theorem 2.16, RC (M) satisfies the following: For
every closed manifold Nd−1 ∈ Mfd we have:

(1) For every smooth path of Riemannian metrics {gr }r∈[0,1] ⊂ R(N ) with gr + dt2 ∈
F(N×[0, 1]) for all r ∈ [0, 1], there exists a 0 < � ≤ 1 such that we have g f (t)+dt2 ∈
F(N×[0, 1]) for every function f : R → [0, 1] that is constant near 0 and 1 and satisfies
| f ′|, | f ′′| ≤ �

(2) Additionally, � can be chosen depending continuously on the family {gr }.
Proof We obtain (1) immediately from a computation similar to [21, p.184] (cf. LemmaA.2),
which yields the following correspondence between curvature tensors:

R(N×R,g f (t)+dt2)|(x,t0) = R(N×R,g f (t0)+dt2)
+ O(| f ′|)E1 + O(| f ′|2)E2 + O(| f ′′|)E3,

where E1, E2, E3 only depend on the path {gr }r∈[0,1] and its derivatives in r -direction. Since
C is an open subset in CB(En), we find� accordingly. This also reveals that� can be chosen
continuously and thus implies (2). ��
Remark 2.19

(1) The Proof of Theorem 2.16 indeed shows the following:

If F is an open Riemannian functor satisfying the two properties from Lemma 2.18
together with the property that stab(F(N )) ⊂ F(N × [0, 1]) for all closed N ∈ Mfd
and res(F(M)) ⊂ F(∂M) for all M ∈ Mfd with ∂M �= ∅, then F is fibrant.
However, since the examples we are interested in are all given by curvature conditions,
we decided to simplify the statement of our criterion by only considering subspaces given
by curvature conditions.

(2) Given a path {gr }r∈[0,1] with gr + dt2 ∈ F(N × [0, 1]) for every r ∈ [0, 1], (1) from
Lemma 2.18 implies the existence of a metric G ∈ F(N × [0, 1])g0,g1
Let us now turn to the Proof of Theorem 2.16. The following lemma and its proof are

adaptations from [15, Lemma 5.1] to a more general setting. It constructs a family of paths
from a path of metrics, which stops at any particular point.

Lemma 2.20 Let F be an open Riemannian functor. Let Nd−1 be a closed manifold, P be a
compact topological space and let G : P ×[0, 1] → F(N ) be a continuous map. Then there
exists a continuous map

C : P × [0, 1]2 → F(N ), (p, s, t) 
→ C(p, s, t).

with the properties

(1) {C(p, s, t)}t∈[0,1] is a smooth path of metrics for every (p, s) ∈ P × [0, 1],
(2) C(p, 0, t) = G(p, 0) for all (p, t) ∈ P × [0, 1],
(3) C(p, s, 0) = G(p, 0) for all (p, s) ∈ P × [0, 1],
(4) C(p, s, 1) = G(p, s) for all (p, s) ∈ P × [0, 1].
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If, additionally,F = RC satisfies the assumptions of Theorem2.16, then there exists 0 < � ≤
1 such that for every function f : R → [0, 1] with | f ′|, | f ′′| ≤ � we have C(p, s, f (t)) +
dt2 ∈ F(N × [0, 1]).
Proof First, note that since F(N ) is open, we may without loss of generality assume that for
every p ∈ P the path {G(p, r)}r∈[0,1] ⊂ F(N ) is smooth. As in [15, Lemma 5.1], we let
Uni := ( i−1n , i+1

n ) ∩ [0, 1], define the open cover Un = {Uni | i = 0, . . . , n} of [0, 1] and
choose a subordinate smooth partition of unity {λni | i = 0, . . . , n} to define:

Cn : P × [0, 1]2 → R(N ), (p, s, t) 
→
n∑

i=0
G(p,

s · i
n

)λni (t).

This converges uniformly toG in the sense that limn→∞ Cn(p, s, t) = G(p, s·t).Again using
that F(N ) is open, we conclude there exists a sufficiently large n such that Im(Cn) ⊂ F(N ).
We then let C := Cn .

If F satisfies the assumptions of Theorem 2.16, then stab(F(N )) ⊂ F(N × [0, 1]) and
therefore {C(p, s, t0)+ dt2}t0∈[0,1] is a smooth path within F(N ×[0, 1]) for every (p, s) ∈
P × [0, 1]. By (1) in Lemma 2.18 we find a 0 < �(p,s) ≤ 1 such that for every function
f : R → [0, 1] with | f ′|, | f ′′| ≤ �(p,s) we have C(p, s, f (t)) + dt2 ∈ F(N × [0, 1]).
Finally by (2) in Lemma 2.18, �(p,s) depends on (p, s) continuously and thus we choose
� := min{�(p,s)}. ��
Proof of Theorem 2.16 To prove the statement, it suffices to find a solution to the following
lifting problem:

D × {0} F(M)

D × [0, 1] F(∂M)

h

res

G

where D is a disc. We choose δ > 0 such that h(D × {0}) ⊂ F(M) is of product form on
the collar of length 2δ. Since F is open, G is homotopic relative to G|D×{0,1} to a map G̃
with {G̃(p, t)}t∈[0,1] a smooth path of metrics for every p ∈ P . We replace G by G̃.

Now apply Lemma 2.20 to G to obtain a map C : D × [0, 1]2 → F(∂M) and 0 <

� ≤ 1 accordingly. Choose a smooth function f : R → [0, 1] such that | f ′|, | f ′′| ≤ � and
f |(−∞,0] ≡ 0, f |[b,∞) ≡ 1 for b > δ > 0 sufficiently large. Using the collar of M , we define
M ′ = M \ (∂M × [0, δ]) and thus we can write M = M ′ ∪∂M (∂M × [0, δ]). Now choose
a monotone diffeomorphism φ : [0, δ] → [0, b] with φ′ = 1 near 0 and δ. Thus a candidate
for a lift is given by

Ĝ : D × [0, 1] → F(M ′ ∪∂M (∂M × [0, δ])) = F(M),

(p, s) 
→ h(p)|M ′ ∪ (id∂M × φ)∗(C(p, s, f (t))+ dt2).

This is well-defined, since along the gluing, we have (cf. (2) in Lemma 2.20) for all p ∈
D, s ∈ [0, 1]

Ĝ(p, s)|∂M×{0} = C(p, s, 0) = G(p, 0) = res(h(p)).

Moreover, by construction of C (cf. (3) in Lemma 2.20) we have for p ∈ D:

Ĝ(p, 0) = h(p)|M ′ ∪ (id∂M × φ)∗(G(p, 0)+ dt2) = h(p)

and (cf. (4) in Lemma 2.20)

res(Ĝ(p, s)) = C(p, s, f (b)) = C(p, s, 1) = G(p, s)
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for p ∈ D, s ∈ [0, 1]. Hence, Ĝ makes the diagram commute and is indeed a lift. ��

2.5 Statement of main result, general version

Having introduced all the necessary notions, we can now state the general version of our
main result.

Theorem 2.21 Let n ≥ c ≥ 3 and let F be a cellular, parametrized codimension c-surgery
stable Riemannian functor that implies positive scalar curvature. Let W be a Spin-manifold
of dimension d = 2n. Let h ∈ R+(∂W ) and g ∈ F(W )h. Then for all k ≥ 0 such that
d + k + 1 ≡ 0(4) the composition

πk(F(W )h) −→ πk(Rscal>0(W )h)
inddiffg−→ KOd+k+1(pt) ∼= Z

is nontrivial. If additionally F is fibrant, this holds for all manifolds of dimension d ≥ 2c.

Theorems A and B now follow from the above theorem by Example 2.12 and Proposi-
tion 2.17. Note that the long list of adjectives in front of “Riemannian functor” does not imply
lack of examples but rather is due to the fact that there are many examples and the aim to
extract necessary assumptions out of these.

2.6 Stable metrics

The following Lemma states the existence of stable metrics (cf. [16]) in a special case. Let
c ≥ 3 and let F be a parametrized codimension c surgery stable Riemannian functor.

