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We show that electron recoils induced by non-relativistic Dark Matter interactions can fit well the 
recently reported Xenon1T excess, if they are mediated by a light pseudo-scalar in the MeV range. 
This is due to the favorable momentum-dependence of the resulting scattering rate, which partially 
compensates the unfavorable kinematics that tends to strongly suppress keV electron recoils. We study 
the phenomenology of the mediator and identify the allowed parameter space of the Xenon1T excess 
which is compatible with all experimental limits. We also find that the anomalous magnetic moments 
of muons and electrons can be simultaneously explained in this scenario, at the price of a fine-tuning in 
the couplings of the order of a few percent.
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1. Introduction

Recently, the Xenon1T collaboration has announced the results 
of a search for Dark Matter (DM) using electronic recoils with a 
0.65 ton/years of exposure. An unexpected peak of electronic re-
coil events over the nominal background has been reported [1]. 
The excess corresponds to 53 events in the 1–7 keV energy win-
dow, mainly located in the energy bins close to the experimental 
threshold.

Several possibilities for the origin of this signal have been pro-
posed. The Xenon1T collaboration itself analyzed the signal in 
terms of solar axion absorption or solar neutrinos scattering off 
electrons with an enhanced magnetic moment. While these in-
terpretations have the advantage of not suffering from a look-
elsewhere effect (LEE), essentially because their scale is fixed by 
the Sun temperature, they are strongly disfavored by astrophysical 
bounds [2,3]. Another option is scattering due to a fast component 
of DM [4], which however requires non-trivial model-building (see 
e.g. Ref. [5]). Absorption of bosonic keV-scale DM (see e.g. Ref. [6]) 
or, in general, models where the keV scale is determined by kine-
matic features (see e.g. Ref. [7]) suffer of LEE and thus lower their 
statistical preference with respect to the Standard Model.

In this letter, we show that the excess can be explained by stan-
dard electron recoils of GeV or heavier DM, as long as the DM-e in-
teractions are mediated by a pseudo-scalar particle. The main chal-
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lenge in explaining the excess by scattering [8] is to get a signal 
in the 2–4 keV bins and yet be compatible with bounds at lower 
recoil energies where a significant excess is not seen, even taking 
into account the suppressed detector sensitivity. While the scat-
tering kinematics of non-relativistic DM tends to strongly suppress 
keV recoils (which are possible only in the momentum-distribution 
tails of the xenon atomic wave-functions), the interaction mediated 
by a pseudo-scalar increases with the exchanged momentum, par-
tially compensating the unfavorable kinematics and allowing for a 
good fit of the excess. It is worth stressing that since the signal 
is due to the tail of the electron atomic distribution, our expla-
nation does not suffer of LEE. Indeed, our model simply predicts 
a signal continuously decreasing with energy in the Xenon1T re-
gion, so that the largest effect is always close to the experimental 
threshold, which is indeed the case of the excess. Signals that peak 
away from the threshold would not be explained by our model.

2. KeV electron recoils from pseudoscalar mediator

We consider a simplified model with a pseudo-Nambu-Gold-
stone boson a that couples derivatively to electrons and photons, 
as well as to a Dirac fermion χ that will account for DM. The 
relevant interaction Lagrangian is given by

L = ∂μa

�

(
cχaχ̄γ μγ5χ + ceaēγ μγ5e

) + α

2π
Cγ γ

a

�
F F̃ , (1)

where F F̃ ≡ 1/2 εμνρσ Fμν Fρσ . For later purposes, it will be more 
convenient to work with the following Lagrangian
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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L = −ia
(

gχ χ̄γ5χ + geēγ5e
) + α

2π
C̃γ γ

a

�
F F̃ , (2)

which is equivalent to Eq. (1) if the effective couplings of a to 
fermions are gi ≡ 2micia/�, i = e, χ , and C̃γ γ ≡ Cγ γ + cea . Upper 
bounds on these couplings are obtained from perturbative unitar-
ity, by requiring that partial waves of total angular momentum 
J = 0 are smaller than 1/2, giving gi <

√
8π/3 [9].

