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Abstract—Smart charging of Electric Vehicles (EVs) reduces
operating cost, allows more sustainable battery usage, and
promotes the rise of electric mobility. In addition, bidirectional
charging and improved connectivity enable efficient power grid
support. Today, however, uncoordinated charging, e.g. governed
by users’ habits, is still the norm. Thus, the impact of upcoming
smart charging applications is mostly unexplored. We aim to
estimate the expenses inherent with smart charging, e.g. battery
aging costs, and give suggestions for further research. Using
typical onboard sensor data we concisely model and validate an
EV battery. We then integrate the battery model into a realistic
smart charging use case and compare it with measurements
of real EV charging. The results show that i) the temperature
dependence of battery aging calls for precise thermal models
for charging power greater than 7 kW, ii) disregarding battery
aging underestimates EVs’ operating cost by approx. 30%, and
iii) the profitability of Vehicle-to-Grid (V2G) services based on
bidirectional power flow, e.g. energy arbitrage, depends on battery
aging costs and the electricity price spread.

Index Terms—Electric Vehicle Charging, Artificial Neural
Network (ANN), Vehicle-to-Grid, Optimization, Smart Charging,
Electric Vehicles, Energy Arbitrage

NOTATION

• x̂ indicates an estimate of x
• x and x indicate the lower and upper bounds of x
• xn indicates the value of x at time tn
• xd represents a discrete space between x and x for DDP

Parameters
enom Nominal available battery capacity (kWh)
HEV Total battery capacity loss, EV application (-)
∆t Duration of discrete time interval (min)
VEV Total battery value loss, EV application (e)
ε Electricity price (e/kWh)
εmean Mean workday electricity price (e/kWh)
η Efficiency of charging process (-)
λ DDP penalty cost (e)
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Variables
e Battery energy (kWh)
emax Maximum available battery capacity (kWh)
∆E Energy throughput (kWh)
H Battery state of health (-)
∆Hcyc Cyclic battery capacity loss (-)
∆Hcal Calendar battery capacity loss (-)
Ibat Battery current (A)
J DDP cached total cost (e)
JE Energy cost function (e)
JD Battery degradation cost function (e)
J DDP cost grid (e)
N Number of time intervals (-)
N Set of time intervals (-)
p Gross charging power (kW)
p∗ Optimal charging power trajectory (kW)
P DDP optimal action grid (kW)
Q̇loss Heat flow from internal battery losses (kW)
Ri Battery internal resistance (Ω)
UOCV Battery open-circuit voltage (V)
Ubat Battery terminal voltage (V)
γ Electricity price spread (-)
θ Battery temperature (°C)
∆Θ Battery temperature difference (K)
τ Battery aging time equivalent (s)

Acronyms

ANN Artificial Neural Network
DDP Discrete Dynamic Programming
ECM Equivalent Circuit Model
EV Electric Vehicle
MAE Mean Absolute Error
RMSE Root Mean Squared Error
SC Smart Charging
SOC State of Charge
SOH State of Health
V2G Vehicle-to-Grid

I. INTRODUCTION

UNDOUBTEDLY, Electric Vehicles (EVs) are on the rise.
In this context, Smart Charging (SC), i.e. the controlled

and coordinated charging of EVs, helps to minimize EV
operating cost [18] and prolong EV battery life [2]. To further
diminish negative power grid impacts due to EV charging,
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TABLE I: Comparison of the proposed work with related works according to distinct technical features, see Sec. II.

References A) EV User
Perspective Adequately

Represented

B) Battery Aging
Considered as

Monetary Costs

C) Optimization-based
Smart Charging

Application

D) Thermal Battery
Model based on EV

Sensor Data

E) Real-world Data for
Modeling and

Validation

[1]–[3] 7 7 3 7 3

[4], [5] 3 3 7 7 7

[6]–[13] 3 3 3 7 7

[14]–[16] 3 3 3 7 3

[17] 7 7 7 3 3

proposed work 3 3 3 3 3

Vehicle-to-Grid (V2G), which usually leverages bidirectional
power flow, becomes important [19].1

Adoption of SC concepts, however, strongly depends on
EV user acceptance [20]. Nowadays, EV users typically use
manual charging in which the battery is fully charged at
maximum available power after plugging in. For SC, EV users
demand similar transparency in terms of operating cost [21].
SC applications usually consist of multi-dimensional decision
problems with various objectives. Instead of simple heuristics
whose behavior and effects are easily comprehensible for the
EV user, these problems require model-based optimization
methods for solving [16], [22]. For this purpose, suitable EV
battery models must be developed and validated with real-
world data [23]. Thus, EV operating cost can be correctly
determined and the real-world impact of SC can be explored.

Aiming to fulfill the aforementioned requirements, we first
create a battery model that can be used in production EVs.
The battery model is then integrated into a realistic SC scheme.
Based on validation with real-world data, we draw conclusions
for future work on SC.

