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Abstract: Lamiaceae belong to the species-richest family of flowering plants and harbor many species
that are used as herbs or in medicinal applications such as basils or mints. The evolution of this
group has been driven by chemical speciation, mainly volatile organic compounds (VOCs). The
commercial use of these plants is characterized by adulteration and surrogation to a large extent.
Authenticating and discerning this species is thus relevant for consumer safety but usually requires
cumbersome analytics, such as gas chromatography, often coupled with mass spectroscopy. Here,
we demonstrate that quartz-crystal microbalance (QCM)-based electronic noses provide a very
cost-efficient alternative, allowing for fast, automated discrimination of scents emitted from the
leaves of different plants. To explore the range of this strategy, we used leaf material from four
genera of Lamiaceae along with lemongrass, which is similarly scented but from an unrelated
outgroup. To differentiate the scents from different plants unambiguously, the output of the six
different SURMOF/QCM sensors was analyzed using machine learning (ML) methods together with
a thorough statistical analysis. The exposure and purging of data sets (four cycles) obtained from a
QCM-based, low-cost homemade portable e-Nose were analyzed using a linear discriminant analysis
(LDA) classification model. Prediction accuracy with repeated test measurements reached values of
up to 0%. We show that it is possible not only to discern and identify plants at the genus level but
also to discriminate closely related sister clades within a genus (basil), demonstrating that an e-Nose
is a powerful device that can safeguard consumer safety against dangers posed by globalized trade.

Keywords: basil; mint; plant volatiles; electronic nose; principal component analysis; linear discrimi-
nant analysis; k-nearest-neighbors analysis

1. Introduction

Plants have developed subtle mechanisms to defend themselves against biotic and
abiotic stress factors. One of the ways that plants have evolved to protect themselves is
by producing volatile organic compounds (VOCs) [1]. These essential oils, often with
monoterpenes as primary components, accumulate in different organs such as leaves, bark,
wood, roots, flowers, fruit, specialized glands, or in lysogenic or schizogenic oil ducts [2].
These VOCs are the basis for the human use of aromatic plants, both as spices and for
medicinal applications. The multitude of VOC profiles has shaped entire cultures, cuisines,
and medical traditions.
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One of the most prodigious plant families in this context are the Lamiaceae. With
more than 7000 species belonging to more than 200 genera, they are taxonomically the most
challenging and diverse group of flowering plants [3]. They secrete complex bouquets of
VOCs from their glandular hairs and scales that are often specific for a given species. They
also interact with pollinator insects, and this might have been one of the drivers for the
immense complexity of this family. Sometimes different chemotypes exist even within a
species. Commercially relevant plants, such as mints or basils, belong to this group and are
often part of novel food trends fueled by their reputation as so-called superfoods [4].

Because of interest in holistic approaches to health, there is a trend toward the use
of supplements and plant-based products that have their roots in traditional medical sys-
tems such as Ayurveda or traditional Chinese medicine. With the growing popularity
of Ayurveda in Europe, products containing Ocimum tenuiflorum L. are readily available
in supermarkets. O. tenuiflorum (holy basil or Tulsi) has been used for treating ailments
such as joint pain, headache, cold, fever, and insect bites [5–9]. In addition, holy basil has
been recommended to relieve stress [10] and reduce the effects of diabetes mellitus [11].
Due to the benefits attributed to holy basil, its market in the West is increasing [12], which
accentuates the problem of authentication and identification of commercial products that
are declared to contain Tulsi [13]. The genus Ocimum is composed of many species, several
of which are commonly traded. However, each species is endowed with a unique chemical
profile that is mostly genetically determined [12]. To authenticate O. tenuiflorum by micro-
scopic diagnosis is possible [5] although limited, especially in commercial products that
are often processed [14]. In addition, it is possible to discriminate true O. tenuiflorum from
other basils on the basis of DNA barcoding [12], a rather expensive and time-consuming
process. An alternative would be to detect different odorous content since the spectrum
of VOCs emitted by Ocimum species is unique [15]. In fact, a trained human nose can
distinguish O. tenuiflorum from other basils due to the emission of specific patterns of
volatile phenylpropanoids [16].

