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Abstract. We present the first parallel external memory wavelet tree
and matrix construction algorithm. The algorithm’s throughput is nearly
the same as the hard disk drives’ throughput, using six cores. We also
present the fastest (parallel) semi-external construction algorithms for
both wavelet trees and matrices.
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1 Introduction

The wavelet tree [9] is a compact data structure that can answer access, rank, and
select queries for a text over an alphabet [0, σ) in O(lg σ) time, while requiring
only ndlg σe (1 + o(1)) bits of space. The wavelet matrix [3] is an alternative
representation with the same space and time bounds for construction and an-
swering queries. Both are used in many applications, e. g., text indexing [9],
compression [15,10], and as an alternative to fractional cascading [13].

Our Contributions. First, we develop semi-external memory wavelet tree con-
struction algorithms, where semi-external means we keep data that requires
random access in main memory and all other data in external memory. Our
implementations outperform the only previously available implementations by a
factor of up to 1.43 regarding their running time, while using up to 16.6 times
less memory. We then describe parallel fully external wavelet tree construction
algorithms, which almost achieve a throughput that is only 1.19 times slower than
the maximum throughput achievable on the hard disk drive using six threads.
In general, we can achieve a speedup of up to 3.51 using six threads, and are
mostly limited by I/Os. Finally, all algorithms are able to compute the wavelet
matrix with the same space and time requirements, making them the fastest and
first (semi-)external wavelet matrix construction algorithms.

Related Work. To our best knowledge, there exist no other external memory
wavelet tree construction algorithms. The succinct data structure library [8]
contains algorithms that can construct wavelet trees in semi-external memory.
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Still, engineering of efficient wavelet tree and matrix construction algorithms
in other models of computations is an ongoing problem with very recent advances.
First, Fischer et al. [5] introduced bottom-up wavelet construction algorithms
that are very fast and memory efficient in practice, and result in the fastest
sequential and shared memory parallel wavelet tree and matrix construction
algorithms. Also, Kaneta [11] recently presented a practical implementation
of the O

(
ndlg σ/

√
lg ne

)
-construction time algorithm, which uses word packing

techniques in word-RAM, and has been (independently) introduced by Babenko
et al. [2] and Munro et al. [16].

2 Preliminaries

(In this paper, we use the notation introduced by Fischer et al. [5].) Let T =
T [0] . . . T [n−1] be a text of length n over an alphabet Σ = [0, σ). Each character
T [i] can be represented using dlg σe bits. The leftmost bit is the most significant
bit (MSB), hence the least significant bit (LSB) is the rightmost bit. We denote
the binary representation of a character α ∈ Σ that uses dlg σe bits as bits(α).
Whenever we write a binary representation of a value, we indicate it by a subscript
two. The k-th bit (from MSB to LSB) of a character α is denoted by bit(k, α)
for all 0 ≤ k < dlg σe. The bit prefix of size k of α ∈ Σ are the k MSBs, i. e.,
bit prefix(k, α) = (bit(0, α) . . . bit(k − 1, α))2. We interpret sequences of bits as
integer values. Let BV be a bit vector of size n. The operation rank0(BV, i)
returns the number of 0’s in BV[0, i), whereas select0(BV, i) returns the position
of the i-th 0 in BV. We define rank1(BV, i) and select1(BV, i) analogously. Both,
rank and select queries on a bit vector of size n can be answered in O(1) time
using succinct dictionary data structures that require only o(n) bits space [17].

2.1 The Wavelet Tree

Let T be a text of length n over an alphabet [0, σ). The wavelet tree (WT) [9]
of T is a complete and balanced binary tree. Each node of the WT represents
characters in [`, r) ⊆ [0, σ). The root of the WT represents characters in [0, σ),
i. e., all characters. The left (or right) child of a node representing characters
in [`, r) represents the characters in [`, (`+ r)/2) (or [(`+ r)/2, r), respectively).
A node is a leaf if l + 2 ≥ r. The characters in [`, r) at the corresponding
node v are represented using a bit vector BVv such that the i-th bit in BVv is
bit

(
d(v), T[`,r)[i]

)
, where d(v) is the depth of v in the WT, i. e., the number of

edges on the path from the root to v, and T[`,r) denotes the array containing the
characters of T (in the same order) that are in [`, r).