This paper is structured as follows: Section II reviews and
discusses related work. All models and their connections are
outlined in Section III. Section IV describes an exemplary
SC use case. Based on this, Section V presents the validation
of the single model components and optimization results. In
Section VI we summarize the major findings and give an
outlook on future work.

II. RELATED WORK

To properly define the scope of the proposed work, we
conducted a literature review yielding 30 relevant references.
We classified those based on the following five features (see
also Tab. I):

A) Diffusion of SC applications strongly depends on EV
user acceptance. This requires adequate representation
of EV operating cost, and/or inclusion of user comfort
[20].

B) Battery aging is a crucial factor for SC economics that
may not be neglected [6]–[8], [24]. In addition, EV users
desire transparent EV operating cost, including costs
inherent in battery aging [21].

C) SC applications usually consist of multi-dimensional and
multi-objective decision problems that require advanced
techniques for solving, e.g. model-based optimization
[16], [22] or model-free reinforcement learning [9].

1Note that in this work we consider V2G as a derivative of SC.

D) The battery temperature is an important factor for effi-
ciency and battery aging [19], [25]. Therefore, a thermal
battery model suitable for application with typical EVs
sensor data is required.

E) The complexity of SC use cases, e.g. several stakehold-
ers and financial value streams, calls for real-world data
for both modeling and validation [23].

Out of the 30 references we further analyzed [1]–[17], as
these possess at least two of the aforementioned features; a
representative excerpt is given in the following.

Already in 2011 Lunz et al. [14] applied a genetic opti-
mization algorithm to bidirectional charging of plug-in hybrid
EVs. Considering dynamic energy tariffs and battery aging
costs, EVs’ operating cost was reduced compared with un-
coordinated charging. However, a detailed battery model, e.g.
including a thermal model, was not implemented.

Brinkel et al. [15] conducted a study on grid reinforcement
with respect to limits of low voltage grid transformers and
CO2 emissions. The cost for EV charging was reduced by
13.2%. For the study, however, several EVs were aggregated
and a simplified battery model was implemented.

Das et al. [16] set up an optimization-based SC scheme
in a micro grid. The authors aimed to minimize energy
costs, battery aging, and CO2 emissions, while maximizing
grid utilization. To adequately combine the perspectives of
all stakeholders, the authors concluded that a multi-objective
decision process is required. Although a 28.1% reduction of
battery aging was reported for some cases, the applied battery
model neither considered calendar aging nor the battery’s
thermal behavior.

Li et al. [2] used particle swarm optimization to design
a SC scheme targeting minimal battery aging and grid load
fluctuations. To quantify battery aging, a novel rain-flow
cycle counting algorithm was used. The approach, however,
inadequately represents the EV user perspective, as both
variable electricity tariffs and monetary battery aging costs
were neglected.

In [17], Petit et al. set up a SC application using an
empirical battery aging model that considers electro-thermal
influences. The case study for validation, however, was based
on a heuristic that neglects important factors from an EV user
perspective, e.g. energy and battery aging costs.

To the best of the authors’ knowledge, none of the related
works found in the literature considers all five features as
indicated in Tab. I. Hence, we summarize the contributions
of this paper as follows:
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• We use data of real-world charging events to design and
validate a vehicle-specific battery model; this comprises
the battery’s electrical, thermal, and aging behavior. All
models can be operated with inputs from typical onboard
sensors in production EVs.

• This battery model is integrated in an optimization-based
SC scheme. We then use Discrete Dynamic Programming
(DDP) as a robust solving method. For validation, we
utilize data from real-world charging events and historical
electricity market prices.

• To support future work on SC, we derive application-
dependent suggestions on i) the necessity of thermal
battery models, ii) the significance of battery aging costs,
and iii) suitable electricity tariffs for profitable V2G
applications.

III. MODELS OF A SMART CHARGING SCHEME

First, we introduce the notation for a charging event starting
at arrival time t0 and ending at departure time tN .2 The time
horizon [t0, tN ] is divided into N time intervals of duration ∆t
and N + 1 states. Accordingly, we define the set of intervals

N = [0, N − 1] ⊂ N. (1)

Each time interval n ∈ N starts at time tn and ends at time
tn+1. Each battery state at tn ∈ [t0, tN ] is characterized by the
battery energy en, normalized as State of Charge (SOC), and
the battery temperature θn. The charging power pn is assumed
to remain constant throughout a single time interval n.3

To represent the battery’s charging behavior, we implement
an electrical, thermal, and aging model, see Fig. 1a.4 We refer
to the combination of these three models as the battery model.
The prospective use of this battery model in production EVs
limits the model inputs to typical onboard sensor data. Further,
an optimization scheme as shown in Fig. 1b serves to calculate
an optimal charging power trajectory p∗ for a single charging
event.

