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Abstract
Uncertainty quantification is an important topic for many environmental studies, such as identifying zones where poten-

tially toxic materials exist in the soil. In this work, the nonparametric geostatistical framework of histogram via entropy

reduction (HER) is adapted to address local and spatial uncertainty in the context of risk of soil contamination. HER works

with empirical probability distributions, coupling information theory and probability aggregation methods to estimate

conditional distributions, which gives it the flexibility to be tailored for different data and application purposes. To explore

how HER can be used for estimating threshold-exceeding probabilities, it is applied to map the risk of soil contamination

by lead in the well-known dataset of the region of Swiss Jura. Its results are compared to indicator kriging (IK) and to an

ordinary kriging (OK) model available in the literature. For the analyzed dataset, IK and HER predictions achieve the best

performance and exhibit comparable accuracy and precision. Compared to IK, advantages of HER for uncertainty esti-

mation in a fine resolution are that it does not require modeling of multiple indicator variograms, correcting order-relation

violations, or defining interpolation/extrapolation of distributions. Finally, to avoid the well-known smoothing effect when

using point estimations (as is the case with both kriging and HER), and to provide maps that reflect the spatial fluctuation of

the observed reality, we demonstrate how HER can be used in combination with sequential simulation to assess spatial

uncertainty (uncertainty jointly over several locations).

Keywords Nonparametric geostatistics � Non-Gaussian � Conditional distribution � Sequential simulation �
Uncertainty analysis � Risk mapping

1 Introduction

Modeling the uncertainty about the unknown is of crucial

importance for evaluating the risk involved in any deci-

sion-making process. The traditional approach of modeling

the uncertainty with respect to geostatistical interpolation

consists of computing a kriging estimate and its attached

error variance, and explicitly assuming a Gaussian distri-

bution for assessing the confidence interval (Goovaerts

1997 p.261; Kitanidis 1997 p.68; Bourennane 2007). The

major restrictions of this approach are i) that the distribu-

tion of the estimation error is assumed to be normal, and

ii) that the variance of the errors is assumed to be

independent of the data values, and only dependent on the

data configuration (Kitanidis 1997 p.68; Goovaerts 1997

p.261). These Gaussian and homoscedastic assumptions are

unfortunately rarely fulfilled for environmental attributes

and soil variables. Instead, they often display skewed dis-

tributions (Bourennane 2007; Goovaerts 1997 p.261).

More rigorous approaches such as multivariate-Gaussian

model (MGM) and indicator kriging (IK) address the

problem of modeling local uncertainty through conditional

probability distributions (CPD). Different from the tradi-

tional approach, in these CPD models, first the uncertainty

about the unknown is assessed and then an estimate opti-

mal in some appropriate sense is deduced (Goovaerts 1997

p.262). MGM is widely used thanks to its mathematical

simplicity and easy inference (Goovaerts 1997 p.265;

Gómez-Hernández and Wen 1998). However, under the

multi-Gaussian spatial law it applies, all marginal and

conditional distributions are Gaussian, and hence the

& Stephanie Thiesen

stephanie.thiesen@kit.edu

1 Institute of Water Resources and River Basin Management,

Karlsruhe Institute of Technology, Karlsruhe, Germany

123

Stochastic Environmental Research and Risk Assessment
https://doi.org/10.1007/s00477-021-02038-5(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0001-7501-2223
http://orcid.org/0000-0003-3454-8755
http://crossmark.crossref.org/dialog/?doi=10.1007/s00477-021-02038-5&amp;domain=pdf
https://doi.org/10.1007/s00477-021-02038-5


variance of the CPD depends only on the data configura-

tion, not on the data values (Goovaerts 1997 p.284; Ortiz

et al. 2004). Likewise, due to its strong distribution

hypothesis, it is unfeasible to check the normality of

multiple-point (in contrast to two-point) experimental CPD

(Goovaerts 1997 p.284) and it might produce inadequate

results caused by an erroneous parametric model assump-

tion (Fernández-Casal et al 2018). IK, on the other hand,

was developed to avoid assuming any particular shape or

analytical expression of the CPD. Although it is a non-

parametric model, when a complete CPD is needed as

output, its shortcomings lie in the need to fit multiple

indicator variograms (one per cutoff), to correct order-re-

lation violations, and to interpolate and extrapolate the

CPD. Furthermore, due to the indicator transform of the

observations (e.g., from continuous to binary) it loses

information available in data (Fernández-Casal et al 2018).

Recently, for avoiding the risk of adding information not

present in data, Thiesen et al. (2020) proposed combining

information theory with probability aggregation methods in

a geostatistical framework as a novel nonparametric

method for stochastic estimation at unsampled locations.

Histogram via entropy reduction (HER) was primarily

proposed to bypass fitting spatial correlation functions and

assumptions about the underlying distribution of the data.

In addition, it is a proper framework for uncertainty esti-

mation since it accounts for both spatial configuration and

data values and offers higher generality than ordinary

kriging (OK). HER uses binned transformation of the data

and optimization of the information content, which gives

some flexibility to adapt the method to handle different

kinds of data and problems. Furthermore, it allows incor-

porating different uncertainty properties by selecting the

aggregation method. For the present paper, these primary

findings paved the way for the further development of the

spatial interpolation framework of HER to assess both

i) the local uncertainty when dealing with categorical data

and threshold-exceeding probabilities, and ii) the spatial

uncertainty by reproducing the spatial fluctuation of the

dataset with sequential simulation.

In the context of risk mapping, an important goal of

many environmental applications is to delimit zones in the

soil containing potentially toxic substances (Goovaerts

et al. 1997 p.334). For decision-making in such a context, it

is often more pertinent to calculate the risk of exceeding

regulatory limits (risk of contamination) rather than

deriving a single value estimate (Goovaerts 1997 p.333).

Thus, the purpose of this paper is to extend HER to eval-

uate the probability or risk, given the data, that a pollutant

concentration exceeds a critical threshold at a particular

location of interest, and compare its results to existing

benchmark methods. To do so, we tailor HER’s opti-

mization problem for dealing with threshold-exceeding

probabilities and investigate the framework using the

established Swiss Jura dataset (Atteia et al. 1994; Webster

et al. 1994). The estimation and local uncertainty results of

HER are then compared to IK, the most widely employed

approach to estimate exceeding probabilities (Fernández-

Casal et al. 2018), and to an OK model available in the

literature.

Although local estimation methods honor local data, are

locally accurate, and have a smoothing effect appropriate

for visualizing trends, they are inappropriate for simulating

extreme values (Rossi and Deutsch 2014 p.167). In addi-

tion, they are suitable for assessing the uncertainty at a

specific unsampled location, but not for assessing uncer-

tainty at many locations simultaneously (spatial uncer-

tainty; Goovaerts 2001). Therefore, to reproduce the

variability observed in the original data and to provide a

joint model of uncertainty, HER is expanded using

sequential simulation (a version named HERs) which

generates stochastic realizations of the field under study.

For brevity, in this paper we only demonstrate the feasi-

bility of HERs. Further applications, e.g., for the definition

of remediation costs of contaminated areas or the use of

transfer functions (Goovaerts 2001) are possible but not

included.

The paper is organized as follows. HER method and its

adaptations are presented in Sect. 2. In Sect. 3, we describe

the dataset, performance criteria, and benchmark models;

apply OK, IK, and HER to a real dataset; and compare their

estimation and local uncertainty results. Finally, a proof of

concept of HERs is presented. In Sect. 4 we discuss results,

and in the closing Sect. 5, we summarize the key findings

and draw conclusions.

2 Method description

In the following sections, we give a brief presentation of

information theoretic measures employed in the HER

method (Sect. 2.1) and introduce its three main steps

(Sect. 2.2). Specifically in Sect. 2.2.3, we propose an

adaptation of the minimization problem tailored to esti-

mating local threshold-exceeding probabilities. Finally, we

expand HER for spatial uncertainty analysis in Sect. 2.3.

2.1 Information theoretic measures employed
in HER

To assess the spatial dependence structure of data, mini-

mize estimation uncertainties, and evaluate the quality of

probabilistic predictions, we apply two measures of infor-

mation theory, namely Shannon entropy (H) and Kullback–

Leibler divergence (DKL). This section is based on Cover
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and Thomas (2006), which we suggest for an introduction

to the topic.