The amplitude for χ e− → χ e− scattering is

A = χ̄γ5χ
gχ ge

q2 + m2
a

ēγ5e , (3)

where q ≡ |q| is the size of the three-momentum transferred in 
the scattering process, which typically is of the order of few MeV. 
Following the notation of Ref. [10], the velocity-averaged differen-
tial cross-section is given by

d〈σ v〉
dE R

= σ̄e

2me

∫
dv

f (v)

v

q+∫
q−

q dq|Fχ (q)|2 4a2
0

α2
K5(E R ,q), (4)

where a0 = 1/(αme) is the Bohr radius. The limits of integration 
for the exchanged momentum are q± = mχ v ±

√
m2

χ v2 − 2mχ E R , 
with E R the electron recoil energy, and f (v) is the DM distribution 
in the Earth frame normalized as 

∫
dv f (v) = 1. We use a truncated 

Maxwell-Boltzmann distribution with mean velocity of 220 km/s, 
average Earth’s velocity of 240 km/s and galactic escape velocity 
of 544 km/s. We have normalized the cross-section in Eq. (4) by 
using the reference contact cross-section for DM scattering on free
electrons at q = αme ,

σ̄e = m2
e

16π

g2
χ g2

e

m4
a

q4

m2
χm2

e

∣∣∣∣
q=αme

. (5)

Fχ (q) is the form factor that includes the contribution of the 
propagator and the DM pseudo-scalar vertex to the amplitude in 
Eq. (3),

Fχ (q) = q

αme

m2
a

q2 + m2
a

. (6)

The contribution of the electron pseudo-scalar vertex is instead 
included in the pseudo-scalar atomic ionization function K5(E R , q). 
This is the squared matrix element of the pseudo-scalar electron 
current in Eq. (3) between free and atomic states and contains 
relativistic corrections that are relevant for q ∼ MeV. In the non-
relativistic limit the ratio between the pseudo-scalar and scalar 
ionization functions is K5(E R , q)/K (E R , q) ∝ (q/2me)

2 due to the 
different Lorentz structure of the two electron currents. For E R ∼
keV, K5 is dominated by the 3s and 4s orbitals, the former starting 
at E R > 1.17 keV. We use the relativistic 3s pseudo-scalar ioniza-
tion factor provided in Ref. [11].1 It is worth noticing that since 
the pseudo-scalar and scalar atomic ionization functions are simi-
lar for q ≈ MeV (see right panel of Fig. 26 in Ref. [11]), the factor 
4/α2 in (4) is needed because we are normalizing σ̄e at q = αme . 
Indeed for q = αme , K5(E R , q)/K (E R , q) ∝ (α/2)2 which is exactly 
the suppression one gets between the normalized cross sections of 
the pure (χ̄γ5χ ēγ5e) and CP-violating (i.e. χ̄γ5χ ēe) pseudo-scalar 
interactions. On the other hand for q ∼ MeV, the DM-electron colli-
sions are relativistic and therefore the differential cross sections of 

1 Below the 3s threshold, we approximate the (small) 4s ionization factor as 
having the same momentum dependence as the 3s one, with the overall factor de-
termined by the scalar ones at q ≈ MeV.
2

Fig. 1. Parameter space for reproducing the Xenon1T excess as function of the 
DM mass and reference free electron cross-section, profiling over the mass ma of 
the ALP mediator. We also show the results in the limit of contact interaction 
(dashed lines) as well as the corresponding interaction scale ma/(ge gχ )1/2 (green 
dot-dashed lines).

the two interactions must be of the same order as one can check 
from Eq. (4).

The differential scattering rate is given by dR/dE R =
NT nχ d〈σ v〉/dE R , where NT � 4.2 × 1027/ton is the number of 
Xe atoms per ton of detector, and mχnχ � 0.4 GeV/cm3 is the lo-
cal DM energy density. To compare our recoil spectra with the
Xenon1T results, we apply a Gaussian smearing with a detector 
resolution σdet = 0.45 keV [12], multiply by the efficiency given in 
Ref. [1] and bin the data as in the spectrum given by the Xenon

collaboration.
We perform a profile likelihood ratio fit, fixing the background 

to the best-fit spectrum given in Ref. [1]. We have checked that 
including the overall magnitude of the background and the ef-
ficiency as nuisance parameters, the results are not significantly 
affected. Instead, as expected, including the possibility of a tritium 
background component with free amplitude in the fit decreases 
the significance of the excess and, as a consequence, extends dras-
tically the parameter space. We show the results in Fig. 1 as a 
function of the DM mass and reference free electron cross-section. 
We present the results obtained both profiling over the mediator 
mass ma and in the contact-interaction limit2 ma � q ∼ MeV. As 
could have been guessed, in a large region of parameter space the 
fit prefers a contact interaction, since this yields a spectrum that 
decreases slower with q (see Eq. (6), combined with K5 ∼ 1/q6

for q � MeV). Furthermore, it is worth stressing that due to the 
large non-relativistic suppression of the cross section the strin-
gent bounds obtained from experiments that are looking for lower 
electron recoil energy (e.g. the Xenon1T S2-only analysis [13]) do 
not apply. Notice, however, that the required interaction scales are 
rather low, therefore we pass to study in detail the phenomenol-
ogy of the ALP mediator.

