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Abstract. Too high loss levels can severely limit the efficiency and the safe operation of several
high-temperature superconductor (HTS) AC applications. A reliable estimation of AC losses,
which includes the observed field-dependence of the superconductor’s critical current density on
the magnetic field, is therefore paramount. In this contribution, we use numerical simulations
to evaluate the AC losses of HT'S coated conductors in a variety of working scenarios: individual
wires carrying AC transport current and/or subjected to AC magnetic fields, and wire assemblies
like stacks and arrays carrying AC transport current. Numerical results are compared to the
corresponding analytical models and to experimental results. This work presents some general
guidelines regarding the extent to which the dependence of the critical current density J. on
the magnetic flux density B modifies the AC loss characteristics with respect to a constant-.J.
model based on the superconductor’s self-field critical current.

1. Introduction

In recent years, numerous high-temperature superconductor (HTS) applications have been
developed. As a consequence, the demand for numerical tools able to quickly estimate the
energy dissipation caused by time-varying magnetic fields has also increased. Among those tools,
analytical models are particularly sought-after, because, by using relatively simple mathematical
expressions, they provide a quasi-instantaneous evaluation of the energy losses. Although these
analytical models cannot handle the same degree of complexity as numerical models [1], they
are the preferred solution when a precise evaluation of the losses is not necessary, and one just
needs to quickly establish general trends. In general, analytical models assume a constant critical
current density J. for the superconductor. However, J. depends on the magnetic flux density
B, and the dependence can also take quite complex forms.

In this contribution, we evaluate the difference between using constant-.J. and J.(B) models
for calculating AC losses in different scenarios: individual HTS wires carrying AC transport
current, subjected to AC magnetic field, or both; we also explore the case of interacting tapes in
the form of horizontal arrays and vertical stacks. The vertical stack resembles the arrangement of
superconducting wires in racetrack or pancake coils, whereas the horizontal array that of wires in
solenoids. We compare analytical results with numerical ones based on a well-established finite-
element method approach. Additionally, we present experimental results from the literature and
assess the level of agreement between experimental and calculated data.
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Figure 1: Distributions of normalized current density (a) and magnetic flux density (b) in a
superconducting wire of rectangular cross section carrying 80 % of the critical current calculated
with the critical state model [4, 5]. The distributions are taken at the peak of the sinusoidal
transport current. The dashed line marks the center of the rectangle (see text).

Figure 2: Distributions of normal-
ized current density (a) and mag-
netic flux density (b) in an infinitely
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cal current calculated with the crit-
ical state model [6, 7]. The distri-
butions are taken at the peak of the
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2. Analytical and numerical models

2.1. Analytical models for AC loss calculation

The analytical models for calculating AC losses in superconductors are mostly based on the
critical state model developed by Bean in the 1960s [2, 3], according to which currents of
magnitude J, are produced by a non-zero electric field regardless of its magnitude and rate
of variation.

The superconducting layer of HTS coated conductors has an extremely large width-to-
thickness ratio. From the point of view of analytical models, this means that the superconducting
layer can be approximated as infinitely thin and, under the assumption that nothing changes
along the wire’s length, treated as a 1D object. The magnetic field and current distributions are
calculated only along the superconductor’s width and present no variation along the thickness.

The shapes of the current density and magnetic field distributions in an infinitely thin
superconductor can be understood by considering that geometry as a limit of a finite rectangular
one when the thickness approaches zero. Figures la and 1b show the distributions of normalized
current density and magnetic flux density in a superconducting wire of rectangular cross section
carrying 80 % of the critical current, based on the critical state model [4, 5]. The distributions
are taken at the peak of the sinusoidal transport current. The current density is equal to J.
except in the central field-free region, where it is zero. As the rectangle becomes infinitely thin,
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Figure 3: Schematic representation
of an infinite vertical stack (blue)
‘———% — = and an infinite horizontal array
Ly (red) of HTS wires. The grey
rectangle represents the size (L, or
L) of one dimension of the periodic

cell in the two cases.

we can take the current distribution along the dashed line in figure la as the average of J
along the rectangle’s thickness. This results in a critical current equal to J, in the two regions
near the edges and in a subcritical value in the central field-free region. The horizontal field
component (parallel to the wide face of the HTS wire) is always zero along the dashed line.
This means that, in the infinitely thin strip limit, such component is not defined inside the
superconductor; outside the superconductor, the horizontal field component switches between
negative and positive values on the two sides of the strip.

