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Abstract— One of the key challenges in System of Systems 
Engineering is the validation of System of Systems (SoS). In a 
SoS the interfaces between the systems need to be defined as 
early as possible in the product development process. Contracts 
may help to define and specify interfaces in an early phase of the 
product development and support the validation of interfaces. 
This contribution applies existing methods, analysis and 
synthesis activities for the contract-based validation of 
interfaces between vehicle and infrastructure as an exemplary 
SoS. Hereby, Model-Based Systems Engineering supports the 
use of contract-based validation with specific methods and 
activities. Three different virtual and mixed physical-virtual 
validation environments - each for the Vehicle-to-Everything 
use case of an intersection scenario - enable the verification of 
the applied methods and activities. Two of these are virtual 
containing MATLAB and MATLAB-Network Simulator 3 Co-
Simulation, respectively. The third is a mixed physical-virtual 
validation environment, including a driving robot. It realizes the 
exchange of information between a BMW i3 on a roller test 
bench and the vehicle simulation environment in CarMaker. 

Keywords—System of Systems, interface, validation, 
Vehicle-to-Everything (V2X), contract-based design 

I. INTRODUCTION 
The National Platform Future of Mobility in Germany 
describes the need for standardization, specification and 
standard tests for interfaces [1]. Regarding mobility, 
consisting of systems like the vehicle and the traffic light, as 
a System of Systems (SoS), the question arises of how to cope 
with interfaces of these systems within the SoS. This 
independent existence of constituent systems (CS), originally 
designed for different contexts as well as other specific 
characteristics of the SoS, impact the interfaces [2, 3]. 
Moreover, the validation, as one of the key challenges of SoS 
Engineering, needs to be taken into account. Based on already 
existing methods and activities, the main focus of this paper 
lies on contracts in SoS interfaces and the validation of 
interfaces in three specific validation environments.  
 
Section II describes the main contributions in the areas of 
focus. It leads to the research gap of using contracts with the 
support of Model-Based Systems Engineering (MBSE) in the 
context of validation of interfaces and results in two research 
questions. 

II. FUNDAMENTALS 
According to the INCOSE Systems Engineering Vision 2025, 
in the system design for SoS, engineers need to develop and 
validate even more interconnected systems [4]. They have 
diverse stakeholders with increasing demands for services 
and information [4].  
In the following sections, the three parts: (A) “Model-Based 
Systems Engineering”, (B) “Validation of interfaces” and (C) 
“Contract-based design” build the basis of this contribution 
and are therefore introduced. 

A. Model-Based Systems Engineering for interfaces in SoS 

Systems Engineering is an "interdisciplinary approach 
governing the total technical and managerial effort required 
to transform a set of customer needs, expectations, and 
constraints into a solution and to support that solution 
throughout its life" [5]. The formalized use of models to 
improve traceability and consistency can be achieved in 
MBSE. The three pillars of MBSE, language, method and 
tool, need to be considered in every usage [6]. The following 
approach is realized in the tool Cameo Systems Modeler in 
the Systems Modeling Language using different methods. 
Focusing on the three diagrams Block Definition (BDD), 
Internal Block Definition (IBD) and Views and Viewpoints 
Diagram, the modeled requirements and contracts are linked 
to different hierarchical system layers. 
 
Various publications cope with the handling of interfaces in 
SoS with MBSE. The Unified Architecture Framework is 
based on the Object Management Group and provides 
different views to understand the relationship between 
organizations and systems. It is based on the Department of 
Defense (DoDAF) and British Ministry Department 
Architecture Framework (MODAF). It uses the views: 
metadata, strategic, operational, services, personnel, 
resource, security, project, standards and resources. [7] 
Eichmann et al. focus on the specific aspect of stakeholders 
and requirements of SoS in the understanding of MBSE. This 
results in a methodology for stakeholder needs and 
requirements. [8]  
 
However, existent approaches in the understanding of MBSE 
are not focusing on the validation of interfaces for SoS by 
using validation environments.  

B. Validation of SoS interfaces 

Honour analyzes the issues with verification and validation 
of SoS. He points out in validation of SoS the need of 
"Interface certification testing" [9]. Different approaches 
focus on activities like using matrices and rules for the 
validation of SoS.   
Luna et al. propose the sequencing of Design Structure 
Matrices (DSM) and the use of graph theory. These optimize 
the information flows and path identifications. In addition, 
they introduce interface layers to support the integration of 
systems to analyze emergence effects within a SoS. [10] 
The application of validation rules are introduced in Silingas 
& Butleris for software requirements in UML diagrams [11]. 
They describe the reuse of validation rules in the Object 
Constraint Language (OCL) to validate requirement models 
[11]. Companies may include their specific validation rules 
to make sure the interface complies with it. This is especially 
beneficial to SoS with multiple companies involved. 
 