Wavelet trees can be used to generalize access, rank, and select queries from
bit vectors to alphabets of size σ. Answering these queries then requires O(lg σ)
time. To do so, the bit vectors of the WT are augmented by binary rank and
select data structures. For further information on queries, we point to [17].
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(a) Level-wise wavelet tree.
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Fig. 1: The level-wise (a) WT and the WM (b) of T = [ 0, 1, 3, 7, 1, 5, 4, 2, 6, 3 ].
The light gray ( ) arrays contain the characters represented at the corresponding
position in the bit vector and are not a part of the WT and WM. In (a), thick
lines represent the borders of the intervals, which are not stored explicitly. In
(b), thick lines represent the number of zeros, which are stored in the Z-array.

Level-Wise Wavelet Tree. In this paper, we consider level-wise wavelet trees.
Here, we concatenate the bit vectors of all nodes at the same depth. Since we
lose the tree topology, the resulting bit vectors correspond to a level that is
equal to the depth of the concatenated nodes and the concatenated bit vectors
correspond to intervals in the level. We store only a single bit vector BV` for each
level ` ∈ [0, dlg σe), see Figure 1a. This retains the functionality, but reduces
the redundancy for the succinct dictionaries needed to answer rank and select
queries on the bit vectors in constant time [13,14]. We can also easily identify
the interval in which a character is represented at any level:

Observation 1 (Fuentes-Sepúlveda et al. [6]) Given a character T [i] for
i ∈ [0, n) and a level ` ∈ [1, dlg σe) of the WT, the interval pertinent to T [i]
in BV` can be computed by bit prefix(`, T [i]).

Wavelet Matrix. A variant of the wavelet tree, the wavelet matrix (WM), was
introduced in 2011 by Claude [3]. It requires the same space as a WT and has
the same asymptotic running times for access, rank, and select; but in practice
it is often faster than a WT for rank and select queries [3], as it needs less calls
to binary rank/select data structures. For the definition of the WM, we need
additional notations: Reversing the significance of the bits is denoted by reverse,
e. g., reverse((001)2) = (100)2. The bit-reversal permutation of order k (denoted
by ρk) is a permutation of [0, 2k) with ρk(i) = (reverse(bits(i)))2. For example,
ρ2 = (0, 2, 1, 3) = ((00)2, (10)2, (01)2, (11)2). ρk and ρk+1 can be computed from
another, as ρk+1 = (2ρk(0), . . . , 2ρk(2k − 1), 2ρk(0) + 1, . . . , 2ρk(2k − 1) + 1).

In a WM the tree structure is discarded completely and we use the array
Z[0, dlg σe) to store the number of zeros at each level ` in Z[`]. BV0 contains
the MSBs of each character in T in text order (this is the same as the first
level of a WT). For ` ≥ 1, BV` is defined as follows. Assume that a character
α is represented at position i in BV`−1. Then the position of its `-th MSB
in BV` depends on BV`−1[i] in the following way: if BV`−1[i] = 0, bit(`, α)
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is stored at position rank0(BV`−1, i); otherwise (BV`−1[i] = 1), it is stored at
position Z[` − 1] + rank1(BV`−1, i). For an example, see Figure 1b. Similar to
the intervals in the bit vectors of the WT, characters of T form intervals in BV`
of the WM. Again, the intervals at level ` correspond to bit prefixes of size `, but
due to the construction of the WM, we have to consider the reversed bit prefixes:

Observation 2 Given a character T [i] for i ∈ [0, n) and a level ` ∈ [1, dlg σe)
of the WM, reverse(bit prefix(`, T [i])) indicates the interval pertinent to T [i] in
BV`. Namely, BV`[i] = bit[`, S[i]], where S is T stably sorted using the reversed
bit prefixes of length ` of the characters as key.