Lemma 2.22 ( [2, Theorem 2.6]) Let d ≥ 2c − 1 and let V d : Sd−1 � Sd−1 be a (c − 2)-
connected, BO(d)〈c − 1〉-cobordism. Also, assume that V is BO(d)〈c − 1〉-cobordant to
Sd−1 × [0, 1] relative to the boundary. Then there exists a metric g ∈ F(V )g◦,g◦ with the
following property: If W : Sd−1 � Sd−1 is a cobordism and h ∈ R(Sd−1) is a boundary
condition then the two gluing maps

μ(_, g) : F(W )h,g◦ −→ F(W ∪ V )h,g◦
μ(g, _) : F(W )g◦,h −→ F(V ∪W )g◦,h

are homotopy equivalences.

Definition 2.23 A metric g as in this Lemma is called an F-stable metric.

Proof of Lemma 2.22 By assumption, there exists a relative BO(d)〈c − 1〉-cobordism
X : V � Sd−1 × [0, 1] and by performing surgery on the interior of X we may assume
X has no handles of indices 0, . . . , c − 1, d + 1 − c + 1, . . . , d + 1. So Sd−1 × [0, 1]
is obtained from V by a sequences of surgeries in the interior with these indices. For
i = 1, . . . , l let ϕi : Ski × Dd−ki ↪→ Vi with V0 = V and Vi+1 := (Vi )ϕi be the corre-
sponding sequence of surgery embeddings with ki ∈ {c, . . . , d + 1− c}. Let g ∈ F(V )g◦,g◦
such that g◦ + dt2 ∈ [SF,ϕl ◦ · · · ◦SF,ϕ1(g)] ∈ π0(F(Sd−1× [0, 1])g◦,g◦) which is possible
since the maps SF,ϕi are homotopy equivalences. Now μ(g◦ + dt2, _) (resp. μ(_, g◦ + dt2))
is a homotopy equivalence and hence so is μ(g, _) (resp. μ(_, g)). ��
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2.7 Madsen–Tillmann–Weiss spectra

We briefly recall the definition of structured Madsen–Tillmann–Weiss spectra1. Let BO(d)

denote the classifying space of rank(d)-vector bundles and letUd → BO(d) be the universal
vector bundle. The orthogonal complement ofUd which is a virtual vector bundle is denoted
by U⊥

d . Let

Bn(d) := BO(d)〈n〉 θn(d)−→ BO(d)

be the n-connected cover of BO(d) with Bn := colimd Bn(d). We define the spectrum
MTθn(d) as the Thom spectrum of U⊥

d , i. e.

MTθn(d) := Th(θn(d)∗U⊥
d )

Note that for d ≥ 3 we have B2(d) = BSpin(d) and for n ≥ 3 we get a map

MTθn(d) −→ MTSpin(d)

By [2, p.796] there is a spectrum map λ−d : MTSpin(d) → �−d K O and we have the
composition MTθn(d) −→ MTSpin(d) → �−d K O . We get the following induced maps
on rational homotopy groups.

πk(MT θn(d))⊗Q → πk(MTSpin(d))⊗Q →KO−d−k(pt)⊗Q

∼=
{

Q if d + k ≡ 0(4)

0 else

where the first map is induced by the inclusion. By the Pontryagin–Thom construction the
group πk(MT θn(d)) is isomorphic to the cobordism group of triples [M, V , φ] where M
is a closed (k + d)-manifold, V → M is a rank(d) vector bundle with a θn structure and
φ : V ⊕ R

k ∼= T M is a stable isomorphism of vector bundles (cf. [2, Theorem 5.1] or [24,
Proposition 1.2.3]). Themapπk(MT θn(d))⊗Q → πk(MTSpin(d))⊗Q is the forgetfulmap.
Note that in the case d + k ≡ 0(4) the triple [M, V , φ] gets mapped to the Â-genus Â(M)

of M under the above composition by [2, p. 817]. We will denote the above composition by
Â⊗Q.

Theorem 2.24 Â ⊗ Q : πk(MT θn(d)) ⊗ Q → KO−d−k(pt) ⊗ Q is surjective, provided
d > n + 1.

For the proof we need the following lemma.

Lemma 2.25 For n < d we have H∗(Bn(d), Q) ∼= Q[p"n/4#+1, . . . , p"d/2#].
Proof The proof is by induction over n and all cohomology here is with rational coefficients.
For n = 1 we have that Bn(d) = BSO(d) and H∗(BSO(d)) ∼= Q[p1, . . . , p"d/2#] is well
known (cf. [7, Lemma 2.4]). For n ≥ 2 we have a fibration

Bn(d) −→ Bn−1(d) −→ K (πn(BSO(d)), n).

Note that because of n < d we have πn(BSO(d)) is either Z (for n ≡ 0(4)), Z/2 (for
n ≡ 1, 2(8)) or 0 and hence it suffices to consider the case that n = 4m because in the other

1 See [27] or [24] for a more detailed introduction.
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cases the map Bn(d) → Bn−1(d) induces an isomorphism in rational cohomology. The Serre
spectral sequence has the form

E2
p,q = H p(K (Z, n))⊗ Hq(Bn(d)) ⇒ H p+q(Bn−1(d)).

The cohomologyof K (Z, n) is given by H∗(K (Z, n)) ∼= Q[α] forα in degreen. Furthermore,
H p(Bn(d)) = 0 unless p ≡ 0(4). Hence all differentials vanish, the spectral sequence
collapses on the E2-page and we have⊕

p+q=k
H p(K (Z, n))⊗ Hq(Bn(d))

∼=−→ Hk(Bn−1(d)).

Since Hn(Bn(d)) = 0, the preimage of pm is the class α generating H∗(K (Z, n)) and
therefore H∗(Bn(d), Q) ∼= Q[pm+1, . . . , p"d/2#].
Corollary 2.26 The bordism group πk(MT θn(d)) ⊗ Q consists of the classes in �

θn
d+k ⊗ Q

which do not have nontrivial Pontryagin classes of degree greater than "d/2#.
Proof Since the sphere spectrum is rationally an HQ-spectrum by Serre’s finiteness theorem,
the rational Hurewicz-homomorphism of spectra πk(MT θn(d)) ⊗ Q → Hk(MT θn(d);Q)

is an isomorphism. Composing with the Thom-isomorphism we get an isomorphism
πk(MT θn(d)) ⊗ Q → Hk+d(Bn(d), Q). The claim follows from Lemma 2.25 by con-
sidering the natural map Hk+d(Bn(d), Q) ↪→ Hk+d(Bn, Q) ∼= �

θn
d+k ⊗Q (cf. [32, Theorem

2.1] for the last isomorphism). ��
Proof of Theorem 2.24 s Again we restrict to the case d + k ≡ 0(4). By the isomor-
phism H∗(Bn, Q) ∼= �

θn∗ ⊗ Q, there are nontrivial classes Ml ∈ �
θn
4l ⊗ Q for l ∈

{"n/4# + 1, . . . , 2"n/4# + 1}. Note that by our assumption 2"n/4# + 1 ≤ "d/2#. Since
all Pontryagin classes of Ml until p"n/4#+1 vanish, the only nontrivial Pontryagin number of
Ml is 〈pl(Ml), [Ml ]〉. By [1, Theorem 4] this number is a multiple of the Â-genus. By the
euclidian algorithm there exists a q ∈ R and an r ∈ {"n/4# + 1, . . . , 2"n/4# + 1} such that
d+k
4 = q ·("n/4#+1)+r and hence M := (M"n/4#+1)q×Mr has only Pontryagin classes of

degree smaller than "d/2# and hence is an element of πk(MT θn(d))⊗Q by Corollary 2.26
with non-vanishing Â-genus which proves the theorem. ��

2.8 Index theoretic ingredients

This is mainly a recollection of index-theoretic arguments involved in the proof of our main
result. Even though this is just a recollection from [2], we decided to keep it in here to give
some context. There is no claim of originality for this entire section.

