
 

 

Characterization and qualification of damage-tolerant ceramic 

matrix composites for structural applications in hot gas turbines 

 

 

 

Zur Erlangung des akademischen Grades eines 

Doktors der Ingenieurwissenschaften (Dr.-Ing.) 

 

von der KIT-Fakultät für Maschinenbau des 

Karlsruher Instituts für Technologie (KIT) 

genehmigte 

 

Dissertation 

von 

 

M.Sc. Ingo Jürgen Markel 

 

 

Tag der mündlichen Prüfung: 16.07.2021 

Hauptreferent: Prof. Dr. Hans Jürgen Seifert 

Korreferent: Prof. Dr.-Ing. Dietmar Koch 

  



 



Acknowledgements 

 

i 

Acknowledgements 
First and foremost I would like to acknowledge Prof. Dr. H. J. Seifert for the opportunity to 

prepare this thesis under his supervision at the IAM-AWP. His guidance provided me insight into 

thermodynamics and computational methods. He not only supported, but also challenged me 

and awoke my ambitions during numerous discussions. 

I would like to thank Prof. Dr. Koch for his willingness and time to act as co-referee for this work. 

I also would like to directed special thanks to Dr. Martin Steinbrück, my supervisor and group 

leader for High Temperature Materials Chemistry at the IAM-AWP. Martin had always an open 

door for discussions and shared his invaluable experience in high temperature oxidation with 

me. This allowed special synergies in combining high-temperature experiments with 

computational thermodynamics. Additionally, Martin provided me an insight into the 

interesting field of accident tolerant fuels. 

My special thanks to Jürgen Glaser for the technical support and creativity in numerous areas 

from modifications of the STA 449 to custom-built sample holders and materialographic sample 

preparation and investigation by SEM and light microscopy. Furthermore, I would like to thank 

the other members of the group for high temperature materials chemistry, especially Ulrike 

Stegmaier for the technical support, Petra Severloh for her advice on materialographic sample 

preparation, and Mirco Große for the neutron radiographic investigation of the ZrB2-containing 

CMC. 

I thank Dr. H. Leiste for the XRD measurements and the discussions on the interpretation of the 

results and Dr. T. Bergfeldt for chemical analysis of precursor-derived Si-(B-)C-N ceramics. I 

would also like to thank Dr. Damian Cupid for his practical introduction into the secrets and 

pitfalls of Thermo-Calc. 

I gratefully acknowledge the German Federal Ministry of Education and Research (BMBF) for 

funding this work in the framework of the project NewAccess (new advanced ceramic 

composites for energy saving gas turbines, funding code: 03EK3544B). I also thank our project 

partners Clariant Produkte GmbH, DLR e.V., Fraunhofer IKTS, MTU Aeroengines AG, Schunk 

Kohlenstofftechnik for providing the preceramic polymers and CMC samples and also regular 

critical discussions. 

Many thanks also to my other colleagues for the great time at the IAM-AWP and in Karlsruhe. 

  



Contents 

 

ii 

Contents 
Acknowledgements ........................................................................................................................... i 

Abstract ............................................................................................................................................ 1 

1. Introduction .......................................................................................................................... 4 

1.1. Ceramic matrix composites ........................................................................................................... 4 

1.2. Precursor-derived ceramic matrix ................................................................................................. 5 

1.3. High-temperature application of CMC in gas turbines .................................................................. 7 

2. Fundamentals of the CALPHAD-method ............................................................................. 11 

2.1. Introduction ................................................................................................................................. 11 

2.2. Analytical description of the Gibbs free energy .......................................................................... 13 

2.3. Model description of the melt ..................................................................................................... 15 

2.3.1. Substitutional-solution model ............................................................................................. 15 

2.3.2. Partially ionic two-sublattice liquid model .......................................................................... 16 

2.4. Thermodynamic equilibrium ....................................................................................................... 17 

2.5. Thermodynamic optimization ..................................................................................................... 17 

2.6. Graphical representation of heterogeneous reactions ............................................................... 19 

3. Experimental methods ........................................................................................................ 20 

3.1. Sample preparation ..................................................................................................................... 20 

3.2. Simultaneous Thermal Analysis (STA) ......................................................................................... 21 

3.3. Oxidation tests at very high temperatures .................................................................................. 22 

3.4. Mass Spectrometry (MS) ............................................................................................................. 23 

3.5. X-Ray Diffraction (XRD) ................................................................................................................ 23 

3.6. Scanning Electron Microscopy (SEM) .......................................................................................... 24 

3.7. Chemical Analysis ........................................................................................................................ 25 

3.8. Neutron Tomography .................................................................................................................. 25 

4. Thermodynamic modeling .................................................................................................. 26 

4.1. The multicomponent system Zr-Si-B-C-N-O-H and subsystems .................................................. 26 

4.1.1. The system Si-B-C-N ............................................................................................................. 26 

4.1.2. The system Zr-Si-B-C-N ........................................................................................................ 28 

4.1.3. Zr-Si-B-C-N-O ....................................................................................................................... 31 

4.1.4. Zr-Si-B-C-N-O-H .................................................................................................................... 33 



Contents 

 

iii 

5. Phase equilibria in precursor-derived Si-(B-)C-N ceramics ................................................ 34 

5.1. Ceraset PSZ 10 and PSZ 20-derived Si-C-N ceramics ....................................................................35 

5.1.1. Thermodynamic analysis of pyrolysis and high-temperature  stability ...............................35 

5.1.2. Experimental investigations .................................................................................................43 

5.1.3. Discussion and Conclusion ...................................................................................................52 

5.2. Si-B-C-N ceramics .........................................................................................................................57 

5.2.1. Thermodynamic analysis of pyrolysis and high-temperature  stability ...............................57 

5.2.2. Experimental investigations .................................................................................................64 

5.2.3. Discussion and Conclusion ...................................................................................................70 

6. Phase equilibria and constitution in ZrB₂-filled SiC/Si-C-N-ceramics ................................. 74 

6.1. Preselection of the boron-containing filler ..................................................................................74 

6.2. Thermodynamic calculations on the compatibility  of ZrB2 and Si-C-N .......................................79 

6.3. Experimental investigations .........................................................................................................86 

6.4. Discussion and Conclusion ...........................................................................................................94 

7. High-temperature oxidation behavior of ZrB₂ ................................................................... 98 

7.1. Thermodynamic analysis of ZrB₂ oxidation ..................................................................................98 

7.2. ZrB₂ oxidation protection and passivation in oxygen ................................................................103 

7.3. ZrB₂ oxidation tests in steam and mass spectroscopic investigation ........................................105 

7.4. Discussion ...................................................................................................................................117 

7.5. Conclusion ..................................................................................................................................123 

8. High-temperature oxidation of ZrB₂-containing SiC/Si-C-N CMC..................................... 124 

8.1. Thermodynamic analysis of ZrB₂-SiC/Si-C-N oxidation ..............................................................126 

8.2. High-temperature oxidation of SiC/Si-C-N CMC ........................................................................131 

8.3. High-temperature oxidation of ZrB₂-SiC/Si-C-N CMC ................................................................139 

8.3.1. Mass spectrometric analysis ..............................................................................................139 

8.3.2. Thermogravimetric and microstructural analysis ..............................................................146 

8.4. Oxidation of SiC/Si-C-N under oxygen-starvation conditions ....................................................162 

8.5. Yttrium silicate-based environmental barrier coatings..............................................................164 

8.6. Discussion ...................................................................................................................................165 

8.7. Conclusion ..................................................................................................................................170 

9. Zusammenfassung (Extended Abstract in German) ......................................................... 171 

A. Appendix ........................................................................................................................... 180 



Contents 

 

iv 

A.1 Curriculum vitae ........................................................................................................................ 180 

A.2 Publications ............................................................................................................................... 181 

A.3 Additional data .......................................................................................................................... 182 

List of Symbols ............................................................................................................................. 183 

List of Figures ............................................................................................................................... 185 

List of Tables ................................................................................................................................. 193 

References.................................................................................................................................... 194 

 



Abstract

 

1 

Abstract 
Non-oxide ceramic matrix composites (CMC) posses excellent high-temperature resistance and 

tensile strength. Therefore, CMC have found increasing application in space industries and in 

the development of turbines for aviation and stationary power generation. Their use in turbines 

allows raising combustion temperature and thus an improvement in energy efficiency compared 

to conventional metallic materials. In addition, the potential weight saving due to a two-thirds 

lower density compared to conventional nickel-based alloys is attractive for aerospace 

applications. However, the extreme conditions in the hot gas path, such as high temperatures 

and the oxidizing and corrosive hot gas atmosphere, represent a challenge for the technical use 

of CMC. 

In the present work, the phase formations and high-temperature stabilities of precursor derived 

Si-(B-)C-N ceramic matrix and interactions with ZrB2 as a functional additive were investigated. 

Both ceramic materials can limit the maximum operating temperature of the CMC. 

Furthermore, the high-temperature oxidation behavior of the ZrB2-additive as well as the 

ensemble of a ZrB2-containing SiC-fiber reinforced Si-C-N ceramic was examined. To this end, 

thermodynamic equilibrium calculations were combined with experiments at high temperatures 

and under prototypic combustion atmospheres. The CALPHAD method allowed thermodynamic 

calculations of equilibrium states such as phase equilibria and their compositions. The results 

enabled the identification of reactions which occur during preparation or limit the high-

temperature stability of the obtained CMC. 

Si-C-N and Si-B-C-N ceramics were prepared by pyrolysis of the preceramic polysilazanes 

Ceraset® PSZ 10 and PSZ 20 as well as a polyborosilazane at 1273 K-1773 K in flowing Ar- and 

Ar/N2-atmospheres, respectively. The pyrolysis behavior, high-temperature stability, 

decomposition reactions and crystallization of Si-(B-)C-N ceramics were investigated by a 

combination of STA, mass spectrometry, XRD and SEM/EDX. Furthermore the CALPHAD-method 

was used to predict gaseous pyrolysis- and decomposition reactions and phase stabilities as a 

function of temperature and nitrogen partial pressure. Thermodynamic calculations confirm and 

explain the experimental findings. 

Based on the known chemical composition of the Ceraset® PSZ 10 and PSZ 20 precursor 

polymer, their transformation into a solid amorphous ceramic was modeled. The hydrogen, as a 

component of the functional groups in the polymer chain, is predominantly released in the form 

of H2 and CH4. Coupled STA and mass spectrometric analysis showed that pyrolysis is a two-step 

endothermic process. The actual composition of the obtained Si-C-N ceramics agreed well with 

the calculations. In thermodynamic equilibrium the composition is in the three-phase region 

SiC+C+Si3N4 for temperatures lower than 1757 K. The high-temperature stability of Si-C-N 

ceramics is determined by its composition. Calculated phase stability diagrams show that the 
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carbothermic decomposition reaction (Si3N4+3C=3SiC+2N2) at 1757 K is limiting the maximum 

application temperature under atmospheric pressure. This was confirmed qualitatively and 

quantitatively by combined mass spectrometry and thermogravimetry. The decomposition 

temperature decreases with decreasing nitrogen partial pressure. 

Thermodynamic calculations and experimental investigations were also carried out based on 

the compositions of the Si-B-C-N_2 polyborosilazane and the Si-B-C-N_2 and Si-B-C-N_1 

ceramics. In addition to H2 and CH4, occurring N2 (pN2=0.06-0.12 bar) and NH3 (pNH3<4-10-4 bar) 

indicate a nitrogen excess of the Si-B-C-N_2 preceramic polymer. As a result, the C and N 

contents decrease while the Si:B ratio remains constant during the pyrolysis of the polymer to 

the solid Si-B-C-N ceramic ((SiBC3N3H10)n→SiBC1.4N2.3). The mass loss during crosslinking of the 

Si-B-C-N_1 polyborosilazane is significantly higher than for Ceraset® PSZ 10 and PSZ 20 and 

associated with a pronounced release of H2. As a result, bubbles are formed which are still 

present in the obtained Si-B-C-N ceramic. The ceramic yield of the Si-B-C-N_1 polyborosilazane 

of about 50 wt.% is lower than that of the Ceraset® PSZ 10 (60 wt.%) and PSZ 20 (67 wt.%) Si-C-

N precursor polymers. The composition of both obtained Si-B-C-N ceramics is in phase 

equilibrium Si3N4+SiC+BN+C (T<1757 K). For both Si-B-C-N ceramics, as well as the Si-C-N 

ceramics, the temperature-limiting reaction is the carbothermic decomposition reaction 

(Si3N4+3C=3SiC+2N2) at 1757 K. Due to their different Si:B:C ratios, either Si3N4 or free carbon is 

completely consumed in this reaction. The ideal nitrogen content for maximum high-

temperature stability, without formation of liquid or gaseous reaction products, was 

determined for the individual Si:B:C ratio from thermodynamic calculations. The Si-B-C-N_1 

ceramic exhibited a superior high-temperature resistance compared to Ceraset® PSZ 10- and 

PSZ 20-derived Si-C-N ceramics. Even above the carbothermic reaction temperature, mass loss is 

significantly lower. 

A ZrB2/Si-C-N composite was prepared by pyrolysis of a mixture of ZrB2-powder and the 

polysilazane Ceraset® PSZ 20 at temperatures from 1473 K-1773 K. High-temperature reactions 

between the ZrB2-additive and the equilibrium constituents of the ceramic Si-C-N matrix (Si3N4, 

SiC und C), limiting the high-temperature stability, were identified using the CALPHAD-method. 

The first reaction (ZrB2+Si3N4=ZrN+2BN+L(Si,Zr,B,N)) occurs at 1870 K. Since this takes place 

113 K above the carbothermal decomposition reaction of the Si-C-N matrix, the ZrB2-additive 

does not represent a further limitation to the maximum application temperature. The formation 

mechanism for ZrCxNy was identified by a combination of CALPHAD-modeling and key 

experiments: First ZrN is formed from a nitriding reaction of ZrB2 with the applied Ar/N2 

pyrolysis atmosphere (pN2=0.5 bar). As soon as ZrN is present, free carbon dissolves from the Si-

C-N matrix forming a ZrCxNy solid solution with a carbon content of C/(C+N) = 0.56. Therefore, 

formation of ZrCxNy can be prevented by suitable pyrolysis conditions, within the stability range 

of ZrB2, during preparation of the ZrB2/Si-C-N composite. This is the case at small nitrogen 

partial pressures and moderate temperatures below 1673 K. 
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The high-temperature oxidation behavior of compacted ZrB2 powder pellets was investigated in 

flowing H2O /Ar and O2/Ar-atmospheres (pH2O=pO2=0.2 bar) at temperatures up to 1673 K. The 

onset of oxidation is at approximately the same temperature in both atmospheres. However, 

the higher mass gain was observed in steam-containing atmosphere. The measured mass 

change is a superimposition of two effects: mass gain by the oxidation of ZrB2 and mass loss by 

volatilization of the liquid boria. Quantitative mass spectrometric analysis of H2, as a side 

product of ZrB2 oxidation in steam, allowed to separate the oxidation and volatilization 

reactions. Oxidation kinetics of ZrB2 are complex and shows a strong temperature dependence 

changing from linear kinetics at 1073 K to sub-parabolic kinetics at 1673 K. Thermodynamic 

equilibrium calculations reveal the partial pressures of boron-containing gas species in O2- and 

H2O-containing atmospheres. The dominant gas species are BO2(g) (T<1493 K) and B2O3(g) 

(T>1493 K) as well as orthoboric acid H3BO3(g) (T<1179 K) and metaboric acid HBO2(g) 

(T>1179 K), respectively. Partial pressures are higher in H2O-containing atmosphere. Mass 

spectrometric analysis of ZrB2 oxidation in H2O-containing atmosphere confirmed the formation 

of H3BO3
+, H2BO3

+, H2BO2
+, HBO2

+ and BO2
+ species. 

The oxidation behavior of a ZrB2-containing CMC (ZrB2-SiC/Si-C-N) was investigated in flowing 

O2- and H2O-containing atmospheres at temperatures up to 1673 K. Similar to pure ZrB2, the 

total mass change of the ZrB2-SiC/Si-C-N CMC results from the superposition of mass gain by 

oxidation and mass loss by volatilization of boria. Quantitative mass spectrometric analysis of 

H2, as a by-product of the oxidation reaction steam, allowed separation of the oxidation 

reaction from volatilization effects. From temperatures above about 1200 K, the volatilization 

becomes clearly noticeable. Thermodynamic calculations showed that boron-containing gas 

species are mainly responsible for volatilization in both O2- and H2O-containing atmospheres. 

Partial pressures of boron-containing gas species are several orders of magnitude higher than 

those of the silicon-containing gas species. The ZrB2-SiC/Si-C-N CMC showed the intended 

formation of a liquid borosilicate melt and oxidation stopped in ZrB2-rich cavities. This showed 

that the ZrB2-additive might be able to improve the oxidation resistance of the CMC by sealing 

cracks upon oxidation and thereby slowing down the inward diffusion of oxidizing gas species, 

especially at lower temperatures where SiO2 formation kinetics are slow. 

In all sections, the combination of CALPHAD calculations and high-temperature experiments 

provided an excellent complementary method to elucidate the involved mechanisms. 
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1. Introduction 

1.1. Ceramic matrix composites 
Ceramic matrix composites (CMC) are a class of materials characterized by the application of 

long ceramic fibers embedded in a ceramic matrix. CMC are typically denominated by the 

utilized ceramic fiber and matrix material, respectively (e.g. C/SiC or Cf/SiCm). 

A basic distinction is made between oxide and non-oxide CMC. Typical oxide CMC are composed 

of Al2O3 fibers in an Al2O3 matrix. However, also matrices containing mullite (xAl2O3·ySiO2) or 

Al2O3-YSZ (yttria stabilized zirconia) are technically applied [1]. Besides pure Al2O3 fibers, also 

mullite- or ZrO2-containing fibers are available [2]. In addition, the synthesis of a number of 

other oxide fiber types such as mullite, spinel, YAG (yttrium aluminum garnet) and PZT (lead 

zirconate titanate) was demonstrated [3]. Non-oxide CMC are typically consisting of C or SiC 

fibers [4] embedded in a matrix consisting of Si [5], SiC [6] or Si-C-N [7]. Also boron-containing 

Si-(B-)C-N fibers [8][9] and matrix [10] are synthesized. In this context carbon is also considered 

as ceramic. The present work deals exclusively with non-oxide CMC. Due to covalent bonds, SiC 

fibers are mechanically more stable and less prone to creep than oxide fibers above 1273 K. 

Figure 1.1 shows a SEM (scanning electron microscopy) micrograph of a cross-sectioned SiC/Si-

C-N composite. The SiC-fibers are processed in a 2D fabric structure with a 0°/90° orientation of 

the individual fiber bundles and layers of this fabric stacked on top of each other. Fibers are 

surrounded by a ceramic Si-C-N matrix. 

 
Figure 1.1: SEM micrograph of a cross section of a SiC-fiber reinforced Si-C-N composite. 

Monolithic ceramics often show a brittle mode of failure. An improved fracture toughness is 

achieved by introducing ceramic fibers into the composite. CMC show an high crack propagation 

resistance resulting in a non-brittle failure mode, improved thermal shock resistance and 

dynamic cycling toughness. 
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Figure 1.2 shows the acting strengthening mechanisms in a CMC. These are all based on the 

consumption of energy, which is then no longer available for opening of the crack [11]: 

 detachment of the fiber from the matrix and formation of a new interface 

 crack deflection and branching along the fiber 

 bridging of cracks by fibers preventing further opening of the crack 

 crack shielding by load transfer to a fiber in front of crack tip 

 consumption of energy by friction at fiber/matrix interface during fiber pull-out. 

 
Figure 1.2: Scheme of reinforcement mechanisms acting in CMCs [11]. 

These mechanisms are all based on a weak fiber-matrix interface which prevents a crack of 

cutting through the fiber. A Weak Matrix Composite (WMC), inherently has a weak connection 

due to a porous matrix. Therefore, a crack propagating through the matrix is deflected along the 

interface. A weak fiber-matrix interface can also be achieved by application of a fiber coating, 

also called interphase, which provides a weak interface in spite of the presence of a stiff 

matrix [12]. The coating is either conducted as single phase commonly consisting of pyrolytic 

carbon (PyC) or BN, or as a multilayered coating with SiC interlayers [13]. 

 

1.2. Precursor-derived ceramic matrix 
Different methods are used to produce the ceramic matrix of CMC. A fiber preform can be 

infiltrated either using gaseous precursor molecules (chemical vapor infiltration, CVI) or a melt 

(liquid silicon infiltration, LSI) [13]. Both LSI and CVI are suitable to produce CMC with a low 

residual porosity. However, CVI is very slow, and in LSI the melt can attack the ceramic fibers 

during infiltration at high temperatures (Tm,Si = 1687 K). 

The polymer infiltration and pyrolysis (PIP) process combines fast processing time and low 

processing temperatures compared to CVI and LSI, respectively. This makes the PIP process a 

comparably gentle processing technique preserving the fiber and fiber coatings, respectively. 
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The preparation of CMC by the PIP process is outlined in Figure 1.3. Ceramic fibers are 

processed by modern weaving technologies [14]. The obtained fiber preform can be coated by 

chemical vapor infiltration (CVI) or a wet-chemical process. The fiber preform is infiltrated with 

a liquid polymer which is transformed into a solid ceramic matrix by pyrolysis. Thereby 

hydrogen, as part of the polymers functional groups, is released into the atmosphere as 

hydrogen-containing gas species (H2, CH4, NH3...) depending on the thermodynamic equilibrium 

conditions such as composition of the precursor polymer, temperature and nitrogen partial 

pressure of the atmosphere [15] (see Section 5). By release of the gaseous species and 

densification of the ceramic during pyrolysis, the ceramic matrix shrinks. To achieve the desired 

residual porosity < 10 %, the infiltration and subsequent pyrolysis is typically repeated 5 to 10 

times. 

 
Figure 1.3: Schematic illustration of the PIP process. 

Since the elemental constituents are incorporated on an atomic level in the preceramic polymer 

chain, the composition of the obtained ceramic matrix is extremely homogeneous. By selective 

synthesis of the polymer, the composition of the precursor-derived ceramic matrix and thereby 

its properties can be precisely adjusted (see Section 5). Also preceramic polymers containing 

B [16], Ti [17], Zr [18] or Hf [19] are synthesized. Ultra high temperature ceramics (UHTC) nano-

composites can be obtained from Hf- or Zr-containing polymers. Polyborosilazanes give boron-

containing Si-B-C-N ceramics with improved high-temperature stability [16] and oxidation 

tolerance [20]. 

Furthermore, the PIP process offers the opportunity to introduce additives into the matrix using 

particle-filled precursor polymers. Additives could be passive fillers, which are added to improve 

the degree of filling and reduce the total number of PIP cycles necessary to manufacture a 
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dense matrix. Moreover, active fillers with additional functions can be used. Reactive fillers, 

which undergo a volume expansion, can reduce the residual porosity and compensate the 

shrinkage or warping of the material [21][22][23]. Boron-containing filler can improve the 

oxidation resistance of conventional Si-C-N precursor-derived ceramics (see Section 8). 

 

1.3. High-temperature application of CMC in gas turbines 
Due to their low weight, excellent high-temperature resistance and strength CMC are attractive 

materials for aerospace technology [4][12]. Therefore a number of studies deal with the 

application of SiC-based CMC in reentry vehicles [24], aircraft propulsion turbines [25][26] and 

gas turbines for stationary power generation [27][28]. 

Figure 1.4 shows the temperature stability of materials in aircraft turbines. The maximum 

allowable material temperature of nickel base superalloys is shown in black color. This is 

increasing with the development and introduction of directional solidified (DS) and single crystal 

(SX) alloys. The maximum operation temperature of metallic nickel-based superalloys is below 

1000 °C. By using film cooling, thermal barrier coatings (TBC) and closed-loop cooling, the 

maximum allowable gas temperature can be increased accordingly. Compared to nickel-based 

superalloys, CMC inherently have a significantly higher temperature resistance. Therefore, the 

maximum gas temperature is above 1300 °C or 1500 °C with film cooling. 

 
Figure 1.4: High-temperature stability of materials in aircraft turbines [29]. 

Due to higher operating temperatures, the use of CMC in aircraft turbines can increase the fuel 

efficiency [30]. GE expects 10% better fuel efficiency and 25% more trust [31]. In addition to 

their superior high-temperature properties, CMC also have a 66 % lower density compared to 

nickel-based superalloys. This allows weight savings which are attractive in aviation [30][31]. 
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Today CMC are already used in GE's LEAP engines as shrouds [32]. GE also demonstrated the 

function of CMC turbine blades [33]. 

Figure 1.5 shows a schematic illustration of the oxidation and volatilization processes acting on 

Si-based CMC in steam containing combustion atmosphere. Combustion atmosphere in 

conventional gas turbines and aero engines contains a number of oxidizing components such as 

O2, CO2, CO and H2O [34]. These contribute to different degrees to the oxidation of Si-based 

CMC and the formation of SiO2 under combustion conditions [25]. Water vapor plays a special 

role in this process. Besides its strong oxidizing effect [26], steam also causes the volatilization 

of SiO2 by formation of gaseous silicon hydroxides such as Si(OH)4 and SiO(OH)2 [26][35][36]. 

Robinson and Smialek found SiC recession rates in the range of 0.2-2 µm/h under simulated gas 

turbine combustor conditions at 1200-1400 °C [25]. 

 
Figure 1.5: Schematic illustration of the oxidation and volatilization of Si-based CMC. 

Various models have been published in literature to describe the oxidation and volatilization 

behavior of CMC. In general, the mass change per unit area Δw/A can be described as: 

 
  

 
      (1.1) 

with the kinetic rate constant k, time t and the exponent n. Pure parabolic and linear kinetics 

result in n=1/2 and n=1, respectively. 

Oxidation is controlled by the diffusion of oxidizing species through the growing oxide layer (e.g. 

SiO2) to the oxide/CMC interface and therefore follows parabolic kinetics. Volatilization is 

controlled by the diffusion of gaseous volatilizations products from the oxide/gas interface into 

the combustion atmosphere and therefore shows linear kinetics. As a consequence, an overall 

paralinear behavior is observed [37]. Other authors consider oxidation and volatilization in two 

separate terms or include the partial pressures of the formed volatile gas species [36][37] [38]. 

Environmental barrier coatings (EBC) were developed to protect non-oxide CMC from oxidation 

and volatilization. The gas tight coating protects the underlying CMC and is not attacked by the 

steam-containing combustion gas due to its low SiO2 activity. Various materials have been 

investigated as potential CMC [39][40][41]. Rare earth silicates, especially yttrium silicates 

(Y2SiO5, Y2Si2O7) [42] and Ytterbium silicates (Yb2SiO5, Yb2Si2O7) [43] have been of particular 

interest. In contrast to thermal barrier coatings, protection against high temperatures plays a 
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secondary role due to the inherent high temperature stability of CMC. However, chemical 

compatibility with the CMC and similar coefficient of thermal expansion (CTE) are important for 

good durability and thermal shock resistance [24]. Additional bond coatings are used to improve 

adhesion of the EBC on the CMC or gas tightness, respectively, see Figure 1.6. 

Other concepts for improved oxidation protection of Si-based CMC use boron-containing 

components. By formation of a boro-silicate glass (TE= 713 K [44]) cracks are closed and the 

inward-diffusion of oxidizing gas species is slowed down. The protective effect was 

demonstrated for BN fiber coatings [45], bulk ZrB2-SiC and HfB2-SiC ultra-high-temperature 

ceramics (UHTC) [46][47] and Si-B-C-N precursor-derived ceramics [20]. Figure 1.6 shows the 

use of a boron-containing filler in precursor-derived Si-C-N ceramics as alternative to 

polyborosilazanes containing boron in the precursor polymer chain [48][49]. Figure 1.6 shows 

schematically a CMC material system with combined oxidation protection consisting of EBC, 

fiber coating and functional additives. 

 
Figure 1.6: Scheme of combined oxidation protection of a Si-based CMC with EBC, fiber coating and functional additives. 
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The aim of this work is to investigate the behavior of the individual components of the Si-based 

CMC and their interaction under combustion conditions i.e. at high temperatures and in O2- and 

H2O-containing atmospheres. 

Already during pyrolysis of preceramic polymers, reactions take place which influence the 

composition and microstructure of the obtained Si-(B-)C-N ceramic matrix. From the study and 

understanding of this process, suitable pyrolysis conditions for the preparation of precursor-

derived Si-(B-)C-N ceramic are to be derived. Also reactions that intrinsically limit the high-

temperature stability of the obtained Si-(B-)C-N ceramics must be identified. The dependence of 

these reactions on the composition of the ceramic as well as the atmosphere must be 

understood. 

Additions of ZrB2, as a boron-containing additive, might improve the oxidation resistance of the 

CMC. To obtain a ZrB2-containing ceramic matrix, mixtures of liquid preceramic polymers and 

ZrB2-powder can be pyrolyzed. This requires suitable pyrolysis conditions to avoid reactions of 

the ZrB2-additive with the preceramic polymer, gaseous pyrolysis products or the applied 

pyrolysis atmosphere. In addition, the chemical compatibility of the ZrB2-additive with the 

obtained ceramic matrix must be given. Possible high-temperature reactions that could limit the 

maximum operating temperature of the CMC must be identified. 

Little is known about the high-temperature oxidation behavior of ZrB2 in H2O-containing 

atmospheres. In addition, also volatilization by formation of gaseous species plays an important 

role. The separation of both effects is not possible by thermogravimetry alone. Therefore, a 

combined approach using additional qualitative and quantitative mass spectrometric analysis is 

used in this work to separate oxidation and volatilization reactions. 

Finally, samples of ZrB2-containing SiC/Si-C-N CMC are exposed to prototypical combustion 

atmospheres. Their oxidation behavior is compared to ZrB2-free SiC/Si-C-N CMC to evaluate the 

influence of the ZrB2-additive on the oxidation behavior of Si-containing CMC. 

An approach combining CALPHAD calculations and high-temperature experiments is used to 

investigate all these aspects concerning the HT-stability and oxidation resistance of the Si-based 

CMC. 
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2. Fundamentals of the CALPHAD-method 

2.1. Introduction  
The CALPHAD-method goes back to the idea of calculating phase equilibria from 

thermodynamics. Formerly, CALPHAD was the abbreviation of CALculation of PHAse Diagrams. 

Nowadays Computer Coupling of Phase Diagrams and Thermochemistry is used as a more 

accurate designation. 

In 1908, van Laar demonstrated that the form of T-x phase diagrams can be derived from 

functions representing the temperature and composition dependence of the Gibbs energy of 

the particular phases [50]. Johanssons work in 1937, which derived thermodynamic properties 

by analyzing part of the Fe-C system [51], is considered today as “the first modern CALPHAD 

assessment” [52]. In the 1950s, calculation of phase equilibria was applied to systems of 

technological importance. Kaufman and Cohen investigated the martensitic transformation in 

the Fe-Ni system [53] and Meijering investigated the system Ni-Cr-Cu [54]. The actual coinage 

and distribution of the CALPHAD method was then made by Kaufman und Bernsteins book 

Computer Calculation of Phase Diagrams in 1970 [55]. 

The workflow of the CALPHAD-method is schematically depicted in Figure 2.1. The foundation of 

the CALPHAD method is the analytical description of the Gibbs free energy of all phases, species 

and elements in the considered system with thermodynamic models. Thereby, the dependence 

on temperature, composition and pressure is considered. Models are based on physical, 

chemical and crystallographic properties of the phases such as crystal structure, chemical bond 

type, order/disorder or phase transitions. However, also purely mathematical approximations 

by polynomial functions, of grade i, are used, which are able to describe the correct course of 

the thermodynamic data. However, these parameters do not possess a physical meaning. In 

both cases, the models contain adjustable parameters, which are determined using 

thermodynamic data from experiments, ab-initio calculations and, if no other satisfactory data 

are available, estimates. This process of adjusting parameters by least squares method is called 

thermodynamic optimization. The obtained functions, representing the analytical description of 

the Gibbs free energy, are stored in databases. Using appropriate software like Thermo-

Calc [56] phase equilibria are calculated for prescribed boundary conditions. From this, phase 

and property diagrams are drawn and thermodynamic quantities are calculated even for 

multicomponent systems. These data can also be used as input for kinetic models. 
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Figure 2.1: Schematic description of the CALPHAD method [57]. 

The evaluation of these data gives important information for the materials application: 

 Design of new materials 

 Limitations for applicability 

 Identification of underlying heterogeneous reactions between the components and with 

the atmosphere. 

A great advantage of the CALPHAD method is that with the obtained Gibbs free energy 

descriptions, extrapolations into experimentally unexplored (T, p, x) or metastable regions are 

possible. Not the whole system has to be assessed experimentally, but few key experiments are 

sufficient to validate the calculations. 

In this chapter, an introduction into the CALPHAD method and into the underlying models for 

description of the phases is given.  
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2.2. Analytical description of the Gibbs free energy 
It is essential for the CALPHAD-method that the Gibbs free energy (G) functions for all stable 

and metastable phases of the regarded system are known. This function must be able to 

describe the dependence of G on the temperature, pressure, and for solution phases also on the 

composition. In general, the Gibbs free energy function of a phase   is given by: 

               
            

     
   (2.1) 

consisting of three terms: the reference state   
   , the ideal mixing entropy   

   and the excess 

enthalpy   
  . The first term describes a "mechanical" mixture of the components. As G can't be 

calculated as an absolute value, it is given as the difference to a reference state HSER, which is 

defined as the sum of the enthalpies of the pure chemical elements i = A, B in its stable state 

under standard conditions (Standard Element Reference; SER). The second term, the ideal 

mixing- or configurational entropy    , describes an ideal mixture without interactions between 

the components (or species) of the system. Only the entropic contribution is considered, which 

can be calculated as an absolute value and does therefore not require an reference state. The 

third term is the excess free enthalpy and describes additionally the interactions between the 

components. 

Concentration dependence 

For solution phases, the concentration dependence of the free energy function needs to be 

considered. The Gibbs free energy of the reference state is given by the sum of the individual 

element contributions   
  according to their mole fractions xi: 

 
  

          
    

   

 (2.2) 

The concentration dependence of the ideal mixture is defined as: 

 
  

                  

   

 (2.3) 

The excess term describes the interactions of the components. For ideal solutions this term is 

zero. For real solutions the contribution of the interatomic interactions needs to be considered. 

Mixing and demixing tendencies can thereby be expressed by an interaction parameter  : 

 
  

              (2.4) 

For binary non-symmetrical solutions the mixing enthalpy can be expressed as: 
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 (2.5) 

with the Redlich-Kister parameter vLij [58]. 

Temperature dependence 

The temperature dependence of the Gibbs free energy description of a phase Φ is usually 

described by a power series above the Debye temperature: 

            
   

 

                  
     

      
    (2.6) 

with      
   

  the sum of the enthalpies of the elements i in their reference state weighted by 

their fraction bi in Φ. Typically such equations are derived for certain temperature ranges to 

improve the accuracy of the Gibbs free energy description. The coefficients a0 and a1 are 

expressions for H(T0) and S(T0). a2 and higher terms describe the heat capacity       
   

    . 

Pressure dependence and the gas phase 

At moderate pressures which apply under synthesis and application conditions, the pressure 

dependence of the Gibbs Free energy is usually negligible for condensed phases. Only for very 

high pressures models considering the pressure dependence need to be 

applied [59][60][61][62]. However, for the gas phase, which is usually modeled as an ideal gas, 

the pressure gives an important contribution to the Gibbs free energy description which is 

considered by adding the term RTln(p/p0), with the total pressure p0. 

Hence, for every individual constituent i (e.g. N2, O2, Ar,…) of the gas phase an equation can be 

formulated: 

    
                   

 

  
 (2.7) 

The descriptions of the constituents are summed up according to their fraction yi, resulting in an 

overall description of the gas phase: 

   
   

       
   

       
            

 

  

 

      
 

  
  (2.8) 

with the constituent’s fraction yi being the partial pressure referred to the total pressure. 

Only at very high pressures, the pressure is replaced by the fugacity f to describe non-ideal 

behavior of the gas phase [63]. 
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2.3. Model description of the melt 
The thermodynamic description of the melt is of special interest in high temperature 

applications. In multicomponent materials, eutectic reactions can drastically lower the 

application temperatures. 

In literature, different authors prefer different models for the thermodynamic description of 

their systems. Therefore, upon building up a multicomponent database from literature data the 

compatibility of these data is of great importance. In general, melt constituents can be 

converted into each other [63]. However, problems can occur in systems containing neutral 

components (see further: Zr-C and Zr-N in Section 4.1.2.1). 

The two mostly used models, for thermodynamic description of the melt, are described below. 

 

2.3.1. Substitutional-solution model 
The substitutional-solution model describes melts in form of substitutional solution of the 

elements i = A, B and C. This model is widely applied to describe metallic melts and is written as: 

         (2.9) 

and can be described by the Redlich-Kister formalism (eqn. (2.5)). Commonly, the temperature 

dependence of the interaction parameter vLij for a binary system i-j is described by a linear 

relation: 

    
         

    (2.10) 

with vaij describing the compositional dependence of the excess enthalpy and the excess 

entropy vbij. 

In cases where liquids show a tendency for short-range ordering in form of molecular-like 

associates or salt melts consisting of charged liquid constituents more sophisticated models like 

the associate solution model [64] and the partially ionic liquid model are applied, respectively. 
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2.3.2. Partially ionic two-sublattice liquid model 
This model was originally developed to describe salts which possess highly ordered structures 

with cations and anions occupying particular lattice sites forming an own sublattice each. 

Temkin [65] developed a model for the configurational entropy of salt mixtures by assuming 

that ionic substances have a large tendency for chemical ordering even in the melt. Therefore, 

ions are practically only surrounded by the counter-ion. This short-range order is considered as 

two sublattices in the liquid. Based on this work, Hillert and Staffansson formulated a regular 

solution model for ionic melts and introduced vacancies as an additional component in one 

sublattice [66][67]. By introducing hypothetically vacancies with an induced charge and neutral 

species the model was extended to be able to describe also multicomponent melts with 

different valences of the components [68]. To maintain electro-neutrality, the hypothetical 

vacancies carry an induced charge equal to the average charge of the species occupying the 

cation sublattice. 

For liquids this model does not possess a physical meaning. Because there is no long-range 

ordering in liquids, there are also no separate anion and cation lattice sites. However 

mathematically, this model describes well the thermodynamic properties of liquids, even for 

purely metallic liquids, partly ionic character and solution of non-metals. Also associates, which 

can form in the melt by short-range ordering (e.g.     
  ), can be described by assigning them to 

one of the sublattices according to their charge. 

The model is described as: 

    
    

 
  

 

           
  

 
 (2.11) 

where two sublattices are either occupied by positively charged cations   
    or by negatively 

charged anions  
 

   , vacancies Va-Q
, with a hypothetically induced negative charge, and neutral 

species   
 ; vj and vi are the (different) charges of the ions. P and Q are stoichiometric numbers 

describing the number of sites on the particular sublattice. Illustratively P and Q are derived 

from the average charge of the other sublattice: 

           
      

 

 (2.12) 

           
 

 

 (2.13) 

with yi denoting the fraction of constituent i. Therefore, P and Q are composition-dependent. To 

maintain electro-neutrality, vacancies have the induced charge Q. For obvious reasons, neutral 

species Bk
0 are not contributing to P and Q. 
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2.4. Thermodynamic equilibrium 
The general equilibrium condition is fulfilled if the chemical potential of a component i is equal 

in all phases Φ = ‘, ‘’, ‘’’. 

