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Abstract: Plant-based meat analogues that mimic the characteristic structure and texture of meat are
becoming increasingly popular. They can be produced by means of high moisture extrusion (HME),
in which protein-rich raw materials are subjected to thermomechanical stresses in the extruder at
high water content (>40%) and then forced through a cooling die. The cooling die, or generally the
die section, is known to have a large influence on the products’ anisotropic structures, which are
determined by the morphology of the underlying multi-phase system. However, the morphology de-
velopment in the process and its relationship with the flow characteristics are not yet well understood
and, therefore, investigated in this work. The results show that the underlying multi-phase system
is already present in the screw section of the extruder. The morphology development mainly takes
place in the tapered transition zone and the non-cooled zone, while the cooled zone only has a minor
influence. The cross-sectional contraction and the cooling generate elongational flows and tensile
stresses in the die section, whereas the highest tensile stresses are generated in the transition zone
and are assumed to be the main factor for structure formation. Cooling also has an influence on the
velocity gradients and, therefore, the shear stresses; the highest shear stresses are generated towards
the die exit. The results further show that morphology development in the die section is mainly
governed by deformation and orientation, while the breakup of phases appears to play a minor role.
The size of the dispersed phase, i.e., size of individual particles, is presumably determined in the
screw section and then stays the same over the die length. Overall, this study reveals that morphology
development and flow characteristics need to be understood and controlled for a successful product
design in HME, which, in turn, could be achieved by a targeted design of the extruders die section.

Keywords: high moisture extrusion; meat analogue; plant protein; soy protein; anisotropic structures;
morphology development; flow characteristics; computational fluid dynamics

1. Introduction

Plant-based meat analogues are becoming increasingly popular [1]. The high moisture
extrusion (HME) process can be used for their production: plant-based, protein-rich raw
materials are processed at water contents above 40%, resulting in a meat-like structure and
texture [2–5]. In the screw section of the extruder, the raw material is mixed with water
and subjected to thermomechanical stresses by the screw rotation and the barrel heating,
resulting in a flowable mass. The conveying action of the screws then presses this mass
through a cooling die attached to the extruder, which prevents expansion of the product at
the die exit [6]. Consequently, the desired meat-like, anisotropic structure in the product
is achieved.

The cooling die, or more generally, the die section, has a very large influence on the
final product structure or can even be regarded as a prerequisite for the formation of the
characteristic anisotropic structures in HME. Dead-stop experiments, in which the extruder
is abruptly stopped and then samples are taken from different points in the extruder, could
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show that the formation of anisotropic structures takes place at the beginning of or in the
die section [7,8]. The large influence of the die section becomes clear when the shape or
orientation of the anisotropic structures is considered: these usually exhibit the V-shape
of a laminar flow profile [9–15], which is attributed to the laminar flow (Re < 1) in the
die section.

The anisotropic structures in HME were shown to originate from a multi-phase system
in the extrudates [11]: according to the theory of Tolstoguzov [16,17], the thermodynamic
incompatibility of the involved biopolymers, i.e., proteins and polysaccharides, leads to
a phase-separated system, in which the phases differ in their biopolymer composition
and local water concentration. Separated phases were found in various systems of highly-
concentrated food biopolymers [15,18–23], also when only one raw material component
was used [10,11,23–25].

In general, the morphology of such viscoelastic multi-phase systems has been shown
to depend very much on the process conditions, such as temperature [11,20] or screw
speed [10]. This is due to the shear and tensile stresses in the process, which can cause
deformation, breakup, and coalescence of the phases [26,27]. These stresses are in particular
a function of the local flow conditions, e.g., the distribution of shear and elongational
flows [27,28], and of the rheological properties, i.e., both the viscous and elastic properties,
of all phases involved [27,29–32]. Thus, for the HME of meat analogues, it can be expected
that the flow characteristics and the rheological properties have a major influence on the
morphology development and, therefore, on the product structure.

Nevertheless, there are only a few papers focusing on flow characteristics and mor-
phology development in HME. To the best of our knowledge, the flow conditions in the die
section of a HME process have only been investigated in one recent study [33]. Based on
the hypothesis that phase separation only occurs when the material cools in the die section,
it was shown that the process conditions in the die section (e.g., temperature distribution)
have a very large influence on the anisotropic structures in the product. Studies on the
morphology development in HME are largely limited to the analysis of product morphol-
ogy, whereby the clear influences of, e.g., temperature [11,24], screw speed [10], or raw
material composition [10,15] could be shown. The morphology development in the process,
i.e., at different points in the extruder, has only been investigated by a recently published
study [7] on the HME of peanut protein biomass. It was shown that a multi-phase system
is formed in the process, which has a random disoriented morphology in the screw section
and then obtains an oriented morphology in the die section.