2.8.1 KO-theory

Let us start by recalling the model for KO-theory that was used in [2, Chapter 3], for a more
detailed discussion see loc.cit.. Let X be a space and let H → X be a Hilbert bundle with
separable fibers. An operator family is a fiber preserving and fiber-wise linear continuousmap
H0 → H1 of Hilbert bundles H0 and H1. It is determined by a family (Fx )x∈X of bounded
operators Fx : (H0)x → (H1)x . F is called adjointable if (Fx )∗x∈X is an operator family and
we denote the algebra of adjointable operators byLinX (H). The ∗-ideal of compact operators
on X is denoted by KomX (H). We call an adjointable operator family F a Fredholm family
if there exists a K ∈ KomX (H) such that F + K is invertible.
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Definition 2.27 Let V → X be a Riemannian vector bundle and let τ : V → V be a self-
adjoint involution. A Cl(V τ )-Hilbert bundle is a triple (H , ι, c) where H → X is a Hilbert
bundle, ι : H → H is a self-adjoint involution and c = (cx )x∈X is a collection of maps
cx : Vx → Lin(Hx ) such that

(1) cx (v)ι+ ιcx (v) = 0
(2) cx (V )∗ = cx (τv)

(3) cx (v) · cx (v′)+ cx (v′) · cx (v) = −2〈v, τv′〉
(4) If s ∈ 
(X , V ) is a continuous section, then cx (s(x)) is an operator family

We will omit x in cx (v) when there is no chance of confusion.

The opposite Cl(V τ )-Hilbert bundle is given by (H ,−ι,−c). A Cl(V τ )-Hilbert bundle
with V = V+⊕V− and τ(v1, v2) = (v1,−v2). It will also be called a Cl(V+⊕V−)-Hilbert
bundle and if V+ = R

p and V− = R
q we will abbreviate this by Clp,q . A Cl(V+ ⊕ V−)-

module is a finite-dimensional Cl(V+ ⊕ V−)-Hilbert bundle and a Clp,q -Fredholm family
is a Fredholm family on a Clp,q -Hilbert bundle that is Clp,q -linear and anti-commutes with
the grading, i. e. Fc(v) = c(v)F and F ι = −ιF .

Definition 2.28 Let (X , Y ) be a space pair. A (p, q)-cycle on X is a tuple (H , ι, c, F) where
(H , ι, c) is a Clp,q -Hilbert bundle and F is a Clp,q -Fredholm family. A relative (p, q)-
cycle is a (p, q)-cycle on X such that F is invertible over Y . A concordance between
(H0, ι0, c0, F0) and (H1, ι1, c1, F1) is a relative (p, q)-cycle (H , ι, c, F) on (X , Y )× [0, 1]
such that (H , ι, c, F)|X×{i} = (Hi , ιi , ci , Fi ). A (p, q)-cycle is called acyclic if F is invert-
ible.

We will sometimes abbreviate (H , ι, c, F) by (H , F) or x 
→ (Hx , Fx ).

Definition 2.29 For a pair (X , Y ) of a paracompact space X and a closed subspace Y we
define

F p,q(X , Y ) := {concordance classes of relative (p, q)-cycles}
{concordance classes of acyclic ones} .

This is an abelian group via direct sum and the inverse of [H , ι, c, F] is given by
[H ,−ι,−c, F] = [H , ι,−c,−F].

For space pairs (A, B) and (X , Y ) let (A, B)× (X , Y ) := (A× X , A× Y ∪ B × X). Let
I := [−1, 1]. We define �F p,q(X , Y ) := F p,q((X , Y )× (I, ∂I)). There is an isomorphism
of abelian groups

F p,q(X , Y ) −→ �F p−1,q(X , Y )

(H , F) 
→ (
(x, s) 
→ (Hx , Fx + sιx c(e1)x )

)
A Clp,q -Hilbert space is called ample if it contains every finite dimensional irreducible

Clp,q -Hilbert space with infinite multiplicity. We fix an ample Clp,q -Hilbert spaceU and we
define Fredp,q to be the space of all Clp,q -Fredholm operators onU with the norm topology
and Gp,q the (contractible) subspace of invertible ones. We have the following theorem.

Theorem 2.30 ( [2, Theorem 3.3 and below]) Let (X , Y ) be a CW-pair. Then the following
holds

(1) There is an isomorphism KOq−p(X , Y )
∼=−→ F p,q(X , Y ).

(2) Every class b ∈ F p,q(X , Y ) corresponds to a unique homotopy class of a map (X , Y ) →
(�∞+p−qKO, ∗) which we call the homotopy-theoretic realization of b
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2.8.2 Dirac operators

LetWd be aRiemannian Spin-manifold. So,we have a Spin(d)-principal bundle P → W and
an isometry η : P ×Spin(d) R

d → TW . The spinor-bundle SW of W is the associated fiber-
wise irreducible real Cl(TW+ ⊕R

0,d)-module. The Levi-Civita connection onW induces a
canonical connection ∇ on SW . The Dirac operator D is given by

D : 
(W ,SW )
∇−→ 
(W ; TW ⊗SW )

c−→ 
(W ;SW ).

D is a linear, formally self-adjoint, elliptic differential operator of order 1 and anti-commutes
with the grading and the Clifford multiplication of R

0,d . Hence, after changing the Cl0,d -
multiplication to a Cld,0-multiplication via replacing c(v) by ιc(v), the Dirac operator D
becomes Cld,0-linear. The relevance of the Dirac operator to positive scalar curvature geom-
etry originates from the Schrödinger-Lichnerowicz formula:

D2 = ∇∗∇ + scal
4

,

which forces the Dirac operator to be invertible if the scalar curvature is positive. Now, let
X be a paracompact Hausdorff space and π : E → X a fiber bundle with possibly non-
compact Ex := π−1({x}) of dimension d such that the vertical tangent bundle T(v)E admits
a Spin-structure. A fiber-wise Riemannian metric gx gives rise to a Spinor-bundle SE , a
Cl(T(v)E+⊕R

0,d)-module that restricts to the Spinor-bundleSx → Ex with Dirac operator
Dx in each fiber. If the fibers are compactwith boundary diffeomorphic to N and the boundary
bundle is trivial as a Spin-bundle, i. e.∂E = X × ∂N , we can consider the elongation of
(E, g). This is defined to be the bundle Ê := E ∪∂E (X × [0,∞) × N ) with the metric
(dt2 + gx ) on the added cylinders.

Definition 2.31 [ [2, Definition 3.4]] Let t : E → R be fiber-wise smooth such that
(π, t) : E → X × R is proper. Let a0 < a1 : X → [−∞,∞] be continuous functions.
We define

X × (a0, a1) := {(x, s) ∈ X × R | a0(x) < s < a1(x)}
and E(a0,a1) := (π, t)−1(X × (a0, a1)). We say the bundle E is cylindrical over (a0, a1) if
there exists a bundle isomorphism E(a0,a1)

∼= (X ×R×M)(a0,a1) for some (d−1)-manifold
M . E is said to have cylindrical ends, if E is cylindrical over (−∞, a−) and (a+,∞) for some
functions a−, a+ : X → R. If E has cylindrical ends and there is a fiber-wise Riemannian
metric g = (gx )x∈X that is cylindrical over the ends, we say that (gx ) has positive scalar
curvature at infinity if there exists a function ε : X → (0,∞) such that on the ends of Ex

the metric gx has scalar curvature ≥ ε(x).

Let L2(E,SE )x denote the Hilbert space of L2-sections of the spinor bundleSx → Ex .
These assemble to a Cld,0-Hilbert bundle over X . The Dirac operator is a densely defined
symmetric unbounded operator on L2(E,SE )x and its closure is self-adjoint. Applying the
functional calculus for f (x) = x√

1+x2
we get the bounded transform

Fx := Dx√
1+D2

x

.

If g has positive scalar curvature at infinity this is a bounded Cld,0-Fredholm operator. The
collection (Fx ) is a Cld,0-Fredholm family over X . We define Dir(E, g) to be the (d, 0)-cycle
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given by x 
→ (L2(E,SE )x , Fx ) and if we assume that Dy is invertible for all y ∈ Y we
obtain a class

Ind(E, g) := [Dir(E, g)] ∈ KO−d(X , Y ).