A. Electrical Model
The energy level of the EV battery—and thus the SOC—

changes with surrounding influences, especially the charging
power pn. An electrical battery model, see Fig. 1a, helps to
calculate the battery energy trajectory. For this purpose, the
energy throughput of the battery

∆En = en+1 − en,∀n ∈ N , (2)

is estimated for a given time interval n, battery temperature
θn, battery energy en, battery’s terminal voltage Ubat,n, and
charging power pn.

We abstract the EV battery with an Equivalent Circuit
Model (ECM) consisting of a voltage source UOCV serially
connected with the internal resistance Ri, see Fig. 2.5 Due

2The term “charging event” refers to the entire time window between arrival
and departure of an EV at a charging station.

3Note that pn represents the gross charging power consumed from the
charging station without conversion losses.

4These models can be vehicle-, vehicle-type-, or battery-specific, thus lim-
iting a generic reuse. General initialization followed by incremental adaption,
however, is conceivable.

5This model represents dedicated power electronics, hence it is vehicle-
specific.

to the low dynamics of EV charging, more complex models,
e.g. resistor-capacitor-pairs or electro-chemical models, are not
required [26].

Both UOCV,n and Ri,n depend on the battery temperature
θn and the battery energy en; we assume their values to be
constant throughout a single time interval n. We obtain Ri
from a look-up table and use the measured terminal voltage
Ubat,n to obtain the open-circuit voltage of the battery

UOCV,n = Ubat,n −Ri,n · Ibat,n, (3)

with the battery current Ibat > 0 during charging, Ubat >
UOCV for charging and Ubat < UOCV for discharging. Substi-
tuting the terminal voltage with

Ubat,n =
pn
Ibat,n

, (4)

and solving (3), we obtain the battery current6

Ibat,n =
−UOCV,n +

√
U2

OCV,n + 4Ri,n · pn
2Ri,n

. (5)

The OHMic [27] losses within the battery amount to

Q̇loss,n = Ri,n · I2
bat,n. (6)

Given the charging power pn, we obtain the energy throughput

∆En = ∆t ·
(
pn − Q̇loss,n

)
. (7)

Note that Q̇loss,n > 0 occurs both while charging and discharg-
ing. Hence, it decreases |∆En| during charging and increases
|∆En| during discharging.

B. Thermal Model

Both the internal battery parameters and battery aging de-
pend on the battery temperature. Therefore, a thermal battery
model, as shown in Fig. 1a, estimates the change in battery
temperature

∆Θn = θn+1 − θn, (8)

for a given time interval n, battery temperature θn, battery
energy en, and charging power pn.7 As the thermal behavior
of EV batteries follows complex, non-linear processes, e.g.
electro-chemical heat sources or sinks, we use a data-driven
modeling approach.

First, we explore time series data from real charging events
of batteries installed and operated in EVs; we discretize this
data with ∆t = 5 min to obtain single training samples for
each time step. Based on the SPEARMAN [28] correlation
coefficient, we screen out irrelevant features. We then perform
mean and variance normalization to ensure a proper model
training. The available training data underrepresents discharg-
ing, i.e. pn < 0. However, as experiments with the installed
battery show similar Ri,n for charging and discharging, we
consider it acceptable to use absolute values for pn and Ibat,n.

For the machine learning models, we compare a linear
regression model and different Artificial Neural Network

6Despite two possible solutions only the greater one is physically feasible.
7Due to heat exchange with surrounding components, thermal battery

models are mostly vehicle-type-specific.
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Fig. 1: Layout of used models for smart charging application; battery model (Sec. III-A, III-B, III-C) (a); optimization scheme
(Sec. III-D) (b).
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Ibat

Ri · Ibat

Fig. 2: Equivalent circuit model of an EV battery for low-
dynamic operation with internal resistance Ri and voltage
source UOCV.

(ANN) models (multi layer perceptron with sigmoid activation
function, learning rate of 0.001). As the optimal ANN model
architecture (number of hidden layers, number of neurons
per hidden layer) may vary for different input features, we
use grid-search [29] to obtain the best performing model
architecture. Applying a five-fold cross validation, we select
the features

{pn, Q̇loss,n,∆En, θn}, (9)

to estimate ∆Θn. Note that we engineer the additional fea-
ture Q̇loss,n calculated in (6) based on domain knowledge.
Hence, we uncover hidden relations for the machine learning
algorithm (gray-box approach). We implement all models in
Python [30] using SciKit-Learn [29] for linear regression and
Keras [31] for ANNs.

C. Battery Aging Model

Irreversible physical and electro-chemical degradation pro-
cesses (battery aging) cause the EV’s usable driving range
and monetary value to decrease. To quantify battery aging,
the State of Health (SOH)

H =
emax

enom
≤ 1, (10)

indicates the maximum available storage capacity emax com-
pared with the nominal storage capacity enom. Calculating the
evolution of emax requires a battery aging model as described
in the following.8

8Note that this model represents battery-specific aging characteristics that
may differ for different types of battery cells; the proposed framework allows
to accordingly replace the aging model, e.g. with models as in [32].