For a discrete random variable X with a probability mass

function pðxÞ, x 2 v, the Shannon entropy equation is

defined as

H Xð Þ ¼ �
X

x2v
p xð Þ log2 p xð Þ: ð1Þ

The logarithm to base two denotes entropy in unit of

bits, which is associated to the number of binary questions

needed to reconstruct a random variable. This means that,

e.g., the entropy of a fair coin toss is 1 bit or, in other

words, the answer of one yes–no question (e.g., is it tails?)

is enough to identify the toss output. Therefore, the above

expression measures the average uncertainty (or the aver-

age number of questions) associated with random draws

from a given probability distribution. HER uses Shannon

entropy to evaluate the spatial dependence of the dataset

and its correlation length.

Kullback–Leibler divergence (or relative entropy)

compares similarities between two probability distributions

p and q

DKLðpjjqÞ ¼
X

x2v
pðxÞ log2

pðxÞ
qðxÞ : ð2Þ

Expressed in bits, it measures the statistical ‘distance’

between two distributions, where one (p) is the reference,

and the other (q) a model thereof. Kullback–Leibler

divergence is nonnegative, and it is equals zero if and only

if p ¼ q. It can be used i) to quantify the information loss

of assuming that the distribution is q when really it is p and

ii) as a performance metric for probabilistic predictions

(Gneiting and Raftery 2007; Weijs et al. 2010). In this

study, DKL is applied for two purposes. Primarily, it defines

the optimization problem of HER (its loss function), which

minimizes the information loss when aggregating distri-

butions. Additionally, it is used as a scoring rule for per-

formance verification of probabilistic predictions.

Note that from now on, instead of x (used to present

general information theoretic concepts in this section), we

adjust the variable terminology to z and Dz when dealing

with spatial problems.

2.2 HER for local uncertainty

The brief introduction to HER presented in the following is

based on Thiesen et al. (2020), further details can be found

there. HER is a distribution-free interpolator enclosed in a

geostatistical framework. It was formulated to describe

spatial patterns and solve spatial interpolation problems. In

HER, we incorporate concepts from information theory and

probability aggregation methods for globally minimizing

uncertainty and predicting conditional probability distri-

butions (CPD) directly based on empirical discrete distri-

butions (also referred to as probability mass functions,

PMFs). HER comprises three main steps: i) characteriza-

tion of spatial dependence, ii) selection of an aggregation

method and associated optimal weights, and iii) prediction

of the target CPD. These steps are explained in the fol-

lowing sections.

2.2.1 Characterization of spatial dependence

Let us consider the situation illustrated in Fig. 1c, where z

is the attribute under study and we are interested in infer-

ring the z PMF of the target 0 (pðz0Þ is the estimated

probability mass function of z at the unsampled location u0)

given its neighbors 1, 2, and 3 (z1, z2, and z3 are available

observations sampled at locations u1, u2, and u3). In order

to characterize the spatial dependence, we extract the dis-

tribution associated to each neighbor and the correlation

length (range) in the following actions. First, for each lag

distance interval k – also called distance class or simply

class – with bounds dk�1 and dk, we calculate the differ-

ence of the z-values between all pairs of observations

within the interval (DZk ¼ f zi � zj j i 6¼ j; dk�1\
ui � uj
�� ��� dkg) and generate the corresponding Dz PMF

(pDZk
ðDzÞ, Fig. 1a).1 The entropy values of each Dz PMF

(one for each distance class k) is visualized as a 2D plot

called infogram (H DZkð Þ; Fig. 1b). The infogram describes

the statistical dispersion of pairs of observations for the

distance separating these observations (Thiesen et al.

2020). Quantitatively, it is a way of measuring the uncer-

tainty about Dz given the separation distance of the data,

meaning that observations start becoming less informative

as the distance increases. Note that in the same figure, the

range can be identified as the distance where the entropy of

the classes exceeds the full dataset entropy HðDZÞ, cal-
culated over the difference of z-values between all pairs of

observations in the dataset (DZ ¼ f zi � zj j i 6¼ jg). This
range definition is based on the principle that the obser-

vations beyond this distance start becoming uninformative,

and it is pointless to use information outside of this

neighborhood.2 Finally, we associate to each neighbor the

Dz PMF of the corresponding class k, according to its

1 Note that Z and DZ are random variables within the continuous

intervals z 2 zmin � Dzmax; zmax þ Dzmax½ � and Dz 2 �Dzmax; Dzmax½ �,
respectively, where Dzmax ¼ max

i;j
zi � zj
�� ��, zmin ¼ min

i
zi and zmax ¼

max
i

zi are calculated over all observations zi in the calibration dataset.

2 In the unusual case where the entropy of the classes at large

distances does not exceed the entropy of the full dataset, to improve

the computational efficiency, we recommend to manually set the

range of the infogram by identifying the saturation on the entropy of

the classes (similarly to the process done for a variogram fitting).
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absolute lag distance from the target, then shift this dis-

tribution by its z-value pðz0jziÞ ¼ pDZkðz0 � ziÞ, as outlined
in Fig. 1c. In the end of this first step, we have inferred the

conditional PMFs pðz0jz1Þ, pðz0jz2Þ, and pðz0jz3Þ. A prac-

tical example using HER is shown in Fig. 13 with more

details.

2.2.2 Probability aggregation

For the second step of the method, the individual condi-

tional distributions obtained in the previous step are com-

bined by using probability aggregation methods. The

aggregation method is based on work by Allard et al.

(2012), which we recommend as a summary of existing

aggregation methods. The probability aggregation yields a

single, global distribution for the target 0, so that the joint

probability p z0jz1; :::; znð Þ � PG p z0jz1ð Þ; . . . ; p z0jznð Þð Þ;
with z0 being the estimation of the target value (at an

unsampled location) and zi values at neighboring locations,

where i ¼ 1; :::; n are the indices of the sampled observa-

tions and z is the variable under study. For brevity, from

now on we use Piðz0Þ to denote pðz0jziÞ and PGðz0Þ for the
global probability PG P1ðz0Þ; . . .;Pnðz0Þð Þ.

Two basic aggregation methods were discussed by

Thiesen et al. (2020), namely linear pooling and log-linear

pooling. Linear pooling (Eq. 3) is a way of averaging

distributions. It is related to the union of events and asso-

ciated with the logical operator OR. Multiplication of

probabilities, or log-linear pooling in Eq. 4, in turn, is

associated with the logical operator AND, and related to

the intersection of events. Due to their distinct character-

istics, Thiesen et al. (2020) associated the linear aggrega-

tion to discontinuous field properties, and the log-linear to

continuous ones. The authors exemplified that, if we have

two points A and B with different z-values (zA, zB) and

want to estimate the z-value of a target point X located

between both in a continuous field, we would expect that zX
would be somewhere between the z-values of A and B,

which can be achieved by an AND combination. On the

other hand, in the case of categorical data (or abrupt

changes, Goovaerts 1997 p.420), considering A and B

belonging to different categories, a target X located

between both will either belong to the category of A or B,

which can be achieved by an OR combination.

The third pooling operator (Eq. 5), which combines

PGAND
and PGOR

, was proposed and explored in Thiesen

et al. (2020). It optimally expresses continuous and dis-

continuous properties of a field (controlled by parameters a
and b, respectively) by minimizing the relative entropy

(DKLÞ of the estimation and the true data. Since the final

distribution of this pooling contains the pure OR (Eq. 3)

and the pure AND (Eq. 4) aggregation as special cases, it

was recommended by the authors for cases where the field

properties are not known a priori.

Fig. 1 Schematic of the HER method. a Dz PMFs pDZk
ðDzÞ of the

difference in the z-values (Dz) between all pairs of observations

within distance class k and Dz PMF pDZðDzÞ of the full dataset;

b infogram, obtained by calculating the entropy HðDZkÞ of PMFs in

(a) and plotting them against their respective distance class, with the

range determined by the entropy of the full dataset HðDZÞ; and

c practical example where the target value to be estimated is z0 and

the available observations are z1, z2, and z3
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PGOR
z0ð Þ ¼

Xn

i¼1

wORi
Piðz0Þ; ð3Þ

where n is the number of neighbors, and wORi
are positive

weights verifying
Pn

i¼1

wORi
¼ 1.

lnPGAND
z0ð Þ ¼ ln fþ

Xn

i¼1

wANDi
lnPiðz0Þ; ð4Þ

where f is a normalizing constant satisfyingP
z
PGAND

zð Þ ¼ 1, n is the number of neighbors, and wANDi

are positive weights.

PGðz0Þ / PGAND
ðz0Þa PGOR

ðz0Þb; ð5Þ

where a and b are positive weights varying from 0 to 1.