We have the following Lemma.

Lemma 2.32 ( [2, Lemma 3.7]) Let π : E → X be a Spin-manifold bundle with cylindrical
ends and let g0, g1 be fiber-wise metrics with psc at infinity that agree on the ends. Let Y ⊂ X
and assume that g0 and g1 agree and have invertible Dirac operators over Y . Then

Ind(E, g0) = Ind(E, g1) ∈ KO−d(X , Y ).

In particular, if g is a fiber-wise metric only defined over the ends we still get a well
defined class Ind(E, g) and if E is closed, then Ind(E, g) does not depend on g. Also note
that for the bundle Eop with the opposite Spin-structure we have Ind(Eop, g) = −Ind(E, g).

From now on let F be a Riemannian functor that implies positive scalar curvature.

2.8.3 The two definitions of inddiff

Again, let Wd be a Spin-manifold and let h ∈ R(∂W ) be such that F(W )h �= ∅. Since F
implies positive scalar curvature we deduce that h ∈ Rscal>0(∂W ). Recall that I = [−1, 1]
and let us consider the trivialW -bundle over I×F(W )h×F(W )h . A fiber-wise Riemannian
metric G is given by G(t,g0,g1) := 1−t

2 g0+ 1+t
2 g1 in the fiber over (t, g0, g1). The elongation

has psc at infinity and invertible Dirac operators for t = ±1. We therefore get an element

inddiff := Ind(I× F(W )h × F(W )h ×W ,G) ∈ �KO−d(F(W )h × F(W )h,�),

where � denotes the diagonal. This is Hitchin’s definition of the index-difference, cf. [29].
Fixing a base-point g ∈ F(W )h we obtain an element inddiffg ∈ �KO−d(F(W )h, g) and a
homotopy theoretic realization

inddiffFg : (F(W )h, g) → (�∞+d+1KO, ∗). (3)

Remark 2.33 Note that the definition of Ind only depends on the Dirac-operator associated
to the metric and hence we get the following homotopy commutative triangle

(F(W )h, g)

(Rscal>0(W )h, g) (�∞+d+1KO, ∗)
inddiffRscal>0

g

inddiffFg

The second definition of the index-difference goes back to Gromov–Lawson [22]. Let
Wd be a closed Spin-manifold and consider the trivial R×W -bundle over F(W )× F(W ).
Choose a smooth function ψ : R → [0, 1] that is constantly equal to 1 on [1,∞) and equal
to 0 on (−∞, 0]. We get a fiber-wise metric G := dt2 + (1−ψ(t))g0 +ψ(t)g1 in the fiber
over (g0, g1). This has positive scalar curvature at infinity and we hence get an element

inddiffGL := Ind(F(W )× F(W )× R×W ,G) ∈ KO−d−1(F(W )× F(W ),�).

Again, after fixing a base point g ∈ F(W ) we get inddiffGL
g ∈ KO−d−1(F(W ), g) and a

homotopy theoretic realization

inddiffGL,F
g : (F(W )h, g) → (�∞+d+1KO, ∗). (4)
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Theorem 2.34 (Spectral flow index theorem [14, Theorem A]) For every closed Spin-
manifold W the maps (3) and (4) are weakly homotopic.

Remark 2.35 Recall that two maps f0, f1 : X → Y are called weakly homotopic if for every
map α : K → X from a finite CW -complex K we have that f0 ◦ α is homotopic to f1 ◦ α.
Weakly homotopic maps induce equal maps on homotopy groups.

2.8.4 The additivity theorem for the index-difference

One of the main tools for computing the index-difference is the additivity theorem. In order
to state it we need some notation. Let X be a paracompact Hausdorff space and let E → X ,
E ′ → X be two Riemannian Spin-manifold bundles of fiber dimension d equipped with t, t ′
functions as in Definition 2.31. Let E, E ′ have cylindrical ends and let g, g′ be metrics that
have psc at infinity. Assume that the Dirac operators are invertible over E(a0,a1). Let

E0 := E(−∞,a1); E1 := E(a0,∞); E2 := E ′(−∞,a1); E2 := E ′(a0,∞)

and for (i, j) ∈ {(0, 1), (2, 3), (0, 3), (1, 2)} let Ei j := Ei ∪ E j .

Theorem 2.36 ( [2, Theorem 3.12])

Ind(E01)+ Ind(E23) = Ind(E03)+ Ind(E12) ∈ KO−d(X)

If E01 and E23 have invertible Dirac operators over a closed subspace Y ⊂ X, then this
equation holds in KO−d(X , Y ).

There is the following restatement in terms of the index-difference.

Theorem 2.37 ( [2, Theorem 3.16]) Let M0
V� M1

W� M2 be Spin-cobordisms, hi ∈ R(Mi )

and g ∈ F(V )h0,h1 , g
′ ∈ F(W )h1,h2 . Then the following diagram commutes up to homotopy:

F(V )h0,h1 × F(W )h1,h2 F(V ∪W )h0,h2

�∞+d+1KO×�∞+d+1KO �∞+d+1KO

_ ∪ _

inddiffg × inddiffg′ inddiffg∪g′
+

2.8.5 The index-difference in an abstract setting

Let I := [0, 1] denote the interval and let f : (X , x0) → (Y , y0) be a pointed map. The
mapping cylinder Cyl( f ) of f is defined to be the space (X × [0, 1] � Y )/(x, 1) ∼ f (x)
and let i : Y → Cyl(F) be the inclusion. We write

KO−p( f ) := KO−p(Cyl( f ), X × {0} ∪ {x0} × I ).

The homotopy fiber of f at y is defined as

hofiby( f ) := {(x, c) | x ∈ X , c : [0, 1] → Y , c(0) = f (x), c(1) = y}
and we have the canonical map εy0 : f −1(y0) → hofiby0( f ), x 
→ (x, consty0) which is a
pointed map by considering ∗ := (x0, consty0) as the base-point of hofiby0( f ). There is a
natural map

ηy0 : (I, ∂I)× (hofiby0( f ), ∗) → (Cyl( f ), X × {0} ∪ {x0} × [0, 1])
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(t, x, c) 
→
{

(x, 1+ t) if t ≤ 0

i(c(t)) if t ≥ 0.

Note that ηy0 ◦ (idI× εy0) is homotopic to ιy0 : (t, x) 
→ (x, 1
2 (t + 1)) as a map of pairs. The

fiber transport map is defined as

τ : �y0Y → hofiby0( f )

c 
→ (x0, c).

For a class α ∈ KO−p( f ) there is an associated base class bas(α) := i∗α ∈ KO−p(Y )

and a transgression trg(α) := η∗y0α ∈ �KO−p(hofiby0( f )). The loop map is defined by

l : I × �y0Y → Y , (t, c) 
→ c( 12 (t + 1)) and we write � := l∗ : KO−p(Y , y0) →
�KO−p(�y0Y , consty0).

Lemma 2.38 ( [2, Lemma 3.19]) We have

τ ∗trg(α) = �bas(α) ∈ �KO−p(�y0Y , consty0).

This lemma can be illustrated by the following homotopy-commutative diagram

�y0Y hofiby0( f )

�∞+p+1KO

τ

�bas(α) trg(α)

An instructive way to think about these class proposed in [2] is the following: j∗α for
j : X × [0, 1] ↪→ Cyl( f ) is a concordance in the sense of Definition 2.28 and j∗α|X×{0}
is acyclic. Hence the class f ∗bas(α) = j∗α|X×{1} = 0 ∈ KO−p(X , x0) and hence we
get the following homotopy-commutative diagram where the columns are homotopy fiber
sequences:

hofiby0( f ) �∞+p+1KO

X ∗

Y �∞+pKO.

trg(α)

bas(α)
f

2.8.6 Increasing the dimension

As a consequence of the abstract setting described in the previous section we can now derive
the following propagation result allowing us to increase the dimension. For this we further
assume that F is fibrant.