Charging and discharging causes the battery’s anode and
cathode to decay (cyclic aging). Among other processes, a loss
of active lithium material occurs due to mechanical stress, see
also [33]; For the battery cells used in this study, the cyclic
aging increment

∆Hcyc,n = βA · |∆En|βB , (11)

only depends on the absolute energy throughput ∆En.
Additionally, high battery temperature and SOC cause

degradation of both active and inactive battery components,
see also [33]. Hence, the battery capacity fades over time,
regardless of the energy throughput (calendar aging). For the
battery cells used in this work, we describe the calendar aging
increment

∆Hcal,n = (12)

1−H0 + βC exp

(
βD

273 + θn
+ βEen

)
· (∆t+ τn)βF ,

based on ARRHENIUS [34] curves. Here, H0 is the SOH at
the beginning of the charging event.9 Furthermore,

τn =

 H0 − 1

βC exp
(

βD
273+θn

+ βEen

)
1/βF

, (13)

represents the equivalent battery age for each time interval
n ∈ N as a function of H0.

Both model characteristics and parameters are estimated
from extensive cell tests at varying conditions, e.g. battery
energy and temperature. Hence, the detailed parameters βA..F
depend on battery (cell) type and are confidential. Prospec-
tively, an implicit representation, e.g. via machine learning
approaches as in [35] is conceivable.

D. Optimization Scheme

Calculating a charging event’s power trajectory requires
appropriate algorithms, e.g. optimization-based SC schedul-

9H0 serves as a reference for all time steps of one charging event, as
calendar aging occurs on larger time scales (years) than charging (hours).
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ing schemes. We therefore modify the vehicle- and battery-
independent optimization scheme from [16] to be

min
p∈RN

∑
∀n∈N

JE,n(pn, εn) + JD,n(θn, en, H0) (14a)

subject to

p ≤ p ≤ p, p ∈ RN , (14b)

e ≤ e ≤ e, e ∈ RN+1, (14c)
e0 = e0 = e0, (14d)
eN = eN = eN , (14e)

θ ≤ θ ≤ θ, θ ∈ RN+1, (14f)

θ0 = θ0 = θ0, (14g)
en+1 = en + ∆E (en, θn, pn) , ∀n ∈ N , (14h)
θn+1 = θn + ∆Θ (en, pn) , ∀n ∈ N . (14i)

Figure 1b shows the interaction of the optimization scheme
and the proposed battery model. The components (14a)-(14i)
and the solving method are described in the following.

1) Cost Functions: The optimization objective (14a) is to
minimize the sum of energy costs JE,n and aging costs JD,n
over all time intervals n ∈ N .

To consider the costs for charging electric energy, we define
the energy cost function

JE,n =

{
J+

E,n, ∀pn ≥ 0,

J−E,n, ∀pn < 0,
(15)

with the energy expenses J+
E,n = pn ·∆t · εn, and the energy

rewards J−E,n = pn · ∆t · εn. For pn ≥ 0, the EV battery
is charged at the electricity price εn. With pn < 0, εn
corresponds to the price of selling energy back to the grid;
εn is given and assumed to be deterministic.

Battery aging also contributes to the total operating cost, as
the EV’s monetary value depends on the maximum usable bat-
tery capacity emax. Based on ∆Hcyc,n and ∆Hcal,n (Sec. III-C)
we define the battery aging costs

JD,n = ∆Hcyc,n ·
VEV

HEV︸ ︷︷ ︸
Jcyc

D,n

+ ∆Hcal,n ·
VEV

HEV︸ ︷︷ ︸
Jcal

D,n

, (16)

with the cyclic aging costs J cyc
D,n and the calendar aging costs

J cal
D,n.10 Here, VEV denotes the battery value loss due to the

capacity loss HEV during the battery’s automotive application
(first life). In particular, VEV is the difference between the
battery’s production price and its residual value in a second
life market. Note that (16) only accounts for aging caused
throughout the charging event. To include battery aging for
trips in between charging events in future work, a superor-
dinate scheme as in [36] could determine the optimal target
energy eN .

10Given the non-linearity in (11) and (12), (16) also introduces non-linearity
to (14).

2) Decision Variable: To obtain the optimal charging power
trajectory, we define the decision variable

p = (p0, p1, ..., pN−1)> ∈ RN , (17)

with the charging power pn in all time intervals n ∈ N . Eval-
uating (14b) component-wise represents the power limitations
with the upper bounds p and lower bounds p. We assume these
bounds to be constant throughout a single charging event. Both
p and p are known at the time of computation and predefined
e.g. by grid load constraints, charging stations, or EV power
electronics.