Although the mentioned studies demonstrate the importance of flow characteristics
and morphology development in HME, the relationship between these two essential
parameters remains unclear. The aim of this study is to clarify the role of both parameters
and to investigate the relationship of those in a model HME process for the production of
meat analogues.

For the determination of the flow characteristics in the die section, a numerical flow
simulation methodology is applied, which has already been used in previous works for
the simulation of the screw section [34–37]. The rheological properties of the material,
which are important input parameters for the simulation [38,39], are determined using
a closed cavity rheometer [40–43]. Since the multi-phase morphology is to be analysed
throughout the entire die section, the cryo-imaging methodology established by Wittek
et al. [11] is extended: samples are taken from the die section in a dead-stop experiment and
examined by cryo-imaging, allowing an analysis of the morphology development along
the entire die length, thus providing an extensive and spatially resolved link to the flow
characteristics. A HME process with soy protein isolate (SPI), in which the formation of
anisotropic structures and a multi-phase system has already been demonstrated [11], serves
as the basis for the investigations. Temperature dependence of the anisotropic structures
was demonstrated there as well and will be the exemplary starting point for this work. At
different material temperatures, die pressure, product structure, and morphology will be
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analyzed. Morphology development and flow characteristics will then be analyzed at two
selected process conditions.

2. Materials and Methods
2.1. Material

In this work, commercial soy protein isolate “Supro ST” from Solae LLC (St. Louis,
MO, USA) was used. A protein content of at least 90% on a dry basis is specified by the
manufacturer. A moisture content of 3.4% (w/w) was determined gravimetrically.

2.2. Extrusion Trials

Extrusion trials were performed with a co-rotating twin-screw extruder (“Process 11”,
ThermoFisher Scientific Inc., Waltham, MA, USA) with a length to diameter (L/D) ratio of
40 and a screw diameter of 11 mm. A slit cooling die of 125 mm length was attached to the
extruder through a die adapter, and both were separated by a thin PTFE isolation layer.
Only forward elements were used in the screw configuration.

The extruder barrel consisted of eight elements. The first barrel element could be
neither heated nor cooled. The seven other barrel elements could be heated and cooled
independently of each other. The die adapter, which was attached to the last barrel element,
could only be heated.

Solids were dosed via a gravimetrically controlled feeder (Brabender Technology
GmbH, Duisburg, Germany) in the first barrel element. Water was dosed via a peristaltic
pump (“Masterflex L/S”, Cole Parmer, Vernon Hills, IL, USA) in the third barrel element.
The die adapter, which was 32 mm long, provided a transition from the screw section to
the cooling die. Temperature control liquid “Thermal HL60” at −10 ◦C was used to cool
the cooling die (125 × 19 × 4 mm) and was supplied by a water-cooled process circulator
“Presto Plus LH 47”, both from Julabo GmbH (Seelbach, Germany).

The screw speed was kept constant at 600 rpm for all process conditions. Always 0.9 kg/h
solid SPI and 1.1 kg/h water (tap water with a conductivity of 584.75 ± 16.78 µS/cm from
Karlsruhe, Germany) were added, which equals a moisture content of 56.5% (w/w).

Four different process conditions were set in the extrusion trials, each of them iden-
tified by their material temperature TMaterial: 95, 105, 115, 125 ◦C. To achieve this specific
material temperatures, the temperatures of the barrel elements were specifically adjusted.
The temperature profiles for the four process conditions are given in Table 1.

Table 1. Temperature profiles of the extrusion trials at the four different material temperatures.
Dead-stop trials were performed with the same specific temperature profiles at 95 ◦C and 125 ◦C.

TMaterial/◦C 95 105 115 125

TBarrel,2/◦C 25 25 25 25

TBarrel,3/◦C 50 50 50 50

TBarrel,4/◦C 90 90 90 90

TBarrel,5/◦C 98 109 110 110

TBarrel,6/◦C 98 109 124 138

TBarrel,7/◦C 98 109 124 138

TBarrel,8/◦C 98 109 124 138

TDie/◦C 98 109 124 138

The material temperature and the die pressure were measured simultaneously in
the die adapter, 23 mm after the end of the screw section (see Figure 2 for exact location).
Sampling for further analysis of the extrudates was performed once material temperature
and the die pressure were constant for at least three minutes. The die pressure was then
measured for another three minutes, and the average value was taken. To investigate the
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anisotropic product structure, the extrudates were torn open immediately after exiting
the extruder and and the visible structure was photographed. For further analysis of the
morphology, the extrudates were vacuumed immediately after exit, frozen, and stored at
−18 ◦C until further use.