   
    

     
      (2.14) 

The thermodynamic description of a total system requires the analytical descriptions of the 

molar Gibbs energy of all relevant phases Φ. These are summed up weighted by their amounts 

nΦ or fractions: 

        
 

 

         (2.15) 

The thermodynamic equilibrium state of a total system is defined by its energetic minimum at 

constant T, p and xi
0: 

  
  

   
 
  
     

   (2.16) 

A constant xi
0 ensures mass conservation, i.e. no mass is transported into or out of the system. 

Equilibrium calculation can be performed by an iteration algorithm using appropriate software. 

If several minima fulfill this equilibrium condition, the most negative or global minimum is called 

stable equilibrium. Other local minima are metastable equilibria. 

From the calculated equilibrium state, thermodynamic properties and compositions are 

obtained for all components, species or phases. 

 

2.5. Thermodynamic optimization 
The thermodynamic optimization is the process of adjusting the unknown coefficients (a0, a1, ...) 

of the analytical description of the Gibbs free energy function (eqn. (2.6)) to all available data. 

These can originate from experimental determination of thermodynamic properties, ab-initio 

calculations or estimates. The resulting thermodynamic description should reproduce the input 

data as good as possible. 

The least-square method by Gauss is used to determine the best fit of parameters in a way that 

the error between the result of the optimization and the measured value is as small as 

possible [63]. 

A set of g measured (or calculated) values Wi is expressed by functions Fi by a set of h unknown 

coefficients Cj with xki independent variables (measurement i with variable k: T, p, 

concentration,…): 
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               (2.17) 

with i = 1,…, g and j = 1,…, h. 

The error    is defined as difference between the calculated Fi and the measured value Li, 

weighted by wi: 

                       (2.18) 

In case that g > h it is not possible to find a set of coefficients Cj for which the calculated value 

Wi is equal to the measured value Li. Then the best set of coefficients Cj is the one with the 

smallest sum of the squared error: 

    
 

 

   

         (2.19) 

From this condition, h equations are found with respect to the Cj coefficients: 

 
 

   
   

 

 

   

   (2.20) 

To solve this set of equations a Taylor series expansion of    according to Gauss is used, which is 

terminated after the linear term with the correction term     for    . 

              
    

        
   

   
    

 

   

 (2.21) 

This system of equations is solved iteratively by calculating     for a start value   
 . The start 

value is then corrected by     and the procedure is repeated until the deviation is below a 

predefined value. The mean square error thereby determines the statistical deviation between 

the measured values and the determined values calculated from the set of coefficients Cj: 

                    
  

 

   

 

   

 (2.22) 

The weighting factor wi in eq. (2.18) can be taken as reciprocal of the estimated accuracy     of 

the measured values and may also include the limited accuracy of the independent variables xki 

to take into account differences of the errors in different experimental methods [69]. 
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2.6. Graphical representation of heterogeneous reactions 
For graphical representation of the equilibrium state of materials phase and property diagrams 

are drawn under consideration of a number of variables. Pelton and Schmalzried developed a 

classification of phase diagrams according to extensive and intensive variables [70]. Extensive 

variables are depending on the size of the system (x, m, n, S, G, H, V). In contrast to that, 

intensive variables are independent of the size of the system (µ, T, p, c). Thereof three types of 

phase diagrams are distinguishable: 

 First order diagrams are plots with axes of two intensive variables (p-T, µ-T and µi-µj 

diagrams). 

 Second order diagrams are plots with axes of an intensive and an extensive variable (T-x, 

pO2- or pN2-x diagrams). 

 Third order diagrams are plots with axes of two extensive variables (isothermal sections 

xi-xj plots of ternary systems, G-x plots). 

Property diagrams express a quantity as a function of another for example the phase fraction or 

the composition of a phase as a function of the temperature. In contrast, phase diagrams have 

independent quantities on the axes. The phase diagram shows therefore the equilibrium state 

of the system, i.e. phases which are in equilibrium. 

In this work different types of phase and property diagrams were drawn. These are utilized as 

roadmaps for materials development and enable to identify and understand reactions which are 

critical for the production process of the ceramic matrix composites or are determining the 

application limits. For example, the pyrolysis of preceramic polymers, maximum application 

temperatures or oxidation and corrosion processes were determined by application of the 

CALPHAD-method.  
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3. Experimental methods 
This chapter covers the types of samples investigated in this work and also the applied 

characterization techniques. 

 

3.1. Sample preparation 
Various types of samples were used in this work depending on the case of investigation. 

Si-(B-)C-N were obtained by pyrolysis of liquid preceramic polymers in flowing Ar- or Ar/N2-

atmospheres (pN2 = 0.5 bar), respectively, using a Netzsch STA 449 F3 Jupiter. To ensure 

crosslinking and outgassing of the polymer, samples were first subsequently heated to 573 K. 

Samples were then heated with 5 K/min from 573 K to the final pyrolysis temperature (1273 K-

1773 K), which was held for 5 h, and cooled down to room temperature with 20 K/min. 

Interactions and phase equilibria of ZrB2 with Si-C-N and nitrogen-containing atmosphere 

(Section 6) were investigated with mixtures of ZrB2 powder (average grain size 3.2 µm, H.C. 

Starck) and Ceraset®
 PSZ 20. Both, ZrB2-powder and preceramic polymers were provided by 

Clariant SE in the framework of the BMBF project NewAccess. Homogenization of the ZrB2-

PSZ 20 mixture was performed by thorough stirring. Subsequently the mixture was pyrolysed in 

an STA in flowing Ar- or Ar/N2-atmospheres (pN2 = 0.5 bar) using alumina crucibles. 

The high temperature oxidation behavior of ZrB2 was investigated using cylindrical samples (Ø = 

5 mm, approx. height = 2 mm) obtained by uniaxial pressing of powders with a pressure of 

130 MPa for 5 min. Subsequently, samples were sealed in a plastic foil and further compacted 

by cold isostatic pressing at a pressure of 497 MPa for 3 min. The obtained samples were not 

sintered because of the high oxidation susceptibility of ZrN and ZrB2. Isothermal nitriding 

experiments were performed using uncompacted ZrB2 powder in flowing Ar/N2-atmospheres 

(pN2 = 0.5 bar). 

The high temperature oxidation behavior was investigated using fully prepared CMC samples 

with a dimension of 3x10x10 mm3 manufactured and provided by the German Aerospace 

Center (DLR), Institute of Structures and Design in the framework of the BMBF-project 

NewAccess. A SiC-fiber reinforced Si-C-N CMC (SiC/Si-C-N) was obtained by a PIP process 

infiltrating a Tyranno SA3 SiC fiber preform with Ceraset® PSZ 20. Details are described in [7]. A 

second batch of CMC samples containing a ZrB2-additive (ZrB2-SiC/Si-C-N) was also provided by 

the DLR. The ZrB2-additive was introduced into the CMC by using a mixture of Ceraset® PSZ 20 

and ZrB2-powder in a first laminating step of the SiC fiber-preform. All following PIP cycles were 

performed with pure Ceraset® PSZ 20. 
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3.2. Simultaneous Thermal Analysis (STA) 
Simultaneous thermal analysis is a combination of thermogravimetric analysis (TGA) and 

differential thermal analysis (DTA). The combination of both methods offers the possibility to 

analyze temperature-dependent effects like decomposition or phase transformations. In this 

work, STA was mostly applied in the TGA-mode to investigate the pyrolysis of preceramic 

polymers (Section 5), high-temperature reactions (Section 6) and the oxidation behavior of 

ceramic composites in O2- and H2O-containing atmospheres (Section 8). DTA-mode was used in 

addition to investigate heat-effects resulting from pyrolysis and high-temperature reactions. 

To this end different STA-systems were used: 

The Netzsch STA 449 F3 Jupiter, equipped with two furnaces, was used in combination with the 

mass-spectrometer Netzsch QMS 403C Aeolos (see Section 3.4). The setup with the "SiC-

furnace", equipped with SiC-heating elements, allowed experiments in dry atmosphere up to 

maximum temperatures 1873 K. Therein gas is introduced at the bottom of the cylindrical 

furnace, passing the sample upwards (see Figure 3.1a). The "steam-furnace", equipped with 

Kanthal-heating elements, allowed experiments in steam-containing atmosphere up to 

maximum temperatures of 1523 K. To avoid damage of the balance by condensation of steam, 

the steam-furnace obeys a more complex geometry (see Figure 3.1b). Pure steam, or mixtures 

with other gases, is introduced into the outer mantle of the furnace, passing the sample from 

the top. A counter-flow of Ar through an alumina attachment at the outlet of the balance case 

prevents ingress of steam-containing atmosphere into the balance case. However, the 

protective Ar-gas flow does not reach the sample. Therefore, experiments in pure steam are 

possible. After passing the sample, the steam-containing atmosphere is leaving the furnace, 

together with the protective Ar gas, at the bottom of the inner tube. The steam generator by 

aDROP produced a continuous steam-flow in the range of 0.4-20 g/h without application of a 

carrier gas. All gas transfer lines and valves were heated to temperatures above 373 K to avoid 

condensation. Steam-flow was first allowed to equilibrate before starting the experiment by 

redirecting the gas to the STA with a manual valve. Both furnaces were controlled by Type-S 

thermocouples. Temperature calibration was performed measuring the melting point of Al, Ag, 

Au and Ni. 
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Figure 3.1: Experimental setup of the a) Netzsch STA 449 F3 Jupiter equipped with the SiC-furnace and b) detail view of the 
steam-furnace [71]. 

In addition a Netzsch STA 409, equipped with a steam-furnace and an aDROP steam generator, 

was used for oxidation experiments in steam. This STA was coupled with a Balzers GAM 300 

mass spectrometer (see Section 3.4), which allowed quantitative analysis of gaseous reaction 

and oxidation products. 

 

3.3. Oxidation tests at very high temperatures 
Oxidation tests in steam at temperatures above the capability of the STA 449 and STA 409 

(1523 K, see Section 3.2) were conducted in the BOX-furnace. This furnace consists of a 

horizontal alumina tube equipped with molybdenum-heaters allowing maximum temperatures 

of 1873 K in steam. Steam-generation was controlled by a LIQUI-FLOW and a controlled 

evaporator-mixer by Bronkhorst. Detailed description of the BOX-facility can be found in 

Steinbrück et al. [72]. 

In this work, the BOX-furnace was used for oxidation experiments of ZrB2 in steam. Mass-

change upon oxidation and volatilization was determined by weighting the samples before and 

after the experiment with a laboratory balance. For quantitative analysis of gaseous oxidation- 

and volatilization products, the BOX was coupled with a Balzers GAM 300 mass spectrometer 

(see Section 3.4). 
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3.4. Mass Spectrometry (MS) 
Mass spectrometry was applied for on-line analysis of gaseous pyrolysis-, reaction-, oxidation- 

and volatilization products during high-temperature experiments. 

A Netzsch QMS 403C Aëolos was used for semi-quantitative analysis, coupled with the off-gas 

line of a Netzsch STA 449 F3 Jupiter (see Section 3.2). With this setup, gaseous pyrolysis and 

decomposition products of precursor-derived ceramics were measured during thermal curing, 

pyrolysis and high-temperature annealing. Additionally, a Balzers GAM 300 quadrupole mass 

spectrometer coupled to the off-gas of the BOX-furnace (Section 3.3) and the Netzsch STA 409 

(Section 3.2) was used for quantitative analysis. With this device, the H2-release rate during 

oxidation of ZrB2 and CMCs in steam was measured to quantify the oxidation process. 

Furthermore, volatilization products of B2O3-containing oxide scales, such as boron-hydroxides, 

were monitored. Both mass spectrometers were calibrated using certified calibration gases and 

steam/Ar-mixtures of defined composition, respectively. 

This set-up allowed the investigation of high-temperature reactions and oxidation processes 

simultaneously by a combination of TGA, DTA and mass spectrometry. 

Volumetric flow rates    of gas species like H2 were calculated using the known flow rates of Ar 

as reference: 

 
    

 
   

   

      (3.1) 

with the volumetric flowrates     
 and      of H2 and Ar, respectively.    

 and     are the 

measured concentrations of H2 and Ar. 

 

3.5. X-Ray Diffraction (XRD) 
X-ray diffraction is one of the most important non-destructive characterization techniques in 

materials science providing information about phase constitution, texture and stresses [73]. 

X-rays are high-energy electromagnetic waves with a wavelength in the range of 10-3-10 nm. 

These interact with the electrons of the sample atoms and are scattered at the periodic atomic 

lattice. For constructive interference, Bragg's law relates the lattice plane spacing dhkl and the 

diffraction angle ϴhkl with the wavelength λ and the diffraction order n. 

                 (3.2) 

XRD measurements were carried out on massive samples (CMCs) or powders obtained by 

grinding the Si-(B-)C-N ceramics in an agate mortar. A Seifert PAD II powder diffractometer was 

used in Bragg-Brentano geometry using monochromatic Cu-Kα radiation (λ = 0.15418 nm). 
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Diffraction patterns were recorded in the diffraction-angle range 10° < 2Θ < 90° with a step size 

of 0.01° and a holding time of 360s per step. 

 

3.6. Scanning Electron Microscopy (SEM) 
Scanning electron microscopy allows to investigate the microstructure of a sample surface 

beyond the resolution of an optical microscope. In addition, information about the elemental 

composition of the sample can be obtained. 

A focused electron beam is scanned over the sample surface. The incident primary electron 

beam interacts in various ways with electrons of the sample. Secondary electrons (SE) are 

generated in the sample and have a low energy compared to the primary electron beam. 

Therefore, SE are emitted from a surface-near sample volume and allow to image the surface 

topology with a high resolution. Back-scattered electrons (BSE) of the primary beam underwent 

elastic scattering in the sample. Since elastic scattering depends on the atomic mass of an 

element, BSE provides a material contrast. Both SE and BSE are commonly used for imaging. 

In addition, the high-energetic primary electron beam is capable to knock-out electrons from 

the inner electron shells of sample atoms. These vacant shell is filled with electrons from an 

outer low-energetic shell. The energy difference is emitted as X-rays which are characteristic for 

the energy difference between the involved electron shells. Energy-dispersive (EDX) or 

wavelength-dispersive (WDX) X-ray spectroscopy provides information about the elemental 

composition of the sample. 

In this work, a Philips XL 30 S FEG was used to image the microstructure of CMCs and polymer-

derived ceramics. Images were recorded with an acceleration voltage of 7 kV. To this end 

samples were embedded in a two-component epoxy. After curing at room temperature, 

samples were ground, polished and sputter-coated with a thin gold layer to enhance electrical 

conductivity. The instrument was equipped with an energy-dispersive x-ray detector (EDX, E2V 

Scientific Instruments Ltd.) for quantitative elemental analysis. EDX was used to analyze the 

elemental composition of high-temperature reaction and oxidation products. 
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3.7. Chemical Analysis 
The chemical composition of precursor-derived Si-(B-)C-N ceramics was analyzed by the group 

for chemical analytics at the IAM-AWP headed by Dr. T. Bergfeldt. To this end, preceramic 

polymers were pyrolyzed in flowing Ar or N2-containing atmosphere at 1473 K and ground in an 

agate mortar. 

Samples were triple determined in the acid-pressure extraction system DAB2 from Berghof. The 

elements silicon and boron were then analyzed by ICP-OES in an OPTIMA 4300DV from Perkin-

Elmer. Carbon was quantified with the C/S-analyzer CS600 from LECO. Nitrogen and oxygen, as 

common impurity in Si-(B-)C-N ceramics, were analyzed by carrier gas hot extraction in an 

TC600 from LECO. 

 

3.8. Neutron Tomography 
The neutron tomography investigations were performed at POLDI facility [74] at the Swiss 

neutron source SINQ (Paul Scherrer Institute Villigen, Switzerland) using the neutron microscopy 

setup. The pixel size of 2.7 µm results in a spatial resolution of about 5 µm. The field of view was 

about 2.5 mm (horizontal) x 5.5 mm (vertical). Two samples with cross sections of about 1 mm2 

were clued on each other to investigate both in one tomography run including 375 projections. 

The illumination time per frame was 98.6 s. Together with the read-out time a frame repetition 

time of 100 s was selected. The 3D reconstruction was performed using the muhrec software 

package. 

Table 3.1 gives the total microscopic neutron cross section σtotal for thermal neutrons. Boron has 

an about two orders of magnitude higher cross section compared to the other elements in the 

system. Boron containing parts of the sample attenuate the neutron beam much stronger than 

boron free parts resulting in strong contrasts of the boron containing locations and the boron 

free matrix. Therefore, neutron tomography is very powerful to detect the boron distribution. 

Table 3.1: Total microscopic neutron cross sections σtotal of zirconium, boron, silicon, carbon and nitrogen [75]. 

Element (nat. 
isotope mixing) 

Zr B Si C N 

σtotal in barn 6.64 772.24 2.34 5.55 13.41 
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4. Thermodynamic modeling 
In this work, computation of phase equilibria was performed using the CALPHAD (CALculation of 

PHAse Diagram) method [63]; see Section 2 for details. To this end, a multicomponent 

thermodynamic database was compiled in the system Zr-Si-B-C-N-O-H. Additionally, Ar was 

added as an inert gas species to establish a stable gas phase under all conditions. 

Thermodynamic descriptions of the pure elements were taken from the SGTE Unary database 

PURE v5.1 [76]. The liquid phase was modeled by a partially ionic sublattice model (see Section 

2.3.2). Besides thermodynamic descriptions of condensed phases, 178 gas species were 

considered in the database. Thermodynamic data of the gas species were added from the SGTE 

substance database SSUB v4.1 [76], unless otherwise stated. 

In the following section, thermodynamic descriptions selected from literature and derived by 

reoptimization are described for the underlying subsystems. 

 

4.1. The multicomponent system Zr-Si-B-C-N-O-H and subsystems 

4.1.1. The system Si-B-C-N 
The quaternary system Si-B-C-N is essential to perform thermodynamic equilibrium calculations 

in non-oxide SiC-based ceramics. Reactions limiting the high-temperature stability of precursor-

derived Si-(B-)C-N ceramics are described in Section 5. 

The quaternary system Si-B-C-N was thoroughly investigated by Kasper [44]. Thermodynamic 

data of the binary systems Si-N, Si-B, B-C, B-N and ternary systems B-C-N, B-C-Si, B-N-Si were 

accepted from Kasper. The binary system Si-C was taken from Gröbner et al. [77]. Gröbner only 

considers the cubic modification β-SiC since hexagonal α-SiC is considered metastable [77][78]. 

In this work, the Si-B-C-N system was updated using thermodynamic data for the pure elements 

and gas species from the SGTE databases PURE v5.1 and SSUB v4.1, respectively. 

Figure 4.1 shows the binary phase diagrams in the quaternary system Si-B-C-N. 
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Figure 4.1: Calculated binary phase diagrams in the Si-B-C-N system. 
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4.1.2. The system Zr-Si-B-C-N 
To enable thermodynamic equilibrium calculations involving the ZrB2-additive in SiC/Si-C-N 

CMCs (see Section 6), the quaternary Si-B-C-N database was extended by zirconium. Therefore, 

thermodynamic data of Zr-containing binary and ternary sub-systems were added to the Si-B-C-

N database. The binary systems Zr-B [79], Zr-Si [79] and the ternary systems Zr-Si-C [80] and Zr-

B-C [81] were accepted unmodified from literature. The calculated binary phase diagrams and 

ternary isothermal sections are shown in Figure 4.2 and Figure 4.3, respectively. 

 
Figure 4.2: Calculated binary phase diagrams a) Zr-B and b) Zr-Si. 

 

 
Figure 4.3: Calculated isothermal section in the systems a) Zr-B-C and b) Zr-Si-C at 1473 K. 
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4.1.2.1. Reoptimization of the interaction parameters of the  liquid phase 

 in the systems Zr-C and Zr-N 

Figure 4.4 shows calculated binary phase diagrams for the systems Zr-C [82] and Zr-N [83]. The 

phase diagrams obtained by Guillermet and Ma et al., respectively using a substitutional 

solution model for the liquid phase are plotted in solid lines. Phase diagrams obtained by 

transferring the liquid phase descriptions into the partially ionic liquid model are plotted with 

dashed lines. The resulting phase diagrams are deviating considerably in the composition and 

temperature of the invariant reactions. To obtain compatibility of the liquid phase descriptions, 

a reoptimization of the interaction parameters of the liquid phase was carried out for the binary 

systems Zr-C and Zr-N. The obtained interaction parameters are given in Table 4.1. The resulting 

binary phase diagrams are depicted in Figure 4.5. 

 
Figure 4.4: Calculated binary phase diagrams for the systems a) Zr-C and b) Zr-N. Diagrams obtained from data by 
Guillermet [82] and Ma et al. [83], respectively using a substitutional solution model are plotted as solid lines. Diagrams 
obtained by transferring the liquid phase interaction parameters into the partially ionic sublattice model are plotted as dashed 
lines. 

 

Table 4.1: Reoptimized interaction parameters of the liquid phase for the binary systems Zr-C and Zr-N. 

Ionic Liquid 
(B+3,Si+4,Zr+4)P(C,N,SiN4/3,Va)Q 

L0(Ionic Liquid, Zr+4 : C, Va) = -310825.555 + 17.8033498·T 
L1(Ionic Liquid, Zr+4 : C, Va) = +39539.7481 
L2(Ionic Liquid, Zr+4 : C, Va) = +50000 
 
L0(Ionic Liquid, Zr+4 : N, Va) = -249605.669 - 65.2089004·T 
L1(Ionic Liquid, Zr+4 : N, Va) = +152559.417 - 48.3959946·T 
298.15 K - 6000 K 
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Figure 4.5: Calculated binary phase diagrams for the systems a) Zr-C and b) Zr-N with the reoptimized melt description. 

Figure 4.6 shows the composition of the liquid phase calculated at 2773 K. In the partially ionic 

liquid model, the melt is modeled with two sublattices, which are either occupied by positively 

charged cations or by negatively charged anions, vacancies and neutral species. To compensate 

for neutral species and ensure overall charge neutrality, vacancies carry a hypothetically 

induced negative charge (see Section 2.3.2). In the systems Zr-C and Zr-N, the first sublattice is 

only occupied by Zr+4 cations. Therefore, the fraction of Zr+4 ions on this sublattice is equal to 

one over the whole composition range. On the second sublattice, the fraction of the neutral 

species (C or N) and vacancies are developing counteractive. 

 
Figure 4.6: Composition of the liquid phase in the binary systems a) Zr-C and b) ZrN at 2773 K according to the partially ionic 
sublattice model (Zr

+4
)P(C, N, Va)Q.  
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4.1.3. Zr-Si-B-C-N-O 
The dataset Zr-Si-B-C-N was extended by oxygen to enable thermodynamic equilibrium 

calculations in oxidizing environments. A variety of different sublattice models were chosen by 

different authors in literature to model solid solution phases. Therefore, compatibility was an 

important criterion for selection of the oxide systems. The binary systems Zr-O [84], Si-O [85] 

and B-O [44] were accepted from literature (see Figure 4.7). The binary systems C-O and N-O do 

not contain condensed oxide species or homogeneity ranges, but only oxygen-containing gas 

species. 

 
Figure 4.7: Calculated binary phase diagrams of a) B-O, b) Si-O and c) Zr-O systems.  
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The ternary system Si-B-O was accepted from Kasper [44]. Figure 4.8a shows the calculated 

isothermal section in the system Si-B-O at 1073 K. This system contains no ternary phases but a 

low-temperature eutectic at 713 K in the system B2O3-SiO2 (see Figure 4.8b). The formation of a 

liquid phase is very important for the durability of the ceramic but also for wetting of the 

surface and cracks and the volatilization of oxides by formation of B- and Si-containing gas 

species (see Section 8). 

 
Figure 4.8: The ternary system Si-B-O according to Kasper [44]: Calculated a) isothermal section at 1073 K and b) isopleth B2O3-
SiO2. 

The system Zr-Si-O contains the ternary zircon phase (ZrSiO4) in the quasibinary system ZrO2-

SiO2. This subsystem is well investigated [86][87][88][89]; it contains an eutectic point and a 

miscibility gap in the liquid phase. 

In this work a thermodynamic dataset for the system ZrO2-SiO2 was accepted from Franke [90]. 

This data set describes the subsystem very well. However, interactions with other constituents 

of the multicomponent database result in incomplete description of the liquid phase in this 

work. The obtained ZrO2-SiO2 phase diagram is shown in Figure 4.9. The calculated dissociation 

temperature of ZrSiO4 is 23 K lower compared to Franke or Kaiser et al. [91] but acceptable. 

However the eutectic temperature is too low and the miscibility gap in the liquid phase is not 

reproduced with the present database. Karlsdottir et al. [92] also optimized the system ZrO2-

SiO2 but no dataset was published. Since no experiments were performed above the 

decomposition temperature of ZrSiO4, no reoptimization of the system ZrO2-SiO2 was carried 

out in the framework of this work. 
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Figure 4.9: Calculated a) isothermal section in the system Zr-Si-O at 1473 K and b) isopleth ZrO2-SiO2. 

No ternary phases exist in the system Zr-B-O. Karlsdottir et al. [92] optimized the ZrO2-B2O3 

phase diagram according to experimental data by Beard et al. [93]. The obtained B2O3-ZrO2 

phase diagram shows a ZrO2 solubility of 0.9 mol-% in the liquid phase at 1473 K and a 

metastable liquid miscibility gap with Tc = 1335 K. In the same work, Karlsdottir et al. also 

extrapolate a tentative isothermal section in the system ZrO2-SiO2-B2O3 at 1773 K. However, due 

to scarce experimental data, no published thermodynamic dataset and the absence of ternary 

and quaternary phases, the systems ZrO2-B2O3 and ZrO2-SiO2-B2O3 by Karlsdottir et al. were not 

included in this work. 

 

4.1.4. Zr-Si-B-C-N-O-H 
For thermodynamic modeling of composites in steam-containing atmosphere, hydrogen was 

added to the Zr-Si-B-C-N-O database. This allows thermodynamic equilibrium calculations not 

only for oxidation of CMC, but also volatilization under extreme conditions. 

Only the binary system Zr-H contains, besides pronounced solubility of hydrogen in metallic 

zirconium, solid hydrides δ-ZrH2, ε-ZrH2 and metastable γ-ZrH [94]. These play an important role 

for the application of metallic Zr-based alloys in nuclear fuel applications [95][96]. Since no 

metallic zirconium was investigated in this work, only gaseous zirconium hydrides were 

considered. Overall, the Zr-Si-B-C-N-O-H database includes 111 hydrogen-containing gas 

species. Thermodynamic data for gaseous SiO(OH)2 and Si(OH)4 were taken from a recent 

reevaluation by Avincola et al. [36]. All other gas species were accepted from the SGTE 

substance database SSUB v4.1 [76].  
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5. Phase equilibria in precursor-derived Si-(B-)C-N ceramics 
Precursor-derived ceramics are obtained by pyrolysis of preceramic polymers. By selective 

synthesis of the polymer the composition of the obtained ceramic can be adjusted precisely. 

Furthermore, the distribution of the elements in the obtained ceramic is extremely 

homogeneous. Infiltration of fiber preforms with liquid precursor polymers and pyrolysis (PIP-

process) is an attractive way to produce CMC combining short processing times and low 

processing temperatures compared to chemical vapor infiltration (CVI) and liquid silicon 

infiltration (LSI), respectively. This reduces, for example, the attack of fibers and fiber coatings. 

Moreover, the PIP process allows to introduce passive or active fillers which improve the degree 

of filling or add additional functionalization (see also Section 8). Although amorphous Si-(B-)C-N 

ceramics are not in thermodynamic equilibrium, phase formation, crystallization, and high-

temperature reactions can be understood by considering thermodynamic equilibrium 

calculations [97][98][99]. 

In this Section, Si-C-N and Si-B-C-N ceramics were prepared by pyrolysis of preceramic 

polysilazanes as well as a polyborosilazane in flowing Ar- and Ar/N2-atmospheres, respectively. 

The polysilazanes Ceraset® PSZ 10 and PSZ 20 were provided by Clariant SE Germany, within the 

framework of the BMBF-project NewAccess. PSZ 10 and PSZ 20 are different molecular fractions 

of the Ceraset® polysilazane. Therefore, both polysilazanes and the obtained Si-C-N ceramics 

have the same composition, given in Table 5.1 and Table 5.2, respectively. A Si-B-C-N ceramic 

(hereafter Si-B-C-N_1) was obtained by pyrolysis a polyborosilazane precursor-polymer. The 

composition of the obtained Si-B-C-N_1 ceramic was determined by the chemical analysis group 

at KIT, IAM-AWP (Dr. Bergfeldt) and is given in Table 5.2. Additionally, a SiBC1.4N2.3 ceramic 

(hereafter Si-B-C-N_2) obtained by pyrolysis of a precursor-polymer with a nominal composition 

of [SiBC3N3H10]n was considered from literature. No experiments were conducted with the Si-B-

C-N_2 precursor-polymer or ceramic. Only the composition was considered for thermodynamic 

modeling of the pyrolysis process of the preceramic-polymer and the high-temperature stability 

of the resulting Si-B-C-N ceramic. The oxygen content of the obtained solid Si-C-N and Si-B-C-

N_1 ceramics was below 1 wt.% and 1.5 wt.%, respectively. Oxygen was therefore not 

considered in the calculations. 

Thermodynamic calculations were used to predict gaseous pyrolysis- and decomposition 

reactions and phase stabilities as a function of temperature and nitrogen partial pressure based 

on the compositions of the preceramic polymers and the obtained ceramics. Combined TG/MS 

analysis and post-test examinations were used to investigate the pyrolysis behavior, high-

temperature stability, decomposition reactions and crystallization of the obtained Si-(B-)C-N 

ceramics. Thermodynamic calculations confirm and explain the experimental findings. 

Parts of this Chapter were published in [100], but more details and further results are presented 

here. 
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Table 5.1: Composition of the preceramic-polymers. 

 
Nominal 

composition 
Si B C N H 

Ceraset® PSZ 10 / PSZ 20 at.% [SiC1.4NH5.4]n 11.4 - 15.8 11.4 61.4 

SiBCN_2 at.% [SiBC3N3H10]n 5.56 5.56 16.67 16.67 55.56 

 

Table 5.2: Composition of the investigated precursor-derived Si-(B-)C-N ceramics. 

 
Nominal 

composition 
Si B C N 

Ceraset® PSZ 10 / PSZ 20 at.% Si1.3CN 40.03 - 30.12 29.85 

SiBCN_1 at.% Si6BC5N7 32.47 5.25 26.42 35.86 

SiBCN_2 at.% SiBC1.4N2.3 17.54 17.54 24.56 40.35 

 

 

5.1. Ceraset PSZ 10 and PSZ 20-derived Si-C-N ceramics 

5.1.1. Thermodynamic analysis of pyrolysis and high-temperature 

 stability 
Figure 5.1 shows the phase fraction diagram and composition of the gas phase calculated as a 

function of the temperature for the Si-C-N-H composition of the Ceraset® PSZ 10 and PSZ 20 

polymer. 

 

Calculations were performed as a closed system with a constant amount of substances (1 mol) 

and constant pressure of p = 1 bar. At temperatures below approximately 700 K the system 

consists of three phases: gas, Si3N4 and SiC. The gas phase consists of predominantly CH4 

(0.26 bar) and H2 (0.74 bar). Above 700 K, the material shows a four-phase region: Gas, SiC, 

Si3N4 and graphite are in thermodynamic equilibrium. The amount of CH4 is decreasing while H2 

is increasing with a point of intersection at 777 K. At this and higher temperatures also other H-

containing gas species are formed, however, with relatively low partial pressures (< 10-3 bar). 

The nitrogen partial pressure evolving in equilibrium with the condensed phases is discussed 

below. Therefore, primarily the formation of H2 and CH4 is influencing the composition of the 

condensed phases. 
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Figure 5.1: Calculated a) phase fraction and b) composition of the gas phase for the composition of the Ceraset® PSZ 10 and PSZ 
20 polymer. 

The overall composition of the condensed phases in Figure 5.1a is plotted into the isothermal 

section of the Si-C-N system at 1200 K Figure 5.2. At the lowest temperatures, the composition 

of the condensed phase is on the tie-line SiC-Si3N4. With increasing temperature, CH4 dissociates 

according to reaction (5.1) into condensed graphite and molecular hydrogen. This is resulting in 

a shift of the composition of the condensed phases to higher carbon content along a line of 

constant Si/N-ratio with Si/N=1: 

                   (5.1) 

At temperatures higher than approx. 1400 K, the composition of the condensed phases is 

shifting to lower nitrogen content along a line of constant Si/C-ratio with Si/C=0.73. This 

temperature corresponds to the point of intersection between the partial pressures of CH4 and 

N2 in Figure 5.1b at 1399 K. The actual composition of the precursor-derived Si-C-N ceramic is 

plotted additionally. It is close (within approx. 5 %) to the calculated composition of the 

condensed phases at 850 K-900 K, however, shifted to a lower nitrogen content. 
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Figure 5.2: Calculated isothermal section in the system Si-C-N. The composition of the condensed phase in Figure 5.1a (●) and 
the composition of the Ceraset® PSZ 10 and PSZ 20 precursor-derived Si-C-N ceramic (▲) are inserted. 

Figure 5.3 shows isothermal sections in the quaternary system Si-C-N-H at constant x(H) = 0.64, 

which is corresponding to the hydrogen content of the PSZ 10 and PSZ 20 precursor polymers. 

Depending on the composition, five different phase stability fields exist: Gas+Si3N4, Gas+C+Si3N4, 

Gas+C+SiC+Si3N4, Gas+SiC+Si3N4 and Gas+Si+SiC+Si3N4. With increasing temperature, the phase 

fields Gas+C+Si3N4 and Gas+C+SiC+Si3N4 are growing at the expense of the phase fields 

Gas+Si3N4 and Gas+SiC+Si3N4, which are decreasing in size until they disappear. The phase 

stability field Gas+Si+SiC+Si3N4 does not change in size with temperature. The composition of 

the PSZ 10- and PSZ 20-derived Si-C-N ceramics is indicated. At the lowest temperature, the 

composition is in the three phase field Gas+SiC+Si3N4. Above approx. 700 K the composition of 

the ceramic is in the four phase field Gas+C+SiC+Si3N4. 
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Figure 5.3: Calculated isothermal sections of the Si-C-N-H system at constant x(H) = 0.614. 

Figure 5.4 shows isothermal sections in the system Si-C-N. The composition of the PSZ 10- and 

PSZ 20-derived Si-C-N ceramics is indicated. At temperatures below 1757 K the composition of 

the Si-C-N ceramic, if crystallization would occur, is located in the three-phase field Si3N4+SiC+C. 

At 1757 K, Si3N4 and excess carbon are reacting under formation of SiC and N2 according to: 

                    (5.2) 

Thus the Si-C-N ceramic is located in the three-phase field Gas+Si3N4+SiC at 1757 K < T < 2114 K. 

The gas phase is consisting only of N2, which is released to the gas phase. Thereby the 

composition of the Si-C-N ceramic is shifting along the reaction path, which is indicated by the 

arrow, to the tie-line SiC-Si3N4. At 2114 K, the remaining Si3N4 is thermally decomposed into 

silicon, which is liquid at this temperature, and N2, which is released into the atmosphere. 

                 (5.3) 

Thus, above 2114 K the composition of the Si-C-N ceramic is located in the three-phase field 

Gas+SiC+Sil. By release of N2, the composition of the remaining ceramic is shifting along the 
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reaction path from the N-corner of the isothermal section beyond the previous composition to 

the tie-line SiC-Sil. The isothermal section at 3000 K shows that at very high temperatures the 

gas phase possesses a spatial expansion in the Si-C-N isothermal section, meaning that also C- 

and N-containing gas species are formed. At lower temperatures, the gas phase has only a 

punctual expansion in the N-corner consisting only of N2. 

 
Figure 5.4: Isothermal sections of the Si-C-N system at temperatures of 298 K, 1757 < T < 2114 K, 2114 K and 3000 K. The 
composition of the PSZ 10- and PSZ 20-derived Si-C-N ceramic and the associated reaction paths are indicated. 

Figure 5.5 shows the phase fraction diagram and the composition of the associated gas phase 

for the PSZ 10- and PSZ 20-derived ceramics. Calculations were performed for a closed system 

with a constant amount of substance of 1 mol. A small amount of Ar (xAr=0.01) was added to 

establish a stable gas phase at all temperatures. The evolution of the phase composition, which 

is discussed before, is depicted in a quantitative manner. Figure 5.5a shows the decreasing 

amount of Si3N4 at 1757 K and at 2114 K due to reaction (5.2) and reaction (5.3), respectively. 

Graphite is totally consumed by the reaction at 1757 K, while SiC and Sil are formed as product 

phases at 1757 K and 2114 K, respectively. In Figure 5.5b the release of N2 during both reactions 
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at 1757 K and 2114 K is depicted relative to the constant amount of inert Ar. Other, Si- and C-

containing gas species (Si, C2Si, CSi2,...), are formed only at temperatures above 2500 K. At lower 

temperatures, N2 is the only gas species in equilibrium with the condensed phases. The 

curvature of the phase fraction curves towards the reaction temperatures are a direct result of 

the application of Ar as an inert gas. The volume of the gas phase in equilibrium with the 

condensed phases is depending on the amount of Ar, which is used. Therefore, the larger the 

amount of Ar, the larger the amount of nitrogen (molecules), which is required to establish the 

equilibrium partial pressure under the given conditions. As a result, the phase amount of Si3N4 is 

decreasing to provide the nitrogen. The remaining Si is reacting with C to form SiC. Without 

using Ar in the calculation, the phase fraction diagram would yield a distinct step-profile at the 

individual reaction temperatures. However, it would not be possible to display the release of N2 

relative to the constant amount of Ar. 

 
Figure 5.5: Phase fraction diagram and composition of the associated gas phase for the PSZ 10 and PSZ 20-derived Si-C-N 
ceramic. 

Figure 5.6 shows a theoretical mass change curve calculated from the phase fraction of the 

condensed phases in Figure 5.5a. Thereby 100 % is referring to the solid Si-C-N ceramic. 

Reaction (5.2) at 1757 K is resulting in a mass change of approximately -40 % of the solid phases. 

The thermal decomposition of Si3N4 (reaction (5.3) at 2114 K) is resulting in another mass 

change of -30 %. The thermal decomposition of SiC and vaporization of liquid Si leads to the 

mass loss of the last 30 % at temperatures above 3000 K. 
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Figure 5.6: Theoretically calculated mass change curve for PSZ 10- and PSZ 20-derived Si-C-N ceramics. 