With the infinitely-thin strip approximation, relatively simple formulas exist for computing
AC losses [6, 7, 8]. In this work, we investigate the following cases:x

e Individual wire carrying an AC current of amplitude I

_ pol¢
T

or

(1= i0) (1 — o) + (1 + i) In(1 + i) — i3] (1)
e Individual wire subjected to an AC field of amplitude By = poHy

Qm = 4M0w2ch09(HO/HC) (2)
e Infinite horizontal array of wires carrying an AC current of amplitude I

1

pol? ,2/ tan?(mipsw/Ly)
g = — 1—-2s)ln|1—
@ T ‘0 / ( s)In tan?(rw/ L) ds (3)
e Infinite vertical stack of wires carrying an AC current of amplitude Iy
pol? ; cosh?(rw/L,)
Qs = Cig/(l—zs)ln % — 1] ds. (4)
T cosh”(migsw/Ly)

In the equations above, I, is the wire’s critical current, ig = I/l is the fraction of I, that
is transported by the wire, w is the wire’s half width, Jo = I, Jw is the sheet critical current
density, H. = J./7 is a characteristic magnetic field, g(z) = (2/x)Incoshz — tanhz, and L,
and L, are the periodic cells for an array and a stack, respectively (see figure 3).

All the formulas listed above assume a constant J.. In this contribution, we compare the
analytical results with those obtained with a numerical model, where the J.(B) dependence can
be included.

«For the simulation of an HTS wire, we consider only the superconducting layer. As shown in [9], the metallic
layer do not contribute significantly for the situations analyzed here. As a consequence, in the rest of the paper,
we use the words “superconductor” and “wire” interchangeably.
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2.2. Choice of J.(B)

In this work, we considered a superconductor 12mm wide, 1pm thick, and with a self-field
critical current of 360 A at 77K. For the constant-J. models, J. = 3 x 101 Am~2. For the
Jo(B) models, we used the following expression:

JCO

H = B

()

where By = 10mT, o = 0.5, and B, is the magnitude of the magnetic flux density component
perpendicular to the wire’s surface. We chose Jyo = 4.84 x 101 Am~2 so that the self-field
critical current of the wire — calculated with the 2D method described in [10] — is 360 A.

2.3. Numerical model for AC loss calculation

As a numerical model, we chose the finite-element solution of Maxwell’s equations with the so-
called H-formulation implemented in COMSOL Multiphysics [11, 12]. This is a widely adopted
model for calculating AC losses [13] and, more generally, for investigating the electromagnetic
behavior of HTS wires and applications [14]. The superconductor is simulated as a material

with a nonlinear resistivity
E. |Jy>"1
J = — _— s 6
o) =~ ( 7. (6)

where E. = 1 x 1074V m™!, n = 35, and J. is either constant or dependent on the magnetic
field. The superconductor is discretized with a 250 x 1 mesh.

The simulation of horizontal arrays and vertical stacks of current-carrying wires can be
performed by simulating only one periodic cell with a wire at its center (figure 3, grey rectangle).
One side of the rectangle has the length of the periodic cell (for example L, in the case of a
vertical stack); the other side is made very long. Appropriate periodicity conditions need to be
set in COMSOL Multiphysics’s mfh module to guarantee the continuity of the magnetic field in
the periodical direction.

3. Results
The J.(B) dependence changes the local transport capacity of the superconductor. In general,
this results in different current density distributions from those obtained with constant J.. An
example for the case of transport current equal to 0.81; is shown in figure 4. The maximum
of the (self-generated) magnetic field is at the superconductor’s edges (figure 2). With a J.(B)
dependence like equation (5), near the edges the critical current density is much lower than Je.
As a consequence, the maximum of the current density is located inside the tape (figure 4a).
Figure 5a displays the transport losses calculated with the constant-.J; and J.(B) models as a
function of different transport currents. The cyclic losses are computed by averaging the power
dissipation on the second half of the first simulated AC cycle, as

Q:;/T/pJQdet, (7)

T/2 Q

where T' is the period of the AC cycle (20 ms for the 50 Hz frequency considered in this work)
and 2 is the superconductor’s domain.

The losses computed with the two models are similar, because despite the differences in the
J distributions (figure 4a), the dissipative regions where J/.J. > 1 are of similar size (figure 4b).
The numerical results are also in good agreement with the analytical ones given by formula (1).
Reported in the figure are also experimental results from different sources [9, 15, 16, 17]. Since
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Figure 4: Distributions of current density (a) and normalized current density (b) along the width
of a superconducting strip carrying 80 % of the critical current, calculated with constant and
magnetic-field-dependent J.. The distributions are taken at the peak of the sinusoidal transport
current. The analytical curves are the same as that of figure 2.
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Figure 5: Comparison of AC losses of an individual superconductor, calculated with constant-
Je (solid squares) and J.(B) (empty circles): (a) Transport losses: analytical results from (1),
experimental data from [9, 15, 16, 17]; (b) Magnetization losses: analytical results from (2),
experimental data from [15, 16, 18, 19].

the samples are characterized by different critical currents, the transport current and the AC
losses are normalized by the critical current I. and by the factor Qo; = uol? /7, respectively —
see equation (1). In general the experimental results are in good agreement with the models.
The discrepancy observed at low current is usually ascribed to a degradation of J. near the
edges of the wire [20].