Dead-stop trials were performed with the same process settings as described and with
the individual temperature profiles for TMaterial = 95 ◦C and TMaterial = 125 ◦C (Table 1).
After the process responses were constant for at least five minutes, simultaneously, the
cooling capacity of the extruder barrels was switched to maximum, and the screws stopped.
The cooling die and the die adapter were removed from the extruder as quickly as possible
and the extrudate removed from the interior. For 125 ◦C, the temperatures in the last barrel
section were too high. Therefore, the product expanded “back” into the screw section,
which also slightly influenced the extrudate in the die section. This part of the extrudate in
the die section was discarded, and, therefore, cryo-images from the transition zone from
screw to die section were only obtained for 95 ◦C. For further analysis, the extrudate from
the die section was immediately vacuumed, frozen, and stored at −18 ◦C until further use.

2.3. Cryo-Imaging

The morphology of the extrudates and the samples from dead-stop trials was analysed
by cutting the frozen samples laterally to the flow direction (side view) with a cryo-
microtome from Leica Biosystems GmbH (Nussloch, Germany). The cooling room tem-
perature of this instrument was set to −14 ◦C, while the temperature of the sample holder
was set to −12 ◦C. To prepare the extrudates for cutting, 4–5 cm long sections were cut
out from the extrudate strand. These sections were attached to a sample holder with FSC
22 Frozen Section Media, a sectioning medium from Leica Biosystems GmbH (Nussloch,
Germany). This was intended to ensure product stability on the sample holder while
sectioning and was tested to have no influence on the microstructure of the product. After
attachment, 40-µm sections were cut from the extrudate until smooth cut surfaces were
achieved. Immediately after cutting the extrudate in the cryo-microtome, the sections
were discarded, and photos of the cut surface were taken with a digital camera and a
macro-objective (DMC-GH2, Lumix, Kadoma, CGH2, Lumix, Kadoma, Japan).

2.4. Rheological Measurements and Fitting

To determine the rheological properties for the numerical simulation, samples were
analysed in a closed cavity rheometer (CCR) “RPA flex” from TA Instruments, Inc.
(New Castle, DE, USA); see Figure 1. This instrument is described in detail elsewhere [40,41]
and will only be briefly described here. The material is first placed between the two cones.
The downward movement of the upper cone and the application of a closing pressure
creates a closed cavity for the material, which prevents water evaporation and allows mea-
surements at high temperatures. The lower cone exerts a sinusoidal rotary deformation,
and the resulting force is monitored, from which the resulting rheological properties can
be calculated.
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For the dough preparation, solid SPI was mixed with deionized water in a Thermomix
from Vorwerk (Wuppertal, Germany) to achieve a moisture content of 55% (w/w), taking
into account the raw material moisture. The doughs were then vacuum sealed and stored
in a refrigerator at 4 ◦C for at least 12 h prior to the measurements, which was intended to
ensure uniform water distribution and hydration.

For the measurement, the dough was treated first for 60 s at 125 ◦C, 240%, and
6.28 rad·s−1 (which equals 150 s−1). High shear treatment was chosen to imitate thermo-
mechanical stresses in the extruder. It was then quickly cooled to 60 ◦C, where a frequency
sweep at 0.98% was performed. This cooling was necessary, as the motor torque at 125 ◦C
was too low and measurements were not feasible. Since this measurement was done using
oscillatory–rotatory measurements, the measured complex viscosity η* was converted to
shear viscosity η using the Cox-Merz [45] relationship:

|η∗(ω)| = η
( .
γ
)
| .
γ=ω

where η* is the complex viscosity from the oscillatory measurements, ω the corresponding
angular frequency, η the (shear) viscosity and

.
γ the shear rate. For the numerical simulation,

a viscosity function is necessary that describes the viscosity over the entire range of shear
rates. The frequency sweep, however, delivers only data within a limited range of shear
rates. Therefore, the rheological data was fitted with a Bird–Carreau [46] viscosity model:

η
( .
γ
)
= η∞ + (η0 − η∞) ∗

(
1 +

(
λ ∗ .

γ
)2
) n−1

2
)

where η
( .
γ
)

is the viscosity at a certain shear rate
.
γ, η∞ is the infinite-shear-rate viscosity,

η0 the zero-shear-rate viscosity, λ the natural time, and n the power law index. With the
assumption of η∞ = 0, the equation simplifies to:

η
( .
γ
)
= η0 ∗

(
1 +

(
λ ∗ .