The phase stability diagram for the PSZ 10- and PSZ 20-derived Si-C-N ceramics is plotted in 

Figure 5.7 as a function of the nitrogen partial pressure and temperature. Only condensed 

phases are indicated although the gas phase is in thermodynamic equilibrium with these at 

every point of the diagram. The partial pressure of other gas species is negligible at these 

temperatures. Therefore, the gas phase consists only of N2 and pN2 corresponds to the total 

pressure. Lines correspond to univariant three phase equilibria i.e. pN2 and temperature cannot 

be changed independently without leaving the respective phase equilibrium. Areas correspond 

to bivariant two-phase equilibria, which means that pN2 and temperature can be varied 

independently without leaving the particular phase stability field. At relatively low temperatures 

and high pN2, carbon (graphite) and Si3N4 are coexisting in thermodynamic equilibrium. Upon 

crossing the line, indicated by the phase equilibrium Si3N4+3C=3SiC+2N2, by increasing the 

temperature or decreasing pN2, graphite and Si3N4 are reacting under formation of SiC and N2. 

For Si-C-N ceramics with Si/C > 1, the free carbon is consumed completely by the reaction with 

Si3N4 [97]. The remaining Si3N4 is in equilibrium with SiC for 1757 < T < 2114 K at pN2 = 1 bar. The 

calculated phase stability diagram shows clearly how the reaction temperatures in the PSZ 10- 

and PSZ 20-derived Si-C-N ceramics depend on the nitrogen partial pressure. With decreasing 

pN2, reaction temperatures are shifted to lower values. For example the temperature of reaction 

(5.2) is 1757 K and 1858 K at pN2 = 1 bar and pN2 = 0.1 bar, respectively. In accordance with that, 

reaction temperatures are shifted to higher values for pN2 > 1 bar. 
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Figure 5.7: Phase stability diagram for Si-C-N with Si/C > 1. 

Figure 5.8 shows the isopleth calculated for C-Si39.0N29.1 with the composition of the PSZ 10- and 

PSZ 20-derived Si-C-N ceramic indicated with a dashed line. For x(N) < 0.27, no Si3N4, but free 

carbon remains at temperatures above 1757 K. Thus, reaction (5.3), the thermal decomposition 

of remaining Si3N4, cannot take place with increasing temperature. For x(N) > 0.34 free Si is 

present, which transforms into a melt at 1687 K. 

 
Figure 5.8: Calculated isopleth in the Si-C-N system for C-Si39.0N29.1. The composition of the PSZ 10- and PSZ 20-derived Si-C-N 
ceramic is indicated. Reactions (5.2) and (5.3) are marked ().  
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5.1.2. Experimental investigations 
Combined thermogravimetric and mass spectrometric analysis of the pyrolysis and heat 

treatment of PSZ 10- and PSZ 20-derived Si-C-N ceramic were conducted in order to validate the 

thermodynamic calculations. Figure 5.9 shows results of a test series with both precursor 

polymers in flowing Ar. The experiment was divided into three stages. In stage 1 (T < 573 K) the 

liquid preceramic polymer is crosslinked. The heating procedure was performed stepwise with 

holding times of 1 h at 473 K, 523 K and 573 K to allow outgassing of the polymer without 

bubble formation. In this stage, PSZ 10 samples show a higher mass loss compared to PSZ 20 

samples. During stage 2 (573 K < T < 1273 K) a mass loss is observed connected with the actual 

pyrolysis of the polymer. Thereby, the formation of the Si-C-N network is accompanied by the 

release of hydrogen and hydrogen-containing gas species from Si-H, N-H and C-H groups of the 

polymer. The release of H2 and CH4 during this stage was detected by mass spectrometric 

analysis of the STA offgas (Figure 5.10 and Figure 5.11) and occurs in accordance with the 

observed mass loss. In stage 3 (T > 1273 K) the final pyrolysis temperature was held for 5 h to 

allow a complete conversion of the polymer into the Si-C-N ceramic. Heat treatment up to final 

temperatures of 1273 K – 1573 K does not result in further mass changes of the samples. This is 

indicating that no further reactions are taking place at these temperatures. However, samples 

heat treated up to 1673 K and 1773 K show an additional mass loss during stage 3. The observed 

mass loss is taking place gradually at 1673 K and abruptly at 1773 K and is accompanied by the 

release of N2 (see Figure 5.10 and Figure 5.11). In total, the pyrolysis of PSZ 10 is resulting in a 

higher mass loss compared to PSZ 20, but the difference is caused completely by the cross-

linking process in stage 1. Once the cross-linking is completed, both preceramic polymers show 

the same mass evolution. 

 
Figure 5.9: Thermogravimetric analysis of PSZ 10 and PSZ 20 pyrolysis up to maximum temperatures of 1273 K – 1773 K in 
flowing Ar-atmosphere.  
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Figure 5.10: Combined thermogravimetric and mass spectroscopic analysis during pyrolysis of Ceraset® PSZ 10-derived Si-C-N 
ceramics in flowing Ar-atmosphere. 
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Figure 5.11: Combined thermogravimetric and mass spectroscopic analysis during pyrolysis of Ceraset® PSZ 20-derived Si-C-N 
ceramics in flowing Ar-atmosphere. 
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Figure 5.12 shows a combined DTA, thermogravimetric and mass spectroscopic analysis of the 

pyrolysis of Ceraset® PSZ 20 in flowing pure Ar and Ar/N2 (pN2=0.5 bar), respectively. Note that 

only semi-quantitative analysis is possible with the used Netzsch QMS 403C Aëolos mass 

spectrometer (see also Section 3.4). Two endothermic peaks are observed in the temperature 

range from 800 K to 1250 K. The first peak, with an onset temperature of 800 K, corresponds to 

the release of H2 and CH4 at the same time while the second peak is only accompanied by the 

release of H2. In both atmospheres, the H2-release spreads from approx. 650 K to 1200 K, which 

is giving the pyrolysis apparently a triple character. However, no DTA signal is observed in the 

initial state below 800 K. The mass loss of the preceramic polymer also shows a two-step 

character at temperatures between 573 K and 1250 K. This highest mass loss is slightly shifted 

to lower temperatures compared to the DTA signal. Additionally, the endothermic reaction 

(Si3N4+3C=3SiC+2N2) is observed in Ar atmosphere with a maximum around 1850 K together 

with the release of N2. The onset temperature according to the mass loss and the N2-release is 

approx. 1750 K. No DTA signal is detected in Ar/N2 at these temperatures. Furthermore, the 

mass loss above approx. 1750 K is significantly smaller compared to the experiment in pure Ar. 

It’s obvious that the release of N2 cannot be detected in N2-containing atmosphere. 

 
Figure 5.12: Combined thermogravimetric, mass spectroscopic and DTA analysis of PSZ 20 during heat-up with 10 K/min in 
flowing a) Ar and b) Ar/N2 (pN2 = 0.5 bar) atmosphere. Note that only semi-quantitative analysis is possible with the used mass 
spectrometer. 

Micrographs of the PSZ 10 und PSZ 20-derived Si-C-N ceramics obtained in Ar atmosphere are 

depicted in Figure 5.13 and Figure 5.14, respectively. All samples exhibit extensive crack 

formation as a result of the shrinkage associated with release of hydrogen-containing gas 

species during the pyrolysis process. Si-C-N ceramics, pyrolyzed at maximum temperatures up 

to 1573 K, show a very smooth and homogeneous microstructure. In contrast to that, 

microstructures appear partly and completely porous after pyrolysis at 1673 and 1773 K, 

respectively. The Si-C-N ceramic pyrolyzed at 1673 K shows both characteristics: smooth and 

homogeneous areas, which seem not (yet) transformed and porous areas where the 
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transformation of the Si-C-N ceramic by reaction (5.2) took place. Thereby, the edges the Si-C-N 

ceramic adjacent to cracks, which are accessible for the atmosphere, are always transformed. 

 
Figure 5.13: Micrographs of PSZ 10-derived Si-C-N ceramics pyrolyzed at 1273 K – 1773 K in flowing Ar. Scale bars correspond to 
100 µm. 

 
Figure 5.14: Micrographs of PSZ 20-derived Si-C-N ceramics pyrolyzed at 1273 K – 1773 K in flowing Ar. Scale bars correspond to 
100 µm. 

Figure 5.15a shows a SEM micrograph of the Si-C-N ceramic obtained from pyrolysis of PSZ 20 at 

1673 K in flowing Ar. EDX analysis (Figure 5.15b and c) shows, that the smooth and 

homogeneous areas which correspond to microstructures obtained at T < 1673 K have a 

significantly higher nitrogen content compared to the porous areas. This is indicating that the 

reaction Si3N4+3C=3SiC+2N2 already took place in the porous areas. 
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Figure 5.15: SEM micrograph and EDX analysis of PSZ 20-derived Si-C-N ceramic pyrolysed at 1673 K in flowing Ar. 

XRD patterns show that the PSZ 10 and PSZ 20-derived Si-C-N ceramics (Figure 5.16) are X-ray 

amorphous up to pyrolysis temperatures of 1573 K. Pyrolysis at 1673 K and 1773 K results in the 

crystallization of β-SiC. Additionally, weak Si reflections are observed after pyrolysis of PSZ 10 at 

1773 K in flowing Ar. 

 
Figure 5.16: XRD patterns of a) PSZ 10- and b) PSZ 20-derived Si-C-N ceramics obtained by pyrolysis in flowing Ar atmosphere. 

To investigate the pN2-dependence of the phase evolution in Si-C-N (see Figure 5.7) PSZ 10 and 

PSZ 20 was pyrolyzed in flowing Ar/N2 with pN2 = 0.5 bar. Figure 5.17 shows thermogravimetric 

experiments during pyrolysis of PSZ 10 and PSZ 20 in Ar/N2 together with the corresponding 

experiments in Ar. The mass loss of PSZ 10 is generally lower in Ar/N2 atmosphere compared to 

pure Ar. This is resulting from the lower mass loss during crosslinking of the liquid polymer 

below 573 K in stage 1 (see also Figure 5.18). The mass loss of PSZ 20 in stage 1 is slightly 

steeper in Ar compared to Ar/N2 but the total mass change is the same. No dependence of the 
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mass loss on the pN2 is observed in stage 2 (573 K < T < 1273 K). The main effect of the different 

pN2 is observed in stage 3 (T > 1273 K). Samples, which were pyrolyzed at maximum 

temperatures of 1273 K – 1573 K show a constant mass during stage 3 in both, Ar/N2 and pure 

Ar atmospheres. However, heat-treatment up to maximum temperatures of 1673 K and 1773 K 

in Ar/N2 results in much lower and less pronounced mass losses compared to pure Ar (see also 

Figure 5.18). As predicted by the calculation in Figure 5.7, an increase of the pN2 is resulting in an 

increased temperature of reaction (5.2). 

 
Figure 5.17: Thermogravimetric analysis of a) PSZ 10 and b) PSZ 20 pyrolysis up to maximum temperatures of 1273 K – 1773 K in 
flowing Ar/N2 (pN2 = 0.5 bar). Results for pyrolysis in flowing Ar are shown for comparison. 
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Figure 5.18: Total mass change of PSZ 10- and PSZ 20-derived Si-C-N ceramics after pyrolysis in flowing Ar- and Ar/N2-
atmosphere. 

Microstructures of PSZ 10 and PSZ 20-derived Si-C-N ceramics, which were prepared in Ar/N2 

(pN2 = 0.5 bar), are depicted in Figure 5.19 and Figure 5.20, respectively. Pyrolysis at maximum 

temperatures of 1273 K to 1573 K resulted in very homogeneous microstructures. These 

samples were X-ray amorphous (see Figure 5.21). Si-C-N ceramics, which were pyrolyzed at 

maximum temperatures of 1673 K and 1773 K, show precipitation of particles and partly 

transformed domains corresponding to crystallization of Si3N4 in Figure 5.21. 

 
Figure 5.19: Micrographs of PSZ 10-derived Si-C-N ceramics pyrolyzed at 1273 K – 1773 K in flowing Ar/N2 (pN2 = 0.5 bar). Scale 
bars correspond to 100 µm. 
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Figure 5.20: Micrographs of PSZ 20-derived Si-C-N ceramics pyrolyzed at 1273 K – 1773 K in flowing Ar/N2 (pN2 = 0.5 bar). Scale 
bars correspond to 100 µm. 

 
Figure 5.21: XRD patterns of a) PSZ 10- and b) PSZ 20-derived Si-C-N ceramics obtained by pyrolysis in flowing Ar/N2 
atmosphere. 
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5.1.3. Discussion and Conclusion 
Although amorphous Si-(B-)C-N ceramics are not in thermodynamic equilibrium, the observed 

phase formation, crystallization, and high-temperature reactions can be understood by 

considering thermodynamic equilibrium calculations based on their 

composition [16][97][98][99][101] [102][103][104]. 

Thermodynamic modeling of the phase evolution, based on the Si:C:N:H-composition of the 

preceramic polymer (Figure 5.1) displays the pyrolysis i.e. the transformation of the liquid 

preceramic polymer into an amorphous solid Si-C-N ceramic in a closed system. Hydrogen, 

which is an inherent part of the polymers functional groups, is forming hydrogen-containing gas 

species. According to Figure 5.1b, CH4 and H2 are the major gaseous pyrolysis products. Other 

hydrogen-containing gas species are only present with a very low partial pressure. At high 

temperatures, additionally N2 plays a key role. Pyrolysis products, predicted by the calculation, 

were confirmed experimentally by mass spectroscopic analysis of the STA off-gas (see Figure 

5.10 and Figure 5.11). Combined DTA, thermogravimetric and mass spectroscopic analysis (see 

Figure 5.12) show that pyrolysis is an endothermic process with a two-step character. The first 

peak at about 900 K is associated with the release of CH4 and H2 and the second peak at around 

1050 K only with the release of H2. However, the release of H2 is observed over a temperature 

range from 600 K to 1250 K. The observed temperature ranges of CH4 and H2 evolution is in 

good accordance with the work by Garcia-Garrido et al. [105]. Additionally, also the mass 

change during pyrolysis coincides with the two-step process. 

The precursor polymers Ceraset® PSZ 10 and PSZ 20 possess a hybrid-structure consisting of 

units of polyhydridomethylsilazane (PHMS) and polymethylvinylsilazane (PMVS). For PHMS Bill 

et al. [16] [102] has shown, that around 800 K crosslinking of Si-CH3 and Si-CH3 or Si-H groups 

leads to the release of CH4 and H2, respectively. Above 800 K crosslinking of Si-CH3 and Si-H with 

N-H groups leads to the formation of Si-N bonds and the release of CH4 and H2, respectively. For 

PMVS it was shown by Bill et al. [16][101], that crosslinking of the vinyl groups takes place up to 

temperatures of 600 K. At higher temperatures sp²-hybridized carbon (C=C) and Si-H are 

formed. Around 800 K, Si-H and N-H groups react and form Si-N bonds under release of H2. 

Thus, the sum of all these effects contributing to the release of CH4 and H2, is observed in the 

conducted experiments. Additionally, the release of NH3 was observed by Bill et al. [101] during 

pyrolysis of PMVS in the temperature range from 500 K to 800 K. The release of NH3 was not 

observed in our experiments. Due to the small amount of PMVS-like units (x=0.2) in the 

preceramic polymer Ceraset® PSZ 10 and PSZ 20, NH3 is only expected to a very low amount 

(see Figure 5.1b) which was not detectable. Furthermore, experiments were conducted in pure 

Ar atmosphere, in contrast to experiments in nitrogen by Bill et al. [101]. 

The mass loss during crosslinking of PSZ 10 is larger compared to PSZ 20 indicated by the pre-

pyrolysis step (stage 1) in Figure 5.9. PSZ 10 is a low-molecular fraction of the Ceraset® 
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polysilazane. Therefore, the evaporation of oligomers could be more pronounced and thus lead 

to the larger mass loss during this stage compared to PSZ 20. Long holding times, which were 

applied to prevent the formation of bubbles during stage 1, probably spread the release of H2 

over a time-period, which is too long and prevents the detection by mass spectrometry. Only a 

small H2-peak, which is visible at the end of the first heating period to 573 K in Figure 5.10 and 

Figure 5.11 could account for crosslinking process during this stage. In addition PSZ 10 shows a 

lower mass loss during the crosslinking process in stage 1 in Ar/N2 compared to pure Ar (Figure 

5.17a). In contrast to that, the mass loss of PSZ 20 is just initially steeper in Ar/N2 and 

approaches the same value as in pure Ar. This is indicating, that the evaporation of polysilazane 

oligomers, which are present in the low-molecular PSZ 10 in a higher amount compared to 

PSZ 20 is strongly depending on the nitrogen partial pressure. With higher pN2, the evaporation 

of oligomers during crosslinking in stage 1 is slowed down. 

Conclusively, the composition of the gas phase has a direct influence on the composition of the 

condensed phase. Since calculations have been performed in a closed system, the gas phase, 

consisting of hydrogen-containing gas species, is in equilibrium with the condensed phase at 

every point (Figure 5.1). Therefore, the thermal dissociation of methane (CH4=C+2H2) above 

693 K is influencing the composition of the Si-C-N ceramic, by increasing its carbon content. 

According to the calculations, depicted in Figure 5.3, the thermodynamic equilibrium 

composition of the PSZ 10- and PSZ 20-derived Si-C-N-H system is in the three-phase field 

Gas+SiC+Si3N4 below 693 K. Therefore, the composition of the condensed phases is on the tie-

line SiC-Si3N4 in the isothermal section of the system Si-C-N (see Figure 5.2). Thus, all carbon is 

bound either as SiC or as methane in the gas phase. Above 693 K, the equilibrium composition 

of the PSZ 10- and PSZ 20-derived Si-C-N-H system is in the four-phase field Gas+SiC+Si3N4+C 

(see Figure 5.3). 

Contrary to the thermodynamic calculations, experiments were performed in an open system. 

Therefore, hydrogen-containing gas species, which are formed upon pyrolysis of the preceramic 

polymer, are carried away in the experiment by the flowing gas atmosphere and are removed 

from the considered system. Consequently, effects like the thermal dissociation of methane will 

not affect the composition of the condensed phase in the same way. Both, the actual 

composition of the PSZ 10- and PSZ 20-derived amorphous Si-C-N ceramic and the overall 

composition of the condensed phases calculated from the Si-C-N-H-ratio of the preceramic 

polymer in a closed system are inserted into the isothermal section of the Si-C-N system at 

1757 K in Figure 5.2. The isothermal section as well as the concentration of the condensed 

phases calculated from the Si-C-N-H ratio are valid for the fully crystalline constituents of the Si-

C-N ceramic in thermodynamic equilibrium. However, the actual PSZ 10- and PSZ 20-derived Si-

C-N ceramic is amorphous and requires temperatures above 1573 K (see Figure 5.16 and Figure 

5.21). Seifert et al. even give temperatures of about 1700 K for crystallization [104]. 

Nevertheless, the overall composition of the amorphous PSZ 10- and PSZ 20-derived Si-C-N 
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ceramic and the composition of the condensed phases calculated from the Si-C-N-H ratio of the 

preceramic polymer are both located in the three-phase field SiC+Si3N4+C or on the tie-line SiC-

Si3N4. 

The actual composition of the PSZ 10- and PSZ 20-derived amorphous Si-C-N ceramic and the 

composition of the condensed phases calculated from the Si-C-N-H-ratio of the preceramic 

polymer in a closed system are in fairly good agreement (see Figure 5.2). The closest agreement 

exists with the calculated composition at 850 K. However, with a shift to a higher Si content of 

less than 5 %. This temperature is in good agreement with the start of the endothermic reaction 

at 800 K observed in DTA investigations (see Figure 5.12). However, the experimentally 

observed temperature range of the pyrolysis process ends at 1250 K. In comparison to the 

calculated composition at 1250 K, the actual composition of the PSZ 10- and PSZ 20-derived Si-

C-N ceramic is shifted to lower carbon content. This is consistent with the discussion above. 

Contrary to the calculation in a closed system, CH4 is carried away in the experimental setup by 

the flowing atmosphere. Therefore, the thermal dissociation of CH4 above 693 K does not 

contribute to the carbon content of the obtained ceramic. Seifert et al. [104] already discussed 

this depletion in carbon compared to thermodynamic modeling for PNVS-, PHMC-, PMVC-, 

PHMS- and PMVS-derived Si-C-N ceramics.  

The composition of the condensed phases calculated from the Si-C-N-H composition at 300 K to 

700 K is located on the tie-line SiC-Si3N4 i.e. shifted to even lower carbon content compared to 

the measured composition of the PSZ 10- and PSZ 20-derived Si-C-N ceramic. Since the pyrolysis 

of the preceramic polymer does not take place at these temperatures, the calculated values do 

not have an actual physical meaning. The activation energy for the endothermic transformation 

of the polysilazane into the solid amorphous Si-C-N ceramic is not available at these 

temperatures. 

At about 1400 K, the composition of the condensed phases, calculated from the composition of 

the Si-C-N-H polymer, changes from constant Si/N-ratio to a constant Si/C-ratio. This means, the 

overall composition of the condensed phases is depleted in its nitrogen content. This 

temperature corresponds to the point of intersection of the equilibrium partial pressures of CH4 

and N2 in the gas phase at 1399 K, which is established as a result of the Si-C-N-H composition of 

the preceramic polymer (see Figure 5.1). 

High-temperature stability 

The high-temperature stability of the PSZ 10- and PSZ 20-derived Si-C-N ceramic is determined 

by its composition. Figure 5.4 shows the composition of the obtained Si-C-N ceramic in 

isothermal sections of the Si-C-N system. At temperatures below 1757 K, the composition of the 

PSZ 10- and PSZ 20-derived Si-C-N ceramic is in the three-phase field SiC+Si3N4+C if 

crystallization would occur. At temperatures above 1757 K, reaction (5.2) takes place. The 
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calculated phase fraction diagram in Figure 5.5 shows that C and Si3N4 are reacting under 

formation of SiC and N2, which is released into the atmosphere. Therefore, the composition of 

the Si-C-N ceramic is located in the three-phase field Gas+SiC+Si3N4 for 1757 K < T < 2114 K. 

Reaction (5.2) was validated by detecting the N2-release by mass spectroscopy (see Figure 5.10 

and Figure 5.11). Due to the release of N2, the composition of the Si-C-N ceramic is depleted in 

nitrogen. The composition of the remaining Si-C-N ceramic is shifting along the marked reaction 

path to the tie-line SiC-Si3N4. 

The release of N2 in reaction (5.2) results additionally in a mass loss, which was detected by 

thermogravimetry (see Figure 5.9). The experimentally observed mass loss is thereby in very 

good agreement with the mass change calculated from the phase fraction diagram (see Figure 

5.6). Due to their identical composition, PSZ 10 and PSZ 20 yield the same mass loss due to the 

high-temperature reaction (5.2). 

Microstructure and crystallization 

The observed microstructural changes of PSZ 10- and PSZ 20-derived Si-C-N ceramics above 

1573 K are also resulting from the release of N2 by reaction (5.2). After heat treatment at 

maximum temperatures of 1673 K and 1773 K, the otherwise homogeneous microstructure 

(Figure 5.13 and Figure 5.14) of the obtained Si-C-N ceramics transforms and becomes porous as 

a result of the mass loss by release of N2. Additionally, EDX analysis (Figure 5.15) revealed that 

the composition of the Si-C-N ceramic becomes nitrogen-poor. XRD analysis (Figure 5.16) 

showed, that crystallization of β-SiC occurs under these conditions. This is in good accordance 

with literature data, reporting crystallization of Si-C-N ceramics at about 1700 K in Ar [106]. 

Since the crystallization of β-SiC coincides with the occurrence of reaction (5.2), it must be 

concluded, that β-SiC which is newly formed during this process is detected. This is in 

accordance with Janakiraman et al. [107] who observed the rapid crystallization of SiC as a 

result of the carbothermal reaction in precursor-derived Si-B-C-N ceramics. 

Golczewski [108][109] derived an approach to describe the structural transformation during 

crystallization of short-range ordered SiCiN4-i (i = 1-3) ceramics by thermodynamic equilibrium 

calculations. According to that, mixed tetrahedra in the Si-C-N structure have a particularly 

higher resistance against crystallization [109]. After crystallization of one of the components, 

depending on the specific composition of the amorphous Si-C-N ceramic, the remaining material 

is decomposing in an eutectoid-like transformation (amorph.-Si-C-N = nano-SiC + nano-

SiN) [108]. Since homogeneous and X-ray amorphous Si-C-N ceramics were obtained by 

pyrolysis up to a maximum temperature of 1573 K in Ar and Ar/N2 atmosphere, this is 

considered as the maximum applicable pyrolysis temperature. 
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pN2-dependent reactions 

The influence of the nitrogen partial pressure on the high-temperature stability of the PSZ 10- 

and PSZ 20-derived Si-C-N ceramic was predicted by thermodynamic equilibrium calculations. 

With increasing pN2, the reaction temperatures in the Si-C-N system are shifted to higher 

temperatures (see Figure 5.7). For the experimentally applied conditions pN2 = 0.5 bar, reaction 

temperatures of 1701 K and 2062 K are expected for reaction (5.2) and (5.3), respectively. This is 

confirmed by experimental investigations. Si-C-N ceramics obtained by pyrolysis of PSZ 10- and 

PSZ 20 in flowing Ar/N2 (pN2 = 0.5 bar) at a maximum temperature of 1673 K do not show an 

additional mass loss by reaction (5.2). Only heat-treatment at a maximum temperature of 

1773 K in flowing Ar/N2 (pN2 = 0.5 bar) resulted in a pronounced mass loss by reaction (5.2). 

However, the mass loss at 1773 K in Ar/N2 is lower compared to pure Ar atmosphere. Therefore, 

reaction kinetics seem to be slower in Ar/N2 compared to pure Ar and the reaction seems to be 

not completed after the applied holding time of 5 h. Due to the less pronounced transformation 

by reaction (5.2) in Ar/N2, the obtained Si-C-N ceramics show a more homogeneous 

microstructure (see Figure 5.19 and Figure 5.20). However, precipitations are visible in after 

heat-treatment up to 1673 K and 1773 K, which correspond to the crystallization of α- and β-

Si3N4 (see Figure 5.21). This is in good accordance with work by Riedel et al. [106] who observed 

crystallization of the NCP 200-derived Si-C-N ceramic at up to 200 K higher temperatures in N2 

compared to Ar atmospheres. Furthermore, crystallization started with β-SiC in Ar and Si3N4 in 

N2 as a result of the carbothermal reaction shifted to lower temperatures in Ar. 

The influence of the nitrogen partial pressure on the high-temperature stability can also be 

observed very locally. Si-C-N ceramics, which were obtained by pyrolysis at maximum 

temperatures of 1673 K in Ar exhibit a microstructure being partly transformed by the 

carbothermal reaction and partly (yet) unaffected (see Figure 5.13-Figure 5.15). Areas, which 

are at the surface or adjacent to cracks and thus accessible for the pure Ar atmosphere, are 

always transformed. In contrast, untransformed areas are never located directly adjacent to 

cracks. These "survive" in the bulk of the Si-C-N ceramic because of locally higher nitrogen 

partial pressures compared to the flowing Ar atmosphere. 

As the temperature of reaction (5.3) was not reached, the related mass loss was not observed in 

the conducted thermogravimetric experiments. 

Conclusively, thermodynamic calculations were well suitable to predict the pyrolysis behavior of 

the precursor-polymers Ceraset® PSZ 10 and PSZ 20 as well as the high-temperature stability 

and the underlying reactions of the obtained Si-C-N ceramic. 
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5.2. Si-B-C-N ceramics 
In this section, phase equilibria of precursor-derived Si-B-C-N ceramics were investigated by 

thermodynamic calculations and high-temperature experiments. To this end, pyrolysis of the  

Si-B-C-N_2 preceramic-polymer was modeled by thermodynamic calculations using the polymer 

composition (see Table 5.1). The high temperature stability of the precursor-derived Si-B-C-N_2 

and Si-B-C-N_1 ceramics was modeled using the composition of the obtained ceramic (see Table 

5.2). Additionally, combined thermogravimetric, DTA and mass spectrometric investigations 

were conducted with the Si-B-C-N_1 preceramic-polymer at temperatures from 1473 K to 

1773 K in flowing gas atmospheres of different nitrogen partial pressure (pure Ar and Ar/N2 with 

pN2 = 0.5 bar). 

 

5.2.1. Thermodynamic analysis of pyrolysis and high-temperature 

 stability 
Figure 5.22 shows the phase fraction diagram and the composition of the associated gas phase 

calculated for the composition of the Si-B-C-N_2 precursor-polymer (SiBC3N3H10)n. The 

calculations were performed for a closed system under the boundary conditions of a total 

amount of substances of 1 mol and at a constant ambient pressure of 1·105 Pa with a self-

developing gas volume. In thermodynamic equilibrium, the composition of the Si-B-C-N_2 

precursor is located in the four-phase field Gas+Si3N4+BN+Graphite over the whole temperature 

range. While the relative amounts of Si3N4 and BN are constant at 0.13 mol and 0.11 mol, 

respectively, the relative amount of graphite is increasing from approx. 0.03 mol to approx. 

0.17 mol in the temperature range 500 K – 1200 K. The gas phase (Figure 5.22b), which is in 

thermodynamic equilibrium with the condensed phases, is mainly consisting of CH4, H2, N2 and 

NH3. Thereby, the decreasing amount of CH4 by thermal dissociation (CH4=C+2H2) is 

corresponding to the increasing amount of H2, with a point of inversion at 771 K and 0.45 bar, 

and graphite. The partial pressures of N2 and NH3 are predominantly decreasing with increasing 

temperature. In general, mainly C- and N-containing gas species are formed while B- and Si-

containing gas species are only present in very small fractions (< 10-8 bar) and at the highest 

temperatures (> 1250 K). As a consequence, upon pyrolysis of the polymer, with permanent 

exchange of the atmosphere, the composition is shifted to lower C- and N-content while both 

the Si- and B-content remains constant ((SiBC3N3H10)n → SiBC1.4N2.3). 



Phase equilibria in precursor-derived Si-(B-)C-N ceramics 

 

58 

 
Figure 5.22: Calculated a) phase fraction diagram and b) composition of the gas phase for the Si-B-C-N_2 precursor polymer 
[SiBC3N3H10]n. 

Figure 5.23 shows the isothermal section in the Si-B-C-N system at constant x(B) = 0.1754. In 

contrast to the isothermal sections in the ternary Si-C-N system (Figure 5.4), in the isothermal 

sections of the quaternary Si-B-C-N system, the corners of the diagram do not only represent 

the pure element, but the element plus a constant amount of boron (e.g. x(B) = 0.1754). Equally, 

the ends of the tie-lines do not represent a single phase but two phases, for example Si3N4+BN. 

If crystallization would occur, the composition of the Si-B-C-N_2 precursor-derived ceramic, 

indicated in Figure 5.23, is located in the four-phase field BN+C+Si3N4+SiC at temperatures 

below 1773 K. The corresponding phase amounts are depicted in Figure 5.24. In contrast to the 

equilibrium calculation of the Si-B-C-N-H polymer (Figure 5.22), were the condensed phase is 

consisting of Si3N4+BN+C, the calculation with the composition of the resulting Si-B-C-N ceramic 

is resulting in BN+C+Si3N4+SiC (Figure 5.23) with a small amount of SiC (Figure 5.24). 

At 1757 K, Si3N4 is reacting with the excess graphite under formation of SiC and N2 (reaction 

(5.2)). While Si3N4 is consumed completely, the amount of BN remains constant (see Figure 

5.24a). Figure 5.24b shows the release of N2 into the atmosphere relative to the constant 

amount of Ar. As a result, the Si-B-C-N ceramic is in the four-phase field Gas+C+BN+SiC at 

temperatures between 1757 K and 2586 K. Figure 5.24a shows that a melt is at 2586 K by 

quaternary transition reaction: 

                          (5.4) 

under release of N2 (Figure 5.24b). Molecular nitrogen is the only gas species which is formed up 

to the highest temperatures above 2586 K were also Si- and C-containing gas species (Si, SiC2, 

Si2C, B) are formed. 
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Figure 5.25 shows the isothermal section in the system Si-B-C-N at constant x(B) = 0.0525. The 

composition of the Si-B-C-N_1 precursor-derived ceramic is indicated. At temperatures below 

1757 K, the composition of the Si-B-C-N_1 ceramic is located in the four-phase field 

BN+C+Si3N4+SiC. Therefore, the transition reaction of Si3N4 with the excess graphite under 

formation of SiC and release of N2 takes place at 1757 K (Figure 5.26). However, the carbon 

content is lower compared to the Si-B-C-N_2 ceramic, (Si-B-C-N_1: C/Si3N4 < 1/3; Si-B-C-N_2: 

C/Si3N4 > 1/3) resulting in left over Si3N4 after the reaction (Figure 5.26a). Therefore, the 

composition of the Clariant Si-B-C-N ceramic is located in the four-phase field Gas+Si3N4+SiC+BN 

between 1757 K and 2114 K (Figure 5.25c). As a result, the thermal decomposition of the 

surplus Si3N4 into Si, which is liquid at this temperature, and N2 is taking place at 2114 K (Figure 

5.26a). At 2114 K < T < 2564 K the composition of the Clariant Si-B-C-N ceramic is in the four 

phase field Gas+SiC+BN+L (Abb. 5.24d). At 2564 K the reaction of BN with SiC is taking place: 

                        (5.5) 

All reactions in the Si-B-C-N_1 ceramic are taking place under release of N2 (Figure 5.26). Other, 

Si- and C-containing gas species are only formed at the highest temperatures above 2564 K.  
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Figure 5.23: Calculated isothermal sections for constant x(B) = 0.1754. The composition of the Si-B-C-N_2 precursor-derived 
ceramic is indicated. 

 

 
Figure 5.24: Calculated a) phase fraction diagram and b) composition of the gas phase for the Si-B-C-N_2 precursor-derived 
ceramic. 
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Figure 5.25: Calculated isothermal sections for constant x(B)= 0.0525. The composition of the Si-B-C-N_1 precursor-derived Si-B-
C-N ceramic is indicated. 

 

 
Figure 5.26: Calculated a) phase fraction diagram and b) composition of the gas phase for the Si-B-C-N_1 precursor-derived Si-B-
C-N ceramic. 
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Figure 5.27 shows isothermal sections of the ternary Si-B-C system. The Si:B:C ratios of the Si-B-

C-N_2 (Si1B1C1.4) and Si-B-C-N_1 (Si6B1C5) ceramics are located in the three-phase fields 

B4C+C+SiC and B4C+Si+SiC, respectively. In the latter case, a melt is formed at 1657 K in the 

ternary system, which is 30 K lower compared to pure Si. 

 
Figure 5.27: Calculated isothermal sections of the Si-B-C system at 1473 K and 1673 K. The compositions of ▲ Si-B-C-N_1 and ■ 
Si-B-C-N_2 ceramics are indicated. 

The nitrogen content is decisive for the high-temperature stability of Si-B-C-N-ceramics. To 

discuss the ideal nitrogen-content, isopleths from the Si:B:C-ratio of the Si-B-C-N_2 (Si1B1C1.4) 

and Si-B-C-N_1 (Si6B1C5) ceramic to the N-corner of the Si-B-C-N tetrahedron were calculated. 

These are depicted in Figure 5.28. The isopleth Si1B1C1.4-N including the Si-B-C-N_2 ceramic 

(Figure 5.28a) is divided into three parts. For x(N) < 0.23 the ceramic is in the four-phase field 

B4C+C+SiC+BN. Melt and gas phase are formed at 2568 K and 2586 K, respectively. A nitrogen 

content of 0.23 < x(N) < 0.41 is resulting in the four-phase field Si3N4+C+SiC+BN at temperatures 

below 1757 K and Gas+C+SiC+BN at 1757 K – 2586 K. The composition of the Si-B-C-N_2 ceramic 

is located in this area. For x(N) > 0.41, the composition is resulting in the four-phase field 

Si3N4+Gas+C+BN up to 1757 K, containing free (molecular) nitrogen gas. The isopleth Si6B1C5-N 

including the Si-B-C-N_1 ceramic is more complex at low nitrogen fractions (Figure 5.28b). For 

x(N) < 0.07 and x(N) < 0.16 the ceramic contains free Si in form of B4C+Si+SiC+BN and 

Si3N4+Si+SiC+BN, respectively. Therefore, melt formation is observed in the multi-component 

system at 1669 K and 1686 K, respectively. The composition of the Si-B-C-N_1 ceramic is located 

in the range 0.16 < x(N) < 0.43. Therefore, the phase evolution discussed in Figure 5.26 is found: 

Si3N4+C+SiC+BN up to 1757 K, Si3N4+Gas+SiC+BN up to 2114 K, L+Gas+SiC+BN up to 2564 K and 

L+Gas+SiC above 2564 K. The latter transition is concentration-dependent. The highest 

application temperatures, i.e. without formation of a gas or liquid phase, for the Si-B-C-N_2 

ceramic would be for x(N) < 0.41 and < 0.23 at 1757 K and 2568 K, respectively. For the Si-B-C-
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N_1 ceramic the highest application temperature is found for a nitrogen content of 0.16 < x(N) < 

0.43 at 1757 K. 

 
Figure 5.28: Calculated isopleths in the Si-B-C-N system for a) Si1B1C1.4-N and b) Si6B1C5-N. Compositions of the a) Si-B-C-N_2 and 
b) Si-B-C-N_1 ceramics are indicated as dashed lines. 

Phase stability diagrams for the Si:B:C-ratios of the Si-B-C-N_2 (Si1B1C1.4) and Si-B-C-N_1 (Si6B1C5) 

ceramic are shown in Figure 5.29. These diagrams show the dependence of the phase equilibria 

on the temperature and nitrogen partial pressure. Si3N4+C+BN are in thermodynamic 

equilibrium with the gas phase below 1757 K at ambient pressure. Along the line Si3N4, graphite 

and SiC are in equilibrium with the gas phase. Upon crossing the line, Si3N4 and graphite are 

reacting according to reaction (5.2). Depending on the composition, either Si3N4 or graphite is 

thereby consumed completely. For the composition of the Si-B-C-N_2 ceramic, Si3N4 is 

consumed completely, while for the Si-B-C-N_1 ceramic Si3N4 is left after the reaction. With 

increasing pN2, reaction temperatures are shifting to higher values while decreasing pN2 lower 

the reaction temperatures. 

 
Figure 5.29: Calculated phase stability diagrams for the composition of the a) Si1B1C1.4 (Si-B-C-N_2) and b) Si6B1C5 (Si-B-C-N_1) 
precursor-derived Si-B-C-N ceramics.  
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5.2.2. Experimental investigations 
Si-B-C-N ceramics were prepared from the Si-B-C-N_1 precursor polymer in flowing Ar and Ar/N2 

atmospheres, respectively. Figure 5.30 shows the corresponding thermogravimetric curves for 

pyrolysis of the Si-B-C-N_1 precursor polymer in flowing Ar. Results for pyrolysis of PSZ 10 and 

PSZ 20 in Ar are shown for comparison (see Section 5.1.2). 

In stage 1 (T < 573 K), the crosslinking of the preceramic polymer takes place. During this stage, 

the Si-B-C-N_1 polymer undergoes a much higher mass loss compared to PSZ 10 and PSZ 20. 