Theorem 2.39 ( [2, Theorem 3.22]) Let W be a Spin-manifold of dimension d, h ∈ F(∂W )

and g ∈ F(W )h. Then the following diagram is weakly homotopy commutative

�hF(∂W ) F(W )h

�∞+d+1KO

T

−�inddiffh inddiffg
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where T denotes the fiber transport map after identifying F(W )h with hofibh(res) via εh0 .

Proof Let g0 ∈ F(W )h0 . We define σg0 : F(∂W ) → R(W ) by

σg0(h) := a · (h + dt2)+ (1− a)g0

for some cutoff-function supported on the collar with a|∂W ≡ 1. Note that σg0(h) ∈ R(W )h
and σg0(h0) = g0. We define a fiber-wise Riemannian metric m on the trivial W -bundle
W × Cyl(res) → Cyl(res) as follows: over h ∈ F(∂W ) ⊂ Cyl(res) let m := σg0(h) and
over (g, t) ∈ F(W ) × [0, 1] let m := t · σg0(res(g)) + (1 − t) · g. We note the following
properties of m:

(1) m|Cyl(res)×∂W has invertible Dirac operator.
(2) m(g,0) = g for all g ∈ F(W ).
(3) m(g0,t) = g0 for all t ∈ [0, 1]
Hence,we can defineβ := (W×Cyl(res),m) ∈ KO−d(Cyl(res),F(W )×{0}∪{g0}×[0, 1]).
Since the choice of the cutoff function a is convex, β only depends on g0. By [2, Proposition
3.23], we have that 2

(1) ε∗h0(trg(β)) : F(W )h0 → �∞+d+1KO is homotopic to −inddiffg0 .
(2) bas(β) : F(∂W ) → �∞+dKO is weakly homotopic to inddiffh0 .

By Lemma 2.38 we conclude that

�inddiffh0 ∼ �bas(β) ∼ τ ∗trg(β) ∼ (ε−1h0
◦ τ)︸ ︷︷ ︸

=T

∗inddiffg0 ,

which finishes the Proof of Theorem 2.39. ��

2.8.7 Relating inddiff to Ind

LetW be a d-dimensional Spin-manifoldwith boundaryM , such that (W , M) is 1-connected.
Let π : E → X be a smooth fiber bundle with fiber W over a paracompact base X and
associated structure group Diff∂ (W ). This has a Spin-structure on the vertical tangent bundle
which is constant along the boundary sub-bundle. Let h0 ∈ R(M) be a fixed boundary
condition such that F(W )h0 �= ∅. If Q denotes the underlying Diff∂ (W )-principal bundle,
we get an associated fiber bundle

p : Q ×Diff∂ (W ) F(W )h0 −→ X

Let x0 ∈ X be a base point and let us identify π−1(x0) = W . Then p−1(x0) can be identified
with F(W )h0 and we choose a base point g0 ∈ p−1(x0).

We will now construct an element β ∈ KO−d(p), depending only on the bundle π and
the metric g0. Let k be a fiber-wise Riemannian metric on π such that

(1) the restriction of k to π−1(x0) = W is equal to g0,
(2) near the boundary sub-bundle ∂E , the restriction of k is a cylinder on h0.

Such a metric can be constructed using a partition of unity and k is not assumed to be in
F(π−1(x))h0 for all x . Let Ẽ := pr∗E for the natural map pr : Cyl(p) → X . Ẽ then inherits

2 The first statement is proven in a straightforward manner whereas the second statement is more involved
and uses the spectral flow index Theorem 2.34 (cf. [2, Theorem 3.10] and [14]).
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a fiber-wise metric k̃ as follows: over x ∈ X ⊂ Cyl(p) we take k̃x := kx and over a point
(x, g, t) ∈ Q×Diff∂ (W )F(W )h0×[0, 1]we let k̃x := (1− t)g+ tkx . Then k̃ also satisfies the
boundary condition h0 and it has positive scalar curvature for t = 0 and (x, g) = (x0, g0).
Since Ẽ also has a Spin-structure on the vertical tangent bundle there is a family Dirac
operator and hence a well-defined class β ∈ KO−d(p). This has the following properties.

Proposition 2.40 ( [2, Proposition 3.33])

(1) bas(β) = Ind(E, k) ∈ KO−d(X).
(2) trg(β) = inddiffg0 ∈ �KO−d(F(W )h0).
(3) β is natural with respect to fiber bundles.
(4) Let V : M → M ′ is a Spin-cobordism and m ∈ F(V )h0,h1 . Let

π ′ : E ∪∂ (X × V ) → X

be the bundle obtained by gluing in V in each fiber. Then there is a commutative diagram

Q ×Diff∂ (W ) F(W )h0 Q ×Diff∂ (W ) F(W ∪ V )h1

X

μm

p p′

and the image of β ′ ∈ KO−d(p′) → KO−d(p) agrees with β.

3 Proof of main results

For this entire section let F be a parametrized codimension c ≥ 3 surgery stable, cellular
Riemannian functor that implies positive scalar curvature.

3.1 The action of the diffeomorphism group

Now let Md be a manifold with boundary ∂M such that F(M) �= ∅ and let h ∈ R(∂M) be
such that h + dt2 ∈ F(∂M × [0, 1]). The space F(M)h admits an action of Diff∂ (M), the
group of diffeomorphisms which are the identity on a neighborhood of ∂M , via pullback.
We get an action map η : Diff∂ (M) → hAut(F(M)h) which induces


∂(M) := π0(Diff∂ (M)) −→ π0(hAut(F(M)h)). (5)


∂(M) is called the mapping class group of M .

Theorem 3.1 Let d ≥ 2c− 1 and let Md−1 be a (c− 2)-connected, BO(d)〈c− 1〉-manifold
with boundary ∂M = Sd−1. Also, assume that M is BO(d)〈c− 1〉-cobordant to Dd relative
to the boundary. Then the image of the map (5) for h = gd−1◦ is an abelian group.

For the proof we will use the following Lemma of Eckmann–Hilton style.

Lemma 3.2 ( [2, Lemma 4.2]) Let C be a nonunital topological category with objects the
integers and let G be a topological group which acts on C, i.e. G acts on all morphism spaces
and the composition in C is G-equivariant. We will denote the composition of x and y by
x · y. Suppose that
(1) C(m, n) = ∅ for n ≤ m.
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(2) For each m �= 0 there exists a um ∈ C(m,m + 1) such that the composition maps

um · _ : C(m + 1, n) → C(m, n) for n > m + 1

_ · um : C(n,m) → C(n,m + 1) for n < m

are homotopy equivalences.
(3) There exists an x0 ∈ C(0, 1) such that the composition maps

x0 · _ : C(1, n) → C(0, n) for n > 1

_ · x0 : C(n, 0) → C(n, 1) for n < 0

are homotopy equivalences.
(4) The G-action is trivial unless m ≤ 0 and 1 ≤ n.

Then for f , g ∈ G the maps f , g : C(0, 1) → C(0, 1) commute up to homotopy.

Proof of Theorem 3.1 This is analogous to [2, Proof of Theorem 4.1]. Consider a closed disk
ι : D ⊂ Sd−1 × (0, 1) in the interior. Since F is cellular and surgery stable, there exists a
metric h ∈ F(Sd−1×[0, 1], ι)g◦,g◦ which is isotopic to the product metric g◦+dt2 relative to
the boundary. Let T := (Sd−1×[0, 1])\ int(ι(D)) and we denote by P = Sd−1 the boundary
component created by cutting out D. Furthermore, let h ∈ F(T ) be the metric obtained by
cutting out the metric ι∗g0,1 on ι(D), where g0,1 is the metric from Proposition 2.11. h
restricts to the round metric on all three boundary components. We get the sequence of maps

F(M)g◦
μ(_,h)−→ F(M ∪Sd−1×{0} T )g◦,g◦

μ(_,ι∗g0,1)−→ F(M ∪Sd−1×{0} T ∪P ι(D))g◦ .

The composition is given by gluing in h which is homotopic to gluing in g◦ + dt2 and
therefore is a homotopy equivalence. The right-most map is a homotopy equivalence by
Proposition 2.11 and so μh also is a homotopy equivalence, too. Let V := M ∪Sd−1×{0} T
and let us consider this as a cobordism Sd−1 = P � Sd−1 × {1} = Sd−1.