Similar conclusions apply to the case of the magnetization losses (figure 5b) caused by an AC
magnetic field applied perpendicular to the superconductor’s wide face. In this case, the applied
field Bext is normalized by the characteristic field B. = uoH. = 12mT and the losses by the
factor Qom = 4,uow2ch0 — see equation (2). Reported in the figure are also experimental results
from different sources [15, 16, 18, 19]. Similar to the case of transport current, the experimental
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Figure 6: Total losses due to the simultaneous presence of AC transport current and AC
background field: (a) Comparison of results obtained with constant-J. and J.(B) models for
fields of 2, 5, 10, 20, 50, 100 mT; (b) Comparison of calculations (constant-J.) and experimental
data from [21].

values are higher than those predicted by the models, especially for one sample. Again, this
is ascribed to the degradation of .J. near the edges [15]. This discrepancy has little practical
relevance, because it appears at very low values of transport current and applied field, which
are not those at which the superconducting wire usually operates in real applications.

Figure 6a shows the total losses in a single superconductor carrying an AC transport current
while subjected to an in-phase AC background field of increasing amplitude. For applied fields
up to 20mT (purple data points), the constant-J. and J.(B) models give similar AC loss
estimations. Starting from the 50mT curve (green data points), one can observe a sudden
increase of the losses with the J.(B): this is because the external field strongly reduces J. and a
transport current of 288 A is greater than the effective I, of the wire. At higher fields (100 mT,
light blue data points), the sudden increase of the losses occurs at lower current. In figure 6a,
one can also observe that the slope of the loss curve decreases as the magnetic field increases:
this is because the influence of the transport current decreases as the field becomes larger.

Figure 6b shows a comparison between calculations and experimental data for the losses due
to the simultaneous action of transport current and magnetic field [21]. The model reproduces
the experiments well. At very low fields (less than 1mT) the losses are mainly due to the
current. Then, as the field increases, the influence of the applied field becomes more important,
and eventually dominates.

Figure 7a shows the AC losses of a vertical stack for different separations L,. The constant-
Je results agree well with the values calculated with equation (4), given by the continuous
lines. The values calculated with the J.(B) model are in general higher because of the self-field
generated by the stack. They also present a steep increase at current values well below the
wire’s self-field critical current (360 A). Reducing the separation L, makes this change of slope
of the curve occur at lower values of the current. This is due to the self-field generated by the
superconductors in the stack, which reduces the transport capacity of the wire. This effect is
visible by looking at the J profiles of a given case, L, = 1 mm, in figure 7b. As the transport
current is increased (from 36 A to 288 A in steps of 36 A), the current penetrates toward the
center. When Iy = 252 A, the superconductor is already saturated with current.

Figure 8 presents the same type of results as figure 7, but for a horizontal array. Again, the
calculations with constant-J. agree well with the predictions of analytical models (equation (3)),
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Figure 7: (a) AC losses of a vertical stack for different separations L,, calculated with constant-
Je (full symbols) and J.(B) (empty symbols) models, and with equation (4) (continuous lines);
b) Current density and normalized current density profiles for L, = 1 mm and J.(B) for current
amplitudes ranging from 36 A to 288 A in steps of 36 A: when Iy = 252 A, the superconductor
is saturated with current, which leads to a rapid increase of the losses (see arrows in figure 7).

given by the continuous lines. However, in this case, the calculations with J.(B) differ from those
with constant-.J, in the entire current range. In the case of a horizontal array, the magnetic field
perpendicular to the flat face of the superconductor is strongly reduced and the current tends to
flow only in a very small region close to the edges [22]. With a J.(B) model, this is also where
Je gets reduced. As can be seen in figure 8b, the dissipative region where J > J, is always very
small, even when the transport current is significant. As the transport current increases, the
fronts with J > J; do not advance toward the center as in the case of the stack (figure 8b);
instead, more current flows in the center of the tape, but J remains subcritical. Hence, contrary
to what observed for the stack, the losses do not sharply increase.

4. Conclusion

In this article, we used finite-element-method simulations based on the H-formulation with
constant and magnetic-field-dependent J. to numerically estimate the AC losses of a thin
rectangular superconductor in a variety of scenarios. In the case of a single superconductor
subjected to an AC transport current, an AC background field perpendicular to its wide face,
or a simultaneous application of current and field, the models gives very similar results, in
good agreement with the corresponding analytical models and in reasonably good agreement
with experiments. The simulation of infinite stacks and arrays, however, revealed a difference
between the two models: in the case of vertical stack with J.(B), the strong magnetic field
generated by the rest of the stack makes the wire easily saturated with current. This saturation
occurs at applied currents much lower than the self-field critical current of the single wire. In
the case of horizontal arrays, the current always flows in a limited region near the edges. The
dissipative area is always limited to that narrow area and the saturation of the tape is avoided.
The results obtained with stacks and arrays still need a proper validation against experimental
data.
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Figure 8: (a) AC losses of a horizontal array for different separations L, calculated with
constant-J. (full symbols) and J.(B) (empty symbols) models, and with equation (3) (continuous
lines); b) Current density and normalized current density profiles for L, = 1 mm and J.(B) for
current amplitudes ranging from 36 A to 360 A in steps of 36 A.
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