Figure 5.31 shows the mass spectrometric analysis of the pyrolysis atmosphere. A strong release 

of H2 is observed during stage 1, which is much more pronounced compared to the crosslinking 

of PSZ 10 and PSZ 20. Since the crosslinking of the preceramic polymer takes places by split of 

and release of low molecular species, bubble formation is corresponding to the observed strong 

H2-release 

 
Figure 5.30: Thermogravimetric curves for pyrolysis of the Si-B-C-N_1 precursor-polymer at 1473 K – 1773 K in flowing Ar. 
Results for PSZ 10 and PSZ 20 are shown for comparison. 

During stage 2 (573 K < T < 1273 K) the actual pyrolysis takes place. The mass loss of the Si-B-C-

N_1 precursor during stage 2 is comparable with PSZ 10 and PSZ 20 and shows the same two-

step characteristics. The crosslinked precursor polymer is transformed into a solid ceramic 

during this stage. Hydrogen, which is bound in the polymers functional groups (Si-H, C-H, N-H) is 

released in form of hydrogen-containing gas species. Figure 5.31 shows, that predominantly H2 

and CH4 are released during this stage. However, also small amounts of N2 are observed. 
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Figure 5.31: Combined thermogravimetric and mass spectroscopic analysis during pyrolysis of Si-B-C-N_1 ceramics. In flowing Ar 
atmosphere. 

 
Figure 5.32: DTA/TG analysis of Si-B-C-N_1 precursor-polymer combined with mass spectrometry in flowing Ar. 
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The combined DTA/TG and mass spectroscopic analysis during heat-up of the crosslinked Si-B-C-

N_1 precursor-polymer from 573 K with 10 K/min (Figure 5.32) shows that pyrolysis in stage 2 is 

an endothermic process. The DTA signal exhibits two endothermic reaction peaks in the 

temperature range from 800 K to 1100 K, corresponding to the two-step mass loss detected by 

thermogravimetric analysis. From the mass spectroscopic signal, even three maxima can be 

distinguished. The first and the third maxima are mainly characterized by the release of H2 while 

the second maximum predominantly shows CH4 release. In stage 3 (T > 1273 K) the final 

temperature is kept constant for 5 h to ensure complete transformation of the ceramic. 

Samples, which were pyrolyzed at maximum temperatures of 1473 K, 1573 K and 1673 K in Ar, 

showed a constant mass during this stage indicating that the pyrolysis process was completed 

and no additional reactions take place. However, the sample pyrolyzed at a maximum 

temperature of 1773 K shows an additional gradual mass loss, which is accompanied by the 

release of N2 (Figure 5.31) and another endothermic peak in the DTA signal (Figure 5.32). In 

total, the precursor-derived Si-B-C-N_1 ceramic shows a higher mass loss and therefore a lower 

ceramic yield compared to the PSZ 10 and PSZ 20-derived Si-C-N ceramics. 

Figure 5.33 shows thermogravimetric curves for the pyrolysis of the Si-B-C-N_1 precursor-

polymer in flowing Ar/N2 (pN2 = 0.5 bar). The mass loss observed in Ar/N2 does not differ from 

the experiments in Ar during stage 1 (crosslinking) and stage 2 (pyrolysis). Also in stage 3, 

samples do not show an additional mass loss at maximum temperatures of 1473 K, 1573 K and 

1673 K in Ar/N2. However, pyrolysis at a maximum temperature of 1773 K in Ar/N2 shows a 

significantly lower mass loss compared to experiments in Ar atmosphere in stage 3. 

 
Figure 5.33: Thermogravimetric experiments for pyrolysis of the Si-B-C-N_1 precursor-polymer in flowing Ar/N2 (pN2 = 0.5 bar). 
Results for pyrolysis in Ar (dotted line) are shown for comparison. 
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The Si-B-C-N-ceramics obtained by pyrolysis of the Si-B-C-N_1 precursor-polymer in flowing Ar 

and Ar/N2 atmospheres are shown in Figure 5.34. All samples show macroscopically an 

extensive bubble formation. Bubbles have been formed before crosslinking is completed since 

the viscosity of the preceramic polymer is only low enough during stage 1 (< 573 K). After 

complete pyrolysis, the material is too hard and rigid to allow formation of bubbles. 

 
Figure 5.34: Si-B-C-N ceramics obtained by pyrolysis of the Si-B-C-N_1 precursor-polymer in flowing Ar and Ar/N2 (pN2 = 0.5 bar), 
respectively. The outer diameter of the Al2O3 crucibles is 17.3 mm. 

Figure 5.35 shows SEM micrographs of the obtained Si-B-C-N ceramics. Samples, which were 

pyrolyzed up to maximum temperatures of 1473 K, 1573 K and 1673 K in both flowing Ar and 

Ar/N2, show very homogeneous microstructures. Pyrolysis up to 1773 K in flowing Ar resulted in 

a partly porous and rough microstructure. However, also untransformed regions remain which 

correspond to the smooth microstructures at lower temperatures. EDX analysis (Figure 5.36) 

reveals a significantly lower nitrogen content of the porous regions compared to the smooth 

areas. 
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Figure 5.35: Micrographs of Si-B-C-N ceramic obtained by pyrolysis of Si-B-C-N_1 precursor-polymer in flowing Ar and Ar/N2 
(pN2 = 0.5 bar). 



Phase equilibria in precursor-derived Si-(B-)C-N ceramics

 

69 

 
Figure 5.36: SEM micrograph and EDX analysis of Si-B-C-N ceramic obtained by pyrolysis of the Si-B-C-N_1 precursor-polymer at 
1773 K in flowing Ar. 

XRD patterns depicted in Figure 5.37 show, that the obtained Si-B-C-N ceramics are X-ray 

amorphous after pyrolysis at 1473 K, 1573 K and 1673 K in Ar and at all temperatures in Ar/N2. 

Pyrolysis at maximum 1773 K in Ar resulted in crystallization of β-SiC and Si. 

 
Figure 5.37: XRD patterns of Si-B-C-N ceramic obtained by pyrolysis of the Si-B-C-N_1 precursor-polymer at 1473 K-1773 K in 
flowing a) Ar and b) Ar/N2 (pN2 = 0.5 bar). 
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5.2.3. Discussion and Conclusion 
Pyrolysis of the preceramic-polymer 

Thermodynamic modeling of the pyrolysis process of the Si-B-C-N_2 precursor-polymer was 

conducted using the composition of the polymer chain (SiBC3N3H10)n. The calculations (Figure 

5.22) reveal the thermodynamic equilibrium phases resulting from the specific composition of 

the Si-B-C-N_2 precursor-polymer. Besides the condensed phases Si3N4, BN and C (graphite) also 

a gas phase is formed. The gas phase contains in particular the hydrogen from the polymer 

chain in form of hydrogen-containing gas species. Similar to the polysilazane precursor-

polymers Ceraset® PSZ 10 and PSZ 20 (see Section 5.1.1), the major gas species which are 

formed are H2 and CH4. By thermal dissociation of methane (CH4=C+2H2) the partial pressure of 

CH4 is decreasing with temperature while the partial pressure of H2 is increasing with a point of 

inversion at 771 K. However, unlike the Ceraset® PSZ 10 and PSZ 20 precursor-polymers, no 

temperature range of constant H2 and CH4 pressure is observed for the Si-B-C-N_2 precursor-

polymer. 

Contrary to Ceraset® PSZ 10 and PSZ 20, N2 is present with a constant partial pressure (0.06-

0.12 bar) in the considered temperature range. Additionally, NH3 is formed with a partial 

pressure up to 4·10-4 bar from the composition of the Si-B-C-N_2 precursor-polymer. Both is 

indicating, that the nitrogen content of the Si-B-C-N_2 precursor-polymer is slightly too high to 

be bound chemically in the Si-B-C-N ceramic. In contrast to the calculation of phase equilibria 

from the composition of the obtained Si-B-C-N ceramic (Si3N4+BN+C+SiC; see Figure 5.24), no 

SiC is found upon using the composition of the precursor-polymer (Gas+Si3N4+BN+C; see Figure 

5.22). An explanation for this observation can be derived from the isothermal section Si1B1C1.4-N 

in Figure 5.28. The composition of the Si-B-C-N_2 ceramic (x(N) = 0.4035) is located very close to 

the phase boundary between the phase equilibria BN+C+Si3N4+SiC (0.23 < x(N) < 0.41) and 

Gas+Si3N4+BN+C (x(N) > 0.41). Therefore, a slight deviation in the nitrogen content of the Si-B-C-

N precursor-polymer can result in either one or the other phase equilibrium. Experimental 

investigation by Wilfert [110] showed, that the Si-B-C-N_2 ceramic remains X-ray amorphous 

after heat-treatment at a maximum temperature of 1838 K and below. While predominantly C- 

and N-containing gas species are formed, Si- and B-containing species exhibit only very low 

partial pressures below 10-8 bar in the considered temperature range up to 1500 K. Hence, the 

decreasing carbon and nitrogen content and constant Si:B-ratio upon pyrolysis of the precursor-

polymer and formation of the amorphous Si-B-C-N ceramic ((SiBC3N3H10)n→SiBC1.4N2.3) is a 

direct consequence of the equilibrium partial pressures of the gas species which are forming 

during pyrolysis. 

Experimental investigations were performed with the Si-B-C-N_1 precursor-polymer. Mass loss 

during the initial cross-linking process (stage 1) is much higher compared to Ceraset® PSZ 10 and 
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PSZ 20 (see Figure 5.30). Up to the 523 K isothermal, the mass change is similar to PSZ 10 but 

sinks to lower values upon further heat-treatment. 

The high mass loss during crosslinking is accompanied by a very pronounced release of H2 (see 

Figure 5.31), which is higher compared to heat-treatment of Ceraset® PSZ 10 (Figure 5.10) and 

PSZ 20 (Figure 5.11), respectively. This is in good accordance with the observed porosity 

resulting from the formation of bubbles (Figure 5.34). As the crosslinked and pyrolyzed polymer 

is too rigid, bubbles must be formed as long as the polymer is still viscous, i.e. before 

crosslinking is complete. This is supported by the observed H2 signal and mass loss during this 

stage. In contrast to the porous Si-B-C-N_1 ceramics, Si-C-N ceramics derived from Ceraset® PSZ 

10 and PSZ 20, which were obtained by the same heat-treatment, exhibit a dense lens-like 

appearance. The higher mass loss of Ceraset® PSZ 10 compared to PSZ 20 was accountable to 

the evaporation of oligomers, which are presumably present in a higher number in the low-

molecular PSZ 10 (see Section 5.1.3). Such a statement for the Si-B-C-N_1 precursor-polymer 

would necessitate further investigations. 

The endothermic pyrolysis process is accompanied by the release of H2 and CH4 (see Figure 

5.32). DTA measurements and mass change clearly show a two-step character of the pyrolysis 

process. The release of H2 and CH4 in the temperature range of 600-1300 K and 700-1100 K, 

respectively, even suggest a three-step character. This observation is consistent with 

experimental thermogravimetric data on the pyrolysis of other polyborosilazanes [111][112]. 

Mass loss during the actual pyrolysis (stage 2) is similar to Ceraset® PSZ 10 and PSZ 20. The 

resulting overall ceramic yield of approx. 50 % for Si-B-C-N_1 precursor-polymer is lower 

compared to Ceraset® PSZ 10 (60 %) and PSZ 20 (67 %) Si-C-N precursor-polymer (see Figure 

5.30). However, this is only resulting from the higher mass loss during crosslinking and 

outgassing (stage 1) of the precursor-polymer. 

High-temperature stability 

In-depth analysis of the high-temperature stability and the underlying high-temperature 

reactions was performed by thermodynamic calculations based on the composition of the Si-B-

C-N_2 (Si1B1C1.4N2.3) and Si-B-C-N_1 (Si6B1C5N7) precursor-derived Si-B-C-N ceramics. The boron 

content of these ceramics corresponds to 17.54 at.% and 5.25 at.%, respectively. According to 

the isothermal sections in the quaternary Si-B-C-N system at constant B-content, the 

composition of the Si-B-C-N_2 (Figure 5.23) and Si-B-C-N_1 (Figure 5.25) precursor-derived 

ceramics are in the same four-phase equilibrium Si3N4+SiC+BN+C, at temperatures up to 1757 K 

and assuming complete crystallization. However, the fractions of these four phases is quite 

different as can be seen from the phase fraction diagrams in Figure 5.24 and Figure 5.26, 

respectively. For example, the Si-B-C-N_2 ceramic is poor in SiC, while the Si-B-C-N_1 ceramic is 

rich in SiC. 
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At 1757 K, the carbothermal reaction of Si3N4 and C as equilibrium constituents of the Si-B-C-N 

ceramic is taking place under formation of SiC and N2, which is released to the atmosphere. Due 

to the partly transition of the Si-B-C-N ceramic into gaseous N2 and the associated degradation, 

this reaction is limiting for the application temperature. Due to their different Si:B:C-ratios (see 

Figure 5.27), the obtained compositions of the Si-B-C-N ceramics are located in different phase 

fields above 1757 K. The composition of the Si-B-C-N_2 and Si-B-C-N_1 ceramics are located in 

the phase equilibria Gas+C+BN+SiC and Gas+Si3N4+SiC+BN, respectively. Hence, Si3N4 is 

consumed completely in the carbothermal reaction of the Si-B-C-N_2 ceramic and carbon is 

consumed completely for the Si-B-C-N_1 ceramic. Due to the residual Si3N4, the Si-B-C-N_1 

ceramic additionally shows the thermal dissociation of Si3N4 at 2114 K. 

The different Si:B:C-ratio (see Figure 5.27) of the Si-B-C-N_2 and Si-B-C-N_1 precursor-derived 

ceramics also predefines the nitrogen content, which is delimiting the maximum high-

temperature stability. Ideally, compositions of Si-B-C-N ceramics should be chosen in a 

composition range were no gas or liquid phase are formed in the aspired application 

temperature range. For the Si-B-C-N_2 ceramic this would be x(N) < 0.41 and < 0.23 for a 

maximum application temperature of 1757 K and 2568 K, respectively (see Figure 5.28). The Si-

B-C-N_1 ceramic possesses the highest application temperature of 1757 K for 0.16 < x(N) < 0.43. 

Therefore, the same reaction (5.2) is limiting for the high-temperature stability of the Ceraset 

PSZ 10 and PSZ 20-derived Si-C-N ceramics (see Section 5.1) as well as the Si-B-C-N_2 and Si-B-C-

N_1 precursor-derived ceramics. However, the Si-B-C-N_1 precursor-derived ceramic shows a 

considerably much lower mass loss in thermogravimetric experiments above the reaction 

temperature of 1757 K in Ar as well as Ar/N2 atmosphere. In Ar-atmosphere, a shift of the 

reaction temperatures to lower values is expected from the phase stability diagram in Figure 

5.29. However, the Si-B-C-N_1 precursor-derived ceramic does not show a mass loss or a related 

N2 signal, contrary to PSZ 10 and PSZ 20-derived Si-C-N ceramics under the same conditions. In 

addition, the microstructural analysis of the obtained Si-B-C-N ceramics in Figure 5.35 does not 

show signs of the carbothermal decomposition reaction at 1673 K. This is clearly demonstrating 

the superior high-temperature stability of the Si-B-C-N_2 precursor-derived ceramic. 

An outstanding high-temperature stability of Si-B-C-N ceramics is known from literature. 

Resistance against carbothermal reaction is reported up to 2273 K [113]. Jalowiecki et al. [114] 

found in HRTEM investigations a so-called turbostratic BNCx-structure surrounding SiC and Si3N4 

grains. Seifert et al. [104][115] demonstrated, that two effects contribute to the high-

temperature stabilization: (1) an increase in pressure inside the encapsulated regions would 

shift the carbothermal decomposition of Si3N4 to higher temperatures; and (2) a lower carbon 

activity inside the turbostratic BNCx-structure would also shift the carbothermal decomposition 

temperature to higher values. However, the high-temperature stability of Si-B-C-N ceramics is 

depending on the composition. While some do not show significant decomposition up to 
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2273 K [113][116], others already decompose at temperatures below 2073 K [116][117]. Müller 

et al. [118][119] investigated the effect of the boron content on the high-temperature stability 

of Si-B-C-N ceramics. It was shown, that with increasing boron content, the persistence against 

crystallization and degradation increases. The authors find a minimum boron content of 

5.7 at.% [118] and 9 at.% [119], respectively, sufficient to protect the material against thermal 

degradation and crystallization. Different values were attributed to differences in 

microstructure upon using different precursors. 

Crystallization 

XRD analysis, depicted in Figure 5.37, revealed, that the obtained Si-B-C-N_1 precursor-derived 

ceramics are X-ray amorphous after heat-treatment at 1473 K-1773 K in Ar/N2 and 1473 K-

1673 K in Ar. Only heat treatment at 1773 K in flowing Ar resulted in the crystallization of β-SiC 

and Si. The occurrence of β-SiC is coincident with the carbothermal reaction observed in 

REM/EDX (Figure 5.36) and STA/MS (Figure 5.32). Therefore, crystalline β-SiC must be formed as 

a result of the carbothermal reaction instead of crystallizing from the amorphous matrix. The 

N2-starvation conditions in flowing Ar might be resulting in the observation of Si reflections. 

According to the phase stability diagram, shown in Figure 5.29, reaction temperatures are 

decreasing with decreasing pN2. A nitrogen partial pressure below 10-2.5 bar would be sufficient 

at 1773 K to form Si from the thermal decomposition of Si3N4. Although Si3N4 is an equilibrium 

phase for the composition of Si-B-C-N_1 precursor-derived ceramic, crystallization of α-/β-Si3N4 

is not observed contrary to Ceraset® PSZ 10- and PSZ 20-derived Si-C-N ceramics. Tavakoli et al. 

investigated the effect of boron on the crystallization of Si-B-C-N ceramics extensively 

[120][121]. Gao et al. [122] identified processes as (1) demixing of SiCxN4-x mixed domains into 

SiC4 and SiN4 tetrahedra, (2) cleavage of the mixed bonds at interdomain regions and (3) 

coarsening of the domains. Tavakoli et al. [120][123] found, that the stabilizing effect of boron 

on the crystallization of α-/β-Si3N4 is rather a kinetic, than a thermodynamic effect. With 

increasing boron content, the thermodynamic stability of the crystalline components SiC, Si3N4, 

BN and C (graphite) actually increases [123][124]. However, the turbostratic BNCx-layers lead to 

a delay in coarsening of the nanodomains [123]. 

  



Phase equilibria and constitution in ZrB₂-filled SiC/Si-C-N-ceramics 

 

74 

6. Phase equilibria and constitution in ZrB₂-filled SiC/Si-C-N-ceramics 

During cyclic operation of turbines, crack formation might occur, which would lead to an ingress 

of the oxidizing combustion atmosphere through the cracks into the material. This could lead to 

an increased degradation of the material and its mechanical properties. The addition of boron-

containing additives into the matrix could improve the oxidation resistance of the material 

inherently. In the presence of a crack, the additive would form a borosilicate melt (eutectic 

temperature 713 K [44]), which is filling the crack and thereby slowing down the inward 

diffusion of the oxidizing gas species from the combustion atmosphere. This could promote self-

healing of the matrix during operation to a certain extend. The oxidation protective effect of 

boron-containing components on SiC-based ceramics by formation of a boro-silicate is already 

known for ceramic fibers with BN coatings [45], ultra-high-temperature ceramics (UHTC) ZrB2-

SiC (and HfB2-SiC) [46][47] and boron containing precursor-derived Si-B-C-N ceramics [20]. Apart 

from polyborosilazanes, where boron is chemically bond in functional groups of the precursor 

polymer chain [48][49], ZrB2-filler containing precursor-derived Si-C-N ceramics could be a cost-

effective alternative to introduce boron to the ceramic matrix. Furthermore, She et al. [125] 

showed, that the volume increase induced by the nitriding reaction of ZrB2 forming ZrN induces 

the healing of surface defects and reduces the amount of surface connected pores. Thus, a 

systematic conditioning of ZrB2/Si-C-N composites in N2 after manufacturing could promote self-

healing. Reactive active fillers, which undergo a volume expansion, are also used to improve 

porosity and dimensional change of the ceramic matrix [21][22][23]. 

Parts of this Chapter were published in [126], but more details and further results are presented 

here. 

 

6.1. Preselection of the boron-containing filler 
BN is a possible candidate as boron-containing filler for the Si-C-N matrix in composites/CMCs. 

Due to its chemical inertness with Si-C-N ceramics it was used as crucible material for earlier 

work on precursor-derived ceramics by Wagner [127]. Figure 6.1 shows the phase fraction 

diagram and the composition of the gas phase for BN in equilibrium with Si-C-N, according to 

the composition of PSZ 10 and PSZ 20-derived ceramics, if crystallization would occur. Only 

reactions of the Si-C-N ceramic itself are found (1757 K: Si3N4+3C=3SiC+2N2; 2114 K: Si3N4=Sil+N2 

see also Section 5.1). No additional interactions of BN and the constituents of the Si-C-N ceramic 

are visible in this temperature range. Only at 2588 K, BN and SiC are consumed by the formation 

of a liquid phase and gas. Therefore, BN is fully compatible with the PSZ 10 and PSZ 20-derived 

Si-C-N ceramic within its application-relevant temperature range. 
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Figure 6.1: Calculated a) phase fraction diagram and b) composition of the gas phase for BN/Si-C-N composite. 

Figure 6.2 shows results of the thermogravimetric analysis of the pyrolysis of BN powder 

containing PSZ 20 in flowing Ar. Results of the BN-containing samples were normalized to their 

PSZ 20 content for better comparability. The mass loss in stage 1, resulting from the evaporation 

of oligomers and crosslinking of the polymer, shows a very low scattering and is very similar to 

pure PSZ 20. In addition, the actual pyrolysis process in stage 2 leads to identical mass losses. 

Pyrolysis up to maximum temperatures of 1473 K and 1573 K results in a constant mass in 

stage 3. BN/Si-C-N ceramics, which were obtained by pyrolysis at maximum temperatures of 

1673 K and 1773 K, show an additional mass loss which is comparable to pure PSZ 20-derived Si-

C-N ceramics. The mass loss in stage 3 is resulting from the matrix internal reaction of Si3N4 with 

graphite forming SiC and N2 (see Section 5, reaction (5.2). Summarizing, the addition of BN 

powder does not influence the pyrolysis behavior of PSZ 20. Furthermore no difference in the 

high-temperature stability was observed between the obtained BN/Si-C-N ceramic and the pure 

PSZ 20-derived Si-C-N ceramic matrix. 
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Figure 6.2: Thermogravimetric experiments with PSZ 20-derived BN/Si-C-N composites in flowing Ar. Results for pure PSZ 20 are 
shown for comparison. 

The microstructure of the obtained BN/Si-C-N ceramics is shown in Figure 6.3. BN particles are 

homogeneously distributed throughout the Si-C-N matrix. The matrix itself is homogeneous and 

smooth after pyrolysis at maximum temperatures of 1473 K and 1573 K. Only samples which 

were pyrolyzed at 1673 K and 1773 K show a rough and porous microstructure, indicating a 

partly transformation of the Si-C-N matrix according to reaction (5.2). 

 
Figure 6.3: Micrographs of BN/Si-C-N composites obtained from pyrolysis in flowing Ar. 
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The XRD patterns, shown in Figure 6.4, reveal that after pyrolysis at maximum temperatures of 

1473 K and 1573 K, only reflections of the hexagonal BN-filler are observed. The Si-C-N matrix 

itself is X-ray amorphous at these temperatures. Pyrolysis at 1673 K and 1773 K additionally 

resulted in crystallization of β-SiC. This is analogous to the observations on pure PSZ 20-derived 

ceramics (see Section 5.1). 

 
Figure 6.4: XRD pattern of PSZ 20-derived BN/Si-C-N composites. 

Figure 6.5 shows phase fraction diagrams for the oxidation of the potential filler materials B4C, 

BN und ZrB2. Calculations were performed as a closed system consisting of a constant amount of 

substance (1 mol) at ambient pressure of p = 1·105 Pa with a self-developing gas volume. Phase 

fraction diagrams were calculated with a small amount of Ar (x(Ar) = 0.01) to establish a stable 

gas phase under all conditions. These are oxidizing according to reactions: 

                      (6.1) 

 

                    (6.2) 

 

                     (6.3) 

 

                    (6.4) 
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Figure 6.5: Calculated phase fraction diagrams for a) B4C, b) BN and c) ZrB2 as a function of pO2 at 1473 K. 

B4C and BN are oxidizing under release of gaseous CO, CO2 and N2, respectively. Although BN is 

compatible with the Si-C-N matrix as filler, as has been shown by CALPHAD calculations and 

investigation of the BN/Si-C-N composites, gas formation upon oxidation could be problematic. 

The B2O3-melt, which is intended to fill cracks upon oxidation, could be pushed out of the 

material by the gas. The same holds for B4C. In contrast to that, ZrB2 is forming only condensed 

phases, ZrO2 and B2O3-melt, upon oxidation. This makes ZrB2 the favorable and promising 

boron-containing filler for improving the oxidation tolerance of Si-C-N ceramics. 

In the following, phase stabilities and intrinsic high-temperature reactions between the ZrB2-

additive and the components (Si3N4, SiC and C) of the PSZ 20-derived Si-C-N ceramic matrix were 

investigated. The CALPHAD method was used to identify reactions, which are limiting the 

maximum application temperature. ZrB2/Si-C-N composites were prepared from ZrB2-

powder/PSZ 20-mixtures by pyrolysis and heat-treatment up to maximum temperatures of 

1473 K, 1573 K, 1673 K, and 1773 K in flowing pure Ar- and a Ar/N2-mixture. The pyrolysis 

process was monitored by a combination of thermogravimetric and mass spectrometric 

investigation. Post-test examinations of the obtained ZrB2/Si-C-N composite were performed by 

XRD and SEM. A mechanism for the formation of a zirconium carbonitride (ZrCxNy) was 

proposed and conditions for the avoidance of ZrCxNy were delimited with respect to 

temperature and nitrogen partial pressure of the atmosphere. It is shown that observed 

experimental findings are confirmed and explained by CALPHAD-modeling.  
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6.2. Thermodynamic calculations on the compatibility 

 of ZrB2 and Si-C-N 
Thermodynamic equilibrium calculations were performed to investigate the compatibility 

between the ZrB2 additive and the Si-C-N matrix. Phase stabilities and high temperature 

reactions between ZrB2 and the individual equilibrium components (C, SiC and Si3N4, if 

crystallization would occur), were identified using the CALPHAD method. To this end, the 

dataset Zr-Si-B-C-N, which was derived in Section 4.1 was utilized. Calculations were performed 

as a closed system consisting of a constant amount of substance (1 mol) at ambient pressure of 

p = 1·105 Pa with a self-developing gas volume. Phase fraction diagrams were calculated with a 

small amount of Ar (x(Ar) = 0.01) to establish a stable gas phase under all conditions. Reaction 

pairs were considered as mechanical powder mixtures. 

Figure 6.6 and Figure 6.7 show the phase fraction diagrams and isopleths for the reaction pairs 

C-ZrB2 and SiC-ZrB2, respectively. Phase fractions are constant up to temperatures above 

2500 K, indicating that no reactions take place. Above 2500 K melt formation occurs in both 

reaction pairs C-ZrB2 and SiC-ZrB2. The phases, which are shown in brackets, are present in 

thermodynamic equilibrium, however to a negligible amount. 

 
Figure 6.6: Calculated a) phase fraction diagram and b) isopleth for the couple C-ZrB2. 
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Figure 6.7: Calculated a) phase fraction diagram and b) isopleth for the couple SiC-ZrB2. 

The phase fraction diagram and the composition of the gas and liquid phase of the mechanical 

powder mixture ZrB2-Si3N4, depicted in Figure 6.8, reveal more reactions: 

1870 K                                 (6.5) 

 

2191 K                     (6.6) 

At 1870 K the first reaction occurs between ZrB2 and Si3N4 under formation of ZrN, BN and a 

melt, which is mainly consisting of Si with minor amounts of B, Zr and N (see Figure 6.8c). Since 

the melt is described by a partially ionic liquid model, the constituents are ions, vacancies (Va) 

and neutral species (see also Section 2.3.2). Due to the formation of a melt, the maximum 

application temperature of a ZrB2/Si-C-N-composite is limited to 1870 K by reaction (6.5). At 

2191 K a further reaction takes place: The recombination of ZrN and BN forming ZrB2 and N2, 

which is released into the atmosphere (see Figure 6.8b). 

The small portion of Ar (x(Ar)=0.01) used to establish a stable gas phase under all conditions 

allows to depict the N2-release relative to the fixed amount of Ar. However, the use of Ar also 

results in artifacts in the calculation. The use of a, even small amount, of Ar defines the volume 

of the gas phase which is in equilibrium with the condensed phases in the closed system which 

is considered in the calculation. To establish the corresponding equilibrium partial pressure of 

N2 in the gas phase, an amount of nitrogen is required which depends on the gas volume and is 

provided by the dissociation of Si3N4 into free Si and N2. Therefore, reactions involving N2 show 

rounded phase fraction transitions instead of sharp edges at the reaction temperatures. 

Furthermore, the free Si, which is present in the considered closed system, causes apparently a 

stable liquid phase consisting of Si, Zr and B at 1658 K although no reactions between the 

constituents take place at this temperature. Therefore, both the round edges of the phase 
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fractions and the liquid phase below 1870 K are an artifact resulting from the use of Ar in the 

calculation. 

 
Figure 6.8: Calculated temperature dependence of the a) phase fractions, b) associated gas phase composition and c) 
composition of the liquid phase for the couple ZrB2-Si3N4. 

Phase equilibria for variable Si3N4-ZrB2 composition are depicted in Figure 6.9. An excess 

amount of Si3N4, i.e. more than is consumed by reaction (6.5), results additionally in the thermal 

decomposition of the remaining Si3N4 at 2096 K. The thermal decomposition reaction occurs 

18 K lower compared to pure Si3N4 due to presence of the melt, which is containing Si, Zr, B 

and N. 
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Figure 6.9: Calculated isopleth Si3N4-ZrB2 in the system Zr-Si-B-N. 
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The Zr-B-N system 

The phase stability diagram in the system Zr-B-N is shown in Figure 6.10. Phase equilibria of 

solid phases, in equilibrium with the gas phase, are depicted as a function of nitrogen partial 

pressure and temperature. Areas correspond to the bivariant single-phase equilibrium ZrB2 and 

the two-phase equilibrium ZrN+BN while the line corresponds to the univariant three-phase 

equilibrium ZrB2+ZrN+BN. At all conditions, condensed phases are in equilibrium with N2, as only 

constituent of the gas phase. ZrB2 is stable at high temperatures and low pN2 while at higher pN2 

and lower temperatures ZrN and BN are the equilibrium phases. Upon crossing the line, reaction 

(6.7) takes place. 

                    (6.7) 

The reaction temperature and therefore the stability of ZrB2 is strongly depending on the 

nitrogen partial pressure of the atmosphere. As the formation of other gas species than N2 is 

negligible, pN2 is equal to the total pressure. At pN2 = 1 bar, i.e. in pure nitrogen at ambient 

pressure, reaction (6.7) proceeds at 2191 K. A reduction of the nitrogen partial pressure to 

0.5 bar or 0.1 bar reduces the reaction temperature to 2115 K and 1959 K, respectively. 

 
Figure 6.10: Calculated phase stability diagram for the Zr-B-N system. 
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The Zr-C-N system 

The interaction between ZrN and carbon as constituent of the Si-C-N ceramic is depending on 

the carbon activity. Figure 6.11 shows the phase fraction, site occupancies and composition of 

the gas phase calculated for ZrCxNy at 1473 K. With increasing carbon activity, carbon is 

incorporated into the ZrCxNy crystal structure and nitrogen is released as N2 into the 

atmosphere. 

 
Figure 6.11: Calculated a) phase fraction, b) site fraction and c) composition of the gas phase for ZrCxNy as a function of the 
carbon activity. 

Figure 6.12 shows different aspects of the interaction between ZrN and graphite as a function of 

the temperature. The phase fractions of ZrN and graphite (C) are constant up to about 1200 K 

(Figure 6.12a), indicating that no reaction occurs. At higher temperatures, carbon is dissolved in 
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the ZrN crystal structure forming ZrCxNy. Figure 6.12b shows how the fraction of carbon 

decreases in the ZrCxNy lattice at the expense of nitrogen, which is therefore released as 

molecular N2 into the atmosphere (Figure 6.12c). At the highest temperatures also vacancies are 

formed. 

 
Figure 6.12: Calculated temperature dependence of the a) phase fraction, b) site fraction and c) gas composition for ZrCxNy and 
graphite. 
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6.3. Experimental investigations 
ZrB2/Si-C-N-composites were prepared by pyrolysis of a mixture of ZrB2 powder with the liquid 

precursor polymer PSZ 20 (see also Section 3.1). Figure 6.13 shows thermogravimetric 

experiments during heat-treatment of the ZrB2/PSZ 20-mixture in flowing Ar and Ar/N2 

atmosphere (pN2 = 0.5 bar). Thermogravimetric experiments for the pyrolysis of pure PSZ 20 

under identical conditions are shown for comparison (see Section 5.1.2). The mass-changes 

obtained with the ZrB2/PSZ 20-mixtures are normalized to their PSZ 20 content for better 

comparability. 

In the first stage, the liquid polysilazane PSZ 20 is cross-linked by stepwise heating from room 

temperature to 573 K. During this stage a mass-loss is obtained by evaporation of oligomers and 

by the release of gaseous hydrogen-containing molecules (H2, CH4,...) upon formation of new 

bonds between individual polymer chains (see also Section 5.1). The mass change during stage 1 

does not differ between the ZrB2-containing and the pure PSZ 20. 

In the second stage, the actual pyrolysis process is initiated by heating the crosslinked polymer 

with 5 K/min. An additional mass loss is observed during this stage upon transformation of the 

cross-linked polymer into a solid, amorphous Si-C-N ceramic. This process is accompanied by the 

release of hydrogen, which is an integral part of the polymers functional groups (Si-H, N-H, C-H), 

in form of hydrogen-containing gas species (H2, CH4, NH3,...). The mass change during stage 2 

shows a higher scattering for ZrB2-containing samples compared to pure PSZ 20. 

In stage 3 a final holding time of 5 hours is applied at the maximum temperature of 1473 K, 

1573 K, 1673 K and 1773 K, respectively. This is intended to ensure that the pyrolysis process is 

completed and possible reactions within the Si-C-N ceramic or with the ZrB2-additive can take 

place. Maximum temperatures of 1673 K and 1773 K result in an additional mass loss during this 

stage. 

The mass changes in stage 1 and stage 2 do not differ whether experiments were conducted in 

Ar/N2 or pure Ar. However, in stage 3, samples show higher mass-losses in Ar/N2 compared to 

pure Ar. 
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Figure 6.13: Thermogravimetric analysis of the pyrolysis of ZrB2-filled PSZ 20 in flowing a) Ar and b) Ar/N2 (pN2 = 0.5 bar). Results 
for pure PSZ 20 are shown for comparison. 

The micrographs of the ZrB2/Si-C-N-composites, depicted in Figure 6.14, reveal a homogeneous 

distribution of ZrB2-particles in the Si-C-N matrix. Cracks are resulting from shrinkage during 

pyrolysis upon transformation of the liquid preceramic polymer into the solid Si-C-N matrix. 

Samples, which were heat-treated at maximum temperatures of 1473 K - 1573 K in Ar and 

1473 K - 1673 K in Ar/N2, show a very homogeneous Si-C-N matrix surrounding the ZrB2 

particles. After pyrolysis and heat-treatment at 1673 K and 1773 K in Ar and 1773 K in Ar/N2 the 

Si-C-N matrix possesses a porous microstructure resulting from the decomposition reaction 

corresponding to the behavior of pure PSZ 10 and PSZ 20 during pyrolysis and heat-treatment 

under the same conditions (see also Section 5.1.2). 
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Figure 6.15 shows a higher magnification of a ZrB2/Si-C-N composite obtained by pyrolysis at a 

maximum temperature of 1773 K in flowing Ar. EDX-analysis was performed at three individual 

regions of the sample: a ZrB2 particle, the surrounding Si-C-N matrix and a smooth area adjacent 

to a ZrB2 particle, which is silicon-rich and low in carbon content. The Si-C-N matrix mainly 

consists of Si and C after heat treatment at 1773 K in Ar, indicating the depletion of nitrogen 

during the decomposition reaction of the matrix (see also Section 5.1). The porous 

microstructure is probably prone to wet sample preparation, resulting in a small oxygen signal 

only in this region.  
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Figure 6.14: Micrographs of ZrB2/Si-C-N composites obtained from pyrolysis in flowing Ar and Ar/N2. 
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Figure 6.15: SEM micrograph and EDX analysis of a ZrB2/Si-C-N composite obtained from pyrolysis at 1773 K in flowing Ar. 

Figure 6.16 clearly shows that the distribution of the transformed and untransformed regions 

depends on the distribution of the cracks. The Si-C-N matrix possesses a smoother and more 

homogeneous microstructure along the cracks compared to the bulk. This is indicating, that the 

cracks provide locally a higher nitrogen partial pressure, which is retarding the decomposition 

reaction. 

 
Figure 6.16: Micrograph of a ZrB2/Si-C-N composite obtained from pyrolysis at 1773 K in flowing Ar/N2 (pN2 = 0.5 bar). 

XRD patterns of the obtained ZrB2/Si-C-N composites, depicted in Figure 6.17, reveal the 

formation of ZrCxNy at 1673 K in Ar and at 1573 K, 1673 K and 1773 K in Ar/N2. The reflex 

position is between pure ZrC and ZrN. However, reflections of the ZrB2 additive are predominant 

under all conditions. The Si-C-N matrix is X-ray amorphous after heat-treatment up to maximum 
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temperatures of 1573 K in Ar and up to 1773 K in Ar/N2. Heat-treatment up to maximum 

temperatures of 1673 K and 1773 K in Ar results in crystallization of β-SiC. At the highest 

temperature of 1773 K in Ar, also reflections with very low intensity for Si are present. 

Preparation in Ar/N2 at 1773 K resulted in rudimentary reflections of α-Si3N4 and ZrO2 in cubic 

and monoclinic modification. 

 
Figure 6.17: XRD patterns of ZrB2/Si-C-N composites obtained from pyrolysis of ZrB2-filled PSZ 20 in flowing Ar and Ar/N2 at 
various maximum temperatures. 
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Isothermal nitriding of pure ZrB2 powder 

For further investigation of the ZrCxNy formation, isothermal nitriding experiments were 

performed with pure ZrB2 powder at 1473 K, 1573 K, 1673 K and 1773 K. XRD patterns obtained 

after isothermal nitriding of ZrB2 for 25 h in flowing Ar/N2 (pN2 = 0.5 bar) are shown in Figure 

6.18. Reflections of ZrB2, show the highest intensities at all temperatures. In addition, 

reflections of ZrN are present with very low intensities already after nitriding at 1473 K. 

Increasing intensities of ZrN reflections are indicating an increasing phase fraction of ZrN after 

nitriding at higher temperatures. After preparation at all temperatures, samples showed 

rudimentary reflections of ZrO2 in cubic modification. Intensities of c-ZrO2 reflections are not 

increasing with temperature. Therefore, ZrO2 is probably not formed during the experiments by 

oxygen impurities in the applied atmosphere but already present in the ZrB2-powder. 