The unique VOC profile of a particular plant species provides a means to identify it in
commercial products. However, the chemical analysis necessary to identify such gaseous
compounds is time consuming and costly, requiring gas chromatography (GC). Since a
human nose can discriminate among species, sensor arrays (also referred to as electronic
noses) might offer a cost-efficient, convenient, and fast alternative [17,18]. For several
decades, e-Noses with different sensing materials have been successfully used: peptides as
biosensors [19], molecularly imprinted polystyrene (MIP) membranes for bio-mimicry of
terpenes [20], electrochemical sensor array for food quality assessment [21], and metal oxide
semiconductor (MOS) sensors to discriminate among medicinal plants based on emissions
of their VOCs [22–27]. Quartz crystal microbalance (QCM)-based sensor arrays have also
been used to differentiate among plants from the Lamiaceae family [20,28]. For instance,
a multichannel QCM (MQCM) with molecularly imprinted polystyrene membranes has
been used to discriminate terpenes emanating from freshly dried Lamiaceae species, such
as rosemary (Rosmarinus officinalis L.), sweet basil (Ocimum basilicum), and common Sage
(Salvia officinalis) [20].

A crucial point when fabricating QCM-based sensors is the detector material used for
coating the QCM substrate. In this context, reticular compounds such as metal-organic
frameworks (MOFs) carry a huge potential. These porous materials can be easily modified
to yield different responses to VOCs, thus allowing us to fabricate sensor arrays with each
component showing different sensitivities.

In our previous work, we used an e-Nose to differentiate among different species of
mints or VOCs isolated from them [29]. In the present study, we focused on QCM sensors
coated with MOF thin films. Six different MOFs were investigated, including HKUST-1,
Cu(BDC), Cu(BPDC), Cu2(DCam)2(dabco), Cu2(DCam)2(BiPy), and Cu2(DCam)2(BiPyB) [30].
MOF thin films were deposited using layer-by-layer methods, yielding co-called SURMOFs
(surface-anchored MOFs) [31]. To validate the performance of these SURMOF-based QCM
arrays, we challenged them by testing the ability of these sensors to discriminate different
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chemotypes of closely related species (the two mints Mentha aquatica and Mentha suaveolens,
and the closely related Korean mint Agastache rugosa), against the more distant lemon balm
(Melissa officinalis) and the unrelated but similarly scented lemongrass (Cymbopogon citratus).
In addition, we used three accessions of basil (Ocimum campechianum, Amazonian basil,
versus two accessions of O. tenuiflorum, holy basil and Tulsi). In contrast to sweet basil,
which had previously been addressed by e-Noses [28], we wanted to test to what extent it
would be possible to discern true O. tenuiflorum from closely related sister species, since
O. campechianum is a member of the closest haplotype known for the genus Ocimum [12].
All accessions were selected from the authenticated reference plant collection at the Botanic
Garden of the Karlsruhe Institute of Technology. The response times of the QCM sensors
upon exposure to and removal of a particular scent were determined using nonlinear
least-square (NLS) fits to an exponential rise (or fall) function and were found to amount to
less than 1 min [32,33]. The exposure and purging data sets (four cycles) obtained from a
low-cost custom-made portable e-Nose were analyzed using machine learning approaches,
employing three different classification methods: principle component analysis (PCA),
linear discrimination analysis (LDA), and nearest neighbors (k-NN) [28]. The first and
second cycles of the datasets were used for training, and the repeated cycles following were
used as unknown data for prediction. A statistical analysis revealed that more than 90%
classification accuracy could be achieved within eight different scent classes from three
different plant leaves in a very short time (less than 6 min). The prediction accuracies with
repeated test measurements reached 90% for LDA and k-NN from unknown data sets.