3) State Variables: To compute the SOC of the battery, we
define the state variable

e = (e0, e1, e2, ..., eN )> ∈ RN+1, (18)

representing the battery energy trajectory throughout a charg-
ing event. Reading (14c) component-wise reveals the energy
limitations e and e that are constant and known at the
time of computation. Their values are determined by physical
restrictions, i.e. battery capacity, and/or EV user preferences,
e.g. a minimum SOC.11 We specify e0 as the battery energy
at the beginning of the charging event in (14d). The desired
battery energy at departure eN is determined by the user in
(14e); prospectively, a previous calculation of eN as in [36]
can also be used.

For the battery temperature we similarly define the state
variable

θ = (θ0, θ1, θ2, ..., θN )> ∈ RN+1. (19)

The temperature limits θ and θ in (14f) restrict θ to be within
a safe operating window given by the battery management
system. Both θ and θ are constant and known at the time of
computation. Additionally, the battery temperature θ0 at the
beginning of the charging event is given in (14g).

4) Battery Dynamics: To represent the evolution of the bat-
tery energy en we formulate (14h). Specifically, the electrical
model in Sec. III-A is used to calculate en+1 for each time
interval n ∈ N (see also Fig. 1b). In a similar manner, (14i)
describes the battery’s thermal behavior based on the thermal
model in Sec. III-B.

5) Method of Solving: As the non-linear models in (14h)-
(14i) increase the complexity of (14), we use DDP [37] for
solving; the detailed solving Algorithms 1-3 are given in
the appendix. First, Algorithm 1 initializes the cost grid J,
spanned by e,θ and time intervals n ∈ N . Then, Algorithm 2
runs backwards (n = N..0, ∀n ∈ N ) to update J for all
possible ei ∈ ed and θj ∈ θd. Similarly, all corresponding
optimal actions P are determined (backward induction). To
avoid infeasible trajectories, a penalty value λ is assigned
to the according value in J, if a constraint (14b)-(14i) is
violated. Finally, Algorithm 3 integrates forward in time
(n = 0..N, ∀n ∈ N ), starting from the initial values e0 and
θ0. For each n ∈ N , the cost-optimal action is taken from P
based on the current state en and θn. This yields the globally
optimal charging power trajectory p∗ (forward integration)
[37].

11Note that the use of an electrical model (Sec. III-A) in (14h) implicitly
respects the battery’s voltage constraints.
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IV. CASE STUDY

From ten real-world EVs equipped with cloud-connected
data loggers, we obtain measured time series data of 279
unidirectional charging events covering a full year [38]; we
discretize this data with ∆t = 5 min. In each interval, we
calculate ∆E and ∆Θ with the battery models from Sec. III-A
and III-B, and using the mean charging power, battery temper-
ature and energy. Then, we determine the Root Mean Squared
Error (RMSE) of actual and estimated ∆E and ∆Θ for each
time interval (local error). Furthermore, we quantify the error
propagation when repeatedly applying the battery models (i.e.
estimate ∆E and ∆Θ based on estimations of previous time
interval); we therefore calculate the Mean Absolute Error
(MAE) of actual and estimated eN and θN at the end of each
charging event (global error).

To evaluate the optimization scheme (Sec. III-D), we se-
lect 45 real charging events that have sufficient duration
(tN−t0 ≥ 2 h) and set the parameters:

p = −50 kW e = 8 kWh θ = −25 °C HEV = 20 %

p = 50 kW enom = e = 80 kWh θ = 60 °C VEV = 6080e

In addition, the conditions of each charging event determine
the values of e0 = e0 (battery energy at arrival), eN = eN
(battery energy at departure), and θ0 = θ0 (battery temperature
at arrival). After solving (14) (see Sec. III-D5), we compare
the operating cost in three modes:
• Mode I: No optimization, calculate energy and aging

costs for measured energy and temperature profile.
• Mode II: Optimize for energy costs only, calculate aging

costs afterward.
• Mode III: Optimize for both energy and aging costs.

We use historic hourly electricity market prices of 2018 for
εn [39]. To attain a representative price level for private
customers, we supplement typical fees (0.188 e/kWh) and
taxes (19%). Then, we average the price curves over all work-
days and weekends to level out price peaks due to electricity
over- or underproduction. We thus obtain two characteristic
hourly price tables for ε, see Fig. 3, to evaluate the average
profitability of SC.

Note that the duration of each charging event represents
deterministic EV user behavior; future work will also consider
stochastic influences. Furthermore, p∗ is calculated once at the
beginning of each charging event; prospectively, an ongoing
charging event may be adapted to dynamic changes, i.e.
departure time, target energy eN , or electricity tariff, via a
user interface with a system as in [40].

V. RESULTS

A. Validation of the Battery Model

Table II presents the validation results of the battery model
(Sec. III-A, III-B).