2.2.3 Entropy minimization

After selecting the appropriate aggregation method, we

address the optimization problem for estimating the

weights of the pooling operators. In Thiesen et al. (2020),

the authors were interested in comparing HER results with

OK estimates. Therefore, by means of leave-one-out cross-

validation, they chose a global set of weights such that the

disagreement of the ‘true’ observation (left-out measure-

ment) and the estimated probability of the bin containing

the true observation was minimized. For doing so, the

optimization problem was tailored to find the set of weights

(one for each distance class) which minimizes the expected

relative entropy (DKL) of all targets. Note that when deal-

ing with single-value observations (or categorical data),

this is equivalent to subtracting the probability of the bin

containing the true value from one. The DKL evaluation of

a single prediction is outlined in Fig. 2a.

In the present study, we propose an adaptation of this

loss function (Fig. 2a) to focus on the estimation of

threshold-exceeding probabilities (Fig. 2b). Here, instead

of optimizing the probability of single bin containing the

true observation, we minimize the probability disagreement

(relative entropy, DKL) of the binarized left-out measure-

ment (above or below zc threshold) and the cumulative

probability of the estimated distribution (also binary, above

or below zc threshold). With this adaptation, the opti-

mization problem focusses on selecting weights which

maximize the probability of the target matching the true

classification. The authors’ goals were to reduce the risk

that an unsampled site is declared ‘safe’ when in reality the

soil is ‘toxic’ and vice versa, and to open the possibility of

working with categorical data. The method adaptation

proposed in Fig. 2b will be used throughout the paper and

will simply be referred to as HER.

For both optimization problems (Fig. 2a and Fig. 2b),

one optimum weight is obtained for each distance class k

and used in Eqs. 3 and 4, referred to as wORk
and wANDk

,

respectively (here generalized as wk). After that, a and b
from Eq. 5 are optimized by grid search, with candidate

values ranging from 0 to 1 (steps of 0.05 were used in the

application case).

Particularly for the present study, another adaptation

was done to avoid undesired non-zero uncertainty when

predicting z-values at sampled locations: within the first

distance class, we asymptotically increase the weight

towards infinity as the distance approaches zero, by scaling

with the inverse of the distance. For all other distance

classes, similarly to Thiesen et al. (2020), we linearly

interpolate the weights according to the Euclidean distance

and the weight of the next class. A practical example of the

proposed interpolation is illustrated in Fig. 14b.

2.2.4 PMF prediction

As seen before, to estimate the z-value of the target 0 (i.e.,

the unknown observation z0), first we classify its neighbors

zi (sampled observations) according to their distance to the

target. Each neighbor is then associated to its correspond-

ing Dz PMF and shifted by its zi value. Finally, by applying

the selected aggregation method and its optimum weights,

we combine the individual z PMFs of the neighbors to

obtain the z distribution of the target conditioned on all

neighbors (z PMF). By construction, the assessed PMF is

nonparametric since no prior assumption is made regarding

the shape of the distribution of possible values.

In order to increase computational efficiency, we do not

use classes beyond the range (neighbors beyond the range

Fig. 2 Optimization problem.

a Maximizing the probability of

the ‘true’ observation (Thiesen

et al. 2020) and b maximizing

the estimation of threshold-

exceeding probability
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are associated to the Dz PMF of the full dataset) and, due to

the minor contribution of neighbors in classes far away

from the target, the authors only used the closest 30

neighbors when estimating the target. Knowledge of the

(conditional) local distribution obtained here allows a

straightforward assessment of the uncertainty about the

unknown value, independently of the choice of a particular

estimate for it (Goovaerts 1997 p.333).

2.3 HER for spatial uncertainty

So far, we proposed modeling distributions to obtain esti-

mates of values and related uncertainties at specific loca-

tions (local uncertainty) using the HER method. However,

these single-point PMFs do not allow to simultaneously

assess the uncertainty about attribute values at several

locations (Goovaerts 1997 p.262). Simply multiplying

CPDs of several locations to obtain their joint probability

would assume independence between the data, a case of

little interest (Goovaerts 1997 p.372). Therefore, we

address multiple-point – or spatial – uncertainty by com-

bining HER with sequential simulation (HERs). Stochastic

simulation was introduced in the early 1970‘s to correct for

the smoothing effect of kriging and to provide maps that

reflect the spatial fluctuation of the observed reality

(Journel 1974; Deutsch and Journel 1998 p.18). Geosta-

tistical simulation generates a model of uncertainty that is

represented by multiple sets of possible values distributed

in space, one set of possible outcomes is referred to as a

realization (Leuangthong 2004). Different yet equiprobable

realizations, all conditioned on the same dataset and

reflecting the same dispersion characteristics, can be pro-

duced to be used for numerical and visual appreciation of

spatial uncertainty (Journel and Huijbregts 1978; Deutsch

and Journel 1998 p.19; Journel 2003). Such equiprobable

realizations are known as stochastic images and share the

same sample statistics and conditioning data (Gómez-

Hernández and Cassiraga 1994).

Sequential simulations with HER are generated by first

establishing a random path along all nodes in the grid

network. Then, for each node, and in the order of the

random path, we i) derive the PMF of the node using HER

as explained in Sect. 2.2, ii) randomly draw a single value

from this PMF, and iii) assign the value to the grid as an

additional observation. With this procedure, we sequen-

tially include the simulated values to the original dataset

and use them to condition predictions at the remaining

locations. The simulated value (step ii) is derived from a

Monte Carlo simulation (Metropolis and Ulam 1949),

where we randomly draw a p-value uniformly distributed

between 0 and 1 and obtain the z value from the estimated

PMF. Equiprobability is ensured by triggering each

realization by one random seed drawn from a uniform

distribution (Deutsch and Journel 1998 p.19; Goovaerts

1999).

Due to the randomness of the path and draws, repetitions

of the stochastic process will yield different realizations,

but all will honor the data and model statistics. Thus, for

assessing the spatial uncertainty, multiple realizations can

be used to calculate the joint probability of a set of loca-

tions simultaneously rather than one at a time. Therefore,

while HER as well as OK and IK smooth out the real

fluctuation of the attribute due to the missing variability

between unsampled locations, HER-based sequential sim-

ulation (HERs) reproduces the spatial variability of the

sample data. In this study, we are interested in developing

and presenting the realizations generated by HERs as a

proof of concept.

3 Application to real data

3.1 Jura dataset

We evaluate HER (Sect. 2.2) and HERs (Sect. 2.3) by

applying them to the well-known Jura dataset, which is

often used as benchmarking in the geostatistical literature,

e.g., Atteia et al. (1994), Webster et al. (1994), Goovaerts

(1997), Goovaerts et al. (1997), Bel et al. (2009), Allard

et al. (2011), Loquin and Dubois (2010), Dabo-Niang et al.

(2016), Bandarian et al. (2018). The data were collected by

the Swiss Federal Institute of Technology at Lausanne

from a 14.5 km2 area in the Swiss Jura region. A com-

prehensive description of the sampling, field, and labora-

tory procedures is available in Atteia et al. (1994) and

Webster et al. (1994), and a detailed exploratory data

analysis can be found in Goovaerts (1997).

The data contain topsoil concentrations of seven heavy

metals, including lead (Pb), which is used in the present

study. Lead concentrations were sampled at 359 locations

scattered in space and are available in two mutually

exclusive sets: a calibration set of 259 observations and a

validation set of 100 observations. Lead concentrations are

expressed in parts per million (ppm, S.I. units = mg kg�1)

or their logarithm transform. To simplify benchmarking

comparison, the authors decided to use the logarithm to

base ten of Pb throughout the paper (the same logarithm

base was used for the Pb model in Atteia et al. 1994).

Fig. 3 illustrates the log10ðPbÞ concentrations at the

locations of the calibration set, the locations of the vali-

dation set, and the histogram and cumulative distribution

of the calibration set. Table 1 presents the summary

statistics of log10ðPbÞ for all datasets. The Swiss federal

ordinance defined the regulatory threshold used as the
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tolerable maximum for healthy soil (FOEFL 1987): loca-

tions with lead concentrations above the critical threshold

(zc) of 50 mg kg�1 (or zc ¼ 1:699 in its logarithm trans-

form) are considered contaminated. For the available

dataset, this limit is exceeded at 42.1% of the calibration

set locations, see Fig. 3c. The dotted line in Fig. 3a indi-

cates the transect SW-NE to be discussed in Sect. 3.4.1,

which was based on the cross section shown in Goovaerts

(1997).