2.2 The External Memory Model

The external memory model [1] measures the transfer of data between the main
memory of size M (also called internal memory) and a secondary memory (also
called external memory) that is assumed to be of unlimited size and slower
in terms of memory access than the main memory. Also, data can only be
transferred in blocks of size B between main and secondary memory. Transfers of
blocks are called I/O operations (I/Os for short) and are the main cost measure
of the external memory model.

For semi-external algorithms, we assume that we have random access on
either the input or output—but not both. This relaxation allows for algorithms
that cannot be efficiently be expressed in the external memory model. The model
is used in practice, e. g., the succinct data structure library (SDSL) [8] provides
semi-external WT construction algorithms (among others).

Computing the Effective Alphabet. We construct WTs and WMs using an effec-
tive alphabets, i. e., every character of the effective alphabet occurs in the text.
Therefore, we can store bw/ lg σc characters in one w-bit computer word. To
obtain the effective alphabet, we have to scan the text twice. First, we compute
the histogram of all characters of the text, second we compute a transformation
from the alphabet to the effective alphabet, and finally we scan the original text
but store the text in the effective alphabet. We denote the number of blocks that
must be transferred to scan the text by scan(ndlg σe) = ddndlg σe/we/Be.

In main memory, most implementations assume that the text is available
in main memory over the effective alphabet. Our (semi-)external WT and WM
construction algorithms mimic the behavior by assuming that the text is available
in secondary memory over the effective alphabet. If that is not the case, all our
algorithms require additional 2dn/Be + scan(ndlg σe) I/Os and O(n) time to
compute the histogram and store the text over an effective alphabet.

3 Construction in Semi-External Memory

In this section, we briefly discuss how to adapt the fast WT and WM construction
algorithms presented by Fischer et al. [5] to the semi-external memory model.
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To this end, we first discuss the bottom-up construction, the new approach to
compute the WT and WM [5]. Here, we construct the histogram of the text, and
then use that histogram to compute histograms for all other bit prefixes without
another text access. Generally speaking, if we have the histogram of length-` bit
prefixes, we can simply compute the histogram of the bit prefixes of length `− 1
by ignoring the last bit of the current prefix, e. g., the number of characters with
bit prefix (01)2 is the total number of characters with bit prefixes (010)2 and
(011)2, since both share the bit prefix (01)2. Using these histograms, we can
compute the interval starting positions for all levels of the WT and WM.

Now, we have a look at the space requirements of this technique. The his-
togram of all characters requires σdlg ne bits of space. We can always reuse that
space for any histograms at a previous levels `, which require dσ lg ne/2dlg σe−`
bits of space. Storing the borders requires the same space as storing the his-
togram. Note that we do not require a histogram for the first level, and we
also do not require the starting positions resulting from the histogram of all
characters. Since we require at most σdlg ne/2 bits of space for the histogram
(of the last level) and the starting positions, and we can reuse the space when
computing both for the following level, we require σdlg ne bits of space for both
the histogram and the starting positions in total. If we require access to all
histograms and cannot reuse the space, we need 2dσ lg ne bits of space.

Random Access on the Output. Our first semi-external WT construction algo-
rithm is the semi-external variant of the (single scan) prefix counting WT con-
struction algorithm [5]. Here, we first compute the histogram for all characters in
T and compute all histograms and interval borders without another scan of the
text in O(n) time, scan(ndlg σe) I/Os, and σdlg ne bits space, as described above.
Next, we scan the text once again and fill all the bit vectors accordingly using the
precomputed borders, i. e., for each symbol, we look at the border for each of the
symbol’s bit prefixes and set the corresponding bit in each bit vector accordingly
(one bit per level) and then we update the borders. This requires O(n lg σ) time
in total for all levels. Setting the bits in the bit vectors still requires random
access. Hence, we only read the text from the secondary memory. The number
of I/Os is 2 scan(ndlg σe). In terms of main memory, we need ndlg σe bits for the
bit vectors of the WT and σdlog ne bits for histograms that are later used for the
starting positions of the intervals. We call this semi-external algorithm se.pc.