γ
)2
) n−1

2

For high shear rates, this model describes the fluid behaviour as a power-law fluid,
while the fluid is described as a Newtonian fluid with a shear-independent viscosity for
low shear rates. This model has been suggested before to increase numerical stability in the
process [34,35]. The Bird–Carreau model needs the definition of a natural time λ, which
defines a shear rate at which transition between Newtonian and power-law behaviour
takes place. However, as the measurements were not able to detect a viscosity plateau at
low shear rates, a value of 100 s was chosen for λ, based on values from the literature [47].
As a non-isothermal simulation is aimed for, the temperature dependence of the rheological
properties must be determined as well. Therefore, the experimental results from a previous
work for the viscosity as a function of temperature (from 50–120 ◦C) were taken as a
basis [11]. The viscosity at a certain shear rate and temperature was factorized as follows:

η
( .
γ, T

)
= k(T)·η

( .
γ
)

where k(T) is the Arrhenius law constant at a given temperature:

k(T) = exp
(

α

T
− α

Tα

)
α is the relationship between the activation energy EA and the universal gas constant R and
Tα is a reference temperature for which k(T) results in a value of 1.

2.5. Material Properties for Simulation

The density of the material for the simulation was determined by measuring the
outflow velocity of the extrudates at least eight times and multiplying with the cross-section
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area of the die cross-section, which gives the volume flow (as die swell was negligibly small).
Division of the mass flow with the volume flow then gave a density of 1279.55 kg·m−3,
which was used in the simulation.

The specific heat capacity cp was determined with the equation proposed by Singh
and Heldman [48]:

cP = 1.424 ∗ Xc + 1.549 ∗ Xp + 1.675 ∗ X f + 0.837 ∗ Xa + 4.187 ∗ Xm

where X is the mass fraction; the subscripts on the right-hand side are: c = carbohydrate,
p = protein, f = fat, a = ash, m = moisture. This equation gives a specific heat capacity of
3013.9 J·kg−1·K−1 for the SPI matrix.

The thermal conductivity k was calculated with the equation proposed by Sweat [49]
that is fitting a set of 430 data points for solid and liquid foods:

k = 0.25 ∗ Xc + 0.155 ∗ Xp + 0.16 ∗ X f + 0.135 ∗ Xa + 0.58 ∗ Xm

where X is the mass fraction; the subscripts on the right-hand side are: c = carbohydrate,
p = protein, f = fat, a = ash, m = moisture. This equation gives a thermal conductivity
of 0.395 J·s−1·m−1·K−1 for the SPI matrix. Thermal expansion, inertia, and gravity were
neglected; viscous heating was taken into account.

2.6. Numerical Simulation

The calculation of the numerical equations was performed with ANSYS POLYFLOW®

(Version: 2020 R2, Ansys Inc., Canonsburg, PA, USA), a computational fluid dynamics
program that has previously been applied for comparable analyses in extrusion processes,
mainly focusing on the screw section [34–37,50]. The simulated domain was modelled to
correspond to the real die section from the extrusion trials as close as possible (a three-
dimensional overview can be seen in the Appendix A). The modelling parameters are
described in Figure 2.
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The die section consisted of the die adapter (not cooled) and the cooling die (cooled),
with a length of 32 mm and 125 mm, respectively. The die section inlet had a rectangular
shape with dimensions of 19.6 × 11 mm and rounded corners. A tapered section then led
to a narrower rectangular flow channel with dimensions of 19 × 4 mm, which kept these
dimensions until the die outlet.

The definition of the wall temperatures was based on material temperature mea-
surements in the die section during the extrusion trials (red curve). The location of mea-
surements is displayed (TMaterial, TDie,Material,1, and TDie,Material,2). Measurements were
performed with common thermocouples, which were flush with the material inside the die.
It is assumed that this measured temperature is the material temperature at the edge of the
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die channel, and therefore could be taken for the definition of the wall temperature profile
in the simulation. The “temperature imposed” thermal boundary condition was chosen
for the walls; the temperature of the fluid entering the domain was defined according to
the two investigated process conditions, either 95 or 125 ◦C. A no-slip condition (zero wall
velocity) was defined for the walls, and a mass flow of 2.0 kg/h was defined for the inlet.

Tensile stresses were computed according to the equation [51]:

σE = ηE ·

√√√√∂
−
vx

∂x

2

+
∂
−
vy

∂y

2

+
∂
−
vz

∂z

2

where ηE is the elongational viscosity and vx, vy, vz correspond to the velocities in x-, y-,
and z-direction. The elongational viscosity ηE (also known as extensional viscosity) is
defined according to the “Trouton ratio” [52] ηE = 3·η, where η is the shear viscosity. For
viscoelastic fluids, this equation will hold in the limiting case of low elongational rates [53].

Mini-elements for velocities and linear pressure were chosen for interpolation settings.
Iterations on the viscosity were performed with a Picard scheme. The temperature field
was solved with the setting “2 × 2 element for temperature” in order to get a locally higher
resolution of the temperature field and improve solution accuracy. Upwinding in the energy
equation was activated. After performing sensitivity analysis by investigating the influence
of mesh design and interpolation method on the velocity profile in the die, a regular
hexahedral mesh with 69,520 elements was chosen for the simulations, see Figure A1 in
the Appendix A for a 3D illustration.