3.2 Performance criteria

The quantitative evaluation of the predictive power of the

models was carried out with two criteria for the deter-

ministic results, namely, mean absolute error (EMA) and

Nash–Sutcliffe efficiency (ENS), and another two for the

probabilistic outcomes, i.e., Kullback–Leibler divergence

(DKL) and goodness statistic (G). These metrics are pre-

sented in Eqs. 6, 7, 2, and 9, respectively.

The deterministic performance metrics are defined as

EMA ¼ 1

n

Xn

i¼1

ẑi � zij j; ð6Þ

ENS ¼ 1�
Pn

i¼1 ẑi � zið Þ2
Pn

i¼1 zi � zð Þ2
; ð7Þ

where ẑi and zi are, respectively, the expected value of the

predictions and observed values at the i-th location, z is the

mean of the measurements, and n is the number of tested

locations. EMA was selected because it gives the same

weight to all errors, while ENS penalizes variance as it

gives more weight to errors with larger absolute values.

With its limitation to a maximum value of 1, ENS facilitates

general comparison.

For verifying the quality of predicted probability dis-

tributions, their accuracy and precision will be calculated

for the validation set (where a ‘true’ measurement is

available). While precision is a measure of the narrowness

of the distribution, accuracy measures if the true value is

contained in some fixed symmetric probability p-proba-

bility intervals (PI), e.g., interquartile range (Deutsch

1997). For evaluating accuracy and precision together, we

Fig. 3 Calibration set.

a Concentration values,

b histogram, and c cumulative

distribution

Table 1 Summary statistics of log10 (Pb) datasets

Statistic Calibration set Validation set Full dataset

n 259 100 359

mean 1.687 1.689 1.688

entropy* 5.348 5.167 5.453

std. deviation 0.184 0.214 0.193

variance 0.034 0.046 0.037

cv 0.109 0.127 0.114

maximum 2.361 2.477 2.477

median 1.667 1.672 1.670

minimum 1.278 1.271 1.271

kurtosis 4.328 4.891 4.651

skewness 0.854 1.038 0.931

* Evenly spaced bins, with intervals of 0.015 (more in Sect. 3.3)

Regulatory threshold: zc = 1.699
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assess the Kullback–Leibler divergence (DKL, Eq. 2)

between the binary probability distribution (above–below

threshold) and the true measurement (as shown in Fig. 2b)

and take the mean over all validation points. DKL is more

than a measure of accuracy, since it does not need the

definition of a probability cutoff to classify the binary

distribution as hit or misclassification, and it is dependent

on the predicted probability values. A maximum agreement

(DKL ¼ 0) is obtained when all binary PMFs are very

precise (probability of 1) and accurate (correct prediction)

in predicting the true (above or below threshold). It goes

towards infinity as disagreement increases.

Additionally, the accuracy and precision of the full

distribution (without binarization) is quantified by analyz-

ing different symmetric p-PI. For the predicted conditional

probability distribution (CPD) at location u, a series of

symmetric p-PI can be constructed by identifying the

limiting ð1� pÞ=2 and ð1þ pÞ=2 quantiles. For example,

0.5-PI is bounded by the first and third quantiles. In this

case, a probability distribution is said to be accurate if there

is a 0.5 probability that the true z-value at the target

location falls into that interval or, equivalently, that over

the study area, 50% of the 0.5-PI include the true value

(Goovaerts 2001; Deutsch 1997). The fraction of true

values falling into the symmetric p-PI is computed as

n pð Þ ¼ 1

n

Xn

i¼1

n ui; pð Þ 8 p 2 0; 1½ �; ð8Þ

with

n ui; pð Þ ¼ 1 if F�1 ui;
1� p

2

� �
\zi �F�1 ui;

1þ p

2

� �
:

0 otherwise

8
<

:

A distribution is said to be accurate when n pð Þ� p. The

cross plot of the estimated n pð Þ versus expected fractions p

is referred to as an ‘accuracy plot’. To assess the closeness

of the estimated and theoretical fractions and, conse-

quently, the associated measure of accuracy of the distri-

bution, Deutsch (1997) proposed the following goodness

statistic (G)

G ¼ 1� 1

L

XL

l¼1

wl n plð Þ � pl
�� ��; ð9Þ

where wl ¼ 1 if n plð Þ[ pl, and 2 otherwise. L represents

the discretization level of the computation, i.e., the number

of p-PI. Twice as much penalization is given to deviations

when n plð Þ\pl (inaccurate case). Maximum goodness G ¼
1 is obtained when n plð Þ ¼ pl, and G ¼ 0 (the worst case)

when no true values are contained in any p-PI, hence

n plð Þ ¼ 0.

To visualize the spread of the CPD and therefore the

precision of the distribution, Goovaerts (2001) averages the

width of the PIs that include the true values for a series of

probabilities p, as follows

W pð Þ ¼ 1

n n pð Þ
Xn

i¼1

nðui; pÞ

� F�1 ui;
1þ p

2

� �
� F�1 ui;

1� p

2

� �� �
: ð10Þ

The cross plot of the estimated W pð Þ versus the ex-

pected fractions p is referred as an ‘PI-width plot’. To be

legitimate, uncertainty cannot be artificially reduced at the

expense of accuracy (or achieve accuracy at the expense of

precision; Goovaerts 1997 p.435), therefore a correct

modeling of local uncertainty will entail the balance of

both accuracy and precision.

Overall, the validity of the model can be asserted when

the mean error is close to 0, Nash–Sutcliffe efficiency is

close to 1, mean of Kullback–Leibler divergence is close to

0, and accuracy (given by the goodness statistic) close to 1.

Visually, a goodness statistic equal to 1 corresponds to an

‘accuracy plot’ with maximum agreement between n pð Þ
and p-PI. Note that the precision is only visually verified

throughout the ‘PI-width plot’, where the narrower the

width of the PI (y-axis) the better. In Sect. 3.4.2, we dis-

cuss with real examples how these two plots (Fig. 10)

interact.

3.3 Benchmark models and setup of HER

This section presents how HER was set up for the descri-

bed dataset (Sect. 3.1) and briefly describes the two

benchmark models, namely ordinary kriging (OK) and

indicator kriging (IK). The authors suggest consulting

Kitanidis (1997), Goovaerts (1997), and Deutsch and

Journel (1998) for a more detailed explanation of the OK

and IK methods. For brevity, details of the implemented

models were included in Appendix 1.

In OK, the unsampled values are estimated by a linear

combination of the available data, which are weighted

according to a spatial variability function (variogram) fitted

to the data. It was selected for the comparison analysis due

to the availability of a complete model for the (logarithm

base of) lead concentration of the Jura dataset in the lit-

erature. Therefore, OK parameters and results were taken

directly from Atteia et al. (1994). The fitted variogram

parameters are specified in Appendix 1 (Table 4). It is

noteworthy that Atteia et al. (1994) estimated the model

parameters by training on the full dataset (calibration plus

validation set) while for all other models used in this paper,

parameters are estimated by training exclusively on the

calibration dataset, and the performance is obtained in the
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validation set only. Since the uncertainty of OK models

ignores the observation values, retaining only the spatial

geometry from the data (Goovaerts 1997 p.180), we used

the explicit assumption of normally distributed estimation

errors in this study, which is a common practice for mod-

eling local uncertainty in linear geostatistics (Kitanidis

1997 p.68; Goovaerts 1998) in this study. Finally, to keep

the results comparable, we discretized the predicted prob-

ability density functions employing the same discretization

(bins) as used in HER. This binning scheme is presented

and discussed in the next paragraph.

Similar to HER, the objective of IK is to directly esti-

mate the distribution of z at an unsampled location without

assuming a predefined uncertainty shape. For that, con-

sidering a defined cutoff value, an indicator transform

(above–below cutoff) of the available data is combined

with kriging weights to assess the probability of z at the

unsampled location being above or below this threshold.

When dealing with continuous variables, many cutoffs can

be defined so that putting together their probabilities results

in a full cumulative distribution. Since we are dealing with

continuous lead concentrations, for a fair comparison

between HER and IK, the IK cutoffs were defined to

coincide with the bins of HER. Therefore, in total, 69

cutoff values were specified, varying from 1.290 to 2.295

in steps of 0.015 (plus the critical limit zc for the logarithm

of lead concentration of 1.699). We defined the extremes of

the distributions predicted by IK as the minimum and

maximum Pb concentration of the calibration set (1.278

and 2.361, Table 1) as proposed by Deutsch and Journel

(1998 p.238) and Goovaerts (2009). Furthermore, the lag

spacing used for the IK variogram was also the same as that

used for the HER infogram, namely 70 m (0.07 km). The

parameter file used to model IK is shown in Appendix 1

(Fig. 15). Although choosing such a large number of

thresholds is not common practice, it facilitates local

uncertainty comparison (entropy maps and CPDs).