This algorithm can also be parallelized by parallelizing the computation of
the initial histogram and writing the bit vectors for each level in parallel, which
scales up to dlg σe threads. We denote this algorithm by se.par.pc.

Random Access on the Input. Next, we consider a modified and semi-external
version of the prefix sorting WT construction algorithm [5]. Here, each level of
the WT is written in sequential order, which lets us efficiently stream the bit
vectors of the WT. Again, we precompute all borders of the intervals. Then,
for each level `, we use counting sort with the length-` bit prefixes as keys to
sort the text, such that we can fill the bit vector from left to right. Counting
sort requires O(n) time, given the borders array, hence the running time does
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not differ from se.pc. Since we require a stable sort, we cannot sort the text in
place [18] and thus need additional ndlg σe bits of space. We write the output
to disk exactly once and each level is written sequentially, therefore the number
of I/Os is scan(ndlg σe). We call this algorithm se.ps. To overcome the space
requirements by sorting, we use a new in-place algorithm that rearranges the
text as required by the WT in O(n) time. We decompose the text into Θ(

√
n)

blocks of size Θ(
√
n) and use two buffers of the same size. Then, we separate

the text using one buffer for symbols corresponding to a one bit and the other
for the other bits. Whenever a buffer is full, we can write it to a part of the
text, because the part is already written to the buffers. In the end, we have to
rearrange the blocks (and shift some of them). We denote this variant by se.ps.ip.
It requires less space, but is one of the slowest algorithms (see §5).

Lemma 1. The semi-external algorithms se.pc, se.ps, and se.ps.ip compute the
WT of a text of length n over an alphabet of size σ in O(n lg σ) time using
O(scan(ndlg σe)) I/Os, and ndlg σe+σdlg ne (se.pc) and 2ndlg σe+σdlg ne (se.ps)
bits of main memory including input and output, respectively.

Adaption to the Wavelet Matrix. Our semi-external memory WT construction
algorithms can easily be extended to compute the WM instead. To this end, we
only have to compute the borders in bit reversal permutation order and thus
change the order of the intervals within the bit vectors of each level [5]. Also,
this change does not affect the running time or the memory requirement; it only
affects the content of the border array and subsequently the resulting bit vectors.

4 Wavelet Tree Construction in External Memory

If we replace the sorting in se.ps with any external memory sorting algorithm we
obtain an external memory version of se.ps. However, sorting in external memory
is (in practice) expensive. Now, we present dedicated external memory WT and
WM construction algorithms. For the sequential algorithm we first explain how
to build the WM, and then show how to adapt the algorithm to produce the WT.

4.1 Sequential Construction in External Memory

Each level ` of the WM can be interpreted as a reordered version T` of the
original input text T , where the first level represents T0 = T , and each text T`
with ` > 0 can be obtained by stable sorting the text T`−1 of the previous level
by the (`− 1)-th bit. This property of the WM has been originally described as
all zeros of the level go left, and all the ones go right [3]. If we know T`, then we
can easily build BV` by taking the `-th bit of each symbol of T` in left-to-right
order. Thus, we can construct the entire WM by simply repeatedly sorting the
text and extracting the bit vector of one level after each sort. Conveniently, the
sorting key in each iteration is only a single bit. Therefore, we only have to
create a binary partition of the text, where L` contains all the zeros of T`, and
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T0 = T = 0 1 3 7 1 5 4 2 6 3 −→
extract
bit 0