3. Results
3.1. Influence of Material Temperature on Die Pressure, Product Structure, and Morphology

Extrusion trials at different material temperatures served as a basis for further investi-
gations of morphology development and flow characteristics. The die pressures from the
extrusion trials are plotted as a function of material temperature in Figure 3.
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Figure 3. Die pressure as a function of material temperature at constant mass flow (2.0 kg·h−1) and
screw speed (600 rpm).

As the material temperature increased from 95 to 125 ◦C, the die pressure decreased
from 2.9 to 2.0 MPa. The die pressure is a function of the material viscosity at constant mass
flow and die geometry. Thus, the results indicate that viscosity decreased with increasing
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material temperature. Since it is expected that covalent protein–protein interactions are
neither formed nor broken at the present process conditions in the soy proteins [11], and
therefore the molecular weight is not effected, the decreased viscosity can be attributed to
increased mobility of the molecules increasing temperature [54]. The product structure of
the extrudates is displayed in Figure 4.
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Figure 4. Product structure of the extrudates at the four different investigated material temperatures.

With increasing material temperature, a more pronounced anisotropic structure
was apparent in the extrudates. At 95 ◦C, the structure was still dough-like, while
at 125 ◦C, more pronounced structures were visible. An influence of temperature on
the product structure could be observed for various other material systems in HME as
well [11,14,15,24,55,56]: the temperature increase also resulted in more pronounced struc-
tures or led to improved textural properties (e.g., higher anisotropy index). The morphology
of the extrudates was studied by cryo-imaging and is displayed in Figure 5.
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Figure 5. Morphology of the extrudates at the four different material temperatures obtained via cryo-imaging. Flow
direction is from left to right; lateral view displayed.

A multi-phase system, in which an elongated dispersed phase is distributed in a
continuous phase, was formed at all material temperatures. The formation of a multi-
phase system can be explained by the thermodynamic incompatibility of the involved pro-
teins [16], which leads to a phase separation and phases that differ in their local biopolymer
composition and water concentration [11,18,21,57]. The increase in material temperature
influences the morphology of the multi-phase system. The V-shape, which originates from
the laminar flow profile in the die, was only very weakly pronounced for 95 ◦C and rather
flat. It became more pointed with increasing temperature, while at the same time, the
size and shape of the dispersed phase also changed. The individual particles/elements
of the dispersed phase appeared shorter and more compact at 95 ◦C compared to 125 ◦C,
where they were longer and more elongated. It is assumed that the changes in morphology
development are the reason for the different product structures and were caused by the
decreasing viscosity as indicated by the die pressure. For example, decreasing viscosity
could have led to lower shear stresses in the process. However, the influence of material
temperature on morphology development and flow characteristics should be determined
in detail in the next chapters.

3.2. Rheological Data

Process-relevant rheological properties of the material are required for the numerical
simulation and were determined using a CCR. The resulting flow curves are plotted
in Figure 6, with exemplary curves shown for 60 ◦C, where the frequency sweep was
measured, and for 95 ◦C and 125 ◦C to illustrate the temperature dependence.
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Figure 6. Experimentally determined complex viscosity as a function of the angular frequency at
60 ◦C (filled circles) and the fitted viscosity curves at 60, 95, and 125 ◦C, which were based on the
Bird–Carreau model.

The material exhibited shear-thinning behaviour, which is typical for highly concen-
trated SPI [11,40,58–62]. This behaviour is expected to have an influence on the morphology
development: in a shear-thinning matrix, deformation and/or breakup of the dispersed
phase is more difficult compared to a Newtonian matrix because the increase in viscous
stresses is smaller for the same increase in shear rate [63]. The parameters of the fitted flow
curve at 60 ◦C, which was based on the Bird–Carreau model, and the parameters for the
temperature dependence from the Arrhenius model are listed in Table 2.

Table 2. Parameters of the Bird–Carreau viscosity curve at 60 ◦C and the parameters from Arrhenius
law to describe temperature dependence.

η0/Pa·s λ/s n/- α/K Tα/K

4,952,779 100 0.13606 3313.3 333.15

The activation energy EA of the material system can be determined from the parameter
α and calculates as 27.55 kJ·mol−1. This is in the range of what is reported for other
(bio-)polymers [54,64].