2. Materials and Methods
2.1. Plant Material

The present study included freshly collected samples: 3 different species of basil,
4 different species of mints, and a control sample of lemongrass grown at the Botanical
Institute of Karlsruhe Institute of Technology (KIT), Germany (Table 1). The scents were
collected from 3 g weights of fresh leaves from Ocimum campechianum Mill., Cymbopogon
citratus, Ocimum tenuiflorum L., Melissa officinalis L, Mentha aquatica, Agastache rugosa, and
Mentha suaveolens. The abbreviations used throughout the text are defined in Table 1.

Table 1. Accessions used in this study. The voucher number gives the code, under which the plants
are available in the botanical garden of the KIT. The abbreviations used in the text are also given.

Plant Common Name Abbreviation KIT Voucher

Ocimumcampechianum Mill. Amazon Basil Bas7564 7564
Ocimumtenuiflorum L. Tulsi Bas5751 5751
Ocimumtenuiflorum L. Krishna Tulsi Bas8257 8257
Cymbopogon citratus Lemongrass LemGra 5722
Melissa officinalis L Common Balm MeliOfL 4643
Mentha aquatica L. Water Mint MintAQ 8680
Agastache rugosa Korean Mint MintAR 7576

Mentha suaveolens Apple Mint MintSU 3638

2.2. Chemicals and Fabrication of QCM Sensors

Commercially available AT-cut HC-49U type 200 nm silver coated 10 MHz quartz
crystals with 5 mm electrode radius (J. Walter Thompson, Shanghai, China) were used as
QCM electrodes. Six QCM sensors were coated with six different SURMOFs—HKUST-1,
Cu(BDC), Cu(BPDC), Cu2(DCam)2(dabco), Cu2(DCam)2(BiPy), and Cu2(DCam)2(BiPyB)—
to establish the sensor array comprising the e-Nose system, as shown in Figure 1.
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Figure 1. The six different SURMOF structures of the sensor array used in the e-Nose system, namely
HKUST-1, Cu(BDC), Cu(BPDC), Cu2(DCam)2(dabco), Cu2(DCam)2(BiPy), and Cu2(DCam)2(BiPyB).

DCam is a layer linker that produces pillared-layer MOF structures. The pillar linkers
are diazabicyclo[2.2.2]octane (dabco), 4,4′-bipyridyl (BiPy), and 1,4-bis(4-pyridyl)benzene
(BiPyB). BDC stands for benzene-1,4-dicarboxylate and BPDC stands for biphenyl-4,4′-
dicarboxylate in the Cu(BDC) and Cu(BPDC) MOF structures [29,30].

Prior to SURMOF deposition, the QCM substrates were functionalized by an O2
plasma treatment for 30 min. All films were prepared using 30 synthesis cycles. The
SURMOF synthesis details are provided in the Supplementary Materials of our previous
work [30]. X-ray diffraction (XRD) was used to characterize the SURMOFs thin films grown
on the QCM sensors, and the diffractograms are shown in Figure S1. The XRD data reveal
the presence of crystalline, oriented MOF thin films with the targeted structure.

2.3. Data Acquisition with the e-Nose

Figure 2 shows a schematic view of the working principle of the six-channel low-cost
homemade portable e-Nose system used for discrimination of scents from basil/mint leaves.
The sensor array and a humidity/temperature sensor were placed inside a 3D-printed
head space in a cylindrical form. For the QCM data acquisition, 5 V/16 MHz ATMega32U4
microcontrollers and open-source Pierce oscillator circuits designed by openQCM were
used [34] to read the frequency change. Temperature and humidity were measured with an
Adafruit HTU21D-F temperature and humidity sensor breakout board. The temperature of
the chamber was kept constant at 25 ± 0.5 ◦C. The software package MATLAB was used to
record and analyze the data.