BV0= 0 0 0 1 0 1 1 0 1 0

stable sort
T0 by bit 0

y
T1 = L0 · R0 = 0 1 3 1 2 3 · 7 5 4 6 −→

extract
bit 1

BV1= 0 0 1 0 1 1 1 0 0 1

stable sort
T1 by bit 1

y
T2 = L1 · R1 = 0 1 1 5 6 · 3 2 3 7 6 −→

extract
bit 2

BV2= 0 0 1 0 1 1 1 0 0 1

Fig. 2: Constructing the WM for our running example by partitioning the text
and extraction of bits. The resulting WM can also be seen in Fig. 1b.

R` contains all the ones (retaining their order). Clearly, we have T`+1 = L` ·R`.
In the external memory setting we can realize the partitioning by performing a
single scan over T` and appending all characters α with bit(`, α) = 0 to L` and
all other characters to R`. Also, we can simultaneously write the bit vector BV`
by appending bit(`, α) to BV`. Note that after the scan no additional copying is
needed to get T`+1 from L` and R`, as we can simply scan directly over L` and
R` in the next iteration, see Fig. 2. The number Z[`] of zeros in each level is |L`|.

Adaptation to the Wavelet Tree. Our external WM construction algorithm can
easily be adapted to construct the WT instead. As described in §2, the bit vector
belonging to any node of the WT always occurs in the WM, too. Only the order
of these intervals is different. Our L` and R` buffers therefore already contain all
the correct nodes, but in wrong order. It is easy to see that L` contains exactly
all of the left children, whereas R` contains the right children. Clearly, instead of
defining T`+1 = L` ·R` at the end of each scan, we can define T`+1 by interleaving
L` and R` such that left children and right children alternate. This way we will
continue with the correct WT order in the next scan. To this end, we only need to
know the size of each node, allowing us to always read the appropriate number of
characters from L` or R`. Hence, we simply determine the last level’s histogram
during the initial scan. After the scan we can compute all histograms (see §2).
We simply keep the histograms of all levels in main memory.

Analysis. We will first look at the I/O complexity of the WT/WM construction
algorithm. The Z[`] values have size dlg nedlg σe bits and are insignificant in
terms of I/O complexity. Each reordered text T` has size ndlg σe bits, which can
be stored using scan(ndlg σe) blocks in external memory. We read each of these
texts exactly once, and write all texts except for the initial text exactly once as
well, resulting in (2dlg σe − 1) · scan(ndlg σe) I/Os. The resulting WM or WT
is written exactly once using another scan(ndlg σe) I/Os. All used structures in
external memory are both written and read exclusively sequentially.

Now, we determine the time complexity and main memory bounds of our
algorithm. Clearly, each of the dlg σe scans takes O(n) time. Thus the overall



8 J. Ellert and F. Kurpicz

Thread 1: b0 b3 b6

Thread 2: b1 b4

Thread 3: b2 b5

Fig. 3: Domain decomposition for a text T = b0 b1 b2 b3 b4 b5 b6 split into

seven segments. Here, means loading bi from external memory, means
computing the local tree for bi, and means writing the local tree of bi to
external memory. Only one of the three threads is allowed to read/write at a
time, as indicated by the dashed synchronization barriers. (Best viewed in color.)

time for the WM construction is O(n lg σ). The WT construction needs additional
O(σ) time to compute the histograms of all levels. In terms of space, the WM
construction is fully external and only needs O(1) bits of main memory, since
all data structures are kept in external memory. For the WT we need 2dσ lg ne
additional bits to store the histograms.

Lemma 2. The fully external algorithm ext.ps computes the WT of a text of
length n over an alphabet of size σ in O(n lg σ + σ) time using a total of 2dlg σe ·
scan(ndlg σe) I/Os and 2dσ lg ne bits of main memory including input and output.
For the WM the time is O(n lg σ) and only O(1) bits of main memory are needed.