1) Validation of the Electrical Model: The electrical model
(Sec. III-A) yields an RMSE of 0.35% SOC for single time
intervals (local error, see Sec. IV). Hence, the model esti-
mations ∆Ê mostly match the actual values ∆E (Fig. 4).
The model accuracy is improved, as both UOCV,n and Ri,n
are chosen from a look-up table for each time interval n
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estimates per time interval ∆t = 5 min; the red line indicates
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depending on en and θn. Furthermore, high-dynamic changes
of the battery energy are leveled out, as they occur on smaller
time scales than the chosen ∆t = 5 min [26]. When charging
the battery to emax, the battery management system corrects
the characteristic SOC curve towards the end of the charging
event; hence, a few outliers occur, e.g. with ∆E ∼= 0.

At the end of all charging events, the mean SOC deviation
EN−ÊN is 2.37% SOC (global error, see Tab. II). This equals
an acceptable driving range deviation of approx. 7.6 km, as
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EV user’s daily driven distance (mostly below 50 km) is well
within the battery range of 400 km [21]. We thus consider
the accuracy of the electrical model as sufficient and deem
∆t = 5 min and the ECM to be suitable for our case study.

2) Validation of the Thermal Model: To benchmark the
thermal battery model (Sec. III-B), we assume constant battery
temperature, i.e. θn = θ0,∀n ∈ N and ∆Θ̂n = 0.0,∀n ∈ N .
In comparison with real charging events, assuming constant
battery temperature yields an RMSE of 0.72 K for single time
intervals (local error, see Sec. IV) and an MAE of 7.57 K at
the end of a charging event (global error), see Tab. II.

As this result emphasizes the need for appropriate modeling,
we test different data-driven thermal models and hyperpa-
rameters, see Sec. III-B. A linear regression model also
misrepresents the battery’s thermal behavior (see Tab. II), e.g.
due to hidden electro-chemical processes.

More advanced ANN models, however, can capture the
apparent non-linearity.12 Using a distinct test data set, the
ANN thermal model yields an RMSE of 0.29 K for single
time intervals (local error), see Fig. 5. The MAE at the end
of a charging event is 1.96 K (global error), see Tab. II. For
our case study we deem this accuracy as sufficient (see also
Sec. V-C). Yet, the input features of the data-driven thermal
model seem to lack further influences on the battery’s thermal
behavior. The input features could therefore be enhanced, e.g.
by internal cell temperatures or ambient conditions (tempera-
ture, sun radiation, wind). Note that typical EV onboard data,
however, does not yet provide this information.

B. Operating Cost Evaluation

Figure 6 shows the operating cost components for all three
modes described in Sec. IV normalized against the operating
cost of Mode I. On average, Mode III yields a 7.8% lower
operating cost compared with Mode I; similar results can be
found in the literature, e.g. 5.4% in [8] and 13.2% with simpli-
fications in [15]. Although p < 0 in (14b), i.e. discharging the
EV battery is possible, no energy rewards J−E can be observed
in Mode III. This implies that J−E does not compensate for
round-trip energy losses (charging and discharging) and aging
costs.

Disregarding battery aging underestimates the total op-
erating cost in Mode I by 30.1% on average; in [6] an
underestimation of up to 52% is reported. This becomes
apparent when applying Mode II: the optimization scheme
utilizes price differences throughout the charging events to

12For the sake of brevity we only report the best-performing ANN model
(two hidden layers, ten neurons each, sigmoid activation function).

TABLE II: Local and global error of electrical and thermal
battery models (Sec. III-A, III-B).

Model Local Error Global Error
(RMSE) (MAE)

Electrical ECM 0.35% SOC 2.37% SOC
Constant Battery Temperature 0.72 K 7.57 K

Linear Regression Thermal Model 0.76 K 4.18 K
ANN Thermal Model 0.29 K 1.96 K
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Fig. 6: Normalized operating cost and its components of
45 real charging events; Mode I (no optimization), Mode II
(energy costs optimization), Mode III (energy and aging costs
optimization).

generate energy rewards. Thus, the energy costs (15) decrease
by 13.3% compared with Mode I. Calculating the battery
aging costs (16) afterward, however, yields a 55.8% higher
total operating cost. Repeatedly charging and discharging the
battery increases the battery temperature θ and causes the
calendar aging costs J cal

D to rise in Mode II. Trippe et al. [6]
report an even more drastic result for this setup: 8% electricity
costs reduction, but a threefold increase of battery aging costs.
Hence, we conclude that especially for charging with the
allocation of V2G services–in this case energy arbitrage–
battery aging must not be neglected.

C. Effects of Thermal Modeling

Including advanced thermal models, e.g. ANNs, increases
the problem complexity and the computational effort to solve
the resulting optimization problem. Therefore, we analyze
the necessity of a thermal battery model as described in
Sec. III-B. In Mode III, assuming constant battery temperature,
i.e. ∆Θn = 0.0,∀n ∈ N , would underestimate the operating
cost by 0.55% compared with a data-driven thermal model.
Applying Mode II, however, the operating cost would be
underestimated by 3.44%.