3.3. Morphology Development in the Die Section and Influence of Material Temperature

In order to study the morphology development throughout the die section, dead-
stop extrusion trials were performed at two selected process conditions, i.e., at material
temperatures of 95 ◦C and 125 ◦C, and samples were taken from the die section in each case.
The results are shown in Figure 7. From the first two sections, i.e., the tapered transition
zone (section 1) and the non-cooled zone (section 2), it was only possible to take a sample
at 95 ◦C (top row).
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Analog to the previous findings from extrusion trials (Figure 5), a multi-phase system
was present at both material temperatures. The individual particles of the dispersed
phase also appeared shorter and more compact at 95 ◦C compared to 125 ◦C, where they
were longer and more elongated. This multi-phase system was present along the entire
length of the die section, including the screw section, for both temperatures. It can thus
be assumed that as soon as the plastification of material in the screw section allows the
mobility of the protein molecules, the thermodynamic incompatibility of the proteins
practically immediately leads to phase separation in the material.

At the beginning of the tapered transition zone between the screw section and the
die section (section 1), the V-shape was not apparent yet; instead, the dispersed phase
was oriented transversely to the flow direction. However, a V-shape began to form in the
direction of flow and was retained in the uncooled zone (section 2). From the third section
onwards, where the start of cooling was marked with the continuous transverse line and
the blue lines at the edges, cryo-images were available for both material temperatures
(lower two rows of images). In section 3 at 95 ◦C, the phases were only slightly deformed
in the left part of the image, while in the right part, they showed a much more pronounced
V-shape. Further, in the direction of flow, this deformation or V-shape was then largely
preserved, and the morphology did not undergo major changes. A V-shape morphology
was also already visible from the third section at 125 ◦C. However, the shape was more
pronounced, i.e., more pointed, than at 95 ◦C. In the flow direction and in contrast to the
lower temperature, the V-shape developed slightly further, i.e., the shape became more
pointed and the dispersed phase more elongated. This slight development of the morphol-
ogy continued until the last section, where the dispersed phase was the most elongated. In
the last section (8), i.e., right before the die exit, the 125 ◦C sample exhibited a much more
pronounced V-shape and more elongated dispersed phase than the 95 ◦C sample.

The results showed that the multi-phase system was already present in the screw
section and thus that the morphology was developing along the entire die section, i.e., in
the tapered transition zone, uncooled zone, and cooled zone. For 95 ◦C, the V-shape was
already developed right after the transition zone (sections 1 and 2), and for 125 ◦C, the V-
shape was already developed at the beginning of the cooled zone (section 3). This matches
the findings from other studies, where the formation of anisotropic structures has been
observed in the transition zone of the die section (i.e., right after the screw section) [7,8].

It also appears that the influence of each die zone on the morphology development
was different: for instance, morphology development seems to be more pronounced in the
transition zone compared to the cooled zone. A possible explanation for this could be the
differences in geometrical dimensions (tapered vs. non-tapered) and thermal conditions
(cooled vs. non-cooled), which would be expected to largely influence the local flow
characteristics. However, the exact relationships remain unclear, and the investigation of
flow characteristics in the next chapter should clarify how morphology development is
influenced in the die section.

3.4. Flow Characteristics in the Die Section and Influence of Material Temperature

Numerical simulation was used to determine the flow characteristics in the die section.
Temperature, shear stresses, and tensile stresses were determined for the previously dis-
cussed two cases of dead-stop at 95 ◦C and 125 ◦C. The distributions of these parameters
from two perspectives (lateral and transversal view) can be seen for 95 ◦C in Figure 8
(lateral view) and Figure 9 (transversal view) and for 125 ◦C in Figure 10 (lateral view)
and Figure 11 (transversal view). To ensure comparability, the scales of the individual
parameters are kept the same for the different views and temperatures.



Foods 2021, 10, 1753 12 of 22

Foods 2021, 10, x FOR PEER REVIEW 12 of 22 
 

 

 
Figure 8. Temperature, shear stress, and tensile stress distribution in the die section of extrusion trials with TMaterial = 95 °C. The lateral view is displayed, flow direction 
from left to right (in the y-direction). 

Figure 8. Temperature, shear stress, and tensile stress distribution in the die section of extrusion trials with TMaterial = 95 ◦C. The lateral view is displayed, flow direction from left to right
(in the y-direction).



Foods 2021, 10, 1753 13 of 22

Foods 2021, 10, x FOR PEER REVIEW 13 of 22 
 

 

 
Figure 9. Temperature, shear stress, and tensile stress distribution in the die section at TMaterial = 95 °C in sectional views transversely to the flow direction. Figure 9. Temperature, shear stress, and tensile stress distribution in the die section at TMaterial = 95 ◦C in sectional views transversely to the flow direction.