 
Figure 6.18: XRD patterns obtained from isothermal nitriding of ZrB2 powder for 25h at 1473 K, 1573 K, 1673 K and 1773 K in 
flowing Ar/N2 atmosphere (pN2 = 0.5 bar). 

The mass conversion degree α was calculated according to: 

   
     

     
 (6.8) 

with the initial w0, intermediate wi and final wf mass for complete nitriding reaction of ZrB2 

according to reaction (6.7). 

The linear reaction constant kl and the Avrami exponent n of the nitriding reaction were 

determined using the Johnson-Mehl-Avrami-Kolmogorow (LMAK) equation [128][129][130]: 

                  
   

(6.9) 
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The evolution of the mass conversion degree during isothermal nitriding (Figure 6.19a) shows 

linear nitriding kinetics at 1473 K, 1573 K and 1673 K. The obtained kinetic parameters are 

summarized in Table 6.1. The Arrhenius plot of the linear reaction constant kl (Figure 6.19b) 

yields an apparent activation energy of 154 kJ/mol. Isothermal nitriding at 1773 K results in 

more complex non-linear behavior and is therefore not considered for kinetic evaluation. 

 
Figure 6.19: a) Mass conversion degree α and b) Arrhenius plot of the linear reaction constants obtained from isothermal 
nitriding of ZrB2 powder at 1473 K, 1573 K, 1673 K and 1773 K in flowing Ar/N2 (pN2 = 0.5 bar). 

Table 6.1: Fitting parameters obtained from isothermal nitriding data of ZrB2 powder. 

Temperature [K] n kl R2 

1473 0.88 1.37·10-7 0.996 
1573 0.98 5.63·10-7 0.999 
1673 1.01 5.99·10-7 0.994 
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6.4. Discussion and Conclusion 
Thermodynamic modeling revealed no interactions of the ZrB2-additve with SiC and C, as 

constituents of the Si-C-N ceramic matrix, up to liquid phase formation at 2559 K and 2535 K, 

respectively. These finding are supported by the work of Kaufman [131] who found eutectic 

temperatures of 2480 K and 2663-2700 K for the systems ZrB2-SiC and ZrB2-C, respectively. 

Nasiri et al. [132] investigated the high-temperature stability of carbon fiber-reinforced ZrB2-SiC 

(ZrB2-SiC-Csf) nanocomposites. No interactions of the constituents were observed up to the 

highest investigated temperature of 2423 K. ZrB2 and Si3N4 show the first reaction, under 

formation of a liquid phase (reaction (6.5)), at 1870 K. This is confirmed by experimental work 

by Guo et al. [133][134] who observe the reaction of ZrB2 and Si3N4 at temperatures from 

1873 K in Ar. ZrSi2 as found by Guo et al. was probably crystallizing from the Si- and Zr-

containing liquid phase. Additionally, the Si- and Zr-containing melt is reducing the thermal 

decomposition temperature of the remaining Si3N4 by 23 K compared to pure Si3N4. Fortunately, 

the reaction of ZrB2 and Si3N4 occurs 113 K above the internal carbothermic reaction of the 

PSZ 20-derived Si-C-N matrix (see Section 5.1, reaction (5.2). Therefore, the ZrB2-additive does 

not represent an additional limitation for the maximum application temperature of the ZrB2/Si-

C-N-composite. 

In the following, the formation mechanism of ZrCxNy is discussed. A direct reaction of the ZrB2-

additive and C from the Si-C-N matrix is excluded by the CALPHAD-modeling (Figure 6.6a). 

Brewer et al. [135] also confirmed the non-reactivity experimentally. Furthermore, a reaction of 

ZrB2 and Si3N4 in the Si-C-N matrix is excluded at the experimentally considered temperatures 

(≤ 1773 K) according to the CALPHAD-modeling (Figure 6.8). Instead, a solid/gas reaction of ZrB2 

and N2 from the atmosphere is indicated by the more pronounced ZrCxNy-formation in ZrB2/Si-

C-N composites in Ar/N2 compared to pure Ar (Figure 6.17) as well as ZrN-formation during 

isothermal nitriding experiments of ZrB2-powder (Figure 6.18), respectively. 

The phase stability diagram, depicted in Figure 6.10, shows that ZrB2 is only stable at the highest 

temperatures und low nitrogen partial pressures. At lower temperatures and high pN2 ZrN and 

BN are stable equilibrium phases. With increasing pN2, the transition according to reaction 

ZrB2+3/2N2=ZrN+2BN is shifted to lower temperatures. These findings are in good accordance 

with experimental work by Brewer et al. [135] (Ti, Zr, W, Cr-borides in N2) and Kiessling et 

al. [136] (Cr, Fe, W-borides in ammonia). They observed that borides are only stable at the 

highest temperatures, and nitrides are formed at lower temperatures. Brewer et al. [135] found 

ZrB2 being stable at 1820 K in 0.5 atm N2. This is in contrast to the calculated phase stability 

diagram in Figure 6.10, which predicts the reaction ZrB2+3/2N2=ZrN+2BN below 2115 K under 

these conditions. This shows that local conditions at solid/gas interfaces can differ from overall 

equilibrium conditions. Reactions can be defined by the local boundary conditions like diffusion 

of gaseous products or educts in boundary layers. 
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XRD measurements (Figure 6.17) revealed that ZrCxNy-formation is much more pronounced in 

Ar/N2-atmosphere. This is especially evident at 1773 K, where still no ZrCxNy-formation is 

observed in pure Ar-atmosphere. Only for the ZrB2/Si-C-N-composite obtained by pyrolysis and 

heat-treatment up to a maximum temperature of 1673 K in Ar, ZrCxNy-formation is observed. An 

indication for this observation can be found in the combined thermogravimetric and mass 

spectroscopic analysis of the pyrolysis and high-temperature stability of PSZ 20 in Ar (see 

Section 5.1.2, Figure 5.11). In Ar, the carbothermic reaction according to reaction (5.2) already 

occurs at 1673 K, which is indicated by the observed mass loss and N2-release. However, at 

1673 K the mass loss and N2-release are spread over a period of 5 hours, while at 1773 K a 

sudden mass loss and N2-release is observed. Therefore, the extended N2-release range at 

1673 K is likely to account for the observed nitriding reaction of ZrB2. An estimation of the N2-

amount, which is released by the carbothermic reaction of the PSZ 20-derived Si-C-N matrix, 

gives 0.01 mol per gramm of liquid PSZ 20 precursor polymer. This amount of nitrogen is enough 

to nitride the whole ZrB2 in the ZrB2/Si-C-N composite according to reaction (6.6). 

Isothermal nitriding experiments using ZrB2-powder where performed to investigate the 

solid/gas-reaction reaction between ZrB2 and nitrogen in the Ar/N2-atmosphere. XRD patterns 

of the obtained material (Figure 6.18) show the temperature-dependence of the ZrN-formation. 

Linear nitriding kinetics (Figure 6.19) are obtained at 1473 K, 1573 K and 1673 K with an 

apparent activation energy of 154 kJ/mol. Due to the limited number of experiments and the 

rather high uncertainty of the fit, this value should be considered as an indicative value. 

However, the activation energy is in the same range as obtained for nitriding powders of Si 

(114 kJ/mol [137]), Ti (202 kJ/mol [138]) and TiSi2 (245-594 kJ/mol [139]). At 1773 K, a high 

deviation from the linear nitriding behavior is observed, which is probably resulting from the 

superimposition with other effects. However, no other phases are formed according to the XRD 

analysis depicted in Figure 6.18. A possible process could be an oxidizing reaction between the 

ZrB2-powder and the Al2O3-crucible. The obtained boron-oxide species would have a high 

volatility at this temperature (see also Section 7), which would result in an overall mass loss. 

A complete solubility is existing in the system ZrC-ZrN [140][141][142][143] due to the same 

crystal structure and similar lattice constants. Therefore, ZrN possesses a solubility for carbon. 

Hence, ZrCxNy is formed by dissolution of carbon from the Si-C-N matrix as soon as ZrN is 

present. 

The state of the carbon in Si-C-N ceramic is essential for its solubility in ZrN. Bill et al. [16][101] 

[102] found carbon in form of CSi4- as well as mixed SiNxCy-units (with x=2.3, x+y=4) and sp2-

hybridized carbon in similar amorphous Si-C-N precursor-derived ceramics. However, the actual 

activity of carbon in the Si-C-N matrix is not known. Figure 6.11 shows that with increasing 

carbon activity, the solubility of carbon in ZrN is increasing. Furthermore, the solubility of 

carbon is increasing with temperature (Figure 6.12). Up to about 1200 K, ZrN and carbon are 
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coexisting chemically stable next to each other. At higher temperatures ZrCxNy is formed, which 

for example contains 1 at.% of carbon at 1273 K (see Figure 6.12b). 

The XRD measurements of the ZrB2/Si-C-N composites (Figure 6.17) yield a lattice parameter of 

4.64 Å for ZrCxNy. The system ZrC-ZrN obeys Vegard’s law [141][144][145]. Therefore, according 

to the work by Lengauer et al. [145] (see Figure 6.20), the lattice parameter corresponds to a 

composition of C/(C+N) = 0.56. This conclusion is valid despite a possible under-stoichiometry of 

ZrCxNy because an under-stoichiometry of ZrC and ZrN [146] has a minor effect on the lattice 

parameter compared to the C/(C+N) ratio in ZrCxNy [145]. The obtained composition is in very 

good agreement with the work by Sun et al. [147] who observed ZrCxNy with a composition of 

x = y = 0.5, or C/(C+N) = 0.5, after annealing a ZrB2/Si-C-N composite at 1773 K in Ar, i.e. above 

the carbothermal reaction temperature of the Si-C-N matrix. Sun et al. [147] did not specify the 

annealing duration. 

 
Figure 6.20: Compositional dependence of the lattice parameter in ZrCxNy [145][146]. The lattice parameter, which was 
determined in this work, is indicated. 

Additionally, Sun et al. [147] attribute a stabilizing effect of the ZrB2-additive on the 

carbothermal decomposition reaction of the Si-C-N matrix. This observation was not confirmed 

in this work. Thermogravimetric curves obtained from pyrolysis of ZrB2/PSZ 20 and BN/PSZ 20 

mixtures, which were normalized to their PSZ 20-content, did not show a systematic difference 

compared to pure PSZ 20 samples (see Figure 6.13). 

Microscopically, the ZrB2/Si-C-N composites show cracks (Figure 6.14), similar to behavior of 

pure Si-C-N composites (Figure 5.20). These are resulting from the shrinkage upon 

transformation of the liquid polymer into the solid Si-C-N ceramic. However, ZrB2-filled PSZ 20 

show additionally spallation of small parts of the sample upon pyrolysis of the samples and thus 

also a higher scattering in the thermogravimetric measurements (Figure 6.13). This scattering is 

much more pronounced in the pyrolysis of ZrB2-containing samples compared to pure PSZ 20 or 

BN/PSZ 20 mixtures (Figure 6.2). This is most likely a result of the significant mismatch in the 
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thermal expansion coefficients (CTE) between the ZrB2-additive (α = 6.6-8.4·10-6 K-1 [148][149]) 

and the surrounding ceramic Si-C-N Matrix 3.1-3.5·10-6 K-1 [150]. The CTE of ZrCxNy, with the 

composition derived in this work (C/(C+N) = 0.56) is α = 7.8·10-6 K-1 according to the work by 

Aigner et al. [151] and thus very similar to ZrB2. 

The decomposition reaction of the Si-C-N matrix in the ZrB2/Si-C-N composite at 1773 K in Ar/N2 

(see Figure 6.16) is retarded along cracks compared to the bulk of the sample. Cracks make part 

of the sample accessible to the flowing Ar/N2 atmosphere with pN2=0.5 bar. In contrast to that, 

the bulk of the sample is cut off from the atmosphere and additionally depleted in pN2 by the 

solid/gas nitriding reaction (6.6) of the ZrB2-additive (see Figure 6.10). Therefore, the strongly 

pN2-dependent carbothermic reaction (5.2) of the Si-C-N matrix causes a much more 

pronounced microstructural change within the sample compared to areas, which are accessible 

by cracks. 

Silicon-rich regions adjacent to ZrB2 particles in the ZrB2/Si-C-N composites after heat-treatment 

up to 1773 K in Ar (Figure 6.15) are possibly solidified Si-rich melt. Pure PSZ 10 derived Si-C-N 

ceramics already show weak Si reflections in XRD measurements (Figure 5.16) under these 

conditions. Additionally, Si possesses a solubility for carbon according to the binary Si-C phase 

diagram [77]. 

BN/PSZ 20 mixtures do not show spallation upon pyrolysis and therefore exhibit no scattering in 

thermogravimetric experiments (see Figure 6.2). Both, the obtained ZrB2/Si-C-N and BN/Si-C-N 

ceramics show a homogeneous distribution of the additive. However, ZrB2 is present in the Si-C-

N matrix as discrete solid particles, whereas BN appears agglomerate-like (see Figure 6.3). 

BN/PSZ 20 and ZrB2/PSZ 20 mixtures were prepared equimolar with regard to their boron 

content. Therefore, the molar fraction of BN is twice the molar fraction of ZrB2 to obtain the 

same boron content. However, the resulting molar volume fraction of BN (23.6 cm³ per two 

mole) and ZrB2 (18.6 cm³ per one mole) are very similar and should therefore not account for 

the observed spallation of ZrB2-containing samples. Hexagonal BN has a highly anisotropic CTE 

of -2.7·10-6 K-1 perpendicular to the c-axis and 38·10-6 K-1 parallel to the c-axis [152]. Therefore, 

most likely the layered, agglomerate-like structure of the BN additive should account for the 

improved resistance against spallation of the BN/Si-C-N composites compared to ZrB2/Si-C-N 

composites.  
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7. High-temperature oxidation behavior of ZrB₂ 
ZrB2 is considered as an ultra high temperature ceramic (UHTC) and one of the most oxidation 

resistant transition metal diborides [153][154] with potential application in extreme 

environments like aerospace reentry vehicles and hypersonic vehicles [155]. Therefore, the 

focus of most studies is on the oxidation of ZrB2 in oxygen [153][156][157][158]. Only few 

studies are available on the oxidation behavior in steam at high temperatures. Therefore, the 

oxidation and volatilization behavior of ZrB2 in atmospheres O2- and H2O-containing was 

investigated in the present chapter. For this purpose, a combination of thermodynamic 

calculations and high-temperature oxidation tests was used. 

 

7.1. Thermodynamic analysis of ZrB₂ oxidation 
Figure 7.1 shows phase stability diagrams for Zr and B as a function of the nitrogen and oxygen 

partial pressures. For the depiction of the Zr phase stability diagram, solubilities were neglected, 

which would result in curved phase boundaries. Metallic Zr (Figure 7.1a) is only stable at the 

lowest pN2 and pO2. With increasing pO2 and pN2, ZrO2 and ZrN is formed, respectively. For boron 

(Figure 7.1b), equilibrium partial pressures are higher for both oxidizing and nitriding reactions 

by a factor of 108. Generally, equilibrium partial pressures for oxidizing and nitriding are 

increasing with temperature. 

 
Figure 7.1: Calculated phase stability diagrams for a) Zr and b) B at 1273 K, 1473 K and 1673 K. 
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Figure 7.2 shows calculated partial pressures of the volatile species BOx and ZrOx as a function of 

pO2 at 1473 K. Additionally, the corresponding volatility diagrams calculated, following the 

approach of Lou and Heuer [159], at 1273 K, 1473 K and 1673 K are shown. The dashed line 

marks the equilibrium oxygen partial pressure for the oxidation reaction (e.g. 2B+3/2O2=B2O3; 

log pO2 = -21.77). This means, below the dashed line, B- and Zr-containing gas species are in 

equilibrium with solid B and Zr, respectively. The formation of condensed oxide B2O3 or ZrO2, at 

pO2 higher than indicated by the dashed line, has potentially a passivating effect on the 

oxidation behavior of the underlying material. 

The equilibrium oxygen partial pressure for the oxidation of boron is log pO2 = -21.77. In 

equilibrium with solid boron, mainly the gas species B(g), BO(g) and B2O2(g) are formed with 

increasing pO2. In equilibrium with the solid oxide B2O3, B2O2(g), B2O3(g) and BO2(g) are formed 

with the highest partial pressures. In addition, minority gas species B2O(g) and B2(g) are present 

at lower partial pressures outside the depicted pressure range. 

Gaseous Zr-species yield much lower partial pressures compared to B. Therefore, diagrams in 

Figure 7.2c and d are depicted over a larger scale. The majority gas species in equilibrium with 

solid Zr is Zr(g) almost up to the equilibrium pO2 for the oxidation (log pO2 = -33.56). In 

equilibrium with solid oxide ZrO2, mainly gaseous ZrO(g) and ZrO2(g) are formed. Additionally, 

the minority gas species Zr2(g) is formed. 
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Figure 7.2: Calculated partial pressures as a function of the oxygen partial pressure for a) B, c) Zr and e) ZrB2 at 1473 K. The 
respective volatility diagrams at 1273 K, 1473 K and 1673 K are depicted in b), d) and f). 
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The composition of the self-developing gas phase for B2O3 in a) oxygen and b) steam at 

pO2 = 0.2 bar and pH2O = 0.2 bar, respectively, is shown in Figure 7.3. The gas species O2 and H2O 

and their dissociation products are considered in the equilibrium calculations but not depicted 

in Figure 7.3. The same holds for the constant amount of Ar (x(Ar)=0.01) which was added as an 

inert gas to establish a stable gas phase at every temperature. In the employed SGTE dataset 

(see also Section 4) the gas species H3B3O6(g) is included. This species is formed in a 

polymerization reaction from the metaboric acid HBO2(g). However, this reaction is very slow 

and H3B3O6(g) is considered to be stable only at low temperatures according to Miyahara et 

al. [160]. Therefore, H3B3O6(g) was not considered in the equilibrium calculation. In oxygen 

(Figure 7.3a), oxygen-containing gas species B2O3(g) and BO2(g) are formed with the highest 

partial pressures as well as BO(g) and B2O2(g) with intermediate partial pressures (p < 10-4 bar). 

Atomic gaseous boron is formed with the lowest partial pressure at the highest temperatures. In 

steam (Figure 7.3b), primarily hydroxides are formed. Below 1179 K the main gas species 

formed is orthoboric acid H3BO3(g) and above 1179 K metaboric acid HBO2(g). Due to the 

formation of gaseous hydroxides, partial pressures are higher in steam compared to oxygen 

atmosphere. At all considered temperatures, partial pressures of boron hydroxides are higher 

than 3·10-4 bar. 

 
Figure 7.3: Calculated partial pressures of the boron-containing gas species as a function of temperature for B2O3 at a) 
pO2 = 0.2 bar and b) pH2O = 0.2 bar. 

Figure 7.4 shows the phase stability diagram of ZrB2, ZrC and ZrN as a function of temperature, 

pO2. The lines correspond to the following equilibrium reactions with oxygen: 

                      (7.1) 

 

                   (7.2) 
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                  (7.3) 

 

                   (7.4) 

In oxygen, the equilibrium oxidation reaction occurs at about the same oxygen partial pressure 

for ZrB2, ZrC and ZrN. Although ZrC possesses the lowest oxidation partial pressure, only a minor 

difference is observed compared to ZrN and ZrB2. 

 
Figure 7.4: Phase stability diagram of ZrB2, ZrC and ZrN as a function of temperature and pO2. 
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7.2. ZrB₂ oxidation protection and passivation in oxygen 

Figure 7.5 and Figure 7.6 are showing results from dynamic oxidation experiments of ZrN and 

ZrB2 during heating up with 5 K/min to a maximum temperature of 1473 K in O2/Ar-atmosphere 

(pO2=0.2 bar). ZrN is forming ZrO2 under release of N2 upon oxidation in oxygen-containing 

atmosphere according to equation (7.4). Therefore, the progress of the oxidation reaction can 

be followed not only by the mass change but also by the accompanied N2-signal in the off-gas of 

the instrument. The onset of the oxidation reaction is above about 700 K with a maximum 

oxidation rate at about 900 K. At higher temperatures the mass change shows a discontinuity, 

followed by a second maximum in the oxidation rate above 1000 K. This behavior is probably a 

result of the breakup of the oxide formed during the first part of the experiment, and the 

related exposure of underlying ‘fresh’ material to the oxidizing atmosphere. This is supported by 

the appearance of the sample after the oxidation experiment (Figure 7.5c), which is completely 

disintegrated to a fine powder. It is well known that ZrN is undergoing a large increase in the 

molar volume of 48 % upon oxidation, which is leading to so-called breakaway oxidation [161]. 

This means that the resulting ZrO2-scale is not mechanically stable or dense and does therefore 

not protect the underlying material from oxidation. At about 1100 K the maximum mass of the 

sample is reached indicating that the sample was oxidized completely. At higher temperatures, 

the slight mass loss is accompanied by an exponentially temperature dependent N2-release. This 

corresponds to a wide homogeneity range in the Zr-O-N system [162]. Released nitrogen was 

probably solved in the material at lower temperatures. 

 

 
Figure 7.5: Dynamic oxidation experiment of compacted ZrN powder in O2/Ar (pO2=0.2 bar); a) thermogravimetric and mass 
spectrometric analysis, b) ZrN sample before and c) after oxidation in O2/Ar-atmosphere heated with 5 K/min to 1473 K. The 
diameters of the specimen and the alumina crucible correspond to 5 mm and 17.3 mm, respectively. 



High-temperature oxidation behavior of ZrB₂ 

 

104 

A dynamic oxidation experiment of ZrB2 in oxygen-containing atmosphere is shown in Figure 

7.6. The onset of oxidation at about 700 K indicated by the gradual increase of the mass change 

curve. The highest oxidation rate is at about 950 K, which is 50 K higher than for oxidation of 

ZrN. However, the ZrB2 sample does not oxidize completely. Instead, the mass increase is 

declining strongly above 1000 K and almost stops completely at higher temperatures. Only at 

the highest temperatures above 1400 K, a slight mass increase is observed again. 

The improved oxidation resistance of ZrB2 compared to ZrN is due to the formation of B2O3 

besides ZrO2 analogous to equation (7.1). B2O3 is liquid at temperatures above 748 K. As a 

result, a protective layer is formed on the sample protecting the underlying sample material. 

Figure 7.7 shows the dense oxide layer enclosing the ZrB2 sample including a crack, which is 

providing access for the oxidizing atmosphere. ZrB2 starts oxidizing at lower temperatures 

compared to ZrN. At these temperatures the oxidation kinetics of ZrB2 are too slow to form 

enough B2O3 to protect the sample. In addition, the slight increase in sample mass at 

temperatures above 1400 K is indicating a declining oxidation resistance at temperatures above 

1500 K. This is most likely a result of first the increasing diffusivity of oxygen with increasing 

temperature and second the protective oxide layer is deteriorated by volatilization of boron-

containing gas species (see also Section 7.1). 

 

 
Figure 7.6: Dynamic oxidation experiment of compacted ZrB2 powder in O2/Ar (pO2=0.2 bar); a) thermogravimetric and mass 
spectrometric analysis, b) ZrB2 sample before and c) after oxidation in O2/Ar-atmosphere heated with 5 K/min to 1473 K. The 
diameters of the specimen and the alumina crucible correspond to 5 mm and 17.3 mm, respectively. 
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Figure 7.7: Micrograph of a ZrB2 sample after heat-up with 5 K/min in O2/Ar-atmosphere (pO2=0.2 bar) to 1473 K. The scale bar 
corresponds to 200 µm. 

 

7.3. ZrB₂ oxidation tests in steam and mass spectroscopic

 investigation 
Figure 7.8 shows results from a dynamic oxidation experiment of ZrB2 in steam-containing 

atmosphere. The sample was heated up with 10 K/min to 673 K in Ar and then equilibrated for 

20 min. Subsequently, the sample was heated up with 5 K/min from 673 K to 1473 K in H2O/Ar 

(pH2O=0.2 bar). The composition of the STA off-gas, measured by mass spectrometry, is depicted 

in addition to the thermogravimetric data. The measured steam content is lower than 20 % 

since the protective Ar gas, flowing through the balance casing, is detected also. However, the 

protective Ar gas flow (5L/h) does not reach the sample. Therefore, the partial pressure of 

steam at the sample is still pH2O=0.2 bar. With the introduction of steam (see dashed line in 

Figure 7.8), H2 is released, which is a measure for the oxidation according to reaction: 

                         (7.5) 

For each mole of ZrB2, which is oxidized in steam, five moles of H2 are released into the 

atmosphere. 
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Figure 7.8: Thermogravimetric and mass spectrometric analysis of ZrB2 oxidation in steam. After heat-up and equilibration in Ar, 
the sample was heated from 673 K to 1473 K with 5 K/min in H2O/Ar-atmosphere (in between vertical dashed lines; 
pH2O=0.2 bar). The set temperature program is indicated by a solid blue line. 

Therefore, the H2 release rate is a valuable indicator for the progress of the oxidation. 

Especially, when the mass signal is the result of the superimposition of several processes taking 

place at the same time. By normalizing the measured H2-concentration to the known amount of 

Ar as reference gas and the sample surface area, the H2-release rate was calculated using 

equation (3.1) and plotted together with the mass change in Figure 7.9. 

After start of steam injection during the heat-up phase starting at 673 K, at first, a gradual 

increase of the sample mass and the H2 release rate is observed. From 900 K to 1100 K the slope 

of both signals possess a maximum. Therefore, the oxidation rate is largest in this temperature 

range. At 1100 K the maximum sample mass is reached and then slightly declining at higher 

temperatures. During this period, the H2 release rate is at a constant low level, indicating that a 

steady-state is reached. 

Above 1300 K, the H2 release rate is again slightly increasing, while the sample mass is 

decreasing stronger at the same time. This is indicating that the oxide layer is losing its 

protective properties due to the volatilization of boron-containing gas species (see Figure 7.3). 

Consequently, the oxidation of the underlying material is proceeding stronger. However, the 

overall mass loss shows that the volatilization is outweighing the mass gain by oxidation. This is 

unlike the oxidation in oxygen-containing atmosphere were the sample mass is still increasing in 

this temperature range (see Figure 7.9b). Results from thermodynamic calculations explain this 

effect as depicted in Section 7.1, Figure 7.3: the generation of gaseous boron-containing species 
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is by several orders of magnitude higher in steam-containing atmosphere compared to oxygen-

containing atmosphere. 

 
Figure 7.9: Measured H2 release rate during heating of ZrB2 with 5 K/min in H2O/Ar-atmosphere (pH2O=0.2 bar) and b) 
comparison of the observed mass gain with mass gain during oxidation of ZrB2 in O2/Ar (pO2=0.2 bar). 

The mass spectrum during heat-up of ZrB2 in steam is depicted in Figure 7.10. Besides single 

ionized orthoboric acid H3BO3
+ and metaboric acid HBO2

+ also molecules are detected which 

originate from fragmentation of these molecules (H2BO3
+, H2BO2

+, BO2
+). Regarding the 

thermodynamic calculation (see Figure 7.3) also gaseous B2O3 and other B-O-H species could be 

present. However, these are likely to fragment into smaller molecules or condensate in the 

instrument or in the gas pipes before reaching the mass spectrometer. 

 
Figure 7.10: Mass spectrum measured during heating of ZrB2 with 5 K/min in H2O/Ar-atmosphere (pH2O=0.2 bar). 
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The time dependent evolution of the ion current measured at mass to charge ratio (m/z) of 62, 

corresponding to H3BO3, is shown in Figure 7.11. During heat-up and equilibration at 673 K in Ar 

prior to the steam injection, no H3BO3 is present. At first by injection of the steam (indicated by 

vertical dashed line in Figure 7.11) the ion current at m/z=62 is increasing and reaching a 

maximum at about 1100 K. At higher temperatures, the ion current at m/z=62 is decreasing 

again. After stopping the steam flow at 1473 K, the ion current is immediately decreasing almost 

to the pre-test value. The maximum of the m/z=62 signal corresponds to the start of mass loss 

by direct evaporation of liquid B2O3 and by formation of gaseous hydroxides according to the 

following reactions: 

                 (7.6) 

 

                (7.7) 

 

                  (7.8) 

Its noteworthy that the H2-signal and the H3BO3-signal (m/z=62) are used to separate two 

individual effects acting at the same time on the mass change of the sample in steam. While the 

H2-signal is indicative for the oxidation reaction (7.5) causing a mass gain, the H3BO3-signal 

(m/z=62) indicated the volatilization of the boron oxide causing a mass loss. Therefore the 

maximum in H2-release at 1000 K corresponds to the maximum weight gain (Figure 7.9a) and 

the maximum in the m/z=62 signal at 1100 K to the onset of the samples weight loss. Note that 

no H2 is released during the volatilization reactions. 

 
Figure 7.11: Ion current measured by mass spectrometry at m/z = 62 during heating of ZrB2 with 5 K/min in H2O/Ar-atmosphere 
(pH2O=0.2 bar).  
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Isothermal tests 

Isothermal oxidation tests of ZrB2 in H2O/Ar (pH2O=0.2 bar) were conducted at 1073 K, 1273 K, 

1473 K and 1673 K, respectively for 5 h. Experiments at 1073 K, 1273 K and 1473 K were 

conducted in the STA 409. Due to the higher temperature capability, the oxidation test at 

1673 K was performed in the BOX furnace. For further experimental details see Section 3.2 and 

3.3, respectively. 

Figure 7.12 shows photographs of the compacted powder samples after the oxidation 

experiments. Oxidation at 1073 K resulted in a completely disintegration sample. However, the 

samples oxidized at 1273 K, 1473 K and 1673 K retained their structural integrity and formed a 

white oxide surface layer. The sample, which was oxidized at 1273 K showed crack formation at 

the edges. SEM investigations of the intact sample's surfaces (Figure 7.13) reveal a cauliflower-

like morphology. The grain size is thereby increasing with the applied oxidation temperature. 

Small amounts of residual B2O3 on the surface are only observed after oxidation at 1273 K. 

Oxidation at 1473 K and 1673 K left only ZrO2 at the samples surfaces. 

 

 
Figure 7.12: ZrB2 samples after isothermal oxidation at a) 1073 K, b) 1273 K, c) 1473 K, and d) 1673 K in H2O/Ar-atmosphere 
(pH2O=0.2 bar) for 5 h. The sample diameter corresponds to 5 mm. 

 
Figure 7.13: SEM micrographs of the ZrB2 surface after isothermal oxidation at a) 1273 K, b) 1473 K and c) 1673 K in H2O/Ar-
atmosphere (pH2O=0.2 bar) for 5 h. The scale bars correspond to 5 µm. 
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XRD investigation of the ZrB2 samples after oxidation are shown in Figure 7.14. Oxidation at all 

investigated temperatures resulted in the formation of monoclinic ZrO2 (PDF: 00-037-1484). No 

B2O3 or condensed H3BO3 was detected contrary to observations on B4C oxidation in steam by 

Steinbrück et al. [72]. However, detection of B2O3 is difficult since the main XRD reflections are 

overlapping with reflections of m-ZrO2. Furthermore, evaporation and volatilization of B2O3 and 

the remaining ZrO2 crust on the surface might prevent a detection by XRD. The sample, which 

disintegrated during oxidation at 1073 K, does not show residual ZrB2. This is clearly indicating 

that ZrB2 was consumed completely by the oxidation reaction. 

 
Figure 7.14: XRD pattern of ZrB2 samples after isothermal oxidation in H2O/Ar (pH2O=0.2 bar) for 5 h. 

Thermogravimetric results of the ZrB2 oxidation in H2O/Ar at 1073 K, 1273 K and 1473 K are 

shown in Figure 7.15. Oxidation at 1673 K was carried out in the BOX furnace. Therefore, no in-

situ mass change was measured during this experiment. In first approximation, the mass change 

shows a parabolic behavior. The ZrB2 sample, which was oxidized at 1073 K, shows the highest 

mass gain in accordance with the observed disintegration of the sample instead of formation of 

an intact outer oxide layer. In addition, the mass change exhibits a kink after about 1250 s at 

1073 K. Below the kink, a lower slope compared to the samples oxidized at 1273 K and 1473 K 

indicates a lower mass change rate at 1073 K. However, after the kink the mass change rate is 

significantly accelerated. This is in accordance with a maximum in the H2 release rate measured 

by mass spectrometry (see Figure 7.16). Therefore it is suggested, that at this time, the ZrB2 

sample is disintegrating and exposing new, unoxidized surface area and the real surface is bigger 

than the geometric surface. After about 5000 s, the mass increases nearly constant with time , 

indicating that a steady-state is achieved. 
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Figure 7.15: Measured mass change during isothermal oxidation of ZrB2 in H2O/Ar (pH2O=0.2 bar) for 5 h at 1073K, 1273 K and 
1473 K. 

Figure 7.16 shows that the H2 release rate during oxidation of ZrB2 in H2O/Ar (pH2O=0.2 bar) is 

generally increasing with temperature. The time axis was moved to synchronize the beginning 

of steam injection. "Negative values" are referring to the heating and preconditioning phase in 

Ar. Oxidation at all temperatures resulted in a strong initial maximum of the H2 release and 

hence of the oxidation rate. This effect is caused by the porosity of the compressed powder 

samples, resulting initially in a large surface area. However, after the initial maximum the H2 

release rate is decaying to an almost constant value of 1.5·10-7 mol/s after 15000 s for all 

temperatures. Oxidation at 1073 K results in a second maximum after about 2000 s, which 

corresponds to the increase in mass gain after the observed kink (see Figure 7.15). 
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Figure 7.16: Measured H2 release rate during isothermal oxidation of ZrB2 in H2O/Ar (pH2O=0.2 bar) for 5 h at 1073K, 1273 K, 
1473 K and 1673 K. 

According to the oxidation reaction (7.5), a theoretical mass gain was derived from the 

measured H2 release by integration. In contrast to the thermogravimetric measured mass 

change, the H2-derived value does not include volatilization effects by formation of gaseous B-

containing gas species. Therefore, the calculated H2-derived mass change (Figure 7.17) is 

generally significantly higher compared to the thermogravimetric-derived value. For the 

oxidation at 1073 K, the mass change derived by thermogravimetry and mass spectroscopy is 

very similar, even including the kink after around 1250 s of oxidation. This shows that at the 

lowest investigated temperature of 1073 K, the influence of evaporation and volatilization of 

the B2O3 scale is only minor. With increasing temperature, the difference between the TG-

derived and the H2-derived value is increasing due to the increasing impact of evaporation and 

volatilization effects. 

The H2-derived mass change provides information on the oxidation reaction itself. The H2-

release provides information of the actual oxidation reaction. Note that no H2 is released in the 

evaporation volatilization reactions (7.6)-(7.8). 

The time dependence of the ion current at a mass to charge ratio (m/z) of 62, indicative for the 

orthorhombic acid H3BO3, is shown in Figure 7.18. With the onset of steam injection, the ion 

current at m/z = 62 is increasing. For the oxidation at 1073 K, the initial increase is steeper 

compared to experiments at 1273 K, 1473 K and 1673 K. However, the maximum ion current is 

similar for all oxidation temperatures. After stop of the steam injection, the ion current at 

m/z = 62 is going back to the pre-test value. 
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Figure 7.17: Comparison of the mass change of ZrB2 derived from thermogravimetry (TG) and from the H2-release measured by 
mass spectrometry. 

 

 
Figure 7.18: Measured ion current at m/z=62 during isothermal oxidation of ZrB2 in H2O/Ar-atmosphere (pH2O=0.2 bar). 
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Figure 7.19 shows an Arrhenius plot of the total mass change during isothermal oxidation tests 

of ZrB2 in H2O/Ar (pH2O=0.2 bar). Open and filled symbols represent the total weight change 

determined by a laboratory balance and by mass spectroscopic determination of the H2-release, 

respectively. 

The oxidation rate, determined with a laboratory balance (mass-derived, open symbols), is 

slightly decreasing with temperature. However, with an oxidation rate in the range of 3-

6 mg/cm²h the temperature-dependence is very low. 

Additionally, oxidation rates were determined from the associated H2-release (equation (7.5)), 

measured by mass spectrometry. The oxidation rate shows an Arrhenius-type temperature 

dependence in the temperature range between 1273 K and 1673 K (solid line). The oxidation 

rate determined at 1073 K deviates from this trend with an oxidation rate similar to the 1273 K 

test. Differences between mass-derived and H2-derived oxidation rates are based on the 

evaporation of B2O3 volatilization of boron-containing gas species (equation (7.6)-(7.8)) resulting 

generally in a lower mass gain. With increasing temperature (see also Figure 7.3), the partial 

pressures of the boron-containing gas species are increasing and therefore also the deviation 

between mass-derived and H2-derived oxidation rates. This is also in accordance with 

micrographs and mass spectrometric investigation of H3BO3-release at m/z=62. However, 

differences between tests at different pH2O are negligibly small. 

 
Figure 7.19: Arrhenius plot of the total mass change during isothermal oxidation of ZrB2 in H2O/Ar-atmosphere for 5 h. Open 
symbols: laboratory balance, filled symbols: calculated from H2-release. The solid line is indicating the Arrhenius-type 
temperature dependence of the H2-derived oxidation data in the range between 1273 K and 1673 K. 
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The time dependent mass change during isothermal oxidation of ZrB2 in H2O/Ar (pH2O=0.2 bar) 

was fitted according to          . The resulting rate constant k and exponent n are 

depicted in Figure 7.20a and Figure 7.20b, respectively. Additionally, k and n values are 

tabulated in the Appendix. 

The rate constant is increasing with increasing temperature (Figure 7.20a). Considering the H2-

derived values, k shows a linear dependence on 1/T in the Arrhenius plot. The mass-derived k 

value shows a deviation from the H2-derived value, which is increasing with decreasing 

temperature. At 1073 K, the mass-derived k value is two orders of magnitude higher than the 

H2-derived value. 

The exponent n, derived from the measurement of the H2-release, shows a linear temperature 

dependence (Figure 7.20b). At the lowest investigated temperature of 1073 K, n shows almost 

linear oxidation kinetics. With increasing temperature, n is decreasing to sub-parabolic 

oxidation kinetics at the highest investigated temperature of 1673 K. The mass-derived n values 

show a large deviation from this behavior, indicating almost parabolic reaction order at 1073 K 

and 1273 K and almost cubic reaction kinetics at 1473 K, respectively. No temperature trend is 

recognizable. 

Oxidation tests were conducted at pH2O = 0.1, 0.2 and 1 bar, respectively. However, the obtained 

k and n values are barely sensitive for the steam partial pressure, as long as enough steam is 

provided to avoid steam-starvation conditions. 
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Figure 7.20: Derived a) rate constant k and b) exponent n for the oxidation of ZrB2 in steam. Open symbols: derived by 
laboratory balance, filled symbols: calculated from H2-release. Dotted lines indicate n values for linear, parabolic and cubic 
oxidation kinetics.  
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7.4. Discussion 
Onset of oxidation 

The conducted transient tests give insight into the onset of the oxidation reaction. In H2O/Ar 

(pH2O=0.2 bar), oxidation of ZrB2 starts at about 700 K with the highest oxidation rate at about 

950 K. The obtained results are very comparable to oxidation in O2/Ar (pO2=0.2 bar). Krauss et 

al. [163] found the onset of B4C oxidation in oxygen and steam-containing atmosphere at the 

same temperature of 893 K. Figure 7.9b shows that oxidation in both atmospheres resulted in a 

nearly identical mass increase up to about 950 K. With further increasing temperature, 

oxidation in steam-containing atmosphere yields a higher mass gain to maximum 128 % at 

1150 K compared to 115 % in oxygen-containing atmosphere at the same temperature. 

Mass spectrometric measurements of the H2-release upon oxidation of ZrB2 in steam coincide 

with the thermogravimetric data (Figure 7.9a). From about 900 K to 1100 K both, the H2-release 

and the mass change rate exhibit a maximum indicating the maximum oxidation rate. 