Besides the errors in estimating the operating cost, the
presence of a thermal model also influences the decision
made by the optimization scheme, i.e. the charging power
trajectory p∗. Figure 7 shows exemplary power profiles for
i) assuming constant battery temperature and ii) using a data-
driven thermal model. For |p| > 7 kW, the mean difference
of charging power is 3.11 kW, when comparing the constant
battery temperature assumption with the data-driven thermal
model. However, for |p| ≤ 7 kW the mean deviation of
charging power only amounts to 0.75 kW.

Although the operating cost only show minor deviations, the
charging power profiles change significantly. In particular, the
relevance of the battery temperature rises with the (absolute)
charging power. Hence, we suggest to use advanced thermal
models, e.g. as in Sec. III-B for |p| > 7 kW. For |p| ≤ 7 kW,
assuming constant battery temperature suffices.
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D. Effects of Battery Prices

Due to EV market growth and battery technology improve-
ments battery production prices will likely decrease within the
next decade [41]–[43].13 In anticipation of SC for EV fleets,
we compare EV operating cost of real charging events (see
Sec. IV) with future battery prices for 2025 (VEV = 4470e)
and 2030 (VEV = 2770e) taken from [41].14 This directly
affects (16), i.e. the aging costs JD could on average decrease
by 26.5% in 2025 and by 54.4% in 2030 compared with 2020
battery prices (VEV = 6080e). Regarding the total operating
cost, however, the decrease would only amount to 6.8% in
2025, or 15.9% in 2030, respectively. This reduction of battery
aging costs is not sufficient for energy arbitrage to become
profitable from a user’s point of view. A conceivable setup
for power suppliers to incentivize EV owners to participate in
V2G services could be a flat compensation for battery aging
costs per charging event.

E. Influence of Electricity Tariff

Using today’s dynamic electricity tariffs (e.g. aWATTar15),
V2G services such as energy arbitrage may be unprofitable
(see Fig. 6). The reason could be insufficient price variations
over time to compensate aging costs. To investigate, we
quantify the spread of a charging event’s price profile ε as

γ =
max {ε} −min {ε}

εmean
, (20)

with the mean workday price εmean = 0.286e/kWh as a
reference. To evaluate the sensitivity of the optimization
scheme to γ, we use an exemplary eight-hour charging event
from 60% SOC to 100% SOC. Then, three price profiles with
different γ are tested (Fig. 8). We first use a regular workday
profile with γ=0.054 (blue). Second, we analyze a real-
world case from 2021 with slight electricity underproduction
in the morning and overproduction in the afternoon (γ=0.418,

13Also advances in battery technology, i.e. reduced battery aging, would
have similar effects as decreasing battery production prices.

14To highlight the influence of decreasing battery prices, we assume 2018
electricity prices as the cost calculation’s underlying future prices and use a
setup as in Sec. IV.

15https://www.awattar.de/
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red).16 Considering the rise of renewable energy sources in the
future, such cases could occur more often [44]. Grid operators
may then use EV batteries as power reserve to compensate
drastic grid imbalances. Thus, a third, stretched profile of the
real-world case with γ=0.5 is used (green).

Figure 9 shows the resulting SOC profiles. For γ=0.054
(blue), no discharging of the battery takes place. Instead,
charging is delayed to reduce battery aging. In contrast,
the SOC profile of the real-world case (Fig. 9, red) with
γ=0.418 shows discharging of the battery at the beginning,
when ε is high. The battery is then maintained at a level of
approx. 41% SOC and charged later, when ε is low. In this
way, both energy costs are lowered (via energy arbitrage) and
battery aging is reduced (by decreasing the charging event’s
mean SOC).

To guide future work on grid-supporting V2G services,
we estimate a characteristic threshold for γ, see also [4],
[45]. We assume discharging the battery in one time interval
and charging in the second one with equal (absolute) power
|p| ≤ 7 kW. The characteristic threshold

γ∗ =
JE · (1− η) + 2JD

εmean
, (21)

then represents the critical price spread above which V2G
rewards fully compensate for battery aging and conversion
losses. With θ=21 °C and a round-trip energy efficiency
η=0.997, we obtain γ∗=0.431. Thus, for this setting, V2G

16German day-ahead prices (05/05/2021), fees and taxes added [39].
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potential is fully utilized if the price spread is above 43.1 %
relative to εmean = 0.286e/kWh. The green SOC profile in
Fig. 9 with γ=0.5 confirms this result. At the beginning,
the battery is fully discharged to 10% SOC, i.e. the lower
SOC bound, see (14c). After idling for approx. 3 h, the battery
is charged to the target SOC of 100%. Accordingly, V2G is
unprofitable for price profiles as in Fig. 3, where γ = 0.107
(workday) and γ = 0.075 (weekend) is significantly below γ∗.