Foods 2021, 10, 1753 14 of 22
Foods 2021, 10, x FOR PEER REVIEW 14 of 22 
 

 

 
Figure 10. Temperature, shear stress, and tensile stress distribution in the die section of extrusion trials with TMaterial = 125 °C. The lateral view is displayed, flow direction 
from left to right (in the y-direction). 
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The die section of the extruder consisted of a die adapter (front part) and the actual
cooling die (rear part). Not the entire die section was cooled: cooling of the material only
begins in the cooling die, as can be seen from the temperature distribution. The material
cools from the outside to the inside, and at the die outlet, there is a temperature gradient
from the warm core to the cold exterior. The material core reached a temperature of 102 ◦C
for TMaterial = 125 ◦C and a temperature of 70 ◦C for the case of TMaterial = 95 ◦C. Such a
relatively large temperature gradient between core and exterior could be confirmed in
the extrusion trials, where an intruding temperature couple was used to determine the
extrudates core temperature right after exiting the extruder.

The temperature distribution over the cross-section also resulted in a distribution of
viscosity: a higher viscosity was achieved in the cool exterior than in the core. This had a
very large influence on the velocity profiles in the process, as can be seen in Figure 12. The
velocity of the fluid in the flow direction is plotted for different locations along the die as a
function of height coordinate z (thus corresponding to a lateral view).

While a relatively flat velocity profile can be seen in the first profiles, a much more
curved velocity profile developed along the die length due to the cooling, with higher flow
velocities in the core. Higher maximum core velocities were reached at 125 ◦C (49 mm·s−1)
than at 95 ◦C (43 mm·s−1).

This influence of the temperature distribution on the flow velocities had two effects:
on the one hand, the high gradients towards the edge resulted in high shear rates and
therefore high shear stresses, and on the other hand, the fluid acceleration in the core
generated an elongational flow and therefore tensile stresses. Both had an influence on the
distribution of shear and tensile stresses in the process. The shear stresses increased along
the die length. This can be explained by the higher shear rates due to the higher velocity
gradients and by the overall increasing viscosity as a result of cooling. The highest shear
stresses (up to 400 kPa at 95 ◦C) were generated at the die outlet and the die edges, while
the shear stresses in the upstream part were much lower (less than 100 kPa at 95 ◦C).

Elongational flows were generated at two points in the die section: first in the tapered
transition zone and then by the acceleration of the flow in the cooled zone. This can be seen
in the distribution of tensile stresses. High tensile stresses were generated in the transition
zone (up to 100 kPa at 95 ◦C) over almost the entire cross-section. These tensile stresses
then decreased down to less than 20 kPa in the non-cooled zone. In the cooled zone, tensile
stresses again increased in the core (up to 90 kPa at 95 ◦C). Towards the end, the tensile
stresses then decreased again.

The three characteristic parts of the die section, i.e., the tapered transition zone, the
non-cooled zone, and the cooled zone, can, therefore, be differentiated by their specific
flow conditions. In the transition zone, the highest tensile stresses (up to 100 kPa) and
relatively low shear stresses (not more than 80 kPa) were generated. The non-cooled zone
had medium-high tensile stress (up to 50 kPa at 95 ◦C) and also relatively low shear stresses
(not more than 80 kPa). In the cooled zone, the highest shear stresses (up to 400 kPa) and
relatively high tensile stresses (up to 80 kPa) were generated.



Foods 2021, 10, 1753 17 of 22

Foods 2021, 10, x FOR PEER REVIEW 17 of 22 
 

 

 
Figure 12. Development of profiles of velocities in the flow direction, shear stresses, and tensile stresses along the die length for both material temperatures 95 °C (black 
dotted line) and 125 °C (pink solid line). Locations of profile analysis (black solid lines transversely to flow direction) correspond to the location of cryo-sections from the 
dead-stop experiment (Figure 7), which are marked with the grey dashed lines.

Figure 12. Development of profiles of velocities in the flow direction, shear stresses, and tensile stresses along the die length for both material temperatures 95 ◦C (black dotted line) and
125 ◦C (pink solid line). Locations of profile analysis (black solid lines transversely to flow direction) correspond to the location of cryo-sections from the dead-stop experiment (Figure 7),
which are marked with the grey dashed lines.
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These findings on the flow characteristics could be helpful to understand the mor-
phology development in the die section. The deformation and orientation of the dispersed
phase at 95 ◦C already started in the transition zone (section 1 in Figure 7), and it is assumed
that this would also be the case at 125 ◦C. The transition zone was dominated by the highest
tensile stresses in the die section (up to 100 kPa at 95 ◦C), while the shear stresses were
comparatively low (less than 80 kPa at 95 ◦C). It is, therefore, assumed that the tensile
stresses have an important role in the deformation and orientation of the dispersed phase.
The importance of the tensile stresses became apparent in section 3 (Figure 7) at 95 ◦C:
with the onset of cooling in this section, the dispersed phase also underwent a very strong
deformation, which is expected to result from the generated tensile stresses due to the
elongational flow at this point; similar to the transition zone, the shear stresses were also
comparatively low at this point (less than 80 kPa). It is known that tensile stresses are
much more effective in deforming and/or breaking up the dispersed phase in viscoelastic
matrices [27,28]. For example, elongational flows enable deformation/breakup at high
viscosity ratios where simple shear flows would not. The effectiveness of tensile stresses
compared to shear stresses can also be seen in a comparison of extruder and shear cells,
which operated at similar temperatures and water contents: in the shear cell, where almost
exclusively shear stresses occurred, a significantly longer process time of up to 15 min [65]
was required to obtain structures comparable to those in the extrusion process, where a
mix of shear and tensile stresses was present and the process time/residence time was less
than two minutes.