Other contributions develop frameworks, sets and methods to 
apply in the context of interfaces and validation of SoS. The 
general need for relations in SoS Engineering was identified 
in an online survey with 113 participants [12].  
An ontology framework and process set is derived in the 
research project COMPASS - Comprehensive Modelling for 
Advanced Systems of Systems [13]. A validation view 
includes i.a. a constraint validation view. The ontology 
contains rules, which can be set for requirement types, goals, 
capabilities and requirements. [14, 15] 
Bilal et al. propose an interface and interaction model for SoS 
to manage the interaction between subsystems. The interfaces 
transport a flow of data, energy or material and the models 
include effects, constraints and rules. [16] 
Lollini et al. describe different viewpoints of a SoS’s 
structure and behaviors. The authors focused exclusively on 
SysML stereotypes and suggested eleven concepts, each with 
ten to over 45 stereotypes. [17] 
 
In order to plan validation activities as early as possible [18] 
and consider involved systems, the IPEK-X-in-the-Loop 
(IPEK-XiL) approach [19] can be applied. The `X' hereby 
represents the System-under-Investigation, which is in focus 
of a validation activity [20]. A validation environment is a 
specification of an operating system for validation with 
methods and resource systems [20]. It contains at least one 
combination of product and validation objective in a certain 
point in time of the product life cycle phase [20]. The 
validation environment of a SoS shows significant amounts 
of evolutionary development, operational independence and 
managerial independence [21], which are key characteristics 
of a SoS summarized by Honour [9]. 
 
Few contributions consider contracts in validating interfaces. 
Furthermore, our research applies concrete test cases in 
different validation environments. 

C. Contract-based design 

Contract-based design is a well-known Software Engineering 
methodology, which is widely used in design of component-
based, safety critical real-time embedded and software 
systems [22].  
A contract consists of “formalizations of the conditions for 
correctness of element integration […], and for lower level of 
abstraction to be consistent with the higher ones […]” [23]. 
Dragomir et al. define a contract for a component by the 
pairing of an assumption with a guarantee [24]. The 
assumption models an abstraction of the component's 
environment behavior and the guarantee models an 
abstraction of the component's behavior given that the 
environment behaves according to the assumption [24]. In the 
following contribution, the component refers to an interface 
in SoS.  
Benveniste et al. state the need of contracts to handle complex 
systems, complex OEM supplier chains, addressing 
certification and the management of requirements and risks 
[25]. Böhm et al. describe the challenges in the development 
and evaluation of collaborative systems using simulation 
[26]. They differentiate between design and run time, as well 
as different levels of abstractions from business level to 
contract level [26]. 

Bryans et al. propose contract patterns for System of Systems 
[27]. Faldik et al. apply it for modeling interface contract 
behavior [28]. The authors use interface automata to analyze 
the compatibility between different contracts [29, 28].  
 
In most cases, existing approaches tend to omit contracts or 
precise details of how to include them in the validation of 
interfaces for SoS. Hence, this contribution applies contract-
based methods and activities with the support of MBSE to 
validate Vehicle-to-Everything (V2X) use cases. 

III. RESEARCH QUESTIONS 
The goal of this contribution is to structure the validation of 
interfaces in SoS with the support of MBSE and to apply and 
validate methods and activities. The following research 
questions are answered: 

I. How can contracts modeled in SysML be integrated 
in the validation of interfaces between vehicle and 
infrastructure as an exemplary SoS? 

II. How can existing contract-based methods, analysis- 
and synthesis activities be applied in the validation 
of interfaces for specific V2I scenarios? 

IV. METHODS AND ACTIVITIES FOR VALIDATION OF 
INTERFACES IN SOS 

Section A describes an approach to structure interfaces for the 
validation of SoS with contracts. Section B applies selected 
analysis and synthesis activities in the mentioned area. 

A. Contract-based structure for interface validation  

In order to integrate contracts in the validation of interfaces, 
interfaces between constituent systems (CS) are identified 
(see Fig. 1). Subsequently, certain requirements and contracts 
are derived for each identified interface. The structure is 
based on the connection of the three architectures functional 
(FA), logical (LA) and physical (PA) [30, 31]. The contracts 
impact certain functions in the functional architecture. These 
functions relate to hardware and software in a logical and 
physical architecture.  
 