Temperature ranges below and above correspond to endothermic formation and evaporation of 

boron acid species, respectively. At temperatures between 1100 K and 1300 K, the H2-release 

rate is at a constant low level, indicating that a steady-state is reached. Above 1300 K, the 

increasing H2-release rate is indicating the acceleration of the oxidation reaction due to the 

evaporation and volatilization of the protective boria scale by formation of boron-containing gas 

species. However, the overall mass loss shows that the evaporation and volatilization of the 

boria scale is predominating over the mass gain by oxidation. 

SEM investigations, depicted in Figure 7.13, revealed an open ZrO2 network with a cauliflower-

like microstructure. Therefore, the diffusion of oxidizing gas species (e.g. H2O, O2,...) through the 

condensed B2O3 (solid or liquid) is determining the oxidation of the underlying ZrB2. After 

oxidation at the highest temperatures, the passivating B2O3 scale was consumed at the surface. 

As a result, the total mass even decreases during oxidation of ZrB2 in steam-containing 

atmosphere at temperatures >1150 K, while the mass in oxygen-containing atmosphere further 

increases. 

Volatilization of B2O3 

Thermodynamic calculations performed in the present work, reveal the oxidation and 

volatilization characteristics of ZrB2 in oxygen and steam. The partial pressures of the boron-

containing gas species, which establish in equilibrium with condensed B2O3 in oxygen- and 

steam-containing atmosphere, are depicted in Figure 7.3. Due to the formation of gaseous 

boron hydroxide species, especially orthoboric acid H3BO3(g) and metaboric acid HBO2(g), the 

partial pressures of volatile gas species are higher in steam- compared to oxygen-containing 

atmosphere. Because of the higher partial pressures in steam, the evaporation and volatilization 

of the B2O3 scale is much higher in steam compared to O2-containing atmosphere (see Figure 
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7.3). This is consistent with thermodynamic calculations on the gas evolution in equilibrium with 

condensed B2O3 by Jacobson et al. [164]. In O2-atmosphere of one bar pressure, BO2(g) and 

B2O3(g) were formed. However, above 1300 K, addition of just 20 ppm H2O resulted in the 

formation of HBO2(g) with 1-3 orders of magnitude higher partial pressure compared to dry 

oxygen atmosphere. Jacobson et al. noted, that other HxByOz(g) species namely H3BO3(g) and 

H3B3O6(g) became important at higher H2O contents. According to Miyahara et al. [160] 

H3B3O6(g) formation by polymerization of metaboric acid HBO2(g) is very slow and H3B3O6(g) is 

considered to be stable only at low temperatures. Previous studies on B-O-H-(C-F) gas 

chemistry [165][166][167] also concluded, that H3B3O6(g) is not formed in significant amounts. 

Meschi et al. [168] found the H3B3O6(g) amount to be less than 1% of the HBO2(g) amount in 

equilibrium with B2O3(l) and water vapor at 1060-1450 K. In simulations of B4C oxidation in 

steam, Steinbrück et al. [169] determined release rates of H3B3O6(g) smaller than HBO2(g) and 

H3BO3(g). However, SGTE data (see Section 4) resulted in unrealistic high partial pressure for 

H3B3O6(g) in equilibrium with boria in steam. Therefore, H3B3O6(g) was not considered in 

thermodynamic calculations (see Figure 7.3b) in this work. 

Mass spectroscopic investigations (Figure 7.10) reveal the formation of HBO2(g) and H3BO3(g) 

and their fragmentation products during oxidation of ZrB2 in H2O/Ar (pH2O=0.2 bar). This is 

consistent with mass spectroscopic investigation of BN-oxidation in 2% H2O/oxygen by Jacobson 

et al. [164] who observed H3BO3(g), HBO2(g) and possibly BO2(g). The evolution of the H3BO3
+-

signal at m/z=62 during heat-up in H2O/Ar (Figure 7.11) shows onset of volatilization from the 

very beginning of mass gain with steam injection at 673 K. With increasing temperature and 

mass gain, the H3BO3
+-signal reaches a maximum at 1100 K and is then slightly decreasing but 

remains at a high level. This is consistent with the calculated equilibrium partial pressure of 

H3BO3(g) above B2O3 (Figure 7.3b), which is high at low temperatures (2.4·10-3 bar at 673 K) and 

shows a relatively low decay with temperature. Therefore, the formation-rate of B2O3 must be 

rate determining for the H3BO3(g)-formation. At low temperatures, B2O3 formation is slow and 

at high temperatures, B2O3 is consumed as soon as it is formed by volatilization and direct 

evaporation. According to Steinbrück et al. [169], the release of gaseous boron-containing 

species switches from orthoboric acid H3BO3(g) at low temperatures to metaboric acid (HBO2(g)) 

and B2O3(g) by direct evaporation of B2O3 at high temperatures. 

In oxygen (pO2=0.2 bar), evaporation of gaseous BO2(g) and B2O3(g) is predominant at 

temperatures below and above 1766 K, respectively. The gas species B(g), BO(g) and B2O2(g) are 

only formed with very low partial pressures (Figure 7.3) or at extremely low oxygen partial 

pressures (Figure 7.2). Generally, partial pressures of gaseous species in equilibrium with 

condensed B2O3 are higher compared to equilibria with ZrO2 or SiO2. Formation of Zr-containing 

gas species and volatilization of ZrO2 is negligible compared to B2O3. Therefore, oxidation of ZrB2 

is resulting in the observed remaining cauliflower-like open ZrO2 network.  
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Oxidation kinetics 

In oxygen, ZrB2-oxidation proceeds according to reaction (7.1) under formation of zirconia and 

boria. Voitovich et al. [153] found oxidation of ZrB2 in air beginning at 773-823 K. At higher 

temperatures (923-1053 K) oxidation proceeds with parabolic kinetics. Kuriakose et al. [170] 

found parabolic oxidation behavior even to higher temperatures of 1218-1529 K. In this stage, 

liquid boria fills the pores and prevents gas-phase diffusion of oxygen to the bare ZrB2. 

Evaporation and volatilization of boria was observed at temperatures above 1373 K (Opeka et 

al. [47]) up to 1473 K (Berkowitz-Mattuck [171]). Hence, oxidation kinetics change from 

parabolic to cubic (1053-1273 K) and above 1473 K to linear [153] behavior. However, Opeka et 

al. [47] found 10 wt% of B2O3 were retained even after 5h at 1673 K. Due to the much lower 

surface energy of boria (0.08 J/m²) compared to zirconia (1 J/m²) there is still a high driving 

force to cover ZrO2 by B2O3 [47]. Tripp and Graham [172] separated oxidation and volatilization 

rates by isolated thermogravimetric determination of the samples and the condensed gas 

species mass, respectively. They conclude that below 1373 K vaporization is negligible. In this 

temperature range, oxidation is determined by diffusion of oxygen through the liquid B2O3 

scale. At higher temperatures, vaporization became important resulting in overall paralinear 

oxidation kinetics. Parthasarathy et al. [173][174] developed a mechanistic model constructed 

from thermodynamic analysis. According to this, below 1673 K diffusion of dissolved oxygen 

through the liquid boria scale is rate limiting. Above 1673 K boria is lost by evaporation and 

Knudsen diffusion of molecular oxygen through the capillaries of the columnar oxide structure. 

The preparation method of ZrB2 samples significantly influences the resulting relative 

density [175]. Kuzenkova and Kislyi [156] showed that oxidation of ZrB2 at 1273 K with a 

porosity of 8% and 12% resulted in a mass gain of 5 mg/cm² and 12 mg/cm², respectively, after 

10 h. However, for oxidation of B4C in steam, Steinbrück et al. [169] observed higher oxidation 

rates for porous samples only at the very beginning of the test. Once an oxide scale was formed, 

a constant reaction rate is established and obtained results are comparable with dense samples. 

Besides evaporation and volatilization, active/passive-transition plays an important role in ZrB2-

oxidation. At low oxygen (or steam) partial pressures (see Figure 7.2), only gaseous oxidation 

products are formed, which is designated as active oxidation. At high oxygen partial pressures, 

condensed oxides ZrO2 and B2O3 are formed. For ZrB2, the active/passive-transition is at 

log(pO2) = -20.53 bar at 1473 K according to Figure 7.2.  

Isothermal tests were used to evaluate the oxidation kinetics of ZrB2 in steam. Due to the high 

vapor pressure of B2O3, which is among the highest for oxides [158], thermogravimetric results 

represent a combination of the mass gain by oxidation (reaction (7.5)) and the mass loss by 

evaporation (reaction (7.6)) and volatilization ((7.7) and (7.8)) of the B2O3 scale. Therefore, 

additionally the H2-release according to the oxidation reaction (7.5) was evaluated. 
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Figure 7.20 shows that oxidation kinetics of ZrB2 in H2O/Ar are complex. Generally, neither 

oxidation rate, nor k or n show a significant pH2O-dependence. The rate constant k shows an 

Arrhenius-type temperature dependence (Figure 7.20a). However, n is decreasing with 

temperature from almost linear kinetics at 1073 K to sub-parabolic kinetics at 1673 K (Figure 

7.20b). While other studies reported parabolic oxidation kinetics for ZrB2 in oxygen-containing 

atmosphere, this was not reasonable in this work especially at and below 1273 K. Due to the 

temperature-dependent oxidation kinetics, a determination of the activation energy was 

omitted. No activation energies for ZrB2 in steam-containing atmosphere are available in 

literature. However, data for the oxidation of ZrB2 in oxygen-containing atmosphere are 

determined by Kuriakose and Margrave [170] and Berkowitz-Mattuck [171]. Kuriakose and 

Margrave [170] found an activation energy for the oxidation of ZrB2 in oxygen of 82.8 ± 4 kJ/mol 

in the temperature range 1219-1529 K. Additionally, the parabolic rate constant was found to 

be direct proportional to the oxygen partial pressure. Berkowitz-Mattuck [171] confirmed the 

activation energy and pO2-dependence as found by Kuriakose and Margrave at low 

temperatures. Additionally, Berkowitz-Mattuck [171] determined an activation energy of 

322 ± 21 kJ/mol and a low pO2-dependence above 1400 K, indicating a change in the oxidation 

mechanism around 1330 K. The activation energy at high temperatures is similar to the value for 

direct evaporation of B2O3 of 383 kJ/mol determined by Krauss et al. [163] for T > 1473 K. 

Therefore, at high temperatures the direct evaporation of B2O3 is rate determining for both, the 

oxidation of ZrB2 in steam and in oxygen. However, gaseous B2O3(g) was not found in mass 

spectroscopic investigations because it probably reacts in the gas phase with steam to form 

H3BO3(g) and HBO2(g) and probably also condenses to a certain amount in colder parts of the 

off-gas system. At low temperatures, the rate determining process is the formation and 

evaporation of gaseous boric acids [169] and their diffusion through the gaseous boundary 

layer [164], respectively. Steinbrück et al. [169] determined an activation energy of 21.6 kJ/mol 

at T < 1373 K for the formation and evaporation of gaseous boric acids during oxidation of B4C in 

steam. Therefore, ZrB2 in steam at T ≥ 1273 K probably already shows a superimposition of 

both, the evaporation and transport of gaseous boric acids and the direct evaporation of boria. 

The oxidation rates obtained from the H2-release (9.4-37.4 mg/cm²h) are therefore higher than 

by thermogravimetry (3-6 mg/cm²h). Oxidation rates are generally higher in steam-containing 

atmosphere. Brown [176] noted that the presence of moisture in the air resulted in a 44-59% 

higher mass gain compared to dry air at 922 K. Kaufman and Clougherty [177] observed similar 

oxidation rates for the oxidation of HfB2 with and without H2O in He-O2 at 1760 K while a 

fivefold increase of the oxidation rate was found at 1206 K. This is consistent with the direct 

evaporation and volatilization of boria above 1770 K (see discussion above). Therefore, not the 

formation but the degradation of the boria scale is defining the oxidation characteristics in 

oxygen- and steam-containing atmosphere. 
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Although oxidation and volatilization rates are increasing with temperature, the H3BO3(g)-

release at 1673 K was the smallest for all investigated temperatures. This is consistent with the 

calculated partial pressures of boron-containing gas species in steam (Figure 7.3b). With 

increasing temperature, the partial pressure of H3BO3(g) is decreasing, while HBO2(g) is 

increasing. Above 1179 K, HBO2(g) is the major volatilization product. 

According to Nguyen et al. [178] the rate determining step for the oxidation of ZrB2-containing 

ceramics is the diffusion of HBO2(g) through the boundary layer. The authors furthermore note, 

that no significant difference in the oxidation rate was observed in low velocity water vapor 

compared to stagnant air [178]. 

Steinbrück et al. did thorough investigations on the oxidation of B4C at high temperatures in 

steam [72][169][179]. Similar to oxidation of ZrB2, a liquid B2O3 scale is formed, but other 

oxidation products are all gaseous CO(g) CO2(g) and CH4(g). Nevertheless, oxidation of B4C is 

dominated by the formation, evaporation and volatilization of B2O3(l). Oxidation of B4C follows 

paralinear reaction kinetics. The oxidation rate is determined by mass transport in the gas 

phase. As a result, the steam partial pressure near the reaction surface might be different from 

the bulk of the gas [169]. At low temperatures orthoboric acid is formed while at high 

temperatures metaboric acid forms accompanied by direct evaporation of B2O3 above 1770 K. In 

contrast to the oxidation of B4C, additionally condensed ZrO2 is formed during oxidation of ZrB2. 

Therefore, not the whole surface is available for gas phase transport of oxidizing gas species and 

products. Diffusion paths through the porous ZrO2 networks are comparatively longer and 

impede the exchange of gas species. 

The oxidation of ZrN is exemplary for the oxidation without the formation of a passivating B2O3 

layer. The equilibrium oxygen partial pressure for the oxidation of ZrN is thereby higher 

compared to pure Zr (see Figure 7.1a). Upon oxidation of ZrN, ZrO2 is formed under release of 

N2 resulting in complete oxidation and disintegration of the sample (see Figure 7.5). Harrison 

and Lee [180] reported stabilization of ZrO2 by nitrogen at 1173-1273 K, resulting in lower 

oxidation rates than at 973-1073 K. At 1373 K, the ZrO2 scale was no longer protective due to 

the increasing diffusivity of oxygen. Activation energies for oxidation of 241 ± 10 kJ/mol (748-

923 K, Krusin-Elbaum and Wittmer [181]) and 229 kJ/mol (773-1123 K, Panjan et al. [182]), were 

determined for bulk and a 300 µm thin film ZrN, respectively. Oxinitrides (ZrNxOy), produced and 

reported in literature by mixing of ZrN and ZrO2 powders, were not considered in the 

thermodynamic calculation due to the lack of thermodynamic data. However, the maximum 

mass of 119.5%, which is higher than 117% expected from reaction (7.4) alone, indicates the 

uptake of nitrogen into the oxidation product ZrO2. Furthermore, with further increasing 

temperature the sample mass is decreasing under release of N2. The observed disintegration of 

the sample is resulting from the increase in molar volume of 48% upon oxidation of ZrN. 

Steinbrück et al. have investigated the oxidation behavior of Zr-alloys in nitrogen-containing gas 
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mixtures [161][183]. The volume expansion upon oxidation of ZrN resulted in a spallation of the 

oxide scale and therefore in an escalation of the oxidation reaction. The observed onset of 

oxidation at 700 K is consistent with literature data for ZrN (748 K [181]) and ZrC (653-

750 K [184]). Most authors observed parabolic oxidation kinetics for ZrN suggesting, that 

diffusion through the oxide scale is the rate controlling mechanism [180][181][182]. 
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7.5. Conclusion 
Oxidation of compacted ZrB2 powder samples was performed in flowing H2O/Ar and O2/Ar 

(pH2O=pO2=0.2 bar) up to maximum temperatures of 1673 K. The oxidation characteristics were 

determined by thermogravimetric and mass spectrometric analysis and post-test examinations. 

The overall mass change during high-temperature oxidation of ZrB2 is determined by 

superimposition of the mass gain by the actual oxidation reaction (7.3) and the evaporation and 

volatilization of the liquid boria scale by formation of boron-containing gas species. Quantitative 

mass spectrometric analysis of the H2-release made it possible to separate oxidation effects 

from evaporation and volatilization effects and to reveal comprehensive insight into the high-

temperature oxidation behavior of ZrB2 in steam, which has been explored scarcely in literature. 

Oxidation in oxygen- and steam-containing atmosphere, respectively, yield about the same 

onset of oxidation. However, higher mass gain is observed upon oxidation in steam in 

accordance with literature data. Thermogravimetric investigation underestimated the actual 

oxidation rate considerably. An evaluation of the H2-release revealed an Arrhenius-type 

temperature-dependence of the oxidation rates for T ≥ 1273 K. Oxidation kinetics of ZrB2 in 

steam were complex and strongly temperature dependent. The exponent n was shifting from 

linear at 1073 K to sub-parabolic at 1673 K with a linear temperature-dependence. Passivation 

of the ZrB2 sample, by formation of a dense oxide scale, occurred only for T≥1273 K in H2O/Ar. 

At 1073 K, the ZrB2 sample disintegrated and oxidized completely. The reason for this behavior 

is most likely found in the slow oxidation kinetics in conjunction with the high partial pressure of 

H3BO3(g) (4·10-4 bar) at 1073 K. Thermodynamic calculations provided insight into partial 

pressures of volatile boron-containing gas species formed in O2- and H2O-containing 

atmosphere in equilibrium with condensed B2O3. In dry O2/Ar-atmosphere (pO2=0.2 bar), BO2(g) 

and B2O3(g) are the predominant gas species formed for temperatures below and above 1493 K, 

respectively. In contrast to that, partial pressures of boron-containing gas species are 

significantly higher in H2O-containing atmosphere. For pH2O=0.2 bar, orthoboric acid (H3BO3(g)) 

is formed with partial pressures higher than 3·10-4 bar. At temperatures higher than 1179 K, 

gaseous metaboric acid (HBO2(g)) is the dominant gas species. The formation of gaseous B-O-H 

species, examined by mass spectroscopic analysis during oxidation of ZrB2 in H2O-containing 

atmosphere, was in very good agreement with thermodynamic calculations. Ionized species and 

their fragments (H3BO3
+, H2BO3

+, H2BO2
+, HBO2

+ and BO2
+ were identified. The release of 

H3BO3(g) (H3BO3
+ at m/z=62) was traced qualitatively during oxidation of ZrB2 in H2O/Ar in 

transient tests up to 1473 K and during isothermal oxidation at 1073 K, 1273 K, 1473 K and 

1673 K, respectively. During heat-up of ZrB2 in H2O/Ar, release of H3BO3(g) starts already at 

673 K and reaches a maximum at 1000 K corresponding to the maximum mass gain rate. With 

further increasing temperature, the H3BO3
+-signal is decreasing again. In isothermal tests, the 

H3BO3
+-signal reaches an approximately constant value after a rapid increase with the lowest 

value at the highest investigated temperature of 1673 K.  
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8. High-temperature oxidation of ZrB₂-containing SiC/Si-C-N CMC 
In the present Section, the high-temperature oxidation behavior of ZrB2-containing SiC/Si-C-N 

composites was investigated. To this end, a combination of CALPHAD-type equilibrium 

calculations and high-temperature oxidation tests were performed. Thermodynamic equilibrium 

calculations were performed to understand the fundamental interactions and reaction 

mechanisms of the ZrB2-additive with the SiC-fibers and the precursor-derived Si-C-N matrix in 

oxidizing atmosphere. Phase stability diagrams, phase fractions and vapor pressure of gaseous 

oxidation and volatilization products were calculated. 

In addition, oxidation tests were performed with ZrB2-SiC/Si-C-N samples with a dimension of 

3x10x10 mm3. Samples were manufactured and provided by the German Aerospace Center (DLR 

e.V.) in the framework of the BMBF-project NewAccess [27]. The ZrB2-additive was introduced 

into the CMC by using a mixture of Ceraset® PSZ 20 and ZrB2-powder in a first laminating step of 

the SiC fiber-preform. All following PIP cycles were performed with pure Ceraset® PSZ 20. The 

neutron tomography image (see also Section 3.8) depicted in Figure 8.1 shows the ZrB2-

distribution in the obtained ZrB2-SiC/Si-C-N CMC. Due to the significantly higher neutron cross 

section of B compared to Si, C and N, ZrB2-rich regions in the CMC appear bright. The brighter 

the gray value the higher the boron content. The SiC-fiber bundles appears dark. Therefore, the 

ZrB2-additve was distributed throughout the CMC in the precursor-derived Si-C-N ceramic 

matrix, even though locally the ZrB2-content was not the same everywhere. 

Oxidation tests were performed in transient tests and isothermally at temperatures between 

1073 K and 1773 K in various flowing oxidizing O2- and H2O-containing atmospheres. The 

oxidation behavior was characterized with thermogravimetry, DTA, mass spectrometric analysis 

of gaseous oxidations and volatilization products and materialographic post-test examinations 

(see Section 3 for details). 

A second batch of samples, consisting of ZrB2-free SiC/Si-C-N CMC, was used to separate the 

influence of the ZrB2-additive on the oxidation behavior of the ZrB2-SiC/Si-C-N CMC. See also 

Section 3.1 for details. Figure 8.2 shows SEM micrographs of the ZrB2-free CMC. SiC fibers are 

arranged in bundles in a 2D fabric with 0/90° orientation, embedded in a Si-C-N matrix. 

 
Figure 8.1: Neutron tomography image of a ZrB2-SiC/Si-C-N composite. The sample was prepared with an orientation of the SiC-
fiber preform perpendicular (left) and parallel (right) to the image plane. The shorter dimension corresponds to an edge length 
of 1 mm. ZrB2-rich Si-C-N matrix appears bright. 
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Figure 8.2: SEM micrographs of the cutting-edge of a SiC/Si-C-N composite in the status as-received; a) overview over the SiC-
fibers in 2D fabric and the Si-C-N matrix, b) cross-section of the SiC-fiber and c) longitudinal section of a SiC-fiber.  
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8.1. Thermodynamic analysis of ZrB₂-SiC/Si-C-N oxidation 
Thermodynamic calculations on the composition of ZrB2-SiC/Si-C-N in oxidizing atmosphere 

were performed using the CALPHAD-method. The applied thermodynamic dataset in the system 

Zr-Si-B-C-N-O-H was compiled from literature data (see Section 4 for details). In addition, the 

liquid phase of the binary subsystems Zr-C and Zr-N was reoptimized to ensure compatibility in 

the multicomponent database. 

The calculated phase stability diagrams in Figure 8.3 show, that silicon oxynitride (Si2N2O) is 

formed as intermediate oxidation product of Si-N-containing ceramics. Si2N2O has a limited 

stability range between the phases Si3N4 and SiO2. The equilibrium partial pressures pO2 and pN2 

for formation of Si2N2O are lower for the system Si-N-O compared to Si-C-N-O indicating a lower 

oxidation resistance. 

 
Figure 8.3: Calculated phase stability diagrams for the systems a) Si-N-O and b) Si-C-N-O at 1273 K, 1473 K and 1673 K. 

Figure 8.4 shows the phase fraction diagram for the composition of the precursor-derived Si-C-N 

ceramic obtained from pyrolysis of Ceraset® PSZ 10 and PSZ 20 (see Section 5.1) as a function of 

the oxygen partial pressure pO2 calculated at 1473 K. Although the obtained Si-C-N ceramic is  

X-ray amorphous, the composition is located within the three-phase equilibrium SiC+Si3N4+C. 

Calculations were performed as a closed system consisting of a constant amount of substance 

(1 mol) at ambient pressure of p = 1·105 Pa with a self-developing gas volume. Phase fraction 

diagrams were calculated with a small amount of Ar (x(Ar) = 0.01) to establish a stable gas phase 

under all conditions. 

First, Si3N4 and SiC are oxydized under formation of Si2N2O and C: 

                        (8.1) 
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Second, the remaining carbon is oxidized to CO and CO2 at higher pO2. 

 
Figure 8.4: Calculated a) phase fraction diagram and b) composition of the gas phase for the precursor-derived Si-C-N ceramic 
obtained from Ceraset® PSZ 10 and PSZ 20 as a function of the oxygen partial pressures at 1473 K. 

Figure 8.5 shows calculated partial pressures of the volatile SiOx species at 1473 K and the 

volatility diagrams calculated, after Lou and Heuer [159], at 1273 K, 1473 K and 1673 K as a 

function of pO2. The equilibrium oxygen partial pressure for the oxidation reaction Si+O2=SiO2 at 

log pO2 = -23.01 is marked with a dashed line. Below the dashed line, gaseous SiOx species are in 

equilibrium with solid Si, respectively. The majority gas species for log pO2 < -23.01 are Si(g) and 

SiO(g), with increasing pO2. For log pO2 > -23.01, SiO(g) and SiO2(g) are the majority gas species in 

equilibrium with the solid oxide SiO2. Besides these majority gas species, which mainly 

contribute to the total partial pressure, also other minority gas species (Si2(g), Si3(g) and 

Si2O2(g)) are formed. With increasing temperature (see Figure 8.5b), the partial pressures of the 

individual gaseous SiOx(g) species are increasing and the transition between the majority gas 

species is shifting to higher pO2.  

The formation of condensed oxide SiO2 at pO2 higher than indicated by the dashed line, has 

potentially a passivating effect on the oxidation behavior of the underlying material (See also 

active-passive transition in Section 1.1). 
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Figure 8.5: Calculated a) partial pressures of gas species in the Si-O system as a function of the oxygen partial pressure at 1473 K 
and b) associated volatility diagrams at 1273 K, 1473 K and 1673 K. 

The composition of the self-developing gas phase for SiO2 in a) oxygen and b) steam at 

pO2 = 0.2 bar and pH2O = 0.2 bar, respectively, is depicted in Figure 8.6. The gas species O2 and 

H2O and their dissociation products are considered in the equilibrium calculations but not 

depicted. The same holds for the constant amount of Ar (x(Ar)=0.01) which was added as an 

inert gas to establish a stable gas phase at every temperature. In oxygen (Figure 8.6a), SiO2(g) is 

formed with the highest partial pressure over the considered temperature range. Partial 

pressures of other gas species SiO(g), Si2O2(g) and Si(g) are at least one order of magnitude 

lower. In steam (Figure 8.6b), additionally the gaseous hydroxides are formed with partial 

pressures higher than those of gaseous oxides. Si(OH)4(g) and SiO(OH)2(g) are the main gas 

species formed below and above 1775 K, respectively. Due to the formation of gaseous 

hydroxides, partial pressures of gaseous Si-containing species are higher in steam compared to 

oxygen atmosphere. 

In direct comparison, partial pressures of silicon-containing gas species formed in equilibrium 

with solid SiO2 are several orders of magnitude lower than those of boron-containing gas 

species formed in equilibrium with condensed B2O3 under the same conditions (see Section 7.1, 

Figure 7.3). 
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Figure 8.6: Calculated partial pressures of the silicon-containing gas species as a function of temperature for SiO2 at 
a) pO2 = 0.2 bar and b) pH2O = 0.2 bar. 

Thermodynamic equilibrium calculations were performed to analyze the interaction of the ZrB2-

additive with the SiC-fiber and the Si-C-N matrix in oxidizing atmosphere. Reaction pairs of ZrB2 

with the thermodynamic equilibrium components of the ceramic fiber and matrix (C, SiC and 

Si3N4) were considered as mechanical powder mixtures. Figure 8.7 shows the corresponding 

calculated phase stability diagrams and the composition of the gas phase at 1473 K as a function 

of the oxygen partial pressure. Phase fractions of the reaction pair ZrB2-C (see Figure 8.7a), are 

constant up to an oxygen partial pressure of 10-20.5 bar, indicating that no reactions take place. 

At higher pO2, ZrB2 is oxidizing, forming ZrO2 and B2O3, which is liquid at the considered 

temperature, according to reaction (7.1). At higher oxygen partial pressures, carbon is oxidizing 

under the formation of CO and CO2 (see Figure 8.7b). Upon oxidation of ZrB2 and SiC (see Figure 

8.7c), ZrSiO4 is formed at pO2 = 10-20.9 bar. With increasing pO2, CO and CO2 are formed from the 

oxidation of carbon. By the formation of CO and CO2, the relative phase amounts of the gas 

phase is increasing. Due to the fixed constant amount of substance (1 mol), the relative phase 

amounts of ZrSiO4 and B2O3(l) are decreasing. The overall oxidation reaction can be written as: 

 
         

   

 
                               (8.2) 

Phase equilibria of the reaction pair ZrB2+Si3N4 in oxygen-containing atmosphere are more 

complex. At low pO2 the siliconoxynitride Si2N2O is formed as intermediate oxidation product of 

Si3N4. Nitrogen released from the oxidation of Si3N4 leads to the formation of ZrN and BN from 

ZrB2 (see also Section 6.2). With increasing pO2, all nitrides (Si2N2O, ZrN and BN) are oxidized. 

ZrSiO4 is formed and N2 is released into the gas phase (see Figure 8.7f). 
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Figure 8.7: Phase fractions and related partial pressures of gas species for the initial couples a)-b) ZrB2-C, c)-d) ZrB2-SiC and e)-f) 
ZrB2-Si3N4 as a function of the oxygen partial pressure (pO2) at 1473 K.   
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8.2. High-temperature oxidation of SiC/Si-C-N CMC 
High-temperature oxidation tests were performed with a SiC/Si-C-N composite. This CMC allows 

to separate the influence of the ZrB2-additive on the oxidation behavior of the ZrB2-SiC/Si-C-N 

composite described in Section 8.3. To this end, oxidation in O2- and H2O-containing 

atmospheres was investigated using thermogravimetry, materialographic post-test 

examinations and XRD. 

 

Synthetic air (O2/N2/Ar) pO2 = 0.14 bar 

Figure 8.8 shows the measured mass change during isothermal oxidation of a SiC/Si-C-N CMC in 

synthetic air. A gas composition with 4·pO2 = pN2 was used. The necessity of using a protective 

gas, purging the balance case in this experimental in this setup (see Section 3.2), resulted in an 

effective gas composition of pO2 = 0.14 bar, pN2 =0.56 bar and pAr = 0.3 bar at the sample. The 

lowest investigated temperature of 1073 K results in an exponential mass loss with an overall 

mass loss of -1.81 mg/cm² after 100 h. With increasing temperature, an initial mass loss remains 

at 1273 K and 1373 K, which turns into a mass gain as oxidation progresses. The turning point 

shifts to an earlier time with increasing oxidation temperature. From 1473 K on, the initial mass 

change is positive and the mass change rate increases with increasing temperature. Upon 

oxidation at 1773 K, the mass decreases rapidly after an initial increase. The mass then increases 

gradually again, resulting in an overall mass change of 0.17 mg/cm2. 

 
Figure 8.8: Measured mass change during oxidation of SiC/Si-C-N composites at 1073 K-1773 K in flowing synthetic air for 100 h. 

Figure 8.9 shows cross-sections of SiC/Si-C-N CMC after 100 h oxidation in synthetic air. The 

arrangement of the SiC-fiber bundles in 0/90° geometry can be seen. The orientation of the SiC-

fiber bundles is parallel and perpendicular to the image plane. The precursor-derived ceramic Si-
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C-N matrix can be seen between the individual SiC-fabric layers and partly within the SiC-fiber 

bundles. The Si-C-N matrix shows cracks and channels due to shrinkage of the preceramic 

polymer during the pyrolysis process. On the flanks of these channels oxide has formed, which 

appears dark in the micrographs. With increasing oxidation temperature, the oxide becomes 

thicker and more pronounced. The corresponding XRD patterns of the oxidized SiC/Si-C-N 

composites (see Figure 8.10) show formation of β-Cristobalite. The intensity of the associated 

XRD reflections is increasing with the oxidation temperature. In its initial state, the composite 

shows only β-SiC XRD reflections of the fiber. In addition, spherical and presumably crystalline 

regions are present in the ceramic matrix from an oxidation temperature of 1473 K. However, 

no additional XRD reflexes are detected. 
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Figure 8.9: Micrographs of SiC/Si-C-N composites after oxidation at a) 1073 K, b) 1273 K, c) 1373 K, d) 1473 K, e) 1573 K, f) 
1673 K and g) 1773 K in flowing synthetic air for 100 h The scale bar corresponds to 500 µm. 
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Figure 8.10: XRD pattern of SiC/Si-C-N composites after 100 h of oxidation in flowing synthetic air at 1073 K-1573 K. 

 

H2O/Ar pH2O=0.2 bar 

The mass change during oxidation of SiC/Si-C-N in steam/Ar-atmosphere (pH2O = 0.2 bar) is 

shown in Figure 8.11. This composition was chosen analogously to the O2/Ar- and H2O/Ar-

mixtures in Section 7. The highest mass increase is measured at the lowest oxidation 

temperature of 1073 K. With increasing oxidation temperature the mass gain decreases. At the 

highest oxidation temperature of 1473 K, the highest mass of 1.8 mg/cm2 is reached after about 

248000 s and then decreases again. In particular at 1073 K and 1273 K the mass increase in 

steam-containing atmosphere is significantly higher than in dry O2-containing atmosphere.  
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Figure 8.11: Measured mass change during oxidation of SiC/Si-C-N composites at 1073 K-1473 K in flowing steam/Ar-
atmosphere pH2O=0.2 bar for 100 h. 

 

Prototypic combustion atmosphere pH2O=0.05 bar, pO2=0.13 bar, pCO2=0.05 bar, pN2=0.77 bar 

The measured mass change during oxidation of SiC/Si-C-N composites in prototypic combustion 

atmosphere, as defined within NewAccess [27], is depicted in Figure 8.12. At the lowest 

investigated temperature of 1073 K, there is first a mass loss followed by a largely linear mass 

gain. At 1273 K and 1473 K there is an immediate increase in mass. The highest initial mass gain 

rate is observed at the highest temperature of 1473 K. However oxidation at 1273 K, results in 

the highest overall mass gain. 
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Figure 8.12: Measured mass change during oxidation of SiC/Si-C-N composites at 1073 K-1473 K in prototypic combustion 
atmosphere for 100 h. 

An Arrhenius-type plot of the absolute mass change rates of SiC/Si-C-N composites in different 

O2- and H2O-containing atmospheres is depicted in Figure 8.13a. Data points were calculated 

from the total mass change after 100 h of isothermal oxidation. At lower temperatures H2O-

containing atmospheres result in higher overall mass change rates. Higher pH2O in steam/Ar 

atmosphere (pH2O = 0.2 bar) compared to prototypic combustion atmosphere (pH2O = 0.05 bar 

and pO2 = 0.13 bar) lead to higher oxidation rates at 1073 K and 1273 K. Mass change rates in 

synthetic air (pO2 = 0.14 bar) are almost one order of magnitude lower at these temperatures. At 

1473 K, the overall mass change rates are about the same in all three investigated atmospheres. 

For technical reasons, thermogravimetric tests above 1473 K were only possible in dry H2O-free 

atmospheres (see Section 3.2). The overall mass change rates at 1473 K-1673 K in synthetic air 

do not differ significantly after 100 h. Only at 1773 K, above the carbothermal decomposition 

temperature of the ceramic Si-C-N matrix, the overall mass change rate decreases significantly. 

A kinetic evaluation of these SiC/Si-C-N CMC oxidation experiments is generally difficult. There 

are a number of factors that influence the thermogravimetrically measured mass changes. The 

investigated SiC/Si-C-N CMC samples have an unfavorable open porosity, which allows the 

ingress of oxidizing atmosphere. Thus, the effective surface area of the samples is larger than 

the geometrically measured one. In addition, the size of the surface exposed to the oxidizing 

atmosphere probably changes during the experiments. This may become smaller or larger due 

to formation or volatilization of condensed oxides, respectively. 
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In addition, oxidation of different constituents of the CMC has a different effect on the 

measured mass change. While the formation of solid oxides leads to an increase in mass, the 

mass decreases due to oxidation of free carbon, for example from the Si-C-N matrix and by 

volatilization of condensed oxides. The carbothermal decomposition reaction of the Ceraset® 

PSZ 20-derived Si-C-N matrix above 1757 K also leads to a mass loss (see Section 5.1). 

Since these effects could not be separated, even with more sophisticated models, the measured 

thermogravimetric data were fitted with a simple equation (1.1). The obtained rate constant k 

and exponent n are shown in Figure 8.13b and c, respectively. In particular, the obtained rate 

constant k has only an illustrative character due to the strong temperature-dependent reaction 

kinetics and the numerous overlapping effects (n is not constant!). Oxidation in H2O-containing 

atmosphere gives the highest k-values. These increase with both pH2O and temperature. The 

determination of activation energies was therefore deliberately omitted. 

However, the obtained exponent n Figure 8.13c allows a general conclusion on the nature of the 

effective oxidation kinetics. For all investigated atmospheres and temperatures the exponent n 

is in the order ≤ 0.5. This corresponds to parabolic or sub-parabolic reaction kinetics. For H2O-

containing atmospheres, n shifts significantly to smaller values with increasing temperature. In 

synthetic air this is also the case for temperatures above 1473 K. However, in synthetic air the 

exponent n also deviates to smaller values even at lower temperatures. 
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Figure 8.13: Obtained a) overall mass change rate, b) rate constant k and c) exponent n for the oxidation of SiC/Si-C-N 
composites in O2- and H2O-containing atmosphere, respectively.  
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8.3. High-temperature oxidation of ZrB₂-SiC/Si-C-N CMC 

8.3.1. Mass spectrometric analysis 
Samples of a ZrB2-containing SiC/Si-C-N composite with a dimension of 10x10x3 mm³ were used 

for experimental investigation of the oxidation behavior. Both transient and isothermal 

oxidation tests were performed up to maximum temperatures of 1473 K and 1273 K in O2- and 

H2O-containing atmospheres, respectively. 

Thermogravimetric measurements of the mass change during oxidation were performed using 

Netzsch STA 449 F3 Jupiter and Netzsch STA 409 to reveal the oxidation behavior of the ZrB2-

SiC/Si-C-N composite. 

Gaseous oxidation- and volatilization products were analyzed using the mass spectrometers 

Netzsch QMS 403C Aëolos and Balzers GAM 300 coupled to the off-gas of the STAs. 

 

Transient oxidation tests 

Figure 8.14 shows thermogravimetric and mass spectrometric data for oxidation of a ZrB2-

SiC/Si-C-N composite in flowing O2/Ar-atmosphere (pO2=0.2 bar). The sample was heated from 

room temperature to 1473 K with 5 K/min. Up to about 600 K the mass of the sample is 

decreasing. Possibly due to the evaporation of adsorbed water or other volatile substances. 