4.2 Parallel Construction in External Memory

For a more generic approach, we present a meta-algorithm based on the internal
memory domain decomposition, see, e. g., [5,7,12]. Let p be the number of
available threads, then in the internal memory setting we split the text into p
segments, and compute the WT of each segment on a different thread, using a
sequential construction algorithm of our choice. After that, the so called local
trees can be merged into one global tree. In the external memory setting the
length of the segments depends on the amount M of main memory. Assume that
the sequential construction algorithm needs s(n, σ) bits of memory for a text
of length n over the alphabet [0, σ). Then, the length k of each segment must
satisfy s(k, σ) ≤M/p. This way all threads can work simultaneously.

Each thread runs a simple loop: load the next text segment from external
memory into internal memory, compute the WT of the segment, and write it
back to external memory. Only one thread is allowed to read/write at a time (see
Fig. 3). In terms of external memory layout, we store the local trees in text order,
and each local tree as the concatenation of its levels (see LT in Fig. 4). When
merging the local trees into the global tree, we simply perform a single scan over
the local trees and zip the corresponding intervals together. Since the length of
each interval must be known in order to copy the right amount of bits, we need
the histograms of all text parts during the merge phase. However, many of the
fastest sequential WT construction algorithms either build the histograms or can
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GT

LT

WT of part b0
BV0 BV1 BV2

WT of part b1
BV0 BV1 BV2

WT of part b2
BV0 BV1 BV2

BV0 BV1 BV2

Fig. 4: External memory layout of local (LT) and global (GT) WTs for T = b0b1b2.
Best viewed in color, as colors indicate parts of local trees that are zipped together.

easily be modified to do so [5]. We are not using parallelism during the merge
phase, since we are only copying bit vectors. In practice we are limited by the
speed of the external memory, even when using only a single thread. Clearly, if
we use a WM algorithm as a subroutine, our algorithm produces the WM instead.

Analysis. We will first look at the I/O complexity of our meta-algorithm. The
input text, the concatenation of all local trees as well as the global tree are
of size ndlg σe bits each, which can be stored using scan(ndlg σe) blocks in ex-
ternal memory. We read the input text and write the local trees once, taking
2 scan(ndlg σe) sequential I/Os. Reading all local trees sequentially during the
merge phase causes another scan(ndlg σe) I/Os. When writing the global tree
we jump to a different external memory address for each interval of a local tree.
Therefore, we need up to σdn/ke random I/Os in addition to the scan(ndlg σe)
I/Os that are generally needed to write the local tree. Thus, the total number of
I/Os is bound by 4 scan(ndlg σe) +σdn/ke. In practice we use the entire internal
memory as a write buffer while merging the local trees. This way we maximize
the length of sequential writes and keep random I/Os at a minimum.

Now we determine the time complexity of our algorithm as well as the internal
memory bounds. Let t(n, σ) and s(n, σ) be the time and the bits of memory
used by the sequential construction algorithm that we deploy as a subroutine.
We know that at any given point in time there is either exactly one processor
performing I/Os, or all threads are computing local trees. The total I/O time
(including the merge phase) is bound by O(n+ σdn/ke). The time during which
all threads are computing local trees is bound by dn/pke · t(k, σ). In terms of
main memory we use p · s(k, σ) bits for up to p simultaneous executions of our
internal memory construction algorithm over text segments of size k. Additional
O(dn/keσ lg n) bits are needed to store all histograms.

Lemma 3. Let t(n, σ) and s(n, σ) be the time and space used by an internal
memory WT construction algorithm, and let p, k ∈ N+. The external memory
algorithm ext.dd computes the WT of a text of length n over an alphabet of
size σ using 4 scan(ndlg σe) + σdn/ke I/Os. If p threads are available, it takes
O(n+ σdn/ke) + dn/pke · t(k, σ) time and O(dn/keσ lg n) + p · s(k, σ) bits of
internal memory including input and output.
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Fig. 5: Throughput and main memory peak of semi-external WT construction.