The morphology development in the cooled zone was lower than in the transition and
non-cooled zone (Figure 7). At 95 ◦C, the morphology at the beginning of the cooled zone
was almost the same as at the end. It appeared that the increase in shear stress over the die
length did not influence the morphology.

In a comparison of the flow characteristics between 95 ◦C and 125 ◦C, temperature,
shear stress, and tensile stress showed similar distributions but different absolute values.
The overall higher temperatures in the die section were caused by the different defined
material temperatures at the die inlet. Significantly higher shear and tensile stresses
were obtained at 95 ◦C compared to 125 ◦C; maximum shear and tensile stresses were
almost twice as high at 95 ◦C. Both were a function of the viscosity, which decreased with
increasing temperature and therefore resulted in lower overall stress values (as the flow
profiles are very similar). It would therefore be expected that deformation and orientation
of the dispersed phase are more pronounced at 95 ◦C, as higher absolute stress values
were apparent here. But the opposite was the case: for 125 ◦C, which had lower stresses,
deformation and orientation were more pronounced. Thus, the simple coherence between
viscosity and shear stresses in the die section cannot explain the differences between
the temperatures.

It appears that only deformation and orientation of the dispersed phase take place
in the die section. The size of the dispersed phase, i.e., the size (or surface area) of
individual particles, seems to remain roughly the same. The differences in dispersed
phase size between both temperatures were already established in the non-cooled zone.
It is therefore assumed that the screw section also has an important influence on the
morphology development by determining the morphology in which the die section is
entered. Different explanations for the temperature influence could then be possible. Due
to the higher viscosity at low temperature, the stresses in the screw section were also
higher, and thus, the breakup of the dispersed phase could be favoured, which could
explain the apparently smaller dispersed phase. However, the breakup of phases does
not only depend on the viscosity of the continuous phase but also on the viscosity ratio
of the phases [31]. It has also been shown that the viscosity ratio has a large influence
on the shape of the dispersed phase; elongated shapes could only be achieved when the
viscosity of the dispersed phase was lower than the continuous phase [31]. The viscosity
ratio could also be temperature-dependent, e.g., when the rheological properties of the
phases have different temperature dependencies [28], and it, therefore, remains unclear
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how morphology development is actually influenced. Furthermore, in addition to breakup,
coalescence in the screw section should not be neglected [26]: this could also have been
influenced by temperature and thus explain the different sizes of the dispersed phases.

4. Conclusions

The variation of material temperature in a HME process with SPI, had an influence on
the die pressure, the product structure, and the morphology of the extrudates. The temper-
ature increase resulted in lower die pressure, more pronounced anisotropic structures, and
a more deformed shape of the dispersed phase, i.e., a more pointed V-shape. Analysis of
the morphology development for two selected material temperatures throughout the die
section revealed that the underlying multi-phase system is already present in the screw
section. The size of the dispersed phase, i.e., size of individual particles, appears to be
not subjected to changes in the die section; instead, the morphology is mainly influenced
through deformation and orientation. The morphology development occurred mainly in
the tapered transition zone and the non-cooled zone, while only minor changes occurred
in the cooled zone. Tensile stresses of up to 100 kPa were generated in the die section,
which can be attributed to the generation of elongational flow due to the cross-sectional
contraction in the transition zone and acceleration of fluid caused by cooling, respectively.
Comparison of the two simulated process conditions revealed that the screw section must
also have a large influence on the morphology by setting the size of the particles of the
dispersed phase when entering the die section.

Overall, the results of this study suggest that the flow characteristics have a large
influence on morphology development; especially the tensile stresses are assumed to play
a major role. The cross-sectional contraction in the transition zone and the cooling are
responsible for the generation of elongational flows and thus the tensile stresses. These die
parameters, specifically the geometrical dimensions of contraction and the die temperature,
should be considered in future process design. Understanding the flow characteristics could
be helpful in adapting the morphology development to the product design requirements
in HME.
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