Between 600 K and 800 K, the sample mass is approximately constant, followed by a minimum 

at 950 K. This minimum is accompanied by the release of CO and CO2, indicating the oxidation of 

free carbon from the Si-C-N matrix. The release of CO is starting from 850 K while the release of 

CO2 is shifted to higher temperatures of 950-1100 K. From temperatures of 950 K, the sample 

mass is increasing with temperature. At the same time, N2 is released during the oxidation 

reaction of the Si-C-N matrix. Both is indicating the formation of a passivating solid oxide scale. 

With ongoing oxide growth, the mass increase rate and the release of gaseous oxidation 

products is decreasing. 
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Figure 8.14: Mass change and off-gas composition measured by mass spectrometry during heat-up of ZrB2-SiC/Si-C-N with 
5 K/min in O2/Ar-atmosphere (pO2 = 0.2 bar). 

Figure 8.15 shows thermogravimetric and mass spectrometric data for the oxidation of a ZrB2-

SiC/Si-C-N composite in H2O/Ar-atmosphere (pO2=0.2 bar). Heating up to 673 K and 10 min 

preconditioning was carried out in flowing Ar. Then, the sample was heated with 5 K/min to a 

maximum temperature of 1473 K in H2O/Ar-atmosphere. Free cooling to room temperature was 

carried out in flowing Ar. During preconditioning in Ar, the sample mass is decreasing with 

temperature until a constant mass is reached. Mass spectrometric data show at the same time a 

release of CO2, CH4 and H2 up to 0.01% of the off-gas composition. Residual water in the system 

is probably leading to a steam content of about 0.2% during this stage of the test. With the 

onset of steam injection during the heat-up stage, significant amounts of H2, CO, CO2 and CH4 

are produced. The steam content of the off-gas is at a constant value. However, the off-gas 

stream also contains the protective argon gas, which is preventing the ingress of steam into the 

balance but does not reach the sample. Therefore, the steam content in the off-gas is lower 

than at the sample position. Note that also in this test, CO and CO2 are dominating at lower and 

higher temperatures, respectively. With increasing temperature, the content of CH4 is 

decreasing. Upon free cooling in Ar, the signals of steam and gaseous oxidation products are 

rapidly decreasing while the sample mass is constant during this stage. 
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Figure 8.15: Thermogravimetric and mass spectrometric analysis of ZrB2-SiC/Si-C-N oxidation in steam. After heat-up and 
equilibration in Ar, the sample was heated from 673 K to 1473 K with 5 K/min in H2O/Ar-atmosphere (in between vertical 
dashed lines; pH2O=0.2 bar). The set temperature program is indicated by a solid blue line. 

Figure 8.16 shows the measured mass gain during heat-up in H2O/Ar (pH2O=0.2 bar) from 673 K 

to 1473 K. Additionally, the H2-release rate determined by mass spectrometry is shown. The 

sample mass is increasing upon heat-up in steam-containing atmosphere. The maximum mass 

gain rate is reached in the temperature range 1000-1200K. From 1200 K to about 1350 K, the 

mass is approximately constant, increasing again at temperatures above 1350 K. 

The H2-release rate is increasing immediately with the onset of steam injection. Between 950 K 

and 1150 K a plateau is established. Maximum H2 release rate is reached at about 1400 K. 

 
Figure 8.16: Measured H2 release rate during heating of ZrB2-SiC/Si-C-N with 5 K/min in H2O/Ar-atmosphere (pH2O=0.2 bar). 
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Due to the low ZrB2 content of the ZrB2-SiC/Si-C-N composite, the amount of gaseous boron-

containing species in the off-gas is very low. Figure 8.17 shows, that with the onset of steam 

injection, the H3BO3
+-signal at m/z=62 is barely increasing. Note, that the scale of the ion 

current was chosen identical to the oxidation tests of pure ZrB2 under the same conditions (see 

Section 7.3, Figure 7.11). 

 
Figure 8.17: Ion current measured by mass spectrometry at m/z = 62 during heating of ZrB2–SiC/Si-C-N with 5 K/min in H2O/Ar-
atmosphere (pH2O=0.2 bar).  
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Isothermal oxidation tests 

Samples were heated with 20 K/min up to the final test temperature in flowing Ar. After 10 min 

equilibration time, steam injection was started and samples were isothermally oxidized for 5 h 

in flowing H2O/Ar (pH2O=0.2 bar). Longer experiments were not performed because the H2-

release rate decreased considerably as the passivation of the samples proceeded. 

Upon oxidation in steam, H2 is released from various possible reactions of the components of 

the ZrB2-SiC/Si-C-N composite: 

                         (8.3) 

 

                      (8.4) 

 

                       (8.5) 

 

                          (8.6) 

 

             (8.7) 

 

                (8.8) 

 

The H2-release rates measured by mass spectrometry at 1073 K and 1473 K are depicted in 

Figure 8.18 on a common time scale. At t = 0 s, steam is injected. "Negative values" are referring 

to the heating and preconditioning phase in Ar. The detected H2 signal in the preconditioning 

phase might result from the release of adsorbed H2O from the system. With the onset of steam 

injection, the H2-signal is increasing instantaneously. Oxidation at 1473 K resulted in a 

pronounced maximum of the H2-release rate up to 0.065 Nl/s, while the maximum upon 

oxidation at 1073 K is less pronounced. After the initial maximum, the H2-release rate is 

decreasing rapidly to a constant value of 0.002 Nl/s and 0.004 Nl/s at 1473 K and 1073 K, 

respectively. With the end of steam injection, the H2-release rate is going back to a pre-test 

value. 
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Figure 8.18: Measured H2 release rate during isothermal oxidation of ZrB2-SiC/Si-C-N in H2O/Ar (pH2O=0.2 bar) for 5 h at 1073 K, 
and 1473 K. The time axis was moved to indicate the beginning of steam injection. "Negative values" are referring to the heating 
and preconditioning phase in Ar. 

Figure 8.19 shows the mass change during isothermal oxidation of ZrB2-SiC/Si-C-N in H2O/Ar 

(pH2O=0.2 bar) at 1073 K and 1473 K. Data derived by thermogravimetry and mass spectrometric 

measurements of the H2-release are compared. Oxidation at 1073 K shows linear mass gain 

(n = 0.951) after a short initial equilibration time (with parabolic kinetics). In contrast to that, 

parabolic oxidation kinetics (n = 0.626) are observed at 1473 K. This is resulting in a lower total 

mass gain after 5 h oxidation of 1.7 mg/cm² at 1473 K compared to 4.3 mg/cm² at 1073 K. The 

mass change calculated from the measured H2-release rate (see Figure 8.18) according to 

reaction (8.3) shows very good agreement with the thermogravimetric data at 1073 K. 

Therefore, oxidation characteristics are dominated by ZrB2 oxidation. Reactions producing 

volatile oxidation products resulting in a mass loss do not play an important role at this 

temperature. However, at 1473 K theoretical mass change calculated from the H2-release is 

much higher compared to the measured mass gain. This is indicating that gaseous oxidation 

(CO(g), CO2(g), N2(g),...) and volatilization products (H3BO3(g), HBO2(g), SiO(g),...) have a 

significant influence on the observed mass change during oxidation. Therefore, 

thermogravimetry is underestimating the oxidation kinetics. However, both thermogravimetry 

and mass spectrometry yield parabolic oxidation kinetics. 
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Figure 8.19: Comparison of the mass change of ZrB2 derived from thermogravimetry (TG, solid lines) and from the H2-release 
(dashed lines) measured by mass spectrometry. Obtained fit parameters are given additionally. 
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8.3.2. Thermogravimetric and microstructural analysis 
In H2O/Ar pH2O=0.2 bar 

Figure 8.20 shows ZrB2-SiC/Si-C-N composites after isothermal oxidation at 1073 K, 1273 K and 

1473 K in flowing H2O/Ar for 100 h. Both samples sides are shown. With increasing oxidation 

temperature, the sample surface exhibits a white scale, which is more pronounced at one side 

of the sample. It must be noted, that samples were placed with one edge on a concave plate-

like sample holder. Therefore, both sides of the samples experienced the same access to the 

oxidizing atmosphere. However, the ZrB2-additive was introduced into the CMC in a first 

laminating step of the SiC fiber-preform using a mixture of Ceraset® PSZ 20 and ZrB2-powder. 

Therefore, both sides of the obtained CMC exhibit a different ZrB2-content.  All subsequent PIP 

cycles were performed using pure Ceraset® PSZ 20. 

 
Figure 8.20: ZrB2-SiC/Si-C-N composites after isothermal oxidation at a, b) 1073 K, c, d) 1273 K and e, f) 1473 K in flowing 
H2O/Ar-atmosphere (pH2O = 0.2 bar) for 100 h. Both samples sides are shown. The edge length of the samples corresponds to 
10 mm. 

XRD patterns of the ZrB2-SiC/Si-C-N composite, oxidized at 1473 K (Figure 8.21a), reveal the 

composition of both sides of the sample. The darker side of the sample shows mainly reflections 

of β-Cristobalite. Only small reflections of monoclinic ZrO2 and ZrSiO4 are present. However, the 

white scaled side shows mainly ZrSiO4 and less pronounced β-Cristobalite and monoclinic ZrO2 
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reflections. With increasing temperature (see Figure 8.21b) the relative intensities, and 

therefore the amounts, of ZrSiO4 and β-Cristobalite are increasing, while monoclinic ZrO2 is 

decreasing. 

 
Figure 8.21: XRD patterns of ZrB2-SiC/Si-C-N composites after isothermal oxidation in flowing H2O/Ar (pH2O = 0.2 bar) for 100 h. 
XRD patterns of a) both sides of a ZrB2-SiC/Si-C-N composite after oxidation at 1473 K and b) the white scaled side after 
oxidation at 1073 K, 1273 K and 1473 K are compared. 

Figure 8.22 shows SEM micrographs of a ZrB2-SiC/Si-C-N composite after oxidation at 1473 K in 

H2O/Ar for 100 h. In the cross-section, an oxide scale at the surface of the sample is visible in 
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Figure 8.22a, which is shown in detail in Figure 8.22b. In a ZrB2-rich channel of the composite 

(Figure 8.22c and d), the ingress of the oxidizing atmosphere into the sample is visible. From the 

surface, ZrB2 particles are oxidized as well as the surrounding Si-C-N matrix. The channel is filled 

with oxide and shows presumably open porosity. Further inside of the ZrB2-rich channel, the 

ZrB2 particles are unaffected. The oxidizing atmosphere did not reach this part of the sample 

marked with a dashed line. 

 
Figure 8.22: SEM micrographs showing a cross section of a ZrB2-SiC/Si-C-N composite after oxidation at 1473 K in flowing 
H2O/Ar-atmosphere (pH2O = 0.2 bar) for 100 h. The white oxide scale is shown in a) and details in b) with higher magnification. 
The dashed line indicates the ingress of the oxidizing atmosphere into a ZrB2-rich region of the composite c) and details in d). 
Scale bars correspond to a) 50µm, b) 9 µm, c) 30 µm and d) 5µm. 

EDX analysis depicted in Figure 8.23 reveals the composition of the oxidized region. ZrO2 

(white/1 and Figure 8.23c) as oxidation product of the ZrB2 additive is surrounded by SiO2 

(dark/2 gray and Figure 8.23d) from the oxidation of the Si-C-N matrix. At the boundary in 

between, ZrSiO4 (light grey/3 and Figure 8.23e) is formed from the reaction of ZrO2 and SiO2. 

Thermodynamic calculations on the phase equilibria of ZrB2 and the equilibrium constituents of 

the Si-C-N matrix (SiC, Si3N4 and C) in oxidizing atmosphere (see Section 8.1, Figure 8.7) 

predicted the formation of ZrSiO4. 
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Figure 8.23 SEM/EDX-analysis of a ZrB2-SiC/Si-C-N composite oxidized at 1473 K in flowing H2O/Ar-atmosphere (pH2O = 0.2 bar) 
for 100 h. The scale bars correspond to a) 5µm and b) 3 µm, respectively. 

Figure 8.24 shows SEM micrographs of a ZrB2-SiC/Si-C-N composite after oxidation at 1073 K in 

H2O/Ar for 1000 h. 

On the surface of the composite, (Figure 8.24a and b) bubbles occur, which indicate the 

presence of a liquid phase at the oxidation temperature. Furthermore, the composite exhibits 

pores, which are apparently connected (Figure 8.24c and d). Cracks are observed parallel to the 

lamination plane (Figure 8.24e) associated with a significant swelling of the composite (Figure 

8.24f). 
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Figure 8.24: SEM micrographs of a ZrB2-SiC/Si-C-N composite oxidized at 1073 K in flowing H2O/Ar-atmosphere (pH2O = 0.2 bar) 
for 100 h. Microstructural changes showing a) and b) bubbles at the surface, c) and d) pores, e) cracks. Photograph before and 
after oxidation f) indicates swelling of the composite. Scale bars correspond to a), b), c) 50 µm, d) 9 µm and e) 300 µm. The edge 
length of the sample before oxidation in f) is 3 mm x 10 mm. 

The mass change during isothermal oxidation is depicted in Figure 8.25. After 100 h, at 1073 K, 

1273 K and 1473 K the composite underwent a mass gain of 20.3 mg/cm², 8.3 mg/cm² and 

3.3 mg/cm², respectively. Hence, the highest mass gain is observed during oxidation at 1073 K. 

With increasing temperature, the mass gain decreased. At 1073 K, the composite initially shows 

linear oxidation kinetics turning into rather subparabolic kinetics. At higher temperatures, 

oxidation kinetics shift to rather parabolic (1273 K) and subparabolic (1473 K) behavior. 
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Figure 8.25: Measured mass change during oxidation of ZrB2-SiC/Si-C-N composites at 1073 K, 1273 K and 1473 K in H2O/Ar-
atmosphere (pH2O = 0.2 bar) for 100 h.  
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In O2/Ar pO2 = 0.2 bar 

Figure 8.26 shows photographs of ZrB2-SiC/Si-C-N composites after isothermal oxidation in 

flowing O2/Ar (pO2 = 0.2 bar) for 100 h. With increasing oxidation temperature, the oxide scale is 

more pronounced. Similar to experiments in steam, characteristics of both sides of the samples 

are different due to different ZrB2-distribution. 

 
Figure 8.26: ZrB2-SiC/Si-C-N composites after isothermal oxidation at a), b) 1073 K, c), d) 1273 K, e), f) 1473 K and g), h) 1673 K in 
O2/Ar-atmosphere (pO2 = 0.2 bar) for 100 h. Both sample sides are shown. The edge length of the samples corresponds to 
10 mm. 

Cross-sections of the ZrB2-SiC/Si-C-N composite, oxidized at 1073 K (see Figure 8.27), show the 

oxidation behavior of the ZrB2-additive. ZrB2-rich areas of the composite are partly oxidized 

from the surface (see Figure 8.27a-b). ZrO2, obtained by oxidation of ZrB2 particles, is 

surrounded by SiO2 (Figure 8.27c). A clear transition from oxidized to unoxidized ZrB2 particles is 
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visible (Figure 8.27c). At the surface, accumulations of material and bubbles are present, which 

are connected to an open network of pores. Therefore, a certain amount of viscosity must be 

present at 1073 K, at least in an initial stage of oxidation. 

 
Figure 8.27: SEM micrographs showing cross-sections of a ZrB2-SiC/Si-C-N composite after isothermal oxidation at 1073 K in 
flowing O2/Ar-atmosphere (pO2 = 0.2 bar) for 100 h: a) and b) ZrB2-rich channels with material accumulated at the surface; closer 
view of c) the transition are between oxidized and unoxidized region and d) ZrB2-rich material and porosity at the surface. Scale 
bars correspond to a) 30 µm, b) 50µm, c) 5 µm and d) 30 µm. 

Already after 1 h of oxidation in O2/Ar, the formation of an oxide layer on the CMC is visible by a 

bluish discoloration (Figure 8.28a and b). SEM micrographs show that the oxide is present in the 

form of islands resembling a solidified melt (Figure 8.28c and d). However, no boron was 

detectable by EDX analysis in the oxide scale formed on the ZrB2-SiC/Si-C-N composite (see 

Figure 8.28e and f). This is indicating, that boron is already lost in an early stage of oxidation by 

volatilization of boron-containing gas species. 
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Figure 8.28: Both sides a) and b) of a ZrB2-SiC/Si-C-N composite after oxidation at 1473 K in O2/Ar-atmosphere (pO2 =0.2 bar) for 
1 h. SEM micrographs of the surface are visible in c)-e) and the EDX-analysis of (1) is given in f). The edge length of the sample in 
a) and b) is 10 mm. Scale bars correspond to c), d) 30 µm and e) 9 µm. 

Thermogravimetric measurements reveal the mass change during oxidation (Figure 8.29). After 

100 h of oxidation at 1073 K, the ZrB2-SiC/Si-C-N composite exhibited a mass gain of 

9.7 mg/cm². This is much higher compared to oxidation at higher temperatures. The mass gain is 

decreasing with increasing temperature up to 1473 K. Moreover, the mass gain during the initial 

hours of oxidation is lower at 1273 K and 1473 K. At 1673 K, the initial mass gain is even higher 

than at 1073 K. However, the mass is only slightly increasing during the proceeding test. The 

total mass gain after 100 h of oxidation at 1673 K is in between the tests at 1273 K and 1473 K. 
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Figure 8.29: Measured mass change during oxidation of ZrB2-SiC/Si-C-N composites at 1073 K, 1273 K, 1473 K and 1673 K in 
O2/Ar-atmosphere (pO2 = 0.2 bar) for 100 h. 

 

O2/N2/Ar pO2 = 0.14 bar 

Figure 8.30 shows ZrB2-SiC/Si-C-N composites after oxidation at 1073 K, 1273 K and 1473 K in 

synthetic air with a O2/N2-ratio of 20/80. The protective Ar gas, purging the balance case, 

resulted effectively in pO2 = 0.14 bar and pN2 = 0.56 bar at the sample.  

Oxidation at 1073 K did not result in any visible change in the surface of the CMC (Figure 8.30a 

and b). After oxidation at 1273 K the sample surface turned slightly bluish (Figure 8.30c and d). 

Only oxidation at 1473 K resulted macroscopically in a pronounced oxide scale formation with 

white appearance (Figure 8.30 e and f). 
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Figure 8.30: ZrB2-SiC/Si-C-N composites after isothermal oxidation at a), b) 1073 K, c), d) 1273 K and e), f) 1473 K in O2/N2/Ar-
atmosphere (pO2 = 0.14 bar) for 100 h. Both sample sides are shown. The edge length of the samples corresponds to 10 mm. 

The mass changes of the ZrB2-SiC/Si-C-N composites during oxidation are depicted in Figure 8.31 

(solid lines). Oxidation at 1073 K resulted in the highest mass gain of 9.0 mg/cm2. Whereas a 

mass gain of 3.2 mg/cm2 and 2.9 mg/cm2 was detected after oxidation at 1273 K and 1473 K, 

respectively. Results for oxidation of ZrB2-free SiC/Si-C-N composites (Section 8.2) under the 

same conditions are shown for comparison with dashed lines. Oxidation of the SiC/Si-C-N 

composite at 1473 K results in a mass gain of 2.2 mg/cm2, which is lower compared to the ZrB2-

SiC/Si-C-N composite. At 1073 K, the ZrB2-free composite shows even an overall mass loss of  

-1.8 mg/cm2 whereas the ZrB2-containing composite exhibited the highest mass gain. 
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Figure 8.31: Measured mass change during oxidation of ZrB2-SiC/Si-C-N composites at 1073 K, 1273 K and 1473 K in O2/N2/Ar-
atmosphere (pO2 = 0.14 bar) for 100 h. Data of SiC/Si-C-N composites (dashed lines, see Section 8.2) are shown for comparison. 

 

Prototypic combustion atmosphere pH2O=0.05 bar, pO2=0.13 bar, pCO2=0.05 bar, pN2=0.77 bar 

Oxidation tests with ZrB2-SiC/Si-C-N composites were performed in prototypic combustion 

atmosphere. To this end a especially manufactured O2/N2/CO2-gas mixture was mixed with 

steam prior to introducing it into the STA. (see details in Section 3.2). 

Figure 8.32 depicts ZrB2-SiC/Si-C-N composites after oxidation at 1073 K, 1273 K and 1473 K, 

respectively. With increasing temperature, the ZrB2-SiC/Si-C-N composites exhibit a more 

pronounced oxide scale formation of whitish appearance. At the highest temperature of 1473 K, 

even detaching of small oxide flakes were observed. The more pronounced scale formation at 

one side of the sample was typical for the investigated ZrB2-SiC/Si-C-N composite samples 

resulting from the preparation. 
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Figure 8.32: ZrB2-SiC/Si-C-N composites after isothermal oxidation at a), b) 1073 K, c), d) 1273 K and e), f) 1473 K in prototypic 
combustion atmosphere for 100 h. Both sample sides are shown. The edge length of the samples corresponds to 10 mm. 

Figure 8.33 shows the measured mass change of ZrB2-SiC/Si-C-N composites during oxidation in 

prototypic combustion atmosphere. Results for the oxidation of ZrB2-free SiC/Si-C-N composite 

(dashed lines, Section 8.2, Figure 8.12) are shown for comparison. Upon oxidation, the ZrB2-

SiC/Si-C-N composite exhibits the highest mass gain of 16.2 mg/cm² at a temperature of 1073 K. 

With increasing temperature, the total mass gain is decreasing to 5.5 mg/cm2 and 3.3 mg/cm2 at 

1273 K and 1473 K, respectively. The ZrB2-free SiC/Si-C-N composite shows a similar mass gain 

compared to the ZrB2-SiC/Si-C-N composite upon oxidation at 1273 K and 1473 K. However, the 

oxidation behavior at 1073 K is very different. The ZrB2-free SiC/Si-C-N composite shows even an 

initial mass loss and by far the lowest mass gain compared to oxidation at higher temperatures. 
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Figure 8.33: Measured mass change during oxidation of ZrB2ZrB2-SiC/Si-C-N composites at 1073 K, 1273 K and 1473 K in 
prototypic combustion atmosphere for 100 h. Data of SiC/Si-C-N composites (dashed lines, see Section 8.2) are shown for 
comparison. 

Oxidation kinetics 

Figure 8.34 shows an Arrhenius-type plot of mass change rates of the ZrB2-SiC/Si-C-N composite 

in various atmospheres. Data points were calculated from the total mass change after 100 h of 

isothermal oxidation.  

A number of effects superimpose the measured mass changes at the same time. Oxidation of 

different constituents of the CMC results in opposing effects on the overall mass change. 

Formation of condensed oxides (SiO2, ZrO2, ZrSiO4) results in a mass gain. At the same time 

formation of gaseous CO or CO2 by oxidation of free carbon, volatilization of silica or boria by 

formation silicon- or boron-containing gas species and direct evaporation yields a mass loss. In 

addition, at temperatures above 1757 K, carbothermal decomposition of the Ceraset® PSZ 20-

derived ceramic Si-C-N matrix leads to a mass loss (see Section 5.1). Furthermore the 

investigated ZrB2-SiC/Si-C-N CMC samples have an open porosity providing access for the 

oxidizing atmosphere. Therefore, the effective surface of the samples is larger than the 

geometrical surface. Upon proceeding exposure to the O2- or H2O-containing atmospheres, the 

size of the effective surface probably changes by blocking of pores with condensed oxidation 

products or volatilization. This makes a kinetic evaluation of the ZrB2-SiC/Si-C-N oxidation 

difficult. The indicated mass change rate is therefore intended to visualize and summarize the 

results and may therefore differ for different stages of exposure. 
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The highest mass change rates were obtained in H2O-containing atmospheres. Within the 

applied H2O-containing atmospheres, the H2O/Ar mixture (pH2O = 0.2 bar) resulted in higher 

rates compared to the prototypic combustion atmosphere (pH2O = 0.05 bar and pO2 = 0.13 bar). 

Atmospheres with O2 as the major oxidant, O2/Ar (pO2 = 0.2 bar) and O2/N2/Ar (pO2 = 0.14 bar), 

result in similar values. With increasing temperature, obtained mass change rates are 

decreasing. 

 
Figure 8.34: Arrhenius plot of the total mass change rate during isothermal oxidation of ZrB2-SiC/Si-C-N composites in various 
O2- and H2O-containing atmospheres for 100 h. 

Since the kinetics of the numerous superimposing effects cannot be separated, even with more 

sophisticated models, the measured thermogravimetric data were fitted according to the simple 

equation (1.1) (Δw/A = k·tn). The obtained rate constant k and exponent n are depicted in Figure 

8.35a and b, respectively. The obtained rate constant k has only an illustrative character since n 

is not constant over the investigated temperature range. Therefore, no activation energies were 

determined. In H2O-containing atmosphere the rate constant k is higher than in O2-containing 

atmosphere and shows no pronounced temperature dependence. In O2-containing atmosphere 

k-values increase with increasing temperature. 

The obtained exponent n (see also Figure 8.13) is indicating the nature of the effective oxidation 

kinetics. For 100 h oxidation of ZrB2-SiC/Si-C-N in H2O-containing atmosphere n is in the 

subparabolic or cubic range and hardly temperature dependent. The very initial stage of 

oxidation shown in the 5 h experiments, on the other hand, shows linear kinetics at 1073 K 

shifting to parabolic (TG-derived) or cubic (MS-derived) kinetics at 1473 K. In particular n-values 

of ZrB2-SiC/Si-C-N derived from the measured H2-release correspond to oxidation of pure ZrB2. 

This is indicating that in the initial stage ZrB2-SiC/Si-C-N oxidation is given by the ZrB2-additive. In 
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O2-containing atmosphere, n shows a strong temperature dependence. At 1273 K, n indicates 

sublinear oxidation kinetics shifting to subparabolic and subcubic kinetics at 1473 K and 1673 K, 

respectively. At the lowest investigated temperature of 1073 K, however, n deviates from this 

trend indicating parabolic oxidation kinetics. 

 
Figure 8.35: Derived a) rate constant and b) reaction order for the oxidation of a ZrB2-SiC/Si-C-N composite in various O2- and 
H2O-containing atmospheres. Reaction orders for linear, parabolic and cubic oxidations kinetics are indicated. Results for 
oxidation of ZrB2 (open symbols; see Section 7) are shown for comparison.  
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8.4. Oxidation of SiC/Si-C-N under oxygen-starvation conditions 
Figure 8.36a shows a SiC/Si-C-N composite which was exposed to 1773 K for 10 h in flowing Ar 

(100 ml/min). The composite has a matt white appearance. The end face of SiC-fibers, which are 

exposed at the cutting edges (Figure 8.36b) are partly hollow in the center. SiC-fibers, which are 

exposed at the topside of the composite, moreover show pitting (see Figure 8.36c and d). The 

surface of the composite (Figure 8.36e) exhibits an open porous structure, which is responsible 

for the matt white appearance. The EDX-analysis (Figure 8.36f) reveals, that the surface is 

mainly composed of silicon and carbon with only minor amounts of oxygen. 

The oxygen and steam content in the Ar used (99.9999% purity) is specified as ≤ 0.5 ppm. 

However, due to connections in the gas supply up to the actual sample position, it could also be 

slightly higher. Holes in the SiC-fibers are resulting from active oxidation. At low oxygen partial 

pressures, only gaseous SiOx species are formed instead of a protective SiO2 scale. Therefore, 

the amount of oxygen on the surface of the SiC/Si-C-N composite, which is found in the EDX-

analysis, is very small. The volatilization of the SiC-based composite is resulting in the observed 

material loss. The observed pitting by formation of holes in the fibers is most likely a local 

geometrical effect for instance initiated by pores (see Figure 8.2) or free carbon in the center of 

the Tyranno SA3 SiC-fiber. The hollow fiber end faces, depicted in Figure 8.36b, are therefore 

resulting from the higher surface of the porous fiber center. Active oxidation was also observed 

for the oxidation of SiC/SiC-composites under oxygen- or steam-starvation conditions at high 

temperatures were active oxidation of the material occurred [185]. According to Heuer and 

Lou [159] detectable weight loss occurs at pSiO > 10-8 bar. This corresponds to calculated partial 

pressures in Section 8.1, Figure 8.5. 

Gaseous SiOx species were condensating in colder parts of the furnace outsets in form of solid 

SiOx fibers. These partially blocked the furnace outlet and led to a pressure increase and thus to 

a drift of the thermogravimetric signal. Therefore, the mass loss was not evaluated although this 

experiment was carried out in a STA. Furthermore, the mass loss by the carbothermic reaction 

of the matrix (see also Section 5.1.1, Figure 5.6) is superimposing the mass loss by active 

oxidation at the considered temperature of 1773 K. These effects cannot be separated. 
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Figure 8.36: SiC/Si-C-N composite after exposure to flowing Ar for 10 h at 1773 K; a) overview (side length 10 mm); SEM 
micrographs of b) SiC-fibers at the cutting edge of the sample, c) SiC-fibers at the top-view of the sample, d) close-up of c), 
e) top-view of the SiC/SiCN sample and f) EDX analysis of e). Scale bars correspond to b) 8µm, c) 30 µm, d) 3 µm and e) 4 µm.  
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8.5. Yttrium silicate-based environmental barrier coatings 
A sample of the SiC/Si-C-N CMC was completely plasma spray coated with an yttrium silicate-

based EBC at the German Aerospace Center. The composition of the yttrium silicate based 

coating is in the two-phase field Y2SiO5+Y2Si2O7. 

The mass change during oxidation of a yttrium silicate-coated SiC/Si-C-N CMC in prototypic 

combustion atmosphere is depicted in Figure 8.37 together with results of a bare SiC/Si-C-N and 

a ZrB2-containing SiC/Si-C-N CMC. The coated CMC shows a slower mass increase during the 

initial phase of oxidation compared to the uncoated samples. Possibly because the oxidizing gas 

species must diffuse through the yttrium silicate coating. However, as oxidation proceeds, a 

steady state is reached and the coated and the bare CMC show the same mass increase. The 

ZrB2-SiC/Si-C-N CMC exhibits the highest mass gain in prototypic combustion atmosphere as 

ZrB2 is very prone to oxidation. As oxidation proceeds, the mass increase flattens out. 

In order to effectively protect the underlying CMC, the EBC must be gas-tight. Yttrium silicate 

layers alone cannot provide this condition due to its porous microstructure and residual oxygen 

conductivity [186]. Full protection could be achieved by using a multilayer coating with for 

example SiC or Si as a bondcoating. A pure Si coating would limit the maximum application 

temperature to the melting point of 1687 K. 

 
Figure 8.37: Measured mass change of SiC/Si-C-N, ZrB2-SiC/Si-C-N and YMS/YDS-coated SiC/Si-C-N during isothermal oxidation at 
1473 K in prototypic combustion atmosphere for 100 h.  
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8.6. Discussion 
ZrB2 is considered as an ultra high temperature ceramic (UHTC) with potential application in 

extreme environments [155]. In addition, ZrB2 is one of the most oxidation resistant transition 

metal diborides [154][153] (see also Section 7). An improved oxidation resistance is also 

reported for ZrB2-SiC [46], ZrB2-MeSi2 (Me= Zr, Ta, Cr, Mo, W) [157][158] and boron-containing 

precursor-derived Si-B-C-N ceramics [20][187][188]. The use of a ZrB2-additive is therefore 

supposed to improve the oxidation resistance of the SiC/Si-C-N CMC. 

Thermodynamic calculations in the framework of this work (see Section 6) were used to 

investigate the interaction between the ZrB2-additive and the equilibrium components (SiC, C, 

Si3N4) of the ceramic Si-C-N matrix. The first reaction to occur was found at 1870 K between ZrB2 

and Si3N4, under formation of a melt. However, this reaction takes place 113 K above the 

carbothermic reaction of the PSZ 20-derived Si-C-N matrix (see Section 5.1). Therefore, the use 

of the ZrB2-additive does not further limit the maximum application temperature of the ZrB2-

SiC/Si-C-N-composite. In the present Section, additionally interactions between the ZrB2-

additive and constituents of the ceramic Si-C-N matrix (SiC, C, Si3N4) were considered under 

oxidizing conditions. There are partly complex and multi-stage reactions between the oxidation 

products of ZrB2 (B2O3 and ZrO2) and the Si-based CMC (Si2N2O, SiO2). A very low eutectic 

temperature is known in the system SiO2-B2O3 (TE = 713 K) [44]. The liquid B2O3 partly dissolves 

other elements (see also Section 6.2). Moreover, the formation of ZrSiO4 from ZrO2 and SiO2 

was confirmed by XRD and EDX analysis. Steinbrück et al. [72] found also crystalline B2O3 after 

oxidation of B4C in steam by XRD. However, B2O3 is the only condensed oxidation product of 

B4C. Moreover, the boron content of the ZrB2-SiC/Si-C-N is low in comparison. In accordance 

with experimental literature data [188][189], the only condensed oxidation product found by 

XRD after oxidation of the ZrB2-free SiC/Si-C-N CMC was β-cristobalite. Si2N2O was not detected 

as the very narrow calculated stability range (see Section 8.1, Figure 8.3) indicated. However, 

unlike the test under oxygen starvation conditions, all O2- and H2O-containing atmospheres and 

investigated temperatures resulted in formation of condensed oxides. 

Transient tests of ZrB2-SiC/Si-C-N oxidation in O2-containing atmosphere (pO2 = 0.2 bar) initially 

show the release of gaseous oxidation products (CO and CO2) in conjunction with a mass loss at 

about 850 K. This indicated initially preferential oxidation of carbon from the composite. With 

increasing temperature, mass gain from about 950 K is indicating passivation by formation of 

condensed oxidation products. The simultaneous release of N2 indicated the contribution of the 

nitrogen-containing ceramic Si-C-N matrix. Bahloul et al. observed beginning oxidation of Si-C-N 

in oxygen, with a weight loss by preferential combustion of free carbon, at a similar 

temperature of 923 K before degradation of siliconcarbonitride starting at higher 

temperatures [189]. 
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Heating of ZrB2-SiC/Si-C-N in H2O-containing atmosphere (pH2O = 0.2 bar) resulted in oxidation 

from the start at 673 K. The oxidation reaction was indicated by both H2-release and mass gain. 

The latter demonstrates passivation by formation of condensed oxidation products. This shows 

the higher oxidation potential of steam compared to oxygen. The maximum mass gain rate of 

ZrB2-SiC/Si-C-N at 1000 K corresponds approximately to pure ZrB2. Butchereit and Nickel [188] 

report the onset of oxidation for Si-B-C-N and Si-C-N in flowing dry oxygen at higher 

temperatures of 1173-1273 K and 1373 K, respectively. However, no heating rate was reported. 

Possibly our more sensitive test set-up combining TG and MS in combination with the open-

pored samples yields lower start temperatures for oxidation. 

Isothermal oxidation of ZrB2-SiC/Si-C-N in both O2- and H2O-containing atmosphere shows the 

highest mass gain at the lowest investigated temperature of 1073 K. In H2O/Ar atmosphere 

(pH2O = 0.2 bar) even a pronounced swelling of the CMC occurs perpendicular to the SiC-fabric 

planes. The overall mass gain is higher in H2O-containing atmosphere for both the SiC/Si-C-N 

and the ZrB2-SiC/Si-C-N composite. With increasing temperature, the total mass gain of the 

ZrB2-SiC/Si-C-N CMC decreases. An exception is the oxidation at 1673 K in O2/Ar (pO2 = 0.2 bar). 

Here the mass gain is very high at the beginning of oxidation, but drops to the level at 1273 K or 

1473 K. This is in accordance with literature. Butchereit and Nickel [188] found a two-fold 

increase in mass gain and oxide scale thickness for precursor-derived Si-C-N ceramics in moist 

(20 mol% H2O) compared to dry oxygen atmosphere. However, precursor-derived Si-B-C-N 

ceramics did not differ significantly under both conditions, indicating a large influence of 

volatilization processes. 

Oxidation of ZrB2-free SiC/Si-C-N shows a different temperature-dependence. At the lowest 

investigated temperature of 1073 K, SiC/Si-C-N even shows an overall mass loss in both O2- and 

H2O-containing atmosphere. In O2-containing atmosphere the initial mass change is even 

negative up to 1373 K. Mass spectroscopic detection of CO and CO2 indicates that primarily 

carbon is oxidized at low temperatures resulting in a mass loss. At the same time formation 

kinetics of SiO2 is too slow at these temperatures to form a passivating scale. With increasing 

temperature, the mass change predominantly increases. Even if this is not the case for the total 

mass change in individual cases, at least the initial mass change rate increases with 

temperature. For example, the test at 1773 K is above the carbothermic decomposition 

temperature of the ceramic Si-C-N matrix (see Section 5.1). Nevertheless, the initial mass gain 

seems to be a good indication of the oxidation itself. The later mass loss is then a result of the 

decomposition reaction of the ceramic matrix. The machined CMC samples exhibit open 

channels at the cutting edges. Additionally, the ceramic Si-C-N matrix has a residual open 

porosity resulting from the shrinkage of the preceramic polymer during pyrolysis. Both provides 

access for the oxidizing atmosphere. Only upon oxidation of the ZrB2-free SiC/Si-C-N above 

1273 K, these channels are effectively sealed by the formed oxide (see Figure 8.38). 
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Figure 8.38: Schematic illustration of the oxide formation on porous SiC/Si-C-N CMC. 

The mass change is always a superimposition of mass increase by passive oxidation and mass 

loss by volatilization of gas species, resulting in overall paralinear kinetics. Investigations based 

on thermogravimetry alone do not necessarily reflect the true oxidation behavior. Mass 

spectrometric investigations of the gas atmosphere provide deeper insight into the oxidation 

and volatilization reactions of ZrB2-SiC/Si-C-N. Mass spectrometric analysis of pure ZrB2-

specimen revealed that boron-containing gas species are formed upon oxidation in steam (see 

Section 7.3). Due to the lower ZrB2-content of ZrB2-SiC/Si-C-N samples, the associated H3BO3
+-

signal was very low under the same conditions and barely suited to follow the volatilization of 

boria. However, boria is highly volatile as thermodynamic calculations for pure ZrB2 (see Section 

7.1) have shown. As a result, boron was no longer detectable in the formed oxide scale by EDX 

even after only 1 h in O2/Ar-atmosphere, although partial pressure of the boron-containing gas 

species and thus the volatilization rates are significantly lower in oxygen- than in steam-

containing atmosphere. Thermodynamic calculations of the boron-containing gas species in 

Section 7.1 reveal partial pressures as high as ~10-4 bar for gaseous BO2 and B2O3 under these 

conditions. Parthasarathy et al. [173] state that gaseous B2O3 exhibits even 1 atm partial 

pressure at 2223 K in pO2 = 0.2 bar. Additions of niobium to pure ZrB2 [190] and ZrB2-SiC [191] 

were found to improve the stability of the liquid B2O3 layer against volatilization. For the latter, 

vanadium addition performed even better. However, bubbles formed on the surface of ZrB2-

SiC/Si-C-N samples demonstrated the presence of a liquid borosilicate scale at an initial stage of 

oxidation. The observation is consistent with the work of Butchereit and Nickel observing 

bubble formation upon oxidation of precursor-derived Si-B-C-N ceramics at temperatures from 

1373 K [188]. In the present work, bubbles are even present after oxidation at 1073 K, well 

above the eutectic temperature in the SiO2-B2O3 system (TE = 713 K) [44]. The observed melt-

formation in accordance with the mass gain of the ZrB2-SiC/Si-C-N CMC even at 1073 K is 
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contrary to the behavior of ZrB2-free CMC. This demonstrates the passivation potential of the 

ZrB2-additive even at low temperatures. In addition, the low surface free energy of boria (0.08 

J/m²) compared to zirconia (1 J/m²) provides a driving force to cover the surface [47]. 