2 Our results differ from the ones of the arXiv v2 of Ref. [8], that work in 
the contact-interaction limit. The discrepancy is due to the fact that in Ref. [8]
the pseudo-scalar interaction is treated as an effective factor (q/2me)

2 multiply-
ing the scalar ionization factor, but this non-relativistic approximation is not valid 
for q � MeV.
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Fig. 2. Parameter space for the ALP a with its DM coupling gχ set at the partial-
wave unitarity bound gχ = √

8π/3, profiled over the DM mass. Exclusion limits at 
90% C.L. from collider searches are also shown. The diamond denotes the benchmark 
point yielding the electron recoil spectrum at Xenon1T shown in Fig. 4.

3. Collider bounds

Several experiments have searched for light particles, and pose 
stringent limit on their couplings to leptons. Here we briefly recall 
the main experimental constraints that apply to our model.

The KLOE experiment has searched for a light new particle a
produced in association with a photon in e+e− collisions, e+e− →
γ a, looking for the prompt decay of a into e+e− . While the orig-
inal search was optimized for a massless vector particle, it has 
been recast for the case of a pseudo-scalar in Ref. [14]. For ALP 
masses above 5 MeV, the KLOE result constrains the coupling to 
electrons to be smaller than roughly 10−3 (smaller ALP masses 
cannot be probed due to the large irreducible background from 
radiative Bhabha scattering).

For lighter ALP masses or smaller couplings, the most stringent 
constraints come from electron beam-dump experiments at Fermi-
lab (E774 [15]), SLAC (E141 [16]) and CERN (NA64 [17]), searching 
for e+e− decays of a short-lived particle produced from an elec-
tron beam stopped in an absorbing target. While E774 and E141 
provide constraints directly on a pseudo-scalar boson, the results 
by NA64 are formulated as constraints on the kinetic mixing ε of 
a massive vector. In order to recast the NA64 bound in terms of 
pseudo-scalar couplings, we use the simple approximate relation 
ge = ε

√
4πα, see e.g. Refs. [14,18] (a more refined recast could be 

performed along the lines of Ref. [19]). Beam dump experiments 
with longer shielding, such as E137 at SLAC [20] do not provide 
relevant constraints because here we are interested in very short 
lifetimes. Finally we note that photo-production and decay are al-
ways subleading with respect to electron production and decay for 
the relevant ALP mass range.

In Fig. 2 we show the main collider and beam-dump constraints 
as gray regions in the (ma–ge/me) plane by fixing the coupling of 
a to DM to its bound from perturbative unitarity. One can see that 
a large part of the best-fit region to Xenon1T data is ruled out by 
KLOE. Nevertheless, the allowed regions still provide a good fit to 
the Xenon excess. As an illustrative example, we indicate with a 
diamond a benchmark point corresponding to an ALP with a mass 
of 8 MeV that decays to electrons with a lifetime of about 5 fs and 
to photons with a branching ratio of order 10−5 (for Cγ γ = 0). 
3

The corresponding electron-recoil spectrum at Xenon1T is shown 
in Fig. 4.

Although the region of parameter space with ma < 6 MeV – top-
left in Fig. 2 – is allowed by collider constraints, the anomalous 
magnetic moments generated by the ALP mediator severely con-
strain this region as we show in the next section.

4. Constraints from leptonic anomalous magnetic moments

The leptonic anomalous magnetic moments (AMMs), a� = (g −
2)�/2, provide important constraints on light ALPs with couplings 
to leptons. It is well known [9,21–24] that such particles are in fact 
suitable candidates to simultaneously accommodate the longstand-
ing discrepancy between experimental value and SM prediction for 
the muon AMM [25–27], 
aμ = aexp

μ − aSM
μ = (27.1 ± 7.3) × 10−10, 

and a similar discrepancy in the electron AMM [28,29], 
ae =
(−8.7 ± 3.6) × 10−13.