 

 
Fig. 1: Structure for the integration of contracts in the validation of interfaces 
for V2X 

Deduced from the modelled architectures, the validation 
environment is built. Iterations enable the specification and 
evaluation of the interface with its architectures and 



validation environment(s). Using the pull principle of 
validation, the validation environment is not just built based 
on requirements and contracts. It also defines, identifies and 
adjusts certain requirements and contracts. The pull principle 
describes the development of the product with its validation 
as the starting point, by "pulling" validation elements into all 
the stages of the product design. Furthermore, the structure 
considers previous generations of elements like contracts, 
validation environments or products. This is described in the 
PGE - Product Generation Engineering (cf. [32]). 
 
Faldik et al. propose the use of contract patterns in the context 
of SoS [28]. Different views on contracts allow their 
specification depending on their purposes [28]. 
Considering the SoS characteristics, the contract pattern is 
composed of several viewpoints, which are shown in TABLE 
I. In it, five viewpoints are listed for a contract between the 
CS Vehicle, which contains a BMWi3 and the CS Driver. The 
CS Driver contains a driving robot, an On-Board Unit (OBU) 
and an algorithm which transforms environment and vehicle 
information in set pedal positions. In the Contract Protocol 
Viewpoint, contract rules state the restrictions of every 
function, related to the contract of the interface in focus.   
 

TABLE I.    EXAMPLES OF CONTRACT PATTERN VIEWPOINTS 
Name Purpose of View 

Contractual SoS 
Definition Viewpoint 
(CSDV) 

Contract CS Vehicle-CS Driver 

Contract Conformance 
Viewpoint (CCV) 

This contract constrains the interface between 
CS Vehicle and CS Driver. The contract is 
fulfilled, only when both interface functions 
are satisfied. 

Contract Connections 
Viewpoint (CConnV) 

Interface function 1 is achieved by Driver 
OBU and Vehicle OBU; Interface function 2 
is achieved by driving robot and pedal 
system. 

Contract Definition 
Viewpoint (CDV) 

Speed control: BUS sends out actual vehicle 
velocity at a fixed frequency and Driver OBU 
controls the driving robot using the velocity 
to a new velocity. 
State variables: Frequency for sending and 
receiving 
State invariants: Velocity in every cycle 

Contract Protocol 
Viewpoint (CPV) 

Contract rules for Function 1:  
a) Vehicle should send out the actual velocity 
in BUS. 
b) Driver OBU receives and processes the 
velocity every 400ms. 
c) reading frequency > sending frequency 

 
An exemplary contract can be based on the Service Level 
Requirement with environmental factors like the Service 
Level Latency of 100ms (cf. [33]). This is taken as the 
assumption for the interface between vehicle and Road Side 
Unit (RSU), for the use case of an intersection movement 
assist. The guarantee states a minimal communication range 
of 100m and a reliability of 90% (cf. [33]).  
Interface oriented layer models like OSI layers [34] allow the 
specification of requirements and contracts for interfaces 
more deeply. The number of layers necessary for modelling 
an interface depends on the interface with its contracts. This 
affects the design or selection of a validation environment, 
e.g. an explicit parametrization of the datalink layer 
according to 802.11p is necessary to test package transport 
loss rates between the communications of two RSUs. The 

structure allows to adress contracts in different interface 
layers modeled in FA, LA and PA.  
 
An exemplary modeling of the structure with CP, LA and a 
PA of a mixed physical-virtual validation environment is 
shown in Fig 2.  
 

 
Fig. 2. Model of a XiL validation environment linked to an IBD model of the 
environment and a contract view pattern in a Views and Viewpoints Diagram 

Fig. 2 visualizes involved systems in the validation. At the 
top is a model of the mixed physical-virtual validation 
environment of an IPEK-XiL-Architecture. The System-
under-Investigation of the CS Driver and the interface to the 
CS Vehicle is connected to physical and virtual systems. The 
interface between CS Driver and CS Vehicle is modelled in 
an IBD and shown in the LA. Hereby, the LA does not only 
link CSs but also the subsystems involved in the interface 
functionalities. A contract for the information and energy 
flow between CS Driver and CS Vehicle is defined. The 
contract for the interface is further specified in five contract 
viewpoints in Fig. 2 (yellow boxes). The Contract 
Connections Viewpoint is shown as an example and the 
detailed contract viewpoints are in TABLE I. The contract 
impacts and is impacted by the interface in the IPEK-XiL-
Architecture.   
 