By using many thresholds, the impact of the linear

modeling for the interpolation (within class probabilities)

and extrapolation (upper and lower tails) of the distribution

is reduced (Goovaerts 2009), however at the cost of

potentially increasing order relation problems (Rossi and

Deutsch 2014 p.160; Goovaerts 1997 p.321). Therefore,

results from a more common model referred to as IK10 are

presented in Appendix 2. Following Goovaerts (1998 and

2001), it was modeled with 10 cutoffs, nine deciles of the

calibration histogram plus the critical limit zc. This is also

in line with the recommendation by Rossi and Deutsch

(2014 p.160) to use between 8 and 15 cutoff values.

Finally, for each target, we linearly interpolate the calcu-

lated probabilities and extrapolate the tails to the calibra-

tion bounds for obtaining a complete distribution. This

procedure is implemented in the AUTO-IK code by Goo-

vaerts (2009), which we used in this paper.

For comparison purposes, we fixed the lag distances of

IK and HER at equal intervals of 70 m (0.07 km) and the

predicted log10ðPbÞ distributions of OK, IK, and HER were

equally discretized with evenly spaced intervals of 0.015.

We selected this bin width for HER according to Thiesen

et al. (2019), in which the size of 0.015 (equivalent to a

concentration difference of 1.7 ppm around zc)
3 showed a

stabilization of the cross-entropy

(Hpq ¼ H pð Þ þ DKLðpj qj Þ) when comparing the full cali-

bration set and subsamples for various bin widths. Fur-

thermore, to increase computational efficiency, and due to

the minor contribution of faraway neighbors, we used only

the 30 neighbors closest to the target. With the lag (or

class), bin width, and number of neighbors defined, it was

possible to assess the spatial characterization and, conse-

quently, to proceed with the weight optimization (both

available in Appendix 1, Figs. 13 and 14). As shown in

Fig. 13, the calculated range contains 20 distance classes

reaching 1.4 km (roughly a third of the length of the x-

domain). Considering the optimization problem proposed

in Sect. 2.2.3, the optimum weights (wOR and wAND)

obtained for Eqs. 3 and 4 are illustrated in Appendix 1

(Fig. 14b). Both contributions considerably decrease until

the sixth class (circa 0.4 km), beyond which they stabilize

and decrease almost linearly until reaching the range

(1.4 km, class 20). The optimum contributions obtained for

AND and OR aggregation in Eq. 5 are a ¼ 0:65 and b ¼ 0,

therefore exclusively intersecting distributions. The spatial

characterization, aggregation method, optimal weights, and

the set of known observations define the HER model for

predicting local distributions.

The general procedures to obtain target estimates, dis-

tributions, and the binary probability for the contamination

classification are summarized for each method in Table 2.

The performance metrics related to each output are also

shown.

3.4 Results from local estimation with HER, IK,
and OK

Considering the similarities between HER and IK (both

nonparametric methods with data dependent distributions),

Sect. 3.4.1 focuses on presenting the local predictions of

these two methods. OK maps are offered in Fig. 17 (Ap-

pendix 2). In Sect. 3.4.2, the performance of all three

interpolators is compared and discussed.

3 Note that 1.7 ppm is approximately half of the standard deviation of

various-sources errors estimated in Atteia et al. (1994) for the lead

dataset.
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3.4.1 Model application

This section presents maps and distributions produced by

IK and HER, using exclusively the Jura calibration set in

their logarithm transform. Hereafter, we omit its logarithm

form and refer to the data and results simply as lead (Pb)

concentrations. For comparison purposes, an identical color

range was used for maps presenting the same information.

Additionally, the color bars of Figs. 4 and 5 discriminate,

respectively, the zc threshold of lead concentration (1.699)

and the entropy of the calibration set (5.348 bits, Table 1).

All maps were developed using a grid with size of 0.05 km

by 0.05 km.

In Fig. 4, we show the expected values (E-type) of lead

concentrations. In general, a similar trend (given by the

color shapes) for HER and IK can be seen, with similar low

and high pollutant concentration areas. HER is slightly

bolder in predicting extremely low (below 1.5) and high

(above 2.1) concentrations, presenting larger areas in dark

blue and yellow. The estimate map of OK is available in

Fig. 17a (Appendix 2).

Despite the similar trend of E-type values, the local

uncertainty (Fig. 5) consistently differs between HER and

IK. While IK predictions show generally lower uncertainty

(all values are below the calibration set entropy of

5.348 bits), HER shows a broader range of entropy values.

As expected, HER modeled a higher uncertainty to the

west of the study area (Fig. 5a), where no nearby mea-

surements are available, and lower uncertainty in the

regions with a higher density of observations. Conversely,

IK presents higher entropy in these denser areas.

The generally lower entropy of the IK map can be

attributed, in this case, to the resolution of the local PMF,

which is given by the numbers of cutoffs used for model-

ing. Although supporting the comparison analysis, the use

of a finer resolution resulted in local distributions with

empty bins (visible in Fig. 8), thus reducing the uncertainty

of the distribution in terms of entropy. The entropy map

and predicted distributions of an IK model with coarse

resolution (IK10) are available in Appendix 2 (Figs. 16 and

18, respectively). Although different in magnitude, the

same behavior of higher uncertainty in denser areas can be

seen in IK10 (Appendix 2, Fig. 16). The entropy map of OK

is available in Fig. 17b (Appendix 2).

Using the maximum acceptable concentration of lead

(zc), probability maps for exceeding this critical threshold

were produced (Fig. 6). These maps were built by cumu-

lating probabilities above zc. Both methods, HER and IK,

show high probability of contamination (in black) in zones

of higher Pb concentrations and low probability of con-

tamination (in light gray) in areas of lower concentration.

HER shows larger areas in black and light gray than IK,

being therefore a bit bolder in its predictions. Note that IK

maps in Figs. 6b and 7b do not suffer any negative impact

Table 2 Summary of the method procedures and associated performance metrics

Target
results OK IK HER Performance 

metric
Estimate With OK, we first obtained the 

estimate of the target and the 
associated error variance. 

The expected value is obtained 
from the target distribution. It is 
particularly called E-type 
estimate because it comes from 
a conditional distribution.

Same as IK. We measured the 
performance of 
the estimates 
using and 

.
Distribution* With an explicit Gaussian 

assumption, we derived the target 
distribution using the error 
variance centered on the estimated 
value. The distribution was then 
discretized in bins.
The Gaussian assumption calls for 
a kriging variance which is 
independent of the data values.

The local conditional 
cumulative distribution of the 
target is modeled though a 
series of cutoffs, interpolated
when required, and converted to 
a conditional probability 
distribution (CPD) discretized in 
bins.

We directly calculated 
the local conditional 
probability 
distribution (CPD) of 
the target already
discretized in bins.

We measured the 
accuracy of the 
distributions using 

and the
'accuracy-plot',
and its precision 
by the 'PI-width 
plot'.

Probability of 
being above
or below 

To obtain the probability of the 
target being above , we 
cumulate the probability of the 
distribution in two bins, greater 
than and less than or equal to

.

Same as OK. Same as OK. We measured the
performance of 
the classification 
probability using

.

* All distributions are discretized by the same binning scheme
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due to a large number of cutoffs, since only one cutoff (zc)

was used. The probability map of OK is available in

Fig. 17c (Appendix 2).

According to Goovaerts (1997 p.362), contaminated

areas can be delineated by setting a location as ‘contami-

nated’ if the probability of exceeding the tolerable maxi-

mum (zc ¼ 1:699) is larger than the marginal probability of

contamination (0.421, estimated in Sect. 3.1), and ‘safe’

otherwise. The proportion of wrongly classified points

generally reaches its minimum close to the marginal

probability of contamination (Goovaerts 1997 p.366). In

the present application, all lead models (OK, IK, and HER)

presented the minimum misclassification occurring close to

the probability of 0.5 instead of the marginal probability of

0.421 (further discussed in Appendix 2, Fig. 20). However,

considering that there are several ways to account for

uncertainty in the decision-making process, and therefore

greatly different results may be reached depending on the

Fig. 4 E-type map. a HER method, and b IK method

Fig. 5 Entropy map. Local uncertainty in terms of entropy. a HER method, and b IK method
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classification criteria (Goovaerts 1997 p.347, p.362),

comparing their differences is not within the scope of this

work.