Three grams of freshly collected leaves from each species of basil and mint were
inserted separately into a 100 mL glass vial. The emanating VOCs emitted by the fresh
plant leaves inside the bottle were circulated through the sensor array with a 3W small
diaphragm pump with a small flow rate 0.1 L/m, while valves 1 and 2 were rotated so
that the N2 gas line was closed. The surface of the sensing thin films inside the head space
was activated by purging with N2. This process led to the removal of residual compounds
within the SURMOF pores. For each basil/mint scent accession, the change in resonance
frequency was recorded for 6 min for each cycle with 2 min exposure for adsorption and,
subsequently, 4 min of purging during cleaning with dry N2 gas. The exposure and purging
cycles were repeated four times.
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Figure 2. A schematic view of the working principle of the six-channel low-cost homemade portable
e-Nose system used for discrimination of scents from basil/mint leaves.

MOFs are highly porous with huge specific surfaces [35]. SURMOFs coated on a QCM
adsorb the VOCs on the outer surface as well as inside the pores (see Figure 3) [30]. Of
course, for the latter, the pores and channels inside the MOF have to be sufficiently large to
accommodate diffusion of the VOC into the pore system. A quantitative determination of
the total amount of a particular VOC loaded into a MOF thin film can be carried out using
a QCM. In the present case, the scent emitted from a plant consists of a large variety of
different compounds, with their number typically exceeding 20 [36,37].
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2.4. Data Analysis and Classification

The QCM response after exposure to the plant scent and after purging with dry nitro-
gen is shown in Figure 4. It was found that single-component rise-and-fall functions well
described the QCM data for times up to 60 s after the start of exposure/purging. At later
times, there was a linear behavior, indicating diffusion into and out of the pores [39–41].
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Figure 4. An example illustration of a one-cycle response of the sensor array, the change in resonance
frequency of the sensing film Cu2(DCam)2(BiPyB) due to adsorption with 2 min exposure, and
subsequent 4 min purging during cleaning with dry N2 gas.

The frequency shift of the QCM sensors is directly proportional to the change in the
absorbed mass according to the Sauerbrey relation [42]:

∆F(t) = −C∆m(t) (1)

where C is the QCM mass sensitivity constant, which is related to the structural and
physical properties of the piezo electrical quartz sensor material. The frequency response
times were calculated from nonlinear least-square (NLS) fits of the QCM response to an
exponential rise function [32,33] in the time interval between 5 and 60 s.

The QCM signal drop observed after removing a particular scent was determined by
an NLS fit to an exponential decay function in the time interval between 125 and 180 s
using the following expression:

∆F(t) = ∆Fmax (1− et/τads) (Adsorption), (2)

∆F(t) = ∆Fmax e−t/τdes (Desorption), (3)

where τads and τdes are the relaxation times related to the association constant of the
adsorption and desorption processes, respectively.

During the discrimination analysis of the scents, the first cycle of the loading/purging
curve was used for training while the other three repeated cycles were used to test and
predict the eight different classes of scents emitted from the plant leaves as a source. The
exposure data with the highest responses between 1 and 2 min just before beginning
the purging were cut to be used as the training data set for the discrimination accuracy
calculations. Similarly, for prediction tests, one minute of exposure data with the highest
responses were cut for the other cycles, e.g., the data between 7 and 8 min for the second
cycle, between 13 and 14 min for the third cycle, and between 19 and 20 min for the fourth
cycle. Three different classification algorithms were tested: PCA, LDA, and k-NN using
scripts written in MATLAB.
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PCA is an unsupervised machine-learning method that uses dimension reduction and
data visualization [43,44]. This algorithm transforms the original data set into a new set
of so-called Principal Components (PC). Hence, a large number of data sets is effectively
compressed in a smaller set of PC variables. The 3D-PCA image classification can be
obtained by projecting principal component scores in the x, y, and z axes. This makes it
possible to visualize the separation of classes or clusters.

On the other hand, LDA is a supervised machine-learning method that maximizes
discrimination among known categories by creating a new linear axis and by projecting
data points on that axis. LDA and PCA are similar classification techniques [45]. They both
compute linear combinations of variables that best explain the data. LDA gives a difference
model between the classes of data. PCA, in contrast, does not consider any difference
in class. LDA implements data with independent variables of continuous categorical
observation. The objective of LDA is to find the projection hyperplane that minimizes the
interclass variance and maximizes the separation distance between the projected classes.
LDA has also been used in the literature due to its relatively fast model computation.
Therefore, in this paper, we evaluate the effectiveness of the model in classifying the scents
of two different plant species with eight different classes.