We now apply Lemma 3.2 to the following scenario: LetG := Diff∂ (M) and let C(0, 1) =
F(V )g◦,g◦ . Furthermore, let

C(m, n) =

⎧⎪⎨
⎪⎩
F(Sd−1 × [m, 0] ∪ V ∪ Sd−1 × [0, n])g◦,g◦ for m ≤ 0, n ≥ 1

F(Sd−1 × [m, n])g◦,g◦ for m < n ≤ 0 or n > m ≥ 1

∅ otherwise

.

Let G act on C(m, n) by extending a diffeomorphism f ∈ Diff∂ (M) by the identity and
then acting via pullback, i. e.G acts on M via pullback and trivially everywhere else. With
this action the composition given by gluingmetrics is obviouslyG-equivariant. Form �= 0 let
um := gd−1◦ + dt2 ∈ C(m,m + 1) and by Lemma 2.22 there exists an x0 ∈ C(0, 1) such that
the hypothesis of Lemma 3.2 is satisfied. Thus, the action of Diff∂ (M) on F(V )g◦,g◦ factors
through an abelian group. The Theorem follows because the gluingmapμ(_, h) : F(M)g◦ →
F(V )g◦,g◦ is a Diff∂ (M)-equivariant homotopy equivalence. ��

3.2 Construction of maps

We will now construct maps into F(M) for certain even-dimensional manifolds. This is
similar to [2, Section 4.2]. Let n ≥ c, d = 2n and letW : ∅ � S2n−1 be a (c− 2)-connected
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BO(d)〈c− 1〉 cobordism which is BO(d)〈c− 1〉-cobordant to D2n relative to the boundary.
Let

K := ([0, 1] × S2n−1)#Sn × Sn : S2n−1 � S2n−1.

For i = 0, 1, . . . let K |i := S2n−1 and K |[i,i+1] : K |i� K |i+1 be a copy of K . If we
consider W : ∅ � K |0 we can define

Wk := W ∪
k−1⋃
i=0

K |[i,i+1] : ∅ � K |k .

We abbreviate Dk := Diff∂ (Wk), Bk := BDk and πk : Ek := EDk ×Dk Wk → Bk .
There is a homomorphism Dk → Dk+1 given by extending by the identity and we get
induced maps ιk : Bk → Bk+1 on classifying spaces. Furthermore we write Fk := F(Wk)g◦ ,
Tk := EDk ×Dk Fk and we denote by pk : Tk → Bk the projection maps and by μk :=
μ(_, hk) : Fk → Fk+1 the maps gluing in the stable metrics hk ∈ F(K |[k,k+1])g◦,g◦ which
exist by Lemma 2.22. The map μk is Dk-equivariant and so there is an induced map between
the Borel constructions

Fk Fk+1

Tk Tk+1

Bk Bk+1

μk

λk

We introduce the following notation:

B∞ := hocolimk Bk, ιk,∞ : Bk → B∞,

F∞ := hocolimkFk μk,∞ : Fk → F∞
T∞ := hocolimkTk, p∞ := hocolim

k
pk : T∞ → B∞.

The construction (2.8.7) gives classes βk ∈ KO−2n(pk) that assemble to a class β∞ ∈
KO−2n(p∞) (cf. [2, Proposition 4.9]).

Lemma 3.3 There exists a cobordism W : ∅ � S2n−1 such that there exists an acyclic map
� : B∞ → MT θc−1(2n) and the maps

Ind(Ek, h◦),�∞λ−2n ◦� ◦ ιk,∞ : Bk −→ �∞+2nKO

are weakly homotopic.

Remark 3.4 Recall that a map f : X → Y is called acyclic, if for each y ∈ Y the homotopy
fiber of hofiby( f ) has the singular homology of a point.

Proof of Lemma 3.3 By the analogue of [2, Proposition 4.20] there exists a BO(2n)〈c − 1〉-
cobordism W : ∅ � S2n−1 which itself is BO(2n)〈c − 1〉-cobordant to D2n and such that
the structure map W → BO(2n)〈c − 1〉 is n-connected. The bundles πk from above yield a
Pontryagin–Thom map

αk : Bk → �∞MT θc−1(d)
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and since the Spin-structures on all bundles πk are compatible, we obtain a map

α∞ : B∞ → �∞MT θc−1(d).

The map α∞ is acyclic for our choice of W which follows from [26, Theorem 1.5] in the
same way as demonstrated in the proof of [2, Theorem 4.19].

It remains to show that the maps ι∗k,∞α∗∞�∞λ−2n and Ind(Ek, h◦) are weakly homotopic.
For this note that a W -bundle E → X with a θc−1-structure on the vertical tangent bundle
also admits a Spin-structure and we get the following diagram

X

�∞MT θc−1(d)

�∞MT θ2(d) �∞+dKO

α
θ
E

α
Spin
E

�∞
λ−2n

�∞λ−2n

Ind(E, h◦)

The maps in the bottom triangle are weakly homotopic by [2, Proposition 4.16] which is
a version of the Atiyah–Singer index theorem. The left-hand triangle commutes since the
Spin-structure on T(v)E is precisely the one induced by the θc−1-structure and the right-hand
triangle commutes by definition. Therefore the entire diagram commutes and hencewe obtain
that �∞λ−2n ◦ αθ

E and Ind(E, h◦) are weakly homotopy which specifies to our claim for
X = B∞. ��
Let us from now on abbreviate X := MT θc−1(2n). We will now proceed to construct a map
ρ� : �X → F(W )g◦ out of �. We have the following diagrams

B∞ X

BhAut(F∞)

γ

�

Bη

where η is the actionmap. The group ker(π1(�)) is perfect since� is acyclic andπ1(Bη) has
abelian image by Theorem 3.1. Hence π1(Bη)(ker(π1(�))) is trivial and so ker(π1(�)) ⊂
ker(Bη). By [28, Proposition 3.1] the acyclicity of � implies that the map γ exists and is
unique up to homotopy.

Let p+∞ : T+∞ → X denote the fibration obtained by pulling back the universal fibration
E → BhAut(F∞) with fiber F∞ along γ . We get an induced commutative diagram of
fibrations

T∞ T+∞ E

B∞ X BhAut(F∞)

�̂

p∞ p+∞
� γ

where all fibers are homotopy equivalent to F∞. The homotopy fibers of � and �̂ are
homotopy equivalent and hence �̂ is acyclic. Therefore, the class β∞ extends to a unique
class β+∞ ∈ KO−2n(p+∞). Now let ρ∞ : �X → F∞ denote the fiber transport of the fibration
p+∞. Since μ0,∞ : F0 → F∞ is a homotopy equivalence we obtain a map

ρ� : �X → F0 = F(W )g◦
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that satisfies �bas(β+∞) = ρ∗�μ∗0,∞trg(β+∞). We have that the following maps are weakly
homotopic

bas(β+∞) ◦� ◦ ιk,∞
2.40∼ Ind(Ek, g◦)

3.3∼ λ−2n ◦� ◦ ιk,∞ ∈ KO−2n(Bk). (6)

Since � is acyclic, this implies that bas(β+∞) ∼ λ−2n and hence �bas(β+∞) ∼
�λ−2n : �X → �∞+2n+1KO. Therefore we get the following equation of weakly homo-
topic maps:

inddiffg ◦ ρ�
2.40∼ trgβ+0 ◦ ρ� ∼ trgβ+∞ ◦ μ∞ ◦ ρ�

2.38∼ �bas(β+∞)
(6)∼ �λ−2n

and together with Remark 2.33 we arrive at the following result.

Theorem 3.5 The map �∞+1λ−2n and the composition

�∞+1MT θc−1(2n)
ρ�−→ F(W )h◦ ↪→ Rscal>0(W )h◦

inddiffg−→ �∞+2n+1KO

induce the same map on homotopy groups.