Thus, based on the probability map for zc (Fig. 6) and

the marginal probability of contamination (0.421), we

binarize the probabilities to classify the results in

‘contaminated’ and ‘safe’ areas. HER and IK results are

shown in Fig. 7, and OK in Fig. 17d (Appendix 2).

The classification maps of HER and IK are relatively

similar, however areas declared safe by IK are slightly

more connected (Fig. 7b). In contrast, contaminated areas

are more connected in the HER map (Fig. 7a). The

respective OK maps can be found in Appendix 2 (Fig. 17),

Fig. 6 Probability map. Probability of exceeding the critical threshold (zc ¼ 1:699). a HER method, and b IK method

Fig. 7 Classification map. Classification of locations as contaminated by lead on the basis that the probability of exceeding the critical threshold

(zc ¼ 1:699) is larger than the marginal probability of contamination (0.421). a HER method, and b IK method
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revealing a very local influence of each calibration point.

For a more detailed theoretical comparison between HER

and OK, please refer to Thiesen et al. (2020).

Finally, six locations were selected to be explored in

more detail. Four of them are from the validation set, and

therefore represent a ground truth (targets A to D, Fig. 8),

and two of them were selected from the grid by their dis-

tance to neighbors and their homogeneity (targets E and F,

Fig. 8). The target locations, neighbors, and results are

presented in Fig. 8. These points were chosen with the goal

Fig. 8 Local distribution of targets of the validation set (targets A to D) and grid (targets E and F) for HER (gray) and IK (red). Targets are

identified by their coordinates (x,y). The location of each target is shown in a buffer of 600 m by 600 m
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to encompass targets with low (targets A and B) and high

(targets C and D) concentration as ground truth, and a more

homogeneous (targets A, C, and E) and a more heteroge-

neous (targets B, D, and F) neighborhood.

In general, all IK distributions (Fig. 8) contain empty

bins between sampled values, while by construction, HER

offers a higher resolution in the sense that the estimated

CPD is more continuous. As a trade-off for these empty

bins, in IK10 (Appendix 2, Fig. 18), fewer IK cutoffs were

used, and the resolution was artificially increased by lin-

early interpolating the probability values within each cut-

off. Nevertheless, IK and HER show relatively similar

shapes and spread for targets A and E, locations with more

homogeneous neighbors. Although their uncertainty dif-

fers, the expected values are also comparable, being equal

for target E. Despite the homogeneity of their neighbor-

hood, the expected values of targets A and C are not equal

to their true value. One reason for this is that just a few (or

no) nearby calibration points have a concentration as low

(target A) or as high (target C) as their true value. The

same applies to target D, although it is in a heterogeneous

neighborhood. At last, target F, which is located far from

the calibration set, presents a higher entropy when pre-

dicted with HER, and a more certain distribution for IK.

The local distributions of these targets and the IK10 model

are available in Appendix 2 (Fig. 18). Neither IK nor IK10

achieved the finer resolution of HER.

Finally, Fig. 9 depicts the mean and two confidence

intervals (CI) of the SW-NW cross section exclusively for

the HER model. The SW-NW cross section location and its

neighborhood are shown in Fig. 3a. The CI image also

contains nine points from the calibration set (black circles),

and seven points from the validation set (red squares), all

of them located close to the cross section.

Some of the calibration points exactly match the SW-NE

cross section. They can be identified in Fig. 9 as locations

where the uncertainty goes to zero (from left to right, 1st,

4th, and 9th black circles). For points not exactly on the

cross section, their influence in reducing the uncertainty

due to their proximity to the transect is visible. In partic-

ular, the 3rd and 4th calibration points (black circles, Fig. 9)

are in contrasting situations. The 3rd one is in a region with

homogeneous calibration points close by – which results in

a narrower uncertainty band –, while the 4th one presents an

abrupt uncertainty reduction since it is located exactly in

the transect, but its surrounding is rather heterogenous –

which explains the wider CI in its surrounding.

Validation points of high Pb concentrations (2nd and 3rd

red squares, Fig. 9) are outside the 95% CI. This happens

due to relatively homogeneous neighbors in the first six

distance classes (within a radius of circa 0.4 km), where

none presents such high Pb concentration. On the other

hand, for the more homogeneous regions (4th, 6th, and 7th

red squares), E-type predictions are close to the true values.

Note that despite their continuous vicinity (with an

increasing or decreasing tendency), these three validation

points present different uncertainty band sizes. It is wider

for 6th and 7th since they are located in a more heteroge-

neous region.

3.4.2 Performance comparison

In this section, the validation set is used to calculate the

performance metrics of OK, IK, and HER. Table 3 sum-

marizes their mean absolute error (EMA), Nash–Sutcliffe

efficiency (ENS), Kullback–Leibler divergence (DKL), and

goodness statistic (G). Accuracy and precision are shown

in Fig. 10.

Fig. 9 HER confidence interval

(CI) of the SW-NE cross section

(shown in Fig. 3a)
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Considering the deterministic metrics (based on the

expected value), all models have a comparable EMA. OK

presents larger ENS errors than IK and HER (Table 3). IK

and HER have similar efficiency ENS. On the other hand,

when we cumulate the predicted distributions for the val-

idation set in two bins (above and below threshold zc) and

compare its results to the true observation (as in Fig. 2b),

HER presents the smallest divergence DKL (mean over all

validations points) between predicted and true probability,

and OK the largest.

With respect to the Goodness statistic, OK and HER

obtained the best G (Table 3). This reflects their accuracy

in estimating distributions. Accuracy results are also shown

in Fig. 10a. The nonparametric models IK and HER present

points below the 45� line, which indicates the inaccuracy of
these probabilistic models for large p-PI (mainly p[ 0:70).

The lower G of IK can be attributed to the goodness

statistic, Eq. 9, penalizing inaccurate predictions, which

shows points further away from the bisector line (around

0.80-PI, Fig. 10a) in comparison to OK and HER. Since a

high G can be obtained by distributions with large spread,

we used Fig. 10b to evaluate the precision of the models.

The PI-width plot shows the estimated WðpÞ versus

expected fractions p.

Considering that the smaller the PI-width (y-axis), the

narrower (more precise) the distribution, Fig. 10b indicates

that HER and OK predict more precise distributions

approximately for p\0:40, HER for 0:40\p\0:70, and

IK for p[ 0:70. Besides being the model with narrower

predicted distributions until p\0:70 (Fig. 10b), HER

points in Fig. 10a are above the bisector line being,

therefore, considered accurate. On the other hand, for

intervals of p[ 0:70, HER and IK are considered more

precise than OK (Fig. 10b), but at the cost of increasing

their inaccuracy (Fig. 10a), i.e., their narrowness in the

predicted distributions may cause the proportion of true

values falling into these intervals to be smaller than for the

OK model.

The accuracy and PI-width plots of the coarse model

IK10 with linear interpolation of cutoffs are available in

Appendix 2 (Fig. 19). Even though IK and IK10 present

similar EMA, ENS, and DKL (Appendix 2, Table 5), IK10

linear extrapolation of the distribution tails contributes to

its increase in uncertainty (PI-widths as large as OK for

large intervals, Fig. 19b), therefore increasing accuracy

(G ¼ 0:960, Fig. 19a).

Table 3 Cross-validation results for OK, IK, and HER method

Method EMA ENS DKL G

OK 0.139 0.199 0.858 0.939

IK 0.135 0.233 0.840 0.928

HER 0.134 0.232 0.808 0.938

EMA mean absolute error (best: 0), ENS Nash–Sutcliffe efficiency

(best: 1), DKL Kullback–Leibler divergence (best: 0), G goodness

statistic (best: 1)

Fig. 10 OK, IK, and HER performance. a Proportion of the true lead

values falling within the probability intervals (p-PI) of increasing

sizes and b width of these intervals versus p-PI. The goodness statistic

(G) quantify the similarity between the expected and observed

proportions in the accuracy plots
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3.5 Results from spatial simulation with HERs

Smooth interpolated maps, such as the ones produced by

IK and HER, although locally accurate on average and

appropriate for visualizing trends (Rossi and Deutsch 2014

p.167), fail to reproduce clusters of large concentrations,

and consequently, should not be used for applications

sensitive to the presence of extreme values and their pat-

terns of continuity (Goovaerts 1997 p.370). Therefore, in

this section, we show the results from applying HER in

combination with sequential simulation (HERs, detailed in

Sect. 2.3) for generating multiple realizations of the Pb

concentration that match the calibration statistics and

conditioning data. By construction, all these realizations

honor the calibration values at their locations and should

reflect the statistics deemed consequential for the problem

at hand (Goovaerts 1997 p.370).