In k-NN discrimination analysis, k nearest neighbors is a simple algorithm that
classifies new cases by scanning the distances of the classified elements of the nearest
neighbors by comparing all stored known cases. It has been used for statistical estimation
and pattern recognition. k is a parameter that defines the number of nearest neighbors
before rendering a classification decision. In this paper, we also evaluate the effect of the
number of nearest neighbors on classification and prediction accuracy of the scents of two
different plant genera with eight different classes.

3. Results and Discussions
3.1. Sensor Array Responses

Figure 4 shows the response of a QCM sensor coated with a SURMOF of the type
Cu2(DCam)2(BiPyB) after exposure to scents emitted from different plants and after purging
with nitrogen gas. For all scents, the sensor reached a saturation frequency (99.3% of
∆Fmax) on average within 29 ± 8 s after the start of exposure and, after purging, recovered
(0.7% of ∆Fmax) on average within 54 ± 4 s, as shown in Figure S3 and Table S1 in the
Supplementary Materials. Frequency response times were calculated using nonlinear least-
square fits to an exponential rise-or-fall function. Among all SURMOF-based QCM sensors,
the frequency response time was the fastest for HKUST-1, 27.5 ± 10.8 s for adsorption
and 44.0 ± 1.1 s for desorption. The longest frequency response time was observed
for Cu2(Dcam)2(BiPy), with a value of 69.3 ± 7.3 s for adsorption and 66.7 ± 11.0 s for
desorption. In general, adsorption is faster than desorption, showing a strong affinity
between the sensing MOFs and the scent molecules emitted from both basil and mint leaves.

The resonance frequency shifts of the sensor array consisting of seven QCM sensors
coated with all seven different sensing materials (see Table 1 for the abbreviations) during
four cycles of exposure to the individual basil/mint leaves are shown in Figure S2 in
Supplementary Materials.

For a comparison of the effect of SURMOF modification on bare Ag-coated QCM
sensors, the maximum scale of the plots was kept constant at −600 Hz. For all MOF
materials, the QCM sensors showed the highest response to LemGra and the lowest
response to MintAQ. Interestingly, the responses of all sensors to both basil and mint
species can be separated into two categories. The red circle with the highest response
belongs to the scent of the control sample LemGra.

A radar plot (Figure 5) of the maximum frequency shift response for the sensor arrays
shows that each sensor responds differently. In the case of the latter, for all scents, the
response was very small, less than −10 Hz, as expected. The maximum frequency shift
response values of the different SURMOF-based QCM sensors for the different scents shown
in the radar plot are also listed in Table 2. The highest response of around −600 Hz comes
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from the sensor coated with a Cu2(Dcam)2 (BiPyB) SURMOF thin film. The lowest response
was obtained from the sensor coated with Cu2(Dcam)2(dabco). The large difference in
response between different MOFs for the same scent results from the different chemical
structure of the various SURMOFs. In addition to the chemical structure, the different pore
sizes can also have an influence. Since each scent contains many different VOCs, precise
identification of the underlying mechanisms is beyond the scope of this article.
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Table 2. The maximum frequency shift response values of the sensor arrays shown in the radar plot in Figure 5.