Note that γ∗ also depends on other quantities, e.g. a
charging event’s SOC and time range, whose influences need
to be investigated in future work. The specific value of γ∗ may
thus not apply directly to other cases. Rather, a qualitative
result can be concluded. Influencing EV charging processes
externally (e.g. as grid operator) requires an adapted price
policy. Instead of averaged price profiles (e.g. Fig. 8, blue), the
fluctuations of the electricity market, such as extensive price
peaks (Fig. 8, red), need to be passed to the EV customer.

VI. CONCLUSION

In the present work, we analyzed the influence of battery
aging on Smart Charging (SC) of Electric Vehicles (EVs).
We modeled the EV battery using onboard sensor data and
set up an optimization-based SC use case. Evaluating the
concept with real-world EV data revealed the need for ad-
vanced thermal models when charging power exceeds 7 kW.
We found that exploiting time and energy flexibility of EV
charging reduces operating cost by 7.8%. Furthermore, dis-
regarding battery aging underestimates EVs’ operating cost
up to 30%. Battery aging costs thus hinders many Vehicle-
to-Grid (V2G) services based on bidirectional power flow
from being profitable. To overcome this would require a vast
decrease of battery production prices or adapted electricity
tariffs that directly represent market fluctuations. Future work
will examine stochastic influences on SC. These comprise
EV user behavior, random V2G service allocation, integration
of renewable energy sources, and dynamic constraints of
transformers and charging stations.

APPENDIX
DISCRETE DYNAMIC PROGRAMMING ALGORITHMS

Algorithm 1: Initialization of backward induction al-
gorithm (see Algorithm 2), acc. [37].

Input: N, e0, eN , θ0, e, e, θ, θ, p, p, λ

# discretize state and action:

1: ed ← range(start: e, stop: e, step: 0.8 kWh)

2: θd ← range(start: θ, stop: θ, step: 1 K)
3: pd ← range(start: p, stop: p, step: 1 kW)

# initialize cost grid and action grid (penalty value λ = 1000e):

4: J← zeros(N, length(ed), length(θd))
5: J[0, :, :],J[N, :, :]← λ, λ
6: J[0, argmin(|ed − e0|), argmin(|θd − θ0|)]← 0
7: J[N, argmin(|ed − eN |), :]← 0
8: P← zeros(N, length(ed), length(θd))

Output: J,P, ed,θd,pd

Algorithm 2: Backward induction algorithm to create
cost grid J and corresponding optimal actions P,
acc. [37].

Input: N,J,P, ed,θd,pd, e, e, θ, θ, p, p, ε, λ

1: for n← N−1 to 0 :
2: for all ei ∈ ed :
3: for all θj ∈ θd :

# initialize cached total cost:

4: J ← ones(length(pd)) · λ
5: for all pk ∈ pd :

# validate charging power constraints (14b):

6: if p(ei, θj) ≤ pk ≤ p(ei, θj) :
# calculate state transitions (Sec. III-A, III-B):

7: en+1 ← ei + ∆E(ei, θj , pk)

8: θn+1 ← θj+∆Θ(pk, Q̇loss(ei, θj , pk),
∆E(ei, θj , pk), θj)

# validate state constraints (14c) and (14f):

9: if e ≤ en+1 ≤ e and θ ≤ θn+1 ≤ θ :
# calculate transition costs (15) and (16):

10: JE ← JE(pk, εn)

11: JD ← VEV
HEV

(∆Hcal(ei, θj , H0)+

∆Hcyc(|∆E(ei, θj , pk)|))
# calculate and cache total cost:

12: J [k]← JE+JD+J[argmin(|ed−
en+1|), argmin(|θd−θn+1|)]

# assign minimum cached cost and corresponding action:

13: J[n, i, j]← min(J)
14: P[n, i, j]← pd[argmin(J)]

Output: J,P

Algorithm 3: Forward integration algorithm to find the
optimal charging power trajectory p∗, acc. [37].

Input: N,J,P, e0, θ0, ed,θd, ε

# find starting point in the cost grid:

1: i, j ← argmin(J[0, :, ; ])
# initialize output and assign corresponding action:

2: p∗ ← zeros(N)
3: p∗[0]←P[0, i, j]

# initialize costs:

4: JE, JD ← 0, 0
# start forward integration loop:

5: for n← 0 to N−1 :
# calculate state transitions (see Sec. III-A and III-B):

6: en+1 ← en + ∆E(en, θn,p
∗[n])

7: θn+1 ← θn + ∆Θ(p∗[n], Q̇loss(en, θn,p
∗[n]),

∆E(en, θn,p
∗[n]), θn)

# calculate costs with (15) and (16):

8: JE ← JE + JE(pn, εn)

9: JD ← JD + VEV
HEV

(∆Hcal(en, θn, H0))+

∆Hcyc(|∆E(en, θn,p
∗[n])|)

# find nearest discrete state and assign corresponding action:

10: p∗[n+1]←P[n+1, argmin(|ed−en+1|),
argmin(|θd−θn+1|)]

Output: p∗, JE, JD
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