HERs was calibrated such that the statistical fluctuations

of the realizations were reasonable and unbiased

(Leuangthong et al. 2005). The statistical fluctuations due

to a finite domain size are referred to as ergodic fluctua-

tions, which mainly happen due to the size of the domain

relative to the correlation length. We can expect these

statistical fluctuations for anything less than an infinite

domain (Leuangthong et al., 2005). In HER and HERs

case, the correlation length reaches 1.4 km, i.e., circa one

third of the x-domain length. Additionally, Rossi and

Deutsch (2014 p.168) argue that between 20 and 50 sim-

ulations are generally sufficient to characterize the range of

possible values for the simulated values. We used 100

realizations to match the number of simulations done by

Goovaerts (1997) for the Jura dataset. The fluctuation

analysis of one hundred realizations is presented in Fig. 11,

where we show their discrepancies in relation to the cali-

bration infogram and marginal distribution. The challenges

faced during the model calibration and details about the

entropy calculation due to finite sample can be found in

Appendix 1.

As desired, the fluctuations of the infogram of the 100

realizations (gray curves in Fig. 11a) are unbiased in

relation to the calibration infogram (red curve), spreading

above and below it. This means that the spatial variability

of the calibration set is reproduced by the realizations

(although with some fluctuation). Departures between the

calibration statistics and realizations are expected, due to

the finite domain and density of conditioning data (Goo-

vaerts 1997 p.372), and important, since they allow one to

indirectly account for the uncertainty of the sample

statistics (Goovaerts 1997 p.427). Furthermore, artificially

eliminating it by removing realizations with fluctuations in

relation to calibration set is assuming some certainty. Just

for illustration, by calculating the E-type at each location

over all 100 realizations, we could also assess its smooth-

ing effect (blue curve). As expected (Goovaerts 1997

p.372), the HERs E-type infogram (blue curve) depicts

much smaller uncertainty in relation to the calibration

infogram (red curve), which reflects the underestimation of

the short-range variability of Pb values. It presents also

similar shape and magnitude in relation to the infogram of

HER E-type (not shown).

Fig. 11b depicts that the entropy of the realizations (gray

dots) is above and below the entropy of the calibration set

(red dot), and that the mean entropy of the realizations

(5.335 bits, represented by the gray dashed line) is close to

the entropy of the calibration (red dot, 5.348 bits), indi-

cating a reasonable reproduction of the uncertainty in the

observed data. On the other hand, the mean of the real-

izations (1.704) is approximately 1% higher than the mean

of the calibration set (1.687) and less than 0.25% higher

than the mean of the E-type of IK (1.704) and HER (1.700).

In this sense, the difference between the mean values of the

simulation and the calibration dataset could reflect a bias

Fig. 11 Ergodic fluctuations of 100 realizations generated with HERs. a Infogram and b scatterplot of the mean and entropy values
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due to spatial clustering of the observations, instead of a

bias in the realizations with respect to the true mean of the

population (Goovaerts 1997 p.370). Although it was not

done here, when the simulated PMF is deemed too different

from the target PMF, an adjustment of the simulated PMFs

is possible (Goovaerts 1997 p.427). According to Deutsch

and Journel (1998 p.134), any realization can be postpro-

cessed to reproduce the sample histogram; hence the

sample mean and variance. To do so, Journel and Xu

(1994) proposed a posterior identification of the histogram,

which allows improving reproduction of the target PMF

while still honoring the conditioning data and without

significant modification of the spatial correlation patterns

in the original realization. For the sake of brevity, the

improved reproduction of PMFs is beyond the scope of this

paper. We should bear in mind that verifying the quality of

the reproduction does not provide an indication on the

goodness of the set of realizations as a whole, because

unlike models of local uncertainty (that have true obser-

vations to be compared), there is no reference spatial dis-

tribution of values to be used in models of spatial

uncertainty (Goovaerts 2001). For illustration, two arbi-

trary stochastic images constructed with HERs and the

calibration dataset are pictured in Fig. 12.

One can notice that the generated stochastic images

(Fig. 12) do not smooth out details of the spatial variation

of the Pb concentration as in the estimation maps (Fig. 4).

And compared to interpolation techniques like OK, IK, and

HER, the variability of the simulated maps is higher due to

the incorporation of variability between unsampled points.

A comparison between the E-type and simulation vari-

ability in space is available in Fig. 11a.

In general, both images present low concentration zones

(blue) to the North and Southeast of the study area, which

are derived from the low uncertainty and the tendency of

low concentration previously verified in the regions

(Fig. 5a and Fig. 4a, respectively). Similarly, the zone with

high concentration and low uncertainty (around x = 2.5

and y = 2.5, Fig. 4a and Fig. 5a) presents, in both real-

izations, high Pb concentrations. On the other hand, regions

with higher uncertainty (due to the heterogeneity of the

sample data or because they are far away from sample data)

present a more variable concentration when comparing

both images.

4 Discussion

In general, IK and HER are conceptually different in their

modeling. HER relies on empirical probability distributions

to describe the spatial dependence of the study area and

uses aggregation methods to combine distributions. IK

estimates a number of probabilities for a series of cutoffs,

for each of which an indicator variogram is modeled to

describe the spatial continuity of the study area, and the

estimated probabilities are then interpolated to obtain the

full distribution. Furthermore, a global set of weights for

the classes is obtained with HER, while IK performs

multiple local optimizations, one for each target and cutoff.

Both methods share similarities: they are nonparametric in

Fig. 12 Realizations generated using HERs. a Realization #42 and b realization #94. Simulation grid size of 0.05 km 9 0.05 km
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the sense that no prior assumption about the shape of the

distribution being estimated is made, their results are data

dependent, and they can be applied to continuous or cate-

gorical variables. Such characteristics do not apply to OK,

therefore, we focused our analysis on IK and HER. A

detailed conceptual discussion comparing OK and HER is

available in Thiesen et al. (2020). Although HER is con-

sidered nonparametric, two assumptions are implicit in

defining the weights used for the PMF aggregation: one in

linearly interpolating the optimum weights obtained for

each class, and the other in defining the optimization

problem (both topics are discussed in Sect. 2.2.3). An

analogous interpretation of these assumptions can be

applied to IK, where the weights are obtained by mini-

mizing the variance and applied to the linear combination

of the observations. The latter step is comparable to the

choice of the aggregation method in HER.

IK and HER are distance models between any two pair

of points, with different forms of inference. While in IK the

spatial variability of the attribute values can be fully

characterized by a single covariance function, which differs

for each cutoff (Goovaerts 1997 p.393), HER relies directly

on the dataset to extract one distribution for each distance

class (as seen in Fig. 13). The stationarity assumption

behind the inference is a model decision (and not a char-

acteristic of the physical phenomenon) and can be deemed

inappropriate if its consequences do not allow one to reach

the goal of the study (Goovaerts 1997 p.438). The infer-

ence of the spatial dependence together with the aggrega-

tion procedure allows the spread of local distributions in

HER as well as the simulated values of HERs to naturally

reach values beyond the calibration set (both above the

maximum and below the minimum). For IK, this is only

possible if the user imposes extremes beyond the calibra-

tion set. Likewise, the extremes of HER distributions can

be restricted by the user according to their interest.

Interestingly, despite their conceptual differences, in this

study HER and IK show comparable performance in both

deterministic and probabilistic terms (Table 3 and Fig. 10).

One exception is the Kullback–Leibler divergence (DKL),

for which HER was able to classify ‘contaminated’ and

‘safe’ areas with higher precision and accuracy. Such

accomplishment may be explained by the fact that the HER

optimization problem was built around this metric

(Sect. 2.2.3), although this does not guarantee the best

performance in the validation set. Regardless of the per-

formance comparison presented, we should be mindful that

there is no unique, best, or true model for modeling

uncertainty (Journel 2003). Consequently, there can be

several alternatives that depend on the user decision to

model the uncertainty which can be more suitable to the

problem at hand.