Bas7564 LemGra Bas5751 Bas8257 MeliOfL MintMA MintAR MintSU

∆f(−Hz) ∆f(−Hz) ∆f(−Hz) ∆f(−Hz) ∆f(−Hz) ∆f(−Hz) ∆f(−Hz) ∆f(−Hz)

Cu(BDC) 153.1 200.9 159.4 160.0 89.5 94.4 93.1 102.4
Cu(BPDC) 105.4 144.0 104.8 130.1 82.6 78.9 98.2 100.1
HKUST-1 319.1 407.6 330.6 331.3 163.3 162.1 166.7 177.3

Cu2(Dcam)2 (BiPy) 95.9 139.0 95.0 103.0 80.4 72.5 76.1 84.8
Cu2(Dcam)2 (BiPyB) 492.6 578.3 509.0 510.9 302.8 303.4 314.4 327.6
Cu2(Dcam)2 (dabco) 72.9 98.2 75.4 79.0 44.7 44.5 45.9 49.3

3.2. Principal Component Analysis (PCA)

Figure 6 shows a 3D projection of the principal component scores in the x, y, and
z axes calculated using principal component analysis from 451 measurements for the
eight different scents. These components are grouped into clearly separated clusters.
Interestingly, the two accessions from Mentha clustered with Agastache rugosa (Korean mint,
AR, belonging to a neighboring clade) and with the more distantly related Melissa officinalis
(MeliOfL). The three Basil scents were clearly separated: here, the two accessions for
O. tenuiflorum (Tulsi) were close to each other, but unequivocally resolved from the closely
related O. campechianum. This is astonishing because the latter species belongs to the sister
clade closest to O. tenuiflorum within the entire genus. The other surprise comes from the
complete separation of lemongrass (LemGra) from Melissa officinalis (MeliOfL), since both
species have a very similar lemon-like scent and are often used for mutual surrogation in
commercial samples. The clear separation indicates that the e-Nose can pick up even subtle
differences in the VOC profile that go unnoticed by most human noses.
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The sum of the three scores of the total variance explained by each principal component
in the 3D plot given in Figure 6 is equal to 96.1%. By introducing the fourth and fifth PCA
components, the visual PCA discrimination accuracy reaches 99.8%.

Chemosensors 2021, 9, x FOR PEER REVIEW 9 of 15 
 

 

clade closest to O. tenuiflorum within the entire genus. The other surprise comes from the 

complete separation of lemongrass (LemGra) from Melissa officinalis (MeliOfL), since both 

species have a very similar lemon-like scent and are often used for mutual surrogation in 

commercial samples. The clear separation indicates that the e-Nose can pick up even sub-

tle differences in the VOC profile that go unnoticed by most human noses. 

The sum of the three scores of the total variance explained by each principal compo-

nent in the 3D plot given in Figure 6 is equal to 96.1%. By introducing the fourth and fifth 

PCA components, the visual PCA discrimination accuracy reaches 99.8%. 

 

Figure 6. Three-dimensional plot of the principal component coefficients from 451 observations. 

3.3. Linear Discrimination Analysis (LDA) 

The 2D plot of the linear discriminant analysis for the eight different species with a 

95% confidence ellipse is presented in Figure 7a. The so-called confusion matrix was cal-

culated from a 10-fold LDA cross-validation partition using 451 observations with 406 

training sizes and 45 test sizes obtained from the first cycle of the e-Nose measurements, 

as shown in Figure 7b. The LDA plot again shows an obvious clustering. The sum of the 

first two LDA vector components is 99.6%, and the LDA discrimination accuracy reached 

100%. A calculated confusion matrix chart given in Figure 7 also confirms that the catego-

rized (raw) labels match 100% with the true labels (columns) given during the training. 

The diagonal cells show correctly classified observations, while the off-diagonal values 

show the percentage of misclassification. 

Figure 7 show the linear discriminant analysis of eight basil/mint species including a 

control sample. The 2D plot of the 10-fold linear discriminant analysis was obtained from 

the training data sets shown with the colored symbols (first-cycle e-Nose measurements) 

in Figure 7a and the prediction confusion matrix for the unknown data sets from the sec-

ond cycle of the e-Nose measurements shown in Figure 7b. As clearly seen from Figure 8, 

the Mentha group of plants form a cluster separated from the basil group of plants, and 

lemongrass, which was used as an outlier, forms a completely separate cluster. The pre-

diction matrix (Figure 8b) shows 9.8% overlap in the case of Bas8257 (Krishna Tulsi) and 