Based on the structure described above, analysis and 
synthesis activities are subsequently applied. 

B. Analysis and synthesis activities in the context of 
interface validation 

Analysis is a systematic investigation of an initial situation or 
result [35]. In contrast, synthesis elaborates and depicts 
solution alternatives for goals, based on an analysis [35]. The 
authors apply the activities “usage of validation rules”, 
“usage of time-based DSM” and “analysis of interfaces for 
selecting and developing a suitable validation environment”. 
 
Different modeling tools enable the use of validation rules to 
verify models. The rules can be described in languages like 
OCL 2.0 and are bundled in validation suits. In the example 
of interfaces for SoS, company specific validation rules may 
be set up to verify interface models. In Fig. 3, the rules are 



applied with constraints on classifiers, so every (sub)system 
complies with the frequency range according to the European 
Telecommunications Standards Institute (ETSI) standard EN 
302663 [36]. The standard describes the frequency range for 
cooperative Intelligent Transport Systems within the 
European Union for the intended usage of road safety related 
applications [36]. In the example, the contract is violated due 
to the frequency of the RSU of 5.906 MHz, which is higher 
than the allowed range between 5.875 and 5.905 MHz (cf. 
[36]). Despite technical rules, validation rules can restrict the 
model in specific architectures. For instance, the need to 
model a contract can be set as a rule if two CSs are connected. 
 

 

 
Fig. 3. Applied validation rule for frequency sending and receiving 

The Design Structure Matrix (DSM) can show the 
interdependencies of elements like systems and interfaces 
within a SoS. It helps to analyze the impact between different 
interfaces. An interface-related DSM is generated with the 
following process:   

1. Firstly, a DSM with functions according to FA or 
systems according to LA, PA are created.  

2. Then the interdependencies of systems are analyzed 
(e.g. with a Sequence Diagram), considering 
information, energy and matter flow parameters like 
voltage or time.  

3. The interdependencies of interfaces are further 
considered with parameter specific DSM based on 
the function involved. An exemplary time-based 
DSM, used for delay analysis of a speed control 
function, is used in the validation in section V-B 
TABLE II. 

 
Different validation environments are suitable for different 
validation activities. The validation environment can be 
selected by using a criteria system, which is adapted from 
previous work in the area of distributed validation [29] and 
vehicle communication [37]. The criteria system consists of 
the five perspectives: technical, functional, organizational, 
user and economic. The criteria are defined based on test 
cases, e.g. in the V2X test case described in section V-A, 22 
criteria are used. For IEEE 802.11p specific test cases, the 
Received Signal Strength Indicator is necessary to measure 
the physical layer and can be considered as performance 
criteria [38]. Moreover, the content of the contracts can be 
extracted as criteria in order to select a validation 
environment. For example, the data rate of the IEEE 802.11p 
standard and the latency between CSs can be part of the 
technical perspective in the criteria system.  
 
Depending on the validation goal and the criteria, different 
environments are applicable. 

V. VALIDATION OF METHODS AND ACTIVITIES 
The validation is achieved with three validation environments 
in the context of IPEK-XiL validation. 

The validation of an interface, either between two CSs or 
between their subsystems as Systems-under-Investigation 
(the "X" of XiL), considers a flexible modular kit 
development approach.   

A. Virtual validation environment 

The Vehicle-to-Infrastructure (V2I) scenario involves the 
interaction of the two constituent systems vehicle and 
infrastructure (including traffic lights with RSU). Contracts 
constraint and specify the behavior of their interfaces. In the 
scenario, the wireless communication must comply with 
certain contracts, which are based on standards like IEEE 
802.11p or LTE-5G. In the performed V2I scenario, a vehicle 
is driving to an intersection and it receives controlled area 
messages of the traffic light state within a range of 100m. By 
using the tool in-build propagation delay model and 
propagation loss model, the MATLAB-NS3 Co-Simulation 
simulates the interface. Depending on the implemented 
model, different parameters like latency of the signal 
transmission and the reception power of the signal can be 
adjusted. For example, the frequency range of the signal 
transmission of controlled area messages is between 1 to 
10Hz according to the ETSI standard EN 302 637-2 [38]. In 
ten test runs, the set frequencies of 1Hz and 2Hz in the log-
distance propagation loss model lead to the different average 
distances between vehicle stopping point and traffic light of 
8.2m and 5.2m, respectively. Therefore, contracts and 
contract-based activities, like using derived validation rules, 
may support the parametrization in the validation 
environment and are an integral part of the validation.   
 