The Lagrangian in Eq. (1) gives a contribution to the AMM of 
the electron [9,22,24]


a1loop
e = − m2

e

4π2�2
|cea|2 h1

(m2
a

m2
e

)
, (7)

where h1(x) = ∫ 1
0 dy 2y3/(x − xy + y2) is a positive-definite loop 

function. For the benchmark point in Fig. 2 (ge/me ∼ 1 GeV−1 and 
ma = 8 MeV), this corresponds to a 
ae = −5 × 10−11(ge/meGeV), 
which is about two orders of magnitudes too large.

However, allowing for a non-zero coupling to photons Cγ γ in 
Eq. (1), there is an additional contribution to 
ae


aγ γ
e = − m2

eα

2π3�2
caeCγ γ log

�2

m2
e

+ finite terms, (8)

where � > ma is a UV scale, and the finite terms can be computed 
upon specifying a UV completion [22]. By choosing a coefficient (in 
the limit ma � me)

Cγ γ ≈ −cea
π

α

m2
e

m2
a

log(m2
a/m2

e )

log(�2/m2
e )

, (9)

the photon contribution can cancel the one-loop contribution in 
Eq. (7) to a substantial level, at the price of fine-tuning.

We now demonstrate that an effective coefficient Cγ γ of the 
required size can be obtained by introducing additional couplings 
of a to SM heavy leptons (� = μ, τ ). In order to do so, it is con-
venient to work with the Lagrangian in the basis of Eq. (2) setting 
C̃γ γ = 0. Indeed, this corresponds to Cγ γ = −c�a ≈ −cea , which up 
to running effects can be exactly of the right size given in Eq. (9). 
In this basis the c�a couplings contribute to the electron AMM via 
Barr-Zee type diagrams at two-loop order


a2loop
e = m2

eα

2π3�2
ceac�a f

(
m2

a

m2
e
,

m2
a

m2
�

)
, (10)

where f (u, v) is the loop function

f (u, v) =
1∫

0

dxdydz
ux

ux + uvxyzz + vzzx2 y2
, (11)

with the shorthand x = 1 − x, and similar for y, z. When the ex-
ternal lepton mass is small compared to the ALP mass,3 u � 1, we 
recover the result in Eq. (10) of Ref. [24]; when the lepton mass in 
the loop is large, v 
 1, we reproduce the effective 1-loop result 

3 In the opposite limit u, v 
 1, f (u, v) → 3 − log v/u.
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Fig. 3. Parameter space where the central values of 
ae and 
aμ can be ex-
plained by additional ALP couplings to leptons. The required tau couplings gτ /mτ

are shown as contour lines in units of 1/GeV (red, dotted). The contour lines 
of muon couplings gμ/mμ follow those of gτ /mτ , and correspond to gμ/mμ =
{3, 1, 0.7} ·10−3/GeV for gτ /mτ = {0.4, 0.8, 1.4}/GeV, respectively. Also shown is the 
tuning (green, solid) as defined in the text, and the best-fit regions (blue) for repro-
ducing the Xenon1T excess, with the diamond denoting the same benchmark point, 
see Fig. 2.

in Eq. (37) of Ref. [22]. For u � 1 and v 
 1, i.e. me 
 ma 
 m� , 
one has f (u, v) → 2 − log v and h1(u) ≈ (−11/3 + 2 log u)/u, so 
that the two-loop contribution in Eq. (10) can potentially cancel 
the one-loop electron contribution in Eq. (7), even when c�a ∼ cea
(see also Ref. [14]).

Therefore one can make the model compatible with the elec-
tron AMM by adding a coupling cτa of the ALP to tau leptons, 
which can be tuned to reproduce the central value of 
ae =
−8.7 × 10−13 for the relevant region of parameter space in Fig. 2. 
Moreover, by adding also a coupling cμa of the ALP to muons, one 
can simultaneously account for both 
ae and 
aμ , although only 
in a subregion of the parameter space. By choosing suitable values 
cτa ≈ cea and cμa 
 cea , 
aμ is dominated by the 2-loop contri-
bution proportional to cμacτa . There is also a second solution with 
(roughly factor 10) larger values for cμa , but 
aμ results from a 
cancellation of 1-loop and 2-loop contributions, leading to an ad-
ditional tuning. For this reason we focus on the first solution in 
the following.