Bas5751 (Tulsi). This could be attributed to the fact that both samples belong to plants of 

the same species. 
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3.3. Linear Discrimination Analysis (LDA)

The 2D plot of the linear discriminant analysis for the eight different species with a 95%
confidence ellipse is presented in Figure 7a. The so-called confusion matrix was calculated
from a 10-fold LDA cross-validation partition using 451 observations with 406 training
sizes and 45 test sizes obtained from the first cycle of the e-Nose measurements, as shown
in Figure 7b. The LDA plot again shows an obvious clustering. The sum of the first two
LDA vector components is 99.6%, and the LDA discrimination accuracy reached 100%.
A calculated confusion matrix chart given in Figure 7 also confirms that the categorized
(raw) labels match 100% with the true labels (columns) given during the training. The
diagonal cells show correctly classified observations, while the off-diagonal values show
the percentage of misclassification.

Figure 7 show the linear discriminant analysis of eight basil/mint species including a
control sample. The 2D plot of the 10-fold linear discriminant analysis was obtained from
the training data sets shown with the colored symbols (first-cycle e-Nose measurements)
in Figure 7a and the prediction confusion matrix for the unknown data sets from the
second cycle of the e-Nose measurements shown in Figure 7b. As clearly seen from
Figure 8, the Mentha group of plants form a cluster separated from the basil group of
plants, and lemongrass, which was used as an outlier, forms a completely separate cluster.
The prediction matrix (Figure 8b) shows 9.8% overlap in the case of Bas8257 (Krishna Tulsi)
and Bas5751 (Tulsi). This could be attributed to the fact that both samples belong to plants
of the same species.
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Figure 7. Linear discriminant analysis of eight species: (a) 2D plot of the linear discriminant analysis
with 95% confidence ellipse and (b) confusion matrix obtained from 10-fold LDA calculations using
the training dataset obtained from the first cycle of the e-Nose measurements.
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Figure 8. Linear discriminant analysis of six mint species: (a) 2D plot of the 10-fold linear discriminant
analysis obtained from the training data sets shown with the colored symbols (first-cycle e-Nose
measurements) and from the prediction data sets shown with the black symbols (second cycle of the
e-Nose measurements), and (b) a prediction confusion matrix for the unknown data sets from the
second cycle of the e-Nose measurements.

Table 3 shows a summary of the LDA prediction results for unknown data sets
obtained from different cycles of measurement after training with data sets from the first,
second, and third cycles. The discrimination accuracy for each cycle is 100%. Nevertheless,
the crosscheck prediction accuracies are obtained between 73.5 and 90.2% with an average
of 79.2%. The prediction accuracies in Table 3 show similar overlap between Bas8257
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(Krishna Tulsi) and Bas5751 (Tulsi), confirming that both samples originate from the same
plant species.

Table 3. LDA prediction results for unknown data sets obtained from different cycles of measurement
after training with data sets from the first cycle, second cycle, and third cycle.

Training Data Unknown Test Data Discrimination Accuracy Prediction Accuracy

first cycle second cycle 100 90.2%
first cycle third cycle 100 75.3%
first cycle fourth cycle 100 77.7%

second cycle third cycle 100 79.3%
second cycle fourth cycle 100 79.0%
third cycle fourth cycle 100 73.5%

3.4. Nearest Neighbor Analysis (k-NN)

As a third nonparametric classification scheme, we applied the k-NN analysis with a
10-fold (k = 10) calculation of the unknown data sets from the second cycle compared to
the true assignment from the training data set collected during the first cycle. The data sets
from the second cycle of the e-Nose measurement were used for the k-NN calculation to
determine the prediction accuracy for unknown observations. The k-NN discrimination
accuracy was obtained as 94.2% with 5.8% misclassification (see Figure 9a). The overall
prediction accuracy for the unknown data sets was smaller than in the case of LDA with
82.3% corresponding to 17.7% misclassification.