The transient tests demonstrated that the mass gain of ZrB2-SiC/Si-C-N in steam-containing 

atmosphere is stagnating at temperatures higher than 1200 K, although the increasing H2-

release is indicating an acceleration of the oxidation reaction. This clearly indicates that 

volatilization reactions, generating a mass loss, are counteracting the mass gain by oxidation. 

Also the temperature corresponds well to the mass loss observed upon oxidation of ZrB2 in 

steam-containing atmosphere (see Section 7.3, Figure 7.8). Due to a lower ZrB2-content, the 

measured H3BO3-signal (m/z=62) indicating the volatilization of the boron oxide is significantly 

lower compared to oxidation of pure ZrB2 samples under the same conditions (see Section 7.3). 

Recession of Si-based materials by formation of volatile Si-OH species in steam-containing 

combustion atmosphere is known from literature [25][37][26][35]. Thermodynamic descriptions 

of the most important gas species Si(OH)4 and SiO(OH)2 were optimized by Avincola et al. [36]. 

Calculated partial pressures of Si-containing gas species (Figure 8.6) are several orders of 

magnitude lower compared to B-containing gas species (Figure 7.3) in O2- as well as H2O-

containing atmosphere. Therefore, SiO2-volatilization plays a negligible role compared to B2O3-

volatilization under the conditions (time, temperature, flow rates and pressures) investigated in 

this work. 

Quantitative analysis of H2, as side product of the oxidation of ZrB2-SiC/Si-C-N in steam, enables 

the separation of the oxidation- and volatilization reaction. This allows true insight into the 

oxidation kinetics. Figure 8.19 shows the mass change determined by thermogravimetry and 

calculated from the measured H2-release, respectively. At 1073 K, the total mass change 

corresponds to the mass increase by the oxidation reaction alone. As a result ZrB2-SiC/Si-C-N 

follows linear oxidation kinetics in both techniques. However at 1473 K, the mass change 

measured by thermogravimetry is significantly lower compared to the true oxidation reaction 

alone. The pronounced volatilization reaction at this temperature reduced the 

thermogravimetric measured mass change. Also oxidation kinetics determined from 

thermogravimetry appear parabolic. But H2-release reveals actually cubic oxidation kinetics at 

1473 K. The initial peak in the H2-signal at beginning oxidation reaction is known for porous 

samples indicating a larger true surface of the sample [72][179]. As oxidation proceeds, pores 

are closed and the true oxidation behavior is exposed. The early H2-signal during heating of the 

samples in pure Ar may indicate that adsorbed water has been released. The oxidation rate of 

ZrB2-SiC/Si-C-N is up to four orders of magnitude lower than for pure ZrB2 samples (Section 7.3). 

It is known from literature that the addition of a secondary silicon-containing phase improves 

the oxidation behavior of ZrB2 [157], especially at higher temperatures where the stability and 

oxygen permeability of SiO2 is lower compared to B2O3. However, McFarland et al. also found 
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that borosilicate glass can accelerate oxidation of SiC in oxygen at 1073 K and very high boria 

contents (>92 mol%) [192]. In ZrB2-SiC/Si-C-N this effect should be small and limited to certain 

areas due to the small ZrB2 fraction and consumption of the boron-resources by volatilization. 

Initial acceleration could even help to grow a protective silica scale at lower temperatures were 

silica formation kinetics are otherwise slow. 

For complete oxidation protection during operation in combustion atmosphere an additional 

environmental coating (EBC) is required. The test with a yttriumsilicate-based EBC (see Section 

8.5) shows that gas-tight coating is critical. Possible problems are cracking induced by thermal 

cycling or phase transitions or diffusion of oxidizing species along grain boundaries or coating 

defects. A multilayer coating with Si or SiC as bond coating, for example, could behave better in 

this respect. Here again chemical compatibility with the CMC and the EBC would be important. 

In this respect, the use of Si is uncritical. However, the maximum application temperature is 

limited by the melting point to Tm,Si = 1687 K. When using SiC, the application is limited by the 

formation of a CO partial pressure at the interface to the EBC [24] which can exceed 

atmospheric pressure at 1903 K [193]. 
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8.7. Conclusion 
Oxidation tests of ZrB2-containing and ZrB2-free SiC/Si-C-N CMC were performed in O2- and H2O-

containing atmospheres. Microstructure investigations have shown that oxidation of the 

exposed ZrB2-additive together with the ceramic Si-C-N matrix is forming a borosilicate liquid 

phase. Thereby, exposed open cavities in the CMC are filled by the melt representing a self-

healing effect. 

At low temperatures, SiO2 formation kinetics of the SiC/Si-C-N composite are too slow to form a 

passivating scale and free carbon is oxidized. For the ZrB2-containing CMC the oxidation 

behavior is dominated by the ZrB2-additive. At high temperatures, high partial pressures of 

boron-containing gas species in both O2- and H2O-containing atmospheres lead to volatilization 

of boron from the borosilicate melt. This means that boron would be consumed quickly at a 

damage site, but the solidifying melt leaves behind SiO2. The possibility of separating oxidation 

and volatilization effects by combined use of thermogravimetry and mass spectrometry was 

demonstrated. It was shown that, especially at high temperatures, the sole consideration of the 

mass change provides false indications due to opposing effects. 

In contrast to the intended use for closing cracks, for example caused by thermal cycling during 

operation, the ZrB2-additive is exposed in the investigated CMC. The exposed ZrB2-rich layers 

provide access for the oxidizing atmosphere. However, the present samples and experiments 

demonstrate the principle of improving the oxidation resistance of the CMC by formation of a 

melt. As a result inwards-diffusion of oxidizing gas species is stopped or slowed down. 

Therefore, the ZrB2-additive is able to improve the oxidation resistance of the SiC/Si-C-N 

composite. 

For ideal oxidation protection, the CMC would have to be as dense as possible, i.e. low and 

preferably closed residual porosity of the ceramic matrix to avoid exposed SiC-fibers and ZrB2-

additive. An applied environmental barrier coating must also be gas-tight to be able to protect 

the underlying CMC from the combustion atmosphere. 
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9. Zusammenfassung (Extended Abstract in German) 
Durch das Einbetten von keramischen Fasern in eine ebenfalls keramische Matrix wird ein, im 

Gegensatz zu monolithischen Keramiken, quasi-plastisches nicht-sprödes Versagensverhalten 

erreicht. Zudem verfügen nicht-oxydische Si-basierte keramische Faserverbundwerkstoffe 

(Ceramic Matrix Composites, CMC) über eine hervorragende Hochtemperaturbeständigkeit und 

Zugfestigkeit. CMC finden daher zunehmend technischen Einzug in die Raumfahrt sowie in die 

Entwicklung von Turbinen für die Luftfahrt und zur stationären Energieerzeugung. Ihr Einsatz in 

Turbinen erlaubt daher eine Erhöhung der Verbrennungstemperatur und damit eine 

Verbesserung der Energieeffizienz gegenüber konventionellen metallischen Werkstoffen. 

Zudem ist die potentielle Gewichtsersparnis durch eine, im Vergleich zu konventionellen Nickel-

Basislegierungen, um zwei Drittel niedrigere Dichte attraktiv für die Luftfahrt. Die extremen 

Bedingungen im Heißgaspfad, wie hohe Temperaturen und die oxidierende und korrosive 

Heißgasatmosphäre, stellen jedoch hohe Anforderungen an das CMC. Neben der individuellen 

Hochtemperaturstabilität der Komponenten (Faser, Faserbeschichtung, Matrix, Additive) 

können Wechselwirkungen untereinander die maximale Einsatztemperatur des CMC limitieren. 

Zudem erfordert die oxidierende und korrosive Heißgasatmosphäre einen umfassenden 

Oxidationsschutz des CMC. 

In der vorliegenden Arbeit wurden CMC für den Einsatz als Strukturmaterial im Heißgaspfad von 

Gas- oder Flugturbinen untersucht. Dazu wurden thermodynamische 

Gleichgewichtsrechnungen mit Materialtests bei hohen Temperaturen und unter 

prototypischen Einsatzbedingungen kombiniert. Die CALPHAD-Methode (CALculation of PHAse 

Diagrams) erlaubte die thermodynamische Berechnung von Gleichgewichtszuständen wie 

Phasengleichgewichten sowie deren Zusammensetzung. Dies ermöglichte die Aufklärung von 

Reaktionen, die während der Pyrolyse von präkeramischen Polymeren ablaufen oder die 

Langzeitstabilität der erhaltenen Si-(B-)C-N Keramik limitieren, die zwischen Komponenten des 

CMC stattfinden oder deren Oxidations- und Volatilisationsverhaltens unter prototypischen 

Heißgasbedingungen begrenzen. Simultane Thermoanalyse (STA) bestehend aus 

Thermogravimetrie (TG) und Differenz-Thermoanalyse (DTA), in Kombination mit einer 

massenspektrometrischen Analyse der gasförmigen Pyrolyse-, Reaktions- und 

Oxidationsprodukte, erlaubten die experimentelle Validierung der thermodynamischen 

Berechnungen bei gezielt eingestellter Zusammensetzung der Atmosphäre. 

 

 

 



Zusammenfassung (Extended Abstract in German) 

 

172 

Phasengleichgewichte in Si-(B-)C-N Keramiken aus Präkursor-Polymeren 

(Phase equilibria in precursor-derived Si-(B-)C-N ceramics) 

Durch Pyrolyse der präkeramischen Polysilazane Ceraset® PSZ 10 und PSZ 20 sowie eines 

Polyborosilazans wurden Si-C-N und Si-B-C-N Keramiken hergestellt. Dazu wurden die 

präkeramischen Polymere, in fließender Ar- oder Ar/N2-Atmosphäre, zunächst durch 

schrittweises Aufheizen auf 573 K vernetzt und anschließend bei Temperaturen von 1273 K bis 

1773 K pyrolysiert. Durch eine Kombination aus STA, Massenspektroskopie (MS), 

Röntgendiffraktometrie (XRD) und Rasterelektronenmikroskopie (REM) wurden 

Pyrolyseverhalten, Hochtemperaturbeständigkeit, Zersetzungsreaktionen und 

Kristallisationsverhalten der Si-(B-)C-N Keramik sowie der Einfluss von Temperatur und 

Stickstoffpartialdruck untersucht. Außerdem wurde die CALPHAD Methode verwendet, um die 

Bildung gasförmiger Pyrolyse- und Zersetzungsprodukte vorauszusagen sowie 

Phasenstabilitäten als Funktion von Temperatur und Stickstoffpartialdruck zu berechnen. 

Auf Basis der Zusammensetzung der flüssigen Polymere wurde deren Umwandlung in eine feste 

amorphe Keramik als geschlossenes System modelliert. Wasserstoff, der in der Polymerkette als 

Bestandteil der funktionellen Gruppen vorkommt, wurde in Form wasserstoffhaltiger 

Gasmoleküle freigesetzt. Die Art der Moleküle ist dabei abhängig vom Verhältnis der im Polymer 

vorkommenden Elemente Si:B:C:N:H. Für Ceraset® PSZ 10 und PSZ 20 ergaben sich daraus H2 

und CH4 als Hauptbestandteil der Gasphase. Der Partialdruck anderer Gasspezies war sehr 

gering. Die Freisetzung dieser gasförmigen Pyrolyseprodukte wurde experimentell durch 

massenspektrometrische Analyse bestätigt. Zusammen mit STA-Untersuchungen wurde gezeigt, 

dass es sich bei der Pyrolyse um einen zweistufigen endothermen Prozess handelt. Die 

Zusammensetzung der Gasphase hat einen direkten Einfluss auf die Zusammensetzung der 

verbleibenden festen Keramik. Die Rechnungen wurden als geschlossenes System durchgeführt, 

bei dem die Gasphase im thermodynamischen Gleichgewicht mit der festen Phase bleibt. Bei 

der experimentell durchgeführten Pyrolyse wurden die gebildeten Gasspezies (H2, CH4) aber mit 

der fließenden Atmosphäre abgeführt, was zu einem etwas niedrigeren Kohlenstoffgehalt der 

erhaltenen Si-C-N Keramik führte. Dennoch stimmte die berechnete und die tatsächliche 

Zusammensetzung der erhaltenen Keramik gut überein. Diese befindet sich, für Temperaturen 

kleiner 1757 K, im thermodynamischen Gleichgewicht im Dreiphasengebiet SiC+C+Si3N4. Als 

niedermolekulare Fraktion des Ceraset® Polysilazans zeigte PSZ 10 während des anfänglichen 

Vernetzungsschrittes einen höheren Masseverlust als Ceraset® PSZ 20 durch Abdampfen von 

Oligomeren. Jedoch unterschieden sich die erhaltenen Keramiken nicht in ihrer 

Zusammensetzung. 

Die Zusammensetzung der erhaltenen Si-C-N Keramik bestimmt ebenfalls deren 

Hochtemperaturstabilität. Die Kombination aus CALPHAD-Modellierung und Hochtemperatur-

Experimenten ermöglichte die maximale Anwendungstemperatur und die zugrundeliegenden 
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Mechanismen für die aus Ceraset® PSZ 10 bzw. PSZ 20 hergestellten Si-C-N Keramiken zu 

bestimmen. Berechnete Phasenstabilitätsdiagramme zeigten, dass bei 1757 K die Reaktion von 

Kohlenstoff C mit Si3N4 unter Bildung von SiC und Freisetzung von N2 stattfindet. Dies wurde 

durch kombinierte massenspektrometrische und thermogravimetrische Untersuchungen 

qualitativ und quantitativ bestätigt. Die Umwandlungstemperatur sinkt dabei mit fallendem 

Stickstoffpartialdruck. Sie wurde experimentell in Ar/N2 (pN2=0.5 bar) bei 1773 K und in reinem 

Ar bereits bei 1673 K gefunden. Dabei kristallisierte die ansonsten homogene und Röntgen-

amorphe Si-C-N Matrix und wurde porös. 

Es wurden ebenfalls thermodynamische Rechnungen und experimentelle Untersuchungen an 

Polyborosilazanen und daraus erhaltenen (borhaltigen) Si-B-C-N Keramiken durchgeführt. Aus 

der Literatur ist die Beständigkeit von Si-B-C-N Keramiken gegen die carbothermische Reaktion 

bis zu 2273 K bekannt. Aufgrund der Einkapselung der SiC und Si3N4 Körner durch eine 

sogenannte turbostratische BNCx-Struktur kommt es zu einer erhöhten Widerstandsfähigkeit 

gegen Kristallisation und Degradation. In dieser Arbeit wurde die Pyrolyse eines 

Polyborosilazans mit der Zusammensetzung eines "Si-B-C-N_2 präkeramischen Polymers" 

thermodynamisch modelliert. Außerdem wurde die Pyrolyse und die Hochtemperaturstabilität 

eines "Si-B-C-N_1 Polyborosilazans" experimentell untersucht. Anhand der unterschiedlichen 

Zusammensetzung der Si-B-C-N_2 und Si-B-C-N_1 Keramiken wurden deren 

Hochtemperaturstabilität und die zugrundeliegenden Reaktionen thermodynamisch modelliert 

und diskutiert. 

Thermodynamische Gleichgewichtsrechnungen auf Basis der Zusammensetzung des Si-B-C-N_2 

Polyborosilazans (SiBC3N3H10)n ergaben, dass bei Temperaturen bis 1500 K die festen Phasen 

Si3N4, C und BN im Gleichgewicht mit der Gasphase vorliegen. Diese bestand, wie bei Ceraset® 

PSZ 10 und PSZ 20 hauptsächlich aus H2 und CH4. Zusätzlich vorkommendes N2 (pN2=0,06-

0,12 bar) und NH3 (pNH3<4·10-4 bar) deuteten auf einen Stickstoffüberschuss des Polymers hin. 

Si- und B-haltige Gasspezies hatten lediglich einen sehr niedrigen Partialdruck (<10-8 bar). Bei 

der Pyrolyse des Polymers zur festen Si-B-C-N Keramik sank dadurch der C- und N-Gehalt 

während das Si:B-Verhältnis konstant blieb ((SiBC3N3H10)n→SiBC1.4N2.3). Im Gegensatz zu 

thermodynamischen Gleichgewichtsrechnung auf Basis der Zusammensetzung des Polymers 

(Si3N4+BN+C+SiC), enthielt das berechnete Phasengleichgewicht auf Basis der 

Zusammensetzung der Keramik kein SiC (Gas+Si3N4+BN+C). Die Zusammensetzung der Si-B-C-

N_2 Keramik (x(N) = 0,4035) befand sich sehr nah an der Phasengrenze zwischen 

Si3N4+C+SiC+BN (0,23 < x(N) < 0,41) und Si3N4+Gas+C+BN (x(N) > 0,41). Dadurch kann eine kleine 

Schwankung des Stickstoffgehalts des Präkursor-Polymers in einem der beiden 

Phasengleichgewichte resultieren. 

Experimentelle STA- und MS-Untersuchungen wurden an einem Si-B-C-N_1 Polyborosilazan 

Präkursor-Polymer durchgeführt. Der Masseverlust während des anfänglichen 
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Vernetzungsschrittes des Si-B-C-N_1 Polyborosilazans war, trotz gleicher Temperaturführung, 

deutlich höher als bei Ceraset® PSZ 10 und PSZ 20 und verbunden mit einer ausgeprägten 

Freisetzung von H2. Die dadurch gebildeten Bläschen waren auch noch in der erhaltenen Si-B-C-

N Keramik enthalten. Dadurch war die keramische Ausbeute des Si-B-C-N_1 Polyborosilazans 

mit etwa 50 wt.% kleiner als die der Ceraset® PSZ 10 (60 wt.%) und PSZ 20 (67 wt.%) Si-C-N 

Präkursor-Polymere. Bei der eigentlichen Pyrolyse handelte es sich dann um einen mehrstufigen 

endothermen Prozess unter Freisetzung von H2 und CH4. 

Die Hochtemperaturstabilität und die zugrundeliegenden Hochtemperatur-Reaktionen wurden 

mit thermodynamischen Rechnungen auf Basis der Zusammensetzung der Si-B-C-N_2 

(Si1B1C1.4N2.3) und Si-B-C-N_1 (Si6B1C5N7) Keramiken untersucht. Die Zusammensetzung beider 

Si-B-C-N Keramiken befand sich bei Temperaturen bis 1757 K im Phasengleichgewicht 

Si3N4+SiC+BN+C. Allerdings unterschieden sich die Phasenanteile stark. Der Bor-Gehalt 

entsprach dabei 17,54 at.% (Si-B-C-N_2) bzw. 5,25 at.% (Si-B-C-N_1). Die Einsatztemperatur-

limitierende Reaktion war für beide untersuchten Si-B-C-N Keramiken, wie bei Ceraset® PSZ 10 

und PSZ 20, die carbothermische Reaktion von Si3N4 und C unter Bildung von SiC und 

Freisetzung von N2 bei 1757 K. Aufgrund unterschiedlicher Si:B:C-Verhältnisse wird bei der Si-B-

C-N_2 Keramik das Si3N4 komplett aufgebraucht und bei der Si-B-C-N_1 Keramik der komplette 

freie Kohlenstoff. Dadurch befinden sich die Zusammensetzungen der resultierenden Si-B-C-N 

Keramik im thermodynamischen Gleichgewicht in den Phasengebieten Gas+C+BN+SiC (Si-B-C-

N_2) bzw. Gas+Si3N4+SiC+BN (Si-B-C-N_1). Die Si-B-C-N_1 Keramik zeigt dadurch bei 2114 K 

zusätzlich die thermische Zersetzung des verbliebenen Si3N4. Der ideale Stickstoffgehalt für eine 

maximale Hochtemperaturstabilität wurde für das jeweilige Si:B:C-Verhältnis aus den 

thermodynamischen Rechnungen ermittelt. Dies sind Zusammensetzungen, bei denen keine 

flüssigen oder gasförmigen Reaktionsprodukte gebildet werden. Für die Si-B-C-N_2 Keramik 

ergaben sich für x(N) < 0,41 bzw. < 0,23 maximale Einsatztemperaturen von 1757 K und 2568 K. 

Die Si-B-C-N_1 Keramik hatte die höchste Einsatztemperatur von 1757 K für 0,16 < x(N) < 0,43. 

Experimentell zeigte sich die überlegene Hochtemperaturbeständigkeit der Si-B-C-N Keramik 

gegenüber den Ceraset® PSZ 10 und PSZ 20 Si-C-N Keramiken. Selbst oberhalb der 

carbothermischen Reaktionstemperatur zeigte die Si-B-C-N_1 Keramik einen deutlich 

niedrigeren Masseverlust, keinen freiwerdenden Stickstoff und keine Veränderung der 

Mikrostruktur (bei 1673 K). Die erhaltenen Si-B-C-N Keramiken waren bei Temperaturen von 

1473 K-1773 K in Ar/N2 bzw. 1473 K-1673 K in Ar XRD-amorph. Nur Wärmebehandlung bei 

1773 K in fließendem Ar führte zur Kristallisation von β-SiC als Folge der carbothermischen 

Reaktion und Si durch thermische Zersetzung von Si3N4 unter Nickstoff-Mangel Bedingungen. 

Obwohl Si3N4 eine Gleichgewichtsphase der Si-B-C-N_1 Keramik ist, wurde, anders als bei Si-C-N 

Keramiken aus Ceraset® PSZ 10- und PSZ 20, keine Kristallisation von α-/β-Si3N4 beobachtet. 
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Phasengleichgewichte und Konstitution in ZrB2-haltigen SiC/Si-C-N CMC 

(Phase equilibria and constitution in ZrB2-containing SiC/Si-C-N CMC) 

Ein ZrB2/Si-C-N Komposit wurde durch Pyrolyse einer Mischung aus ZrB2-Pulver und dem 

Polysilazan Ceraset® PSZ 20 hergestellt. Zusätzlich wurden Reaktionen zwischen dem ZrB2-

Additiv und den Bestandteilen der keramischen Si-C-N Matrix (Si3N4, SiC und C), welche die 

Hochtemperaturbeständigkeit limitieren, mit der CALPHAD-Methode identifiziert. Die erste 

auftretende Reaktion (ZrB2+Si3N4=ZrN+2BN+L(Si,Zr,B,N)) tritt bei 1870 K auf. Dies ist 113 K 

oberhalb der Einsatztemperatur-limitierenden carbothermischen Zersetzungsreaktion der Si-C-

N Matrix (Si3N4+3C=3SiC+2N2). Dadurch gibt es im ZrB2/Si-C-N Komposit keine weitere Reaktion, 

welche die maximale Einsatztemperatur gegenüber der reinen Si-C-N Keramik reduziert. 

Der Bildungsmechanismus von ZrCxNy wurde durch eine Kombination von CALPHAD-

Modellierung mit Schlüsselexperimenten identifiziert. Daraus wurde ein Bildungsmechanismus 

für ZrCxNy vorgeschlagen: Eine direkte Reaktion des ZrB2-Additivs mit den Bestandteilen der Si-

C-N Matrix konnte durch CALPHAD-Modellierung bei den untersuchten Temperaturen 

(T < 1773 K) ausgeschlossen werden. Stattdessen deuteten eine ausgeprägtere ZrCxNy-Bildung 

bei Pyrolyse des ZrB2/PSZ 20-Gemisches in Ar/N2-Atmosphäre (pN2=0.5 bar) verglichen mit 

reinem Ar sowie Nitrierexperimente mit ZrB2-Pulver auf eine primäre Gas/Feststoff-Reaktion 

hin. Dabei wird zunächst ZrN aus der Reaktion von ZrB2 mit der Ar/N2-Atmosphäre gebildet 

(ZrB2+3/2N2=ZrN+2BN). Das berechnete Phasenstabilitätsdiagramm zeigte, dass ZrB2 nur bei 

hohen Temperaturen und niedrigen Stickstoff-Partialdrücken stabil ist. Bei niedrigeren 

Temperaturen und hohem pN2 sind ZrN und BN die stabilen Gleichgewichtsphasen. Mit 

steigendem pN2 verschiebt sich die entsprechende Umwandlungsreaktion zu niedrigeren 

Temperaturen. Sobald ZrN gebildet ist, löst sich Kohlenstoff aus der Si-C-N Matrix und es 

entsteht ein ZrCxNy-Mischkristall. Aufgrund der gleichen Kristallstruktur und ähnlichem 

Gitterparameter existiert im System ZrC-ZrN eine vollständige Löslichkeit. 

Röntgendiffraktometrische Untersuchungen des gebildeten ZrCxNy-Mischkristalls ergaben einen 

Kohlenstoffanteil von C/(C+N) = 0.56. Daher kann die Bildung von ZrCxNy durch geeignete 

Pyrolysebedingungen während der Herstellung des ZrB2/Si-C-N Komposits innerhalb des 

Stabilitätsbereichs von ZrB2 verhindert werden. Dies ist bei kleinem Stickstoffpartialdruck und 

moderaten Temperaturen unterhalb von 1673 K der Fall. 
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Das Hochtemperatur Oxidationsverhalten von ZrB2 

(High-temperature oxidation behavior of ZrB2) 

Das Hochtemperatur-Oxidationsverhalten von ZrB2 Pulverpresslingen in fließender H2O /Ar- und 

O2/Ar-Atmosphäre (pH2O=pO2=0,2 bar) wurde bei Temperaturen von bis zu 1673 K untersucht. 

Die Oxidation setzte in sauerstoff- bzw. wasserdampfhaltiger Atmosphäre bei etwa der selben 

Temperatur ein. Allerdings wurde in Wasserdampf eine stärkere Massezunahme beobachtet. 

Die Gesamt-Masseänderung während der Hochtemperatur-Oxidation von ZrB2 resultierte aus 

der Überlagerung zweier Effekte: Der Massezunahme durch die eigentliche Oxidationsreaktion 

und die Volatilisation des gebildeten flüssigen B2O3 in Form von Bor-haltigen Gasspezies. Daher 

unterschätzten reine thermogravimetrische Untersuchungen stark die tatsächliche 

Oxidationsrate des ZrB2. Durch quantitative massenspektrometrische Analyse der H2-

Freisetzung war es möglich, die Oxidationsreaktion von Verdampfung und Volatilisation zu 

trennen. Dadurch war die Untersuchung des Hochtemperatur-Oxidationsverhaltens von ZrB2 in 

Wasserdampf zugänglich, was in der Literatur selten zu finden ist. Die Oxidationskinetik von ZrB2 

ist komplex und stark temperaturabhängig. Die Oxidationskinetik zeigte eine lineare 

Temperaturabhängigkeit. Diese ändert sich mit steigender Temperatur von einem linearen 

(T=1073 K) zu einem sub-parabolischen (T=1673 K) Oxidationsverhalten. Eine Passivierung des 

ZrB2 durch Bildung einer dichten Oxidschicht erfolgte in H2O/Ar nur für Temperaturen ab 

1273 K. Bei 1073 K zerfiel der ZrB2-Pressling und oxidierte vollständig, da bei dieser Temperatur 

die Oxidationskinetik langsam und der Partialdruck von H3BO3(g) mit 4·10-4 bar hoch ist. 

Thermodynamische Gleichgewichtsberechnungen ergaben die Partialdrücke der Bor-haltigen 

Gasspezies, die aus B2O3 in O2- und H2O-haltiger Atmosphäre gebildet werden. In O2-haltiger 

Atmosphäre (pO2=0,2 bar) sind BO2(g) (T<1493 K) und B2O3(g) (T>1493 K) die vorherrschenden 

Gasspezies. Im Gegensatz dazu sind die Partialdrücke der Bor-haltigen Gasspezies in H2O-

haltiger Atmosphäre deutlich höher. Bei pH2O=0,2 bar wird Orthoborsäure (H3BO3(g)) mit 

Partialdrücken oberhalb von 3·10-4 bar gebildet. Bei Temperaturen oberhalb von 1179 K ist 

Metaborsäure (HBO2(g)) die vorherrschende Gasspezies. Die massenspektrometrische Analyse 

der in H2O-haltiger Atmosphäre gebildeten, gasförmigen B-O-H Spezies bestätigte die 

thermodynamischen Rechnungen. Ionisierte Gasmoleküle und deren Fragmente (H3BO3
+, 

H2BO3
+, H2BO2

+, HBO2
+ und BO2

+) wurden identifiziert. Die Freisetzung von H3BO3(g) (H3BO3
+ bei 

m/z=62) wurde während der Oxidation von ZrB2 in H2O/Ar in transienten (bis 1473 K) und 

isothermen Tests (1073 K, 1273 K, 1473 K und 1673 K) qualitativ verfolgt. Während des 

Aufheizens von ZrB2 in H2O/Ar begann die Freisetzung von H3BO3(g) bereits bei 673 K und 

erreichte bei 1000 K ein Maximum. Dies stimmte mit der maximalen Massezunahme überein. 

Mit weiter steigender Temperatur fiel das H3BO3
+-Signal wieder ab. Bei isothermen Tests 

erreichte das H3BO3
+-Signal, nach einem starken anfänglichen Anstieg, einen etwa konstanten 

Wert, der bei der höchsten untersuchten Temperatur von 1673 K am kleinsten war. 
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Das Hochtemperatur Oxidationsverhalten ZrB2-haltiger SiC/Si-C-N CMC 

(High-temperature oxidation behavior of ZrB2-containing SiC/Si-C-N CMC) 

Das Oxidationsverhalten eines ZrB2-haltigen SiC/Si-C-N CMC wurde in fließenden O2- und H2O 

haltigen Atmosphären bei Temperaturen bis 1673 K untersucht. Das ZrB2 war als funktionales 

Additiv fein in der keramischen Si-C-N Matrix verteilt, mit dem Ziel die Oxidationsbeständigkeit 

des CMC zu verbessern. Zusätzlich wurde ein ZrB2-freies SiC/Si-C-N CMC untersucht, um den 

Einfluss des Additivs zu untersuchen. 

Thermodynamische Rechnungen wurden genutzt, um die Wechselwirkungen zwischen dem 

ZrB2-Additiv und den Gleichgewichtsbestandteilen der keramischen Si-C-N Matrix (SiC, C, Si3N4; 

siehe auch Kapitel 5.1) unter oxidierenden Bedingungen zu identifizieren. Die 

Oxidationsprodukte des ZrB2-Additivs (B2O3 und ZrO2) und des SiC/Si-C-N CMC (Si2N2O, SiO2) 

zeigten neben einem niedrig schmelzenden Eutektikum im System SiO2-B2O3 (TE = 713 K) auch 

die Bildung von ZrSiO4. Dies wurde mittels XRD und EDX-Analyse betätigt. Nach Oxidation des 

ZrB2-freien CMC wurde als einziges kristallines Oxidationsprodukt β-Cristobalit gefunden. Wie 

thermodynamische Rechnungen zeigten, weist Si2N2O lediglich einen sehr kleinen 

Stabilitätsbereich auf. 

Während des Aufheizens in O2-haltiger Atmosphäre zeigte das ZrB2-SiC/Si-C-N CMC bei etwa 

850 K durch bevorzugte Oxidation von freiem Kohlenstoff zunächst einen Masseverlust unter 

Freisetzung von CO und CO2. Mit steigender Temperatur nahm die Masse ab etwa 950 K durch 

Oxidation der keramischen Si-C-N Matrix unter Bildung fester Oxidationsprodukte zu. Oxidation 

in H2O-haltiger Atmosphäre führte sowohl für das ZrB2-freie (SiC/Si-C-N), als auch für das ZrB2-

haltige (ZrB2-SiC/Si-C-N) CMC zu einer höheren Gesamtmasseänderung als in O2-haltiger 

Atmosphäre. Bereits ab der niedrigsten untersuchten Temperatur von 673 K wurden feste 

Oxidationsprodukte gebildet. Unter isothermen Bedingungen zeigte das ZrB2-SiC/Si-C-N sowohl 

in O2- wie in H2O-haltiger Atmosphäre die höchste Massezunahme bei der niedrigsten 

untersuchten Oxidationstemperatur von 1073 K. Mit steigender Temperatur nahm die 

Masseänderung des ZrB2-SiC/Si-C-N CMC ab. Das ZrB2-freie SiC/Si-C-N CMC zeigte eine andere 

Temperaturabhängigkeit des Oxidationsverhaltens. Bei der niedrigsten untersuchten 

Temperatur von 1073 K zeigte SiC/Si-C-N sowohl in O2- als auch H2O-haltiger Atmosphäre einen 

Masseverlust. In O2-haltiger Atmosphäre war die Masseänderung zu Beginn der Oxidation sogar 

bis zu 1373 K negativ. Der massenspektrometrische Nachweis von CO und CO2 belegte, dass bei 

niedrigen Temperaturen zunächst freier Kohlenstoff oxidiert und zu einem Masseverlust führt. 

Bei diesen Temperaturen war die Bildungskinetik von SiO2 zu langsam, um eine passivierende 

Oxidschicht zu bilden. Mit steigender Oxidationstemperatur nahm die Probenmasse, 

insbesondere zu Beginn der Oxidation, zu. Die Gesamtmasse hingegen sank beispielsweise bei 

Temperaturen oberhalb der carbothermischen Zersetzungsreaktion der keramischen Si-C-N 

Matrix (Si3N4+3C=3SiC+2N2 bei 1757 K). 
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Gleichzeitige Massezunahme durch Oxidation und Masseverlust durch Volatilisation überlagern 

die Gesamtmasseänderung des ZrB2-SiC/Si-C-N CMC. Während des Aufheizens in H2O-haltiger 

Atmosphäre hoben sich beide Effekte bei Temperaturen oberhalb von etwa 1200 K auf, obwohl 

die zunehmende H2-Freisetzung auf eine Beschleunigung der Oxidationsreaktion hindeutete. 

Thermodynamische Rechnungen zeigten, dass borhaltige Gasspezies für die Volatilisation 

hauptverantwortlich sind. Sowohl in O2- als auch in H2O-haltiger Atmosphäre waren die 

Partialdrücke der borhaltigen Gasspezies mehrere Größenordnungen höher als die der 

siliziumhaltigen Gasspezies. Durch den niedrigeren ZrB2-Gehalt des CMC, war das 

massenspektrometrisch gemessene H3BO3-Signal (m/z=62), welches auf die Volatilisation des 

Boroxids hinweist, allerdings wesentlich kleiner als bei der Oxidation von reinem ZrB2 unter 

denselben Bedingungen. Nach einer Stunde bei 1473 K in O2/Ar-Atmosphäre konnte kein Bor 

mehr in der Oxidschicht nachgewiesen werden. Thermodynamische Rechnungen zeigten, dass 

der Partialdruck der borhaltigen Gasspezies BO2 und B2O3 unter diesen Bedingungen ~10-4 bar 

beträgt. Bläschen auf der Oberfläche des ZrB2-SiC/Si-C-N Komposits belegten das Vorhandensein 

eines flüssigen Borosilikats in einem frühen Stadium der Oxidation. Die quantitative 

massenspektrometrische Analyse von H2 als Nebenprodukt der Oxidationsreaktion von ZrB2-

SiC/Si-C-N in Wasserdampf erlaubte die Messung der eigentlichen Oxidationskinetik und damit 

die Trennung der Oxidationsreaktion von Volatilisationseffekten. Bei Temperaturen von 1073 K 

war die Oxidationsreaktion alleine für die thermogravimetrisch gemessene Masseänderung 

verantwortlich. Dadurch zeigte das ZrB2-SiC/Si-C-N sowohl in thermogravimetrischen als auch in 

massenspektrometrischen Messungen eine lineare Oxidationskinetik. Bei 1473 K hingegen 

reduzierten Volatilisationsreaktionen die thermogravimetrisch gemessene Masseänderung 

deutlich. Thermogravimetrie ergab hier scheinbar parabolische Oxidationskinetik. Der 

freigesetzte Wasserstoff offenbarte bei dieser Temperatur hingegen kubische Oxidationskinetik. 

Die Oxidationsrate von ZrB2-SiC/Si-C-N war bis zu vier Größenordnungen niedriger als die der 

reinen ZrB2 Proben. Besonders bei hohen Temperaturen ist die Stabilität und 

Sauerstoffdurchlässigkeit von SiO2 kleiner als die von B2O3. 

Freiliegende Lagen der gesägten CMC Proben boten Zugang für die oxidierende Atmosphäre. 

Zusätzlich wies die keramische Si-C-N Matrix durch Schrumpfen des präkeramischen Polymers 

während der Pyrolyse eine offene Porosität auf. Für einen optimalen Oxidationsschutz muss das 

CMC möglichst dicht sein, sodass das ZrB2-Additiv nur lokal an entstehenden Rissen durch 

Bildung einer Schmelze aktiv wird und diese verschließt. Das ZrB2-SiC/Si-C-N CMC zeigte die 

gewünschte Bildung einer Schmelze. Außerdem zeigten Mikrostrukturuntersuchungen, dass die 

Oxidation in ZrB2-reichen Kavitäten stoppte. Dadurch ließ sich zeigen, dass das ZrB2-Additiv in 

der Lage sein könnte, Risse durch Bildung einer Schmelze zu verschließen. Die Diffusion 

oxidierender Gasspezies in das CMC würde dadurch gestoppt oder stark verlangsamt werden. 

Das ZrB2-Additiv ist daher geeignet die Oxidationsbeständigkeit des SiC/Si-C-N zu verbessern. 

Der Test eines Yttriumsilikat-beschichteten (Y2SiO5+Y2Si2O7) SiC/Si-C-N CMC in prototypischer 
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Verbrennungsatmosphäre zeigte lediglich anfänglich eine Verlangsamung der Oxidation. 

Möglicherweise wäre ein mehrlagiges EBC mit Si oder SiC als Haftvermittlerschicht besser 

geeignet, dauerhaft einen gasdichten Schutz des darunter liegende CMC zu gewährleisten. 

Insgesamt bot die Kombination von CALPHAD-Methode und Hochtemperatur-Experimenten in 

allen Teilgebieten eine hervorragende und sich ergänzende Herangehensweise zur Aufklärung 

der ablaufenden Mechanismen. Zudem bestätigten die thermodynamischen Rechnungen die 

experimentellen Ergebnisse qualitativ und sehr oft auch quantitativ. 
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A.3 Additional data 

 

Table A.1: Derived rate constant k and exponent n for the oxidation of ZrB2 in steam shown in Figure 7.20. 

Material T [K] pH2O [bar] 
H2-derived mass-derived 

k [mg/cm²sn] n R2 k [mg/cm²sn] n R2 

ZrB2 1073 0.2 0.01 0.92 0.982 0.18 0.54 0.982 

ZrB2 1273 0.2 0.04 0.73 0.999 0.10 0.55 0.998 

ZrB2 1473 0.2 0.33 0.59 0.996 0.62 0.37 0.990 

ZrB2 1473 1.0 0.26 0.61 0.993 0.54 0.40 0.992 

ZrB2 1673 0.1 2.03 0.47 0.985 - - - 

ZrB2 1673 0.2 2.63 0.44 0.971 - - - 
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