5 Experiments

For our experiments, we used a machine equipped with 16 GiB RAM, eight Hitachi
HUA72302 HDDs each with a capacity of 1.8 TiB and two Samsung SSD 850
EVO SSDs each with a capacity of 465.8 GiB, and an Intel Xeon CPU i7-6800K
(6 cores with frequency up to 3.4 GHz and cache sizes: 32 kB L1D and L1I, 256kB
L2, and 15360 kB L3). The operating system is Ubuntu 16.04 (64-bit, Linux
kernel 4.4). Our external memory algorithms use the STXXL [4] development
snapshot (26-09-2017). We compiled all source code using g++ 7.4 with flags -O3
and -march=native, and express parallelism using OpenMP 4.5. We test our
algorithms using both (a) four HDDs and (b) two SSDs. Before starting the timer,
we compute the text over the effective alphabet and store it on disk, which is the
input. Running times are the median of three executions. The implementations
used for the evaluation are available from https://github.com/kurpicz/pwm.

We compare the following algorithms: se.pc, se.par.pc, se.ps, and se.ps.ip
are the semi-external memory WT and WM algorithms described in §3, seq.sdsl
is the semi-external memory algorithm contained in the SDSL, and seq.pc
the fastest main memory WT algorithm [5], which we use as baseline. Our
external (and parallel) WT and WM algorithms are the only external construction
algorithms. Hence, we cannot compare ext.ps and ext.dd (see §4) with other
algorithms in the same model. The construction times for WTs and WMs are
nearly identical in both models.

https://github.com/kurpicz/pwm
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Fig. 6: Throughput and main memory peak of semi-external WM construction.
Same experiment for the WM as reported in Fig. 5 for the WT.

We use the following real world inputs of sizes up to 128 GiB. When needing
a smaller size, we consider a prefix of that size.

DNA (σ = 4) is a collection of DNA data from the 1000 Genomes Project
(http://internationalgenome.org/data),

CC (σ = 242) contains websites (without HTML tags) that have been crawled
by the Common Crawl corpus (http://commoncrawl.org), and

Wiki (σ = 213) are recent Wikipedia dumps containing XML files that are
available from (https://dumps.wikimedia.org).

Semi-External Memory Construction Algorithms. An overview of the throughput
and the required main memory of our semi-external WT construction algorithms
can be found in Fig. 5. The results of the semi-external WM construction
algorithms can be found in Fig. 6. Not plotted data means that the algorithm
could not process the input size with the given main memory. The main memory
algorithm seq.pc is used as base line and—as expected—always fastest sequential
algorithm. The fastest semi-external memory algorithm on all inputs is se.ps.
However, se.ps requires the most main memory—even more than seq.pc. The
second fastest algorithm is se.pc. In addition, it is also the most memory efficient
one, requiring less than all other tested algorithms. On DNA, se.ps.ip achieves
a similar throughput to se.pc and is faster than seq.sdsl. On all other inputs
se.ps.ip and seq.sdsl are always the slowest. Still, on all instances except for

http://internationalgenome.org/data
http://commoncrawl.org
https://dumps.wikimedia.org
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Fig. 7: Throughput (first row) and I/Os (second row) of external WT algorithms.
Here, parallel algorithms uses all six threads. Throughput of ext.dd using 20 GiB
input per thread (last row).

DNA, seq.sdsl requires five times more memory than se.pc. On DNA it even
requires 16.6 times as much. The memory requirements of our semi-external
algorithms per byte input is decreasing with larger inputs, as we use fixed-size
buffers for our algorithms. When given inputs of size 4 GiB or more, seq.sdsl
has to move the system swap, which explains the decrease in required memory.
Therefore, se.pc is the fastest and most memory efficient semi-external memory
algorithm. The throughput on SSDs is slightly better than on HDDs, except for
se.par.pc, which has higher throughput on HDDs, which we cannot explain. It is
also roughly twice as fast as se.pc, using slightly more memory, except on DNA
(as expected).