The criteria system, described in chapter III, helps to select a 
validation environment and hence certain models inside the 
environment. For instance, the detailed simulation of physical 
and datalink layer according to the OSI layer model lead to 
the decision to use the MATLAB-NS3 Co-Simulation. 
Hereby, the validation environments address main SoS 
characteristics and needs like flexibility and modularity. 
Therefore, the authors use modular kit approaches including 
a library of V2X specific interface functions [39] and models 
in the environments. 
 
In order to validate more realistically and include possible 
unpredictable events that cannot be represented in a model, 
physical hardware can be included in the validation 
environment.   

B. Mixed physical-virtual validation environment 

In the mixed physical-virtual validation environment, the V2I 
test scenario “Intersection Movement Assist with Vulnerable 
Road User” is applied. A stationary Host Vehicle drives a 
distance of 62 meters to an intersection. The validation goal 
of the Driver-Vehicle interface is to ensure the vehicle’s 
correct crossing of the intersection, avoiding any risk of 
collision. Contracts may state that the necessary operations 
are executed in the required sequence and that the data 
transmission is successful. The full realization of the interface 
is only achieved, when contracts for all the sub-functions (e.g. 
data transmission) in the FA of the respective interface are 
fulfilled.  
 



The unidirectional time-based DSM in TABLE II shows the 
delay analysis of speed control function, referring to one test 
with the mixed physical-virtual validation environment.  
 

TABLE II.   Unidirectional time-based DSM for speed control in the V2I        
scenario with unexpected delay  

 
 

The delay of the interface between Driver On-Board-Unit 
(OBU) and MATLAB is set to 400ms in the contract, which 
depends on the response time of the driving robot. When this 
delay exceeds the set value in the contract, the delay adds on 
to the following interfaces and the algorithm of the speed 
control is therefore disturbed. 
 
Fig.4 shows the result of the same test in TABLE II with the 
mixed physical-virtual validation environment. 
 

 
Fig. 4. Validation of the Driver-Vehicle interface showing a velocity, time 
and distance plot and traffic light states 

In this test, the delay in the interface between Driver OBU 
and MATLAB is set to 1000ms, which exceeds the normal 
delay of 400ms in the contract. Previous work analyzed the 
delays of wireless hardware connections in a mixed physical-
virtual validation environment [40]. In the test in Fig. 4, the 
vehicle stops after 53.6m, when the stop line is still 3.7m in 
front of the vehicle.  

 
In Fig. 4 the higher latency leads to a disarrangement of the 
speed control algorithm, which results in a premature 
breaking. This breach of the contract is manifested by the no 
longer valid assumption that the information flow of the 
interface between CS Driver and CS Vehicle is within a 
restricted scope. 
In contrast to previous work [21] with a human driver, using 
a driving robot results in a smoother graph. The integration 
of the driving robot in the validation environment was 
achieved with a remote control of the driving robot through 
MATLAB and the Wi-Fi module ESP8266. 

VI. DISCUSSION AND CONCLUSION 
This contribution integrated contracts in existing structures 
for the specific purpose of interface validation. This allows 
analyzing and synthesizing of (validation) systems with the 
consideration of contracts for interfaces. MBSE supports the 
integration of contracts by modeling different views, linking 
architectures with methods and including automated 
verification of models. Different activities like using 
parameter-tailored DSM or criteria systems for the selection 
of a validation environment are applied and validated for V2I 
specific use cases.  
Contracts may help to cope with SoS-specific challenges like 
the different life-cycle phases, operational and managerial 
independence of CSs. With defined interface contracts, new 
system owners know from the very start of their development 
process, which restrictions to consider for a successful 
integration of their CS in an existing SoS. Contract-based 
activities can be tailored to support these challenges and the 
validation of interfaces. 
The validation in this contribution is only applicable to 
specific test cases for V2I. Therefore, a generalization for all 
technical SoS is not achieved. The authors evaluate the 
validation environments based on the SoS characteristics (c f. 
[9]). Future work focuses on quantifiable requirements 
derived from SoS properties and characteristics. MBSE may 
support the realization and beneficial application of contracts. 
Using contracts for interfaces in SoS can be extended by 
considering more methods and activities. Further research 
should address safety and security within the CSs and 
interfaces which impact the whole SoS performance (c f. 
[41]). Additionally the validation environments should be 
part of an integrated, continuous and flexible validation of 
models. This leads to an efficient validation of even complex 
SoS. 
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