The change in the k-NN discrimination and prediction accuracies with an increasing
number of nearest neighbors between 2 and 50 is given in Figure S4 in the Supplementary
Materials. The k-NN discrimination accuracy drops from 100 to 90.2% with increasing
nearest neighbor due to the overlap of classified data. Similarly, the k-NN prediction
accuracy drops from 85.1 to 72.3% with the increasing number of nearest neighbors.
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calculation using the unknown data sets from the second cycle to compare with the training data set (true labels) obtained
from the first cycle.
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A comparative GC–MS study performed by Chalchat et al. on Ocimum basilicum L.
found 58.26% estragole, 19.4% limonene, and 2.40% p-cymene in the essential oil [46].
Another GC–MS analysis showed that most of the essential oil was composed of three
main terpenes: linalool, 1,8-cineol, and eugenol [47]. Sarheed at al. [36] also showed that
Mentha-type plants can constitute more than 20 different VOC molecules. Therefore, the
most abundant constituent molecule is a dominant factor in the absorption signal on the
SURMOF sensor array. A quantitative determination of the total amount of a particular
VOC loaded into a SURMOF thin film can be carried out by different analytical methods
such as GC-MS [46,47] and MIP-QCM [20,48]. It has been shown in our previous work
that a SURMOF-based QCM sensor array can be used for detection and discrimination
of plant oil scents and their mixtures [29]. In the present case, the scent emitted from a
plant consists of a large variety of different compounds [36]. This reveals that a QCM-
type e-Nose has high potential advantages for quickly analyzing the sample constituents
of a complex mixture. A miniaturized portable multichannel QCM-based e-Nose is an
economical artificial receptor option compared to the costly and time-consuming GC–MS.

4. Conclusions

In this work, sensor arrays based on six different SURMOFs were used successfully
to discriminate eight aromatic plants, seven of which belonged to the taxonomically chal-
lenging family Lamiaceae. The exposure and purging data sets (four cycles) obtained
from a low-cost custom-made portable e-Nose were analyzed using a linear discriminant
analysis (LDA) classification model. The first and second cycles of the datasets were used
for training, and the repeated cycles following were used as unknown data for prediction.
More than a 90% classification accuracy was obtained within eight different scent classes.
The prediction accuracies with repeated test measurements reached up to 90% for LDA
from unknown data sets. We can show that it is possible not only to discern and identify
plants on the genus level (Mentha, Agastache, and Melissa, all belonging to the Mentheae
tribe within the Lamiaceae family) but also to discriminate closely related sister clades
within a genus (basil). In addition, we were able to separate lemongrass (Cymbopogon citra-
tus) unequivocally from common balm (Melissa officinalis L.) although these species share
an intense lemon-like scent and are often used for mutual surrogation and adulteration,
demonstrating that the e-Nose exceeds the performance of most human noses, which can
be easily tricked by these two species. This study paves the way for the potential use of
sensors in the detection of food adulterants. The portability and quick response of the
sensor arrays demonstrate a huge potential for future fabrication of cheap monitoring
devices for use in the food industry and in food surveillance.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/chemosensors9070171/s1, Figure S1: The X-ray diffractograms of the SURMOFs thin films
of the sensor array used in the e-Nose system., e.g. Cu2(DCam)2(dabco), Cu2(DCam)2 (BiPy),
Cu2(DCam)2 (BiPyB), HKUST-1, Cu(BDC), Cu(BPDC). The data indicates crystalline, oriented
growth of the MOF films with the targeted structure, Figure S2: Resonance frequency shifts of the
sensor array with 7 different sensing materials (see Table 1 for abbreviations) during 4 cycles of
exposure to the individual Basel/Mint/Lemon Grass/Melissa O.L. leaves, Figure S3: Nonlinear
Least square fit to an exponential rise function describing (Adsorption process) and an exponential
drop function as (desorption process) to find response time values of the sensor array, Figure S4: The
change in the k-NN discrimination and prediction accuracies with increasing number of nearest
neighbor between 2 and 50, Table S1: The response times calculated from Nonlinear Least square fit
to an exponential rise function describing (Adsorption process) and an exponential drop function as
(desorption process).
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