External Memory Construction Algorithms. In Fig. 7 we show the throughput
(first row) and I/Os (second row) of our external memory algorithms computing
the WT. We show the same experiments for the WM computation in Fig. 8.
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Fig. 8: Throughput (first row) and I/Os (second row) of external WT algorithms.
Here, parallel algorithms uses all six threads. Throughput of ext.dd using 20 GiB
input per thread (last row). Same experiment for the WM as reported in Fig. 7
for the WT.

We also give the maximum throughput (hdd-max and ssd-max) we achieved for
reading the text and the WT once and writing the WT twice, which are exactly
the external memory operations conducted by ext.dd. All algorithms have a
nearly constant throughput, which is independent of the input size. The same
is true for I/Os (both read and write). We also allow ext.dd to read and write
concurrently (conc. R/W), which increases the throughput for SSDs on CC for
inputs larger than 16 GiB, inputs of size up to 32 GiB on Wiki, and in general on
DNA. For HDDs, it reduces the throughput on all text sizes by 4.55 % (DNA)
to 11.12 % (Wiki). In the last row of Fig. 7 we show a weak scaling experiment
of ext.dd. Using one thread, ext.dd is faster than ext.ps by a factor between 1.64
(DNA) to 2.14 (CC). Hence it is the fastest external memory WT construction
algorithm. It also scales reasonably well, achieving a speedup of up to 3.51 (Wiki
with conc. R/W). Here, concurrent read and write only increases throughput
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Table 1: Characteristics of squential algorithms proposed in this paper.

Name Time I/Os Memory in Bits

se.pc O(n lg σ) O(scan(ndlg σe)) ndlg σe+ σdlgne
se.ps O(n lg σ) O(scan(ndlg σe)) 2ndlg σe+ σdlgne
ext.ps (computing WT) O(n lg σ + σ) 2dlg σe · scan(ndlg σe) 2σdlgne
ext.ps (computing WM) O(n lg σ) 2dlg σe · scan(ndlg σe) O(1)

on Wiki. On DNA, ext.dd does only scale for up to two threads, which is as
expected as the number of threads that can efficiently be used is limited by the
size of the alphabet. Also, we see using six threads ext.dd’s throughput on HDDs
is between 17.3 MiB/s (CC) and 38.9 MiB/s (DNA) less than the maximum
throughput. Using SSDs, its throughput is between 157.3 MiB/s (Wiki) and
268.0 MiB/s (DNA).

On Shared Memory Wavelet Tree Construction. We have not included the
throughput of the currently fastest parallel shared internal memory wavelet tree
construction algorithm dd.pc [5] in any of the plots, due to the huge difference
in speed (compared with our semi-external and external memory construction
algorithms). For completeness, we now list the throughput of this algorithm
on the same hardware and running on six threads. Note that we could only
run dd.pc for inputs up to size 4 GiB, as a result of the memory usage of the
algorithm.

On DNA, the maximum throughput is 1209.32 MiB/s, on CC it is 431.70 MiB/s,
and on Wiki it is 416.26 MiB/s. All these throughputs are more than the theo-
retical best result an external memory algorithm can achieve on this machine.

6 Conclusion

We presented the fastest semi-external memory WT and WM construction al-
gorithm and the first parallel semi-external memory WT and WM construction
algorithm based on the main memory algorithms by Fischer et al. [5]. Then,
we showed the first external memory WT and WM construction algorithm. A
summary of the characteristics of these sequential algorithms is given in Table 1.
In addition, we also parallelized the external memory algorithm. On HDDs,
the parallel version of our external memory WT and WM construction achieves
nearly perfect throughput, compared to the throughput that we obtain when we
read and write the same amount that is read and written during the algorithm.
It remains an open problem if there is a parallel algorithm that can obtain the
same relative throughput on SSDs.
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