3.3 Propagating the detection result

One consequence of the index additivity theorem is the following propagation result. Let
F be a cellular, parametrized codimension c ≥ 3 surgery stable Riemannian functor that
implies positive scalar curvature. Let d ≥ 2c and let W : ∅ � Sd−1 be a (c − 2)-connected
BO〈c − 1〉-manifold and X : W � Dd a BO〈c − 1〉-cobordism relative to the boundary.
By removing an embedded disk D ⊂ W we obtain a bordism W0 : Sd−1 � Sd−1 which is
BO〈c − 1〉-bordant to the cylinder relative to the boundary via X0. Therefore, there exists a
stable metric g̃ on W0 by Lemma 2.22. Let g := g0,1 ∪ g̃ ∈ F(W )h◦ .

By performing surgery on X0 we may assume that X0 is (c − 2)-connected and after
choosing an appropriate handle decomposition of X0 we get a surgery map SF,X0,H (cf.
Corollary 2.9 and the discussion below it). Thus,weobtain a (homotopy class of a)metric g̃ :=
SF,X0,H (g◦ +dt2) and g := g0,1∪ g̃ ∈ R+(W )h◦ for g

0,1 the metric from Proposition 2.11.

Proposition 3.6 Let W ′ : ∅ � M ′ be an arbitrary compact Spin-cobordismwith h′ ∈ R(M ′)
and g′ ∈ F(W ′)h′ . We get the following result. If there exists a CW complex X with a map
â : X → �∞+d+1KO and a factorization

X
ρ−→ F(W )h◦

inddiffg−→ �∞+d+1KO

of â up to homotopy, then there exists a factorization

X
ρ′−→ F(W ′)h′

inddiffg′−→ �∞+d+1KO

of â up to homotopy, too.

Proof The map μg̃ : F(Dd)h◦ → F(W )h◦ gluing in the metric g̃ is a weak homotopy
equivalence by Lemma 2.22. Hence there exists a lift ρ̃ : X → F(Dd)h◦ of ρ along μg̃ and
by Theorem 2.37 the composition

X
ρ̃−→ F(Dd)h◦

inddiffg0,1−→ �∞+d+1KO
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is again a factorization of â up to homotopy. By Proposition 2.11 there exists a metric g̃′ on
W ′ \D such that g0,1∪ g̃′ is homotopic to g′. Again, by Theorem 2.37 the composition given
by

X
ρ̃−→ F(Dd)h◦

μg̃′−→ F(W ′)h′
inddiffg′−→ �∞+d+1KO.

is homotopic to â. ��

Remark 3.7 Note that we do not require the manifold W ′ to admit a BO(d)〈c − 1〉 or to be
(c − 2)-connected. The proof reveals that the map ρ′ from Proposition 3.6 actually factors
through F(Dd)h◦ . The requirement of W ′ being Spin stems from requiring the existence of
the map inddiffg′ .

3.4 Proof of Theorem 2.21

The proof of the general statement of our main results now consists of assembling the parts.
First we note that the result for the manifold W from Theorem 3.5 follows directly from
Theorems 3.5 to 2.24. Since W is BO(d)〈c− 1〉-cobordant to D2n relative to the boundary,
Proposition 3.6 implies that it is true for every manifold W ′ of dimension 2n, in particular
it is true for S2n . If F is fibrant, then by Theorem 2.39 it holds for D2n+1 and again by
Proposition 3.6 it holds for all manifolds of dimension 2n + 1. ��

4 Epilog

[2] is not the only paper about the space of positive scalar curvature metrics which geo-
metrically mostly depends on the parametrized surgery theorem. We therefore believe, that
many other recent results can be proven for positive p-curvature und (d − k)-positive Ricci
curvature. The following gives a (probably very incomplete) list of results that could possibly
be generalized, with adapted dimension and connectivity assumptions, of course:

[5] Here it is shown that there exist elements of infinite order in the some homotopy
groups of the observer moduli space Mscal>0

x0 (M). For k ≥ 2 and k-positive
Ricci curvature this follows from [9] and the fact, that k-positive Ricci curvature
is codimension 0 surgery stable. For positive p-curvature however this is not
known.

[40] Here it is shown that the component of the round metric in Rscal>0(Sd) is a d-
fold loop space for d ≥ 3. This has recently been upgraded in [42] to be true for
k-positive Ricci curvature, k ≥ 2 and also d ≥ 3. Again, an analogue for positive
p-curvature does not exist, but we suspect that it’s true for d ≥ 3 and positive
p-curvature for p ≤ d − 3.

[16] Here, the existence of (left-)stable metrics (cf. Definition 2.23) is shown on
cobordisms where the inclusion of the outgoing boundary is 2-connected. Also
this contains an extension of the results from [2] taking the fundamental group
into account.

[17] Here it is shown that the component of the round metric in Rscal>0(Sd) is an
infinite loop space for d ≥ 6. However, the given proof does not work in low
dimensions and we expect the dimension and connectivity assumptions to be
worse worse compared to the ones from [40].
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[19] For manifolds M, N of dimension d ≥ 6 it is shown that the surgery map (cf.
Corollary 2.9 and the discussion below for the definition)

SRscal>0,X ,H : Rscal>0(M) → Rscal>0(N )

is independent of the handle decomposition H and only depends on the θ -
cobordism class of the cobordism X relative to M � N , for θ the tangential
2-type of the outgoing boundary N . This is then utilized to show that for a
simply connected Spin-manifold of dimension at least 6 the pullback action
π0(DiffSpin(M)) � π0(Rscal>0(M)) factors through the Spin-cobordism group.

[20] Here it is shown using the results from [19] that Rscal>0(M) is an H -space
for every manifold M of dimension at least 6 which is nullbordant in its own
tangential 2-type. It is also shown that in dimensions at least 6 the underlying
H -spaces structures from [17] and [40] are equivalent.
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Appendix A. Curvature computations

Lemma A.1 If g has positive p-curvature then g + dt2 does as well.

Proof Let (M, g) be a closed, d-dimensional Riemannian manifold. Let P ⊂ Tx M be a
p-dimensional subspace and choose an orthonormal base E1, . . . , Ed−p of V⊥. Since g has
positive p-curvature we get:

sp,g(V ) =
d−p∑
i, j=1

sec(Ei , E j ) > 0.

Again, letW ⊂ T(x,t)(M×[0, 1]) be a p-dimensional subspace and supposeW⊥ is not fully
contained in Tx M (otherwise positivity of sp,g+dt2(W ) follows directly from positivity of
sp,g). Then choose an orthonormal base E1, . . . , Ed+1−p−1 forW⊥∩Tx M and extend this to
an orthonormal basis of W⊥ by a vector Ed+1−p = sin(φ)X + cos(φ)Y , where φ ∈ [0, π

2 ),
X ∈ Tx M and Y ∈ Tt [0, 1] are vectors of unit length. This yields the following description.

sp,g+dt2(W ) =
d+1−p∑
i, j=1

sec(Ei , E j ) =
d−p∑
i, j=1

sec(Ei , E j )+ 2
d−p∑
i=1

sec(Ei , Ed+1−p)

=
d−p∑
i, j=1

sec(Ei , E j )+ 2
d−p∑
i=1

sec(Ei , sin(φ)X + cos(φ)Y ) (7)
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Next observe that for 1 ≤ i < d − p

0 = g(Ed+1−p, Ei ) = sin(φ) g(X , Ei )+ cos(φ) g(Y , Ei )︸ ︷︷ ︸
=0

.

Case 1 sin(φ) = 0. Here, certainly Ed+1−p = Y ∈ Tt [0, 1] and we can conclude

sp,g+dt2(W )
(7)=

d−p∑
i, j=1

sec(Ei , E j )+ 2
d−p∑
i=1

sec(Ei , Y )︸ ︷︷ ︸
=0

> 0,

because the first term is positive (it equals sp,g(span(E1, . . . , Ed−p)
⊥) > 0).