Fig. 3 shows the resulting region of parameter space where the 
central values of 
ae and 
aμ can be explained by additional ALP 
couplings to heavy leptons. Also shown is the region excluded by 
perturbative unitarity, the contour lines of 2cτa/� = gτ /mτ (red, 
dotted) and of the required tuning (green, solid). This tuning is 
defined as |
a1loop

e /
aexp
e | and it is needed to partially cancel 

the 1-loop contribution to 
ae as explained above. The contours 
of gμ/mμ follow those of gτ /mτ , with values indicated in the 
caption. It is worth noting that Fig. 3 also shows (to very good 
approximation) the parameter space for the scenario where the 
muon AMM is not addressed at all, i.e. cμa = 0, which removes 
the excluded gray region in the lower right corner.

5. Possible UV completions

Our scenario has similarities with the “visible” QCD axion in 
the MeV range considered in Ref. [14], although we have not con-
sidered couplings to quarks. Thus an interesting extension of our 
model could involve couplings to colored fermions, also enabling 
4

Fig. 4. Example spectrum that fits the excess in [12]. The point in the parameter-
space shown here is denoted by a diamond in Fig. 2.

a connection to the strong CP Problem. Recently an explicit, phe-
nomenologically viable UV completion of the model in Ref. [14]
has been proposed in Ref. [37] along the lines of classic DFSZ ax-
ion models [30,31]. This example demonstrates that it is possible 
to consider weakly coupled UV-complete models of ALPs at the 
GeV scale that satisfy all experimental constraints, and provides an 
explicit (although presumably non-minimal) UV completion to our 
setup.

On the other hand some ingredients in our scenario rather 
point to an UV completion that involve dark strong dynamics. First, 
the coupling of the mediator to DM must be large; this suggests 
the possibility that a is the “pion” of a dark strong dynamics, with 
DM being the “baryon”. Second, the latter is also functional to re-
produce the DM relic density as asymmetric DM, since its mass is 
in the right ball-park and the p-wave annihilation DM DM → aa
would efficiently dilute the symmetric component, being larger 
than the thermal cross-section.4 At the same time, the asymmet-
ric nature of DM would protect from indirect-detection bounds 
since the s-wave annihilation channel DM DM → ee is quite large 
(≈ 10−26 cm3/s).

Clearly, any realistic UV completion would be subject to further, 
model-dependent, experimental constraints. Since any of these 
constraints depends on the specific model considered, we refrain 
from analyzing them here.

6. Discussion and conclusions

We have shown that dark-matter-electron scattering mediated 
by a light pseudo-scalar resonance is able to explain the Xenon1T 
excess, and account at the same time for the anomalous magnetic 
moments of muon and electron, at the price of a few percent tun-
ing. Our main results are summarized in Figs. 2 and 3, which show 
the experimentally allowed parameter region. The quality of the fit 
of the Xenon1T excess is good; even if the region where all con-
straints are satisfied is 1–2 σ away from the model best-fit region 
(which has χ2/d.o.f. � 5.8/7), the improvement with respect to 
the Standard Model in explaining the Xenon1T data is manifest. 
This is exemplified in the spectrum shown in Fig. 4: the signal in 
the second and third bins can be explained without over-shooting 
too much the first one. We stress that other mediators, such as 
vector or scalar bosons, are not able to fit the excess compatibly 
with all the experimental constraints. Indeed, the non-relativistic 
suppression of the DM-e pseudo-scalar interaction alleviates the 

4 Considering the parameters of the benchmark point in Fig. 4 we get 〈σ v〉 �
5 · 10−21 cm3/s at x = mχ /T = 30.
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low-recoil constraints (e.g. the Xenon S2-only analysis) that are 
strong for collisions mediated by a scalar or a vector.

We note that the experimental Xenon1T and DAMA recoil spec-
tra are very similar in shape. As a consequence one can be tempted 
to fit both the anomalies with the model introduced in this letter. 
However, we have checked that the required cross section to fit
DAMA is significantly larger than the one needed for Xenon1T.

Finally, we stress that, if the excess will be confirmed by fu-
ture data, the explanation presented here can be investigated at 
colliders by searching for the ALP mediator a coupled to electrons, 
since the allowed parameter region is not far from the existing 
collider limits. Indeed planned experiments such as PADME [32], 
VEPP-3 [33,34] and DarkLight [35,36] will probe the entire region 
of interest.
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