Case 2 sin(φ) �= 0, i.e. g(X , Ei ) = 0. In this case we consider the latter term in (7), which
can be decomposed as follows.

sec(Ei , sin(φ)X + cos(φ)Y ) = sin2(φ) sec(Ei , X)+ cos2(φ) sec(Ei , Y )︸ ︷︷ ︸
=0

+ sin(φ) cos(φ) R(Ei , X , Y , Ei ),

for 1 ≤ i ≤ d − p. In this equation the last term vanishes, because

R(Ei , X , Y , Ei ) = −R(Ei , X , Ei , Y ) = −g(R(Ei , X)Ei︸ ︷︷ ︸
∈TpM

, Y ) = 0.

and it follows that

sp,g+dt2(W ) =
d−p∑
i, j=1

sec(Ei , E j )

︸ ︷︷ ︸
=:a

+2 sin2(φ)

d−p∑
i=1

sec(Ei , X)

︸ ︷︷ ︸
=:b

.

Observe that a = sp,g(span(E1, . . . , Ed−p)
⊥) > 0. Because positive p-curvature on M

implies positive (p − 1)-curvature, we have that

0 < sp−1,g(span(E1, . . . , Ed−p, X)⊥)

=
d−p∑
i, j=1

sec(Ei , E j )+ 2
d−p∑
i=1

sec(Ei , X) = a + 2b.

A case distinction for the sign of b leads to the conclusion that sp,g+dt2(W ) = a +
2 sin2(φ) b > 0, as 0 < sin2(φ) < 1 and a > 0. ��
Lemma A.2 With the notation from the Proof of Lemma 2.18 we have

R(N×R,g f (t)+dt2)|(x,t0) = R(N×R,g f (t0)+dt2)
+ O(| f ′|)E1 + O(| f ′|2)E2 + O(| f ′′|)E3.

Proof Let x0 = (x0, t0) ∈ N × [0, 1] and let M := N × [0, 1], as well as g := g f (t) + dt2.
Then Tx0M = Tx0N ⊕ Tt0 [0, 1]. Choose a normal coordinate frame (X1, . . . , Xn, T ) with
T = ∂

∂t around x0. In particular we have from the definition of g that

g(Xi , T ) = 0 and g(T , T ) = 1. (8)
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Now consider the hypersurface Y := N × {t0} ↪→ (M, g) with the metric induced from
g. By definition, g|Y = g f (t0). From the Gauß equation, we get

R(Y ,g|Y ) = R(M,g) + IIY ∧ IIY ,

where IIY denotes the second fundamental form and we let IIY ∧ IIY (a, b, c, d) =
IIY (a, d)IIY (b, c)− IIY (a, c)IIY (b, d). Using this we get

RM (Xi , X j , Xk, Xl) = RY (Xi , X j , Xk, Xl)︸ ︷︷ ︸
=R

(N ,g f (t0))×E(Xi ,X j ,Xk ,Xl )

− IIY ∧ IIY (Xi , X j , Xk, Xl) (9)

Note that by (8), T is a normal field to Y . In particular, we have IIY (A, B) = g(∇AT , B) =
−g(T ,∇AB). We obtain via Koszul (using (8) and the fact that in a coordinate frame the Lie
brackets vanish)

IIY (Xi , X j ) = −g(T ,∇Xi X j )

= −1

2

(
Xi��������g(X j , T ) + X j��������g(Xi , T ) − Tg(Xi , X j )

+ g(��������[Xi , X j ] , T )− g(��������[Xi , T ] , X j )− g(��������[X j , T ] , Xi )
)

= 1

2
Tg(Xi , X j )

Thus we can write

Tg(Xi , X j ) = T (g f (t0)(Xi , X j )) = ∂g f (t0)(Xi , X j )

∂t
= f ′(t0) · ∂gr (Xi , X j )

∂r︸ ︷︷ ︸
=:Ci j

.

Note that the constants Ci j = Ci j (t0) depend continuously on t0 and the family {gr } and are
independent of f . Furthermore, they are bounded in t0 by compactness. At x0, we have

IIY (Xi , X j )
∣∣
x0
= 1

2
Tg(Xi , X j )

∣∣
x0
= 1

2
f ′(t0)

∂

∂r

∣∣∣∣
r= f (t0)

gr (Xi , X j )

This is enough to see that in (9) the IIY ∧ IIY term only contributes with a distortion of
order O(| f ′|2), i.e. we can write

RM (Xi , X j , Xk, Xl)|x0 = RY (Xi , X j , Xk, Xl)(x0,0) + O(| f ′|2)E, (10)

where E is an expression in Cil ,C jk,Cik,C jl . Now let us check the remaining terms. First,
metricity of the Levi-Civita connection shows

g(∇Xi∇X j Xk, T ) = Xi g(∇X j Xk, T )− g(∇X j Xk,∇Xi T )

= Xi (X j��������g(Xk, T ) − g(Xk,∇X j T ))− g(∇X j Xk,∇Xi T )

= −Xi g(Xk,∇X j T )− g(∇X j Xk,∇Xi T ) (11)

Furthermore, note that ∇T T = 0, since

g(Xi ,∇T T ) = 1

2
(����������Xi g(T , T ) + T��������g(T , Xi ) − T��������g(Xi , T )) = 0,

g(T ,∇T T ) = 1

2
(��������Tg(T , T ) +��������Tg(T , T ) −��������Tg(T , T )) = 0.
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Because of (8), and using what we know so far

g(Xk,∇Xi T ) = Xi��������g(Xk, T ) − g(∇Xi Xk, T ) = 1

2
Tg(Xi , Xk) = 1

2
f ′Cik

g(∇T Xi , T ) = g(Xi ,∇T T ) = 0

A computation similar to the one in (11), shows (we use the convention Xn+1 := T )

g(∇T∇Xi Xk, T ) = −Tg(Xk,∇Xi T )− g(∇X j Xk,������∇T T )

= −T (Tg(Xi , Xk))

= − f ′′Cik

g(∇Xi∇T Xk, T ) = −Xi g(Xk,������∇T T )− g(∇T Xk,∇Xi T )

= −g(∇T Xk,∇Xi T )

= −g(
∑
l


n+1
kl Xl ,

∑
m


i
n+1,mXm)

Here we note that


i
n+1,m =

1

2

∑
a

gia(Tg(Xa, Xm)+ Xm��������g(T , Xa) − Xa��������g(T , Xm)) = 1

2

∑
a

f ′giaCam


n+1
kl = 1

2

∑
m

gn+1,m(Xkg(Xm, Xl)+ Xlg(Xk, Xm)− Xmg(Xk, Xl))

= 1

2
(Xk��������g(T , Xl) + Xl��������g(Xk, T ) − Tg(Xk, Xl))

= −1

2
f ′Ckl .

This is true for all 1 ≤ i,m, k, l ≤ n + 1. From

g(∇Xi∇T Xk, T ) = 1

4
( f ′)2

∑
m,l,a

CklCamg
iaglm,

we obtain

R(M,g)(Xi , T , Xk, T ) = g(∇Xi∇T Xk − ∇T∇Xi Xk − ∇������[Xi ,T ] Xk, T )

= O(| f ′|2)Ê1 + O(| f ′′|)Ê2. (12)

It remains to consider following term.

R(M,g)(Xi , X j , Xk, T ) = g(∇Xi∇X j Xk − ∇X j∇Xi Xk − ∇������[Xi ,X j ] Xk, T ).

By (11) we only need to determine the following terms:

g(∇X j Xk,∇Xi T ) = g(
∑
l



j
kl Xl ,

∑
m


i
n+1,mXm) = 1

2
f ′

∑
l,a



j
kl g

iaCamglm

Xi g(Xk,∇X j T ) = Xi (
1

2
f ′C jk) = 1

2
f ′Xi (C jk).

Thus we conclude that

R(M,g)(Xi , X j , Xk, T ) = O(| f ′|)Ẽ . (13)
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Using the curvature tensor’s symmetries, we have fully determined R(M,g) via (10), (12) and
(13) and find that

R(M,g)|(x0,t0) = R
(N×[0,1],g f (t0)+dt2 )|(x0,0) + O(| f ′|)E1 + O(| f ′|2)E2 + O(| f ′′|)E3

for some E1, E2, E3, which only depend continuously on the path of metrics and its deriva-
tives in r -direction. ��
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