When applying IK, two major issues arise, namely,

inconsistent (negative) probabilities when estimating dis-

tributions and the choice of interpolation/extrapolation

models to increase the resolution of the estimated distri-

bution (Goovaerts 1997 p.441 p.319 p.326; Goovaerts

2009). The first is known as order relation deviations and is

typically treated by a posteriori correction of the estimated

probabilities, which imposes nonnegative slopes to the

cumulative distribution (Goovaerts 2009). For the latter,

there are different ways of achieving a finer resolution of

the distribution. Increasing the number of cutoffs leads to

cumbersome inference and modeling of multiple indicator

variograms (one for each cutoff), which consequently

increases the likelihood of order relation deviations due to

the empty cutoff classes (Goovaerts 1997 p.326; Rossi and

Deutsch 2014 p.160). As an alternative to that, multiple

interpolation and extrapolation models are available in the

literature. In such cases, where interpolation/extrapolation

models are used, besides the arbitrariness of the model

selection (Goovaerts 2009), distribution statistics such as

the mean or variance may overly depend on the modeling

of the upper and lower tails of the distribution (Goovaerts

1997 p.337). Therefore, due to the trade-off between

increasing the number of thresholds and using models to

derive continuous distributions, both alternatives were

discussed in this paper (IK and IK10). Regardless of the

chosen approach, the risk of suboptimal choices by the user

remains. Conversely, HER avoids imposing these correc-

tions to the distributions and multiple variogram fitting, but

its parameter choices (such as distance class size, bin

width, number of neighbors, and aggregation type) are also

subjective. Yet, for both methods HER and IK, parameter

decisions can be based on performance metrics via leave-

one-out cross-validation, for example.

Both IK and HER estimated remarkably similar values

of Pb concentration (E-type map, Fig. 4). On the other side,

the maps associated with the probabilistic results (entropy

map in Fig. 5, probability of exceeding the critical

threshold in Fig. 6, and classification map in Fig. 7) are

distinct, with increasing uncertainty of HER in data sparse

regions. We noticed that when dealing with sparse data,

there is not enough data to fill each cutoff in IK, which, due

to the resulting empty bins, decreases the uncertainty (en-

tropy). The opposite happens in denser regions, where

more data is available and the chances of more bins being

filled is higher, increasing therefore the entropy for

heterogeneous regions. As discussed in Sect. 3.4.1 (Fig. 8),

both methods reflected the expected behavior of larger

errors in locations surrounded by data that are very dif-

ferent in value (as expected and argued by Goovaerts 1997

p. 180). However, in terms of PMF resolution, the greater

computational and inference cost of HER in comparison to

IK is balanced by a finer resolution of the distributions,
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which could be neither achieved by the IK nor the IK10

model. The lack of resolution in IK is particularly severe

when using indicator-related algorithms with only a few

cutoff values such as the nine deciles of the sample

(Deutsch and Journel 1998 p.134). In this case, the loss of

information available in continuous data is more accentu-

ated in IK than in HER, due to the indicator transform of

the data (Fernández-Casal et al 2018) and few cutoffs. In

contrast, the resolution of HER distributions is given by the

selected bin width and, consequently, an indicator trans-

form would only be needed as a post-processing step (such

as for a probability analysis of exceeding a critical

threshold or a classification map).

In terms of simulation, HERs has proven to be difficult

to calibrate. Many parameters were tested until the entropy

(variability) of the realizations converged to the entropy of

the calibration dataset. In the sensitivity analysis performed

(not shown), the authors verified a strong impact of the

number of aggregated distributions (thus, number of

neighbors) when intersecting distributions. The stronger

the contribution of the AND combination (which is the

case here), and the higher the homogeneity of the data, the

more sensitive the spatial variability of HERs is to the

number of neighbors. Therefore, in general, too many equal

(homogeneous) PMFs would result in a very narrow output

(deflation of the spatial variability), whereas too few could

inflate it. Although a first analysis of the simulation pro-

cedure and results of HERs was introduced in this paper

with promising results, further investigations considering

the influence of different data properties, implementation

of strategies (such as search neighborhood and multiple-

grid simulation available in Goovaerts 1997 p.378 p.379),

and the addition of transfer functions are needed.

Finally, we should bear in mind that uncertainty arises

from our lack of knowledge about the phenomenon under

study and, therefore, it is not an intrinsic property of the

phenomenon (Goovaerts 1997 p.441). Uncertainty is data-

dependent and, most importantly, model-dependent, and,

consequently, can be controlled by the expert according to

their wishes (Journel 2003). No model, hence, no uncer-

tainty measure, can ever be objective: the point is to accept

this limitation and to document clearly all its aspects

(Goovaerts 1997 p.441; Journel 2003). Thus, despite the

uncertainty differences between IK and HER and our

attempt to quantify their performances, IK and HER pre-

sented legitimate results, which exhibited similar accuracy

and precision performances.

5 Summary and conclusion

Maps derived from local uncertainty estimates can be used

for various decision-making processes, including the

assessment for additional data (Journel 1989 p.30). Par-

ticularly for concentrations of toxic or nutrient elements,

which are rarely known with certainty, decisions are most

often made in the face of uncertainty (Goovaerts 1997

p.347). There are various ways to assess uncertainty, such

as mapping the probability of exceeding a critical threshold

or generating sets of realizations of the spatial distribution

of the phenomenon under study. In this paper, we addres-

sed the issue of uncertainty assessment of the continuous

attribute of lead concentration in soil by adapting the HER

method (histogram via entropy reduction, Thiesen et al.

2020) to deliver local and spatial uncertainty. HER results

were compared to two different benchmarking models,

namely ordinary kriging (OK) and indicator kriging (IK),

with a focus on the latter due to its similarity to HER in

terms of being nonparametric and predicting conditional

distributions. In general, OK presented the worst perfor-

mance. IK and HER presented legitimate results, which

exhibited comparable accuracy (similarity to the true

value) and precision (narrowness of the distribution). One

exception was the performance of HER when dealing with

the probability of exceeding a critical threshold (zc), which

presented a higher accuracy and precision when binarizing

the distributions according to zc and considering the local

probability of each point being above or below this

threshold. This may be explained by the way that the

optimization problem was tailored.

Visually contrasting IK and HER, they presented quite

similar maps of expected values (E-type map) while their

local uncertainty (entropy map) presented different shapes,

and different magnitudes (depending on how IK was

modeled, with more or fewer cutoffs). An interesting

aspect verified in the visual comparison was the lack of

resolution of the predicted distributions of IK in relation to

HER, since no interpolation/extrapolation assumption was

done for predicting continuous distributions in IK in the

presence of sparse data and it is limited to the sample

dataset values (Goovaerts 2009). For predicting continuous

distributions, such interpolation/extrapolation assumptions

introduce the risk of suboptimal user choices and of adding

information not available in the data (IK case), while its

lack turns the model computationally demanding and

changes the form of inference (HER case).

HER-based sequential simulation (called HERs)

allowed generating realizations that reproduced the spatial

variability of the sample set. The quality of the realizations

was verified in terms of their statistical fluctuation in

relation to the sample set. However, no further analyses of
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the results (such as benchmarking comparison or adding

transfer functions) were carried out, due to the typical

absence of a spatial distribution of values to be used as a

reference (Goovaerts 2001).

HER and its adaptation HERs allow nonparametric

estimation and stochastic predictions, avoiding the short-

comings of fitting any kind of deterministic curves and,

therefore, the risk of adding information that is not con-

tained in the data (or losing available information), but still

relying on two-point geostatistical concepts. In relation to

IK, HER has shown to be a unique tool for estimating

nonparametric conditional distributions with the advantage

of i) not presenting problems of order-relation deviations,

ii) being free of function assumptions for interpolating

probabilities or extrapolating tails of distributions, iii) not

requiring the definition of various cutoffs and, conse-

quently, their respective indicator variogram modeling,

iv) displaying a finer resolution of the predicted distribu-

tion, v) avoiding strong loss of information due to data

binarization, and vi) bringing more flexibility to uncer-

tainty prediction through the different aggregation methods

and optimization strategies. Finally, due to the growing use

of stochastic simulation algorithms for uncertainty assess-

ment in soil science and the potential improvement of

results given the consideration of soft variables (secondary

data), the authors believe that additional investigations of

HERs and model adaptations of HER are topics worth of

further research.

Appendix 1: Model parameters

This section presents complementary material regarding

the calibration of the models analyzed in the paper,

namely, ordinary kriging (OK), indicator kriging (IK),

histogram via entropy reduction (HER), and its sequential

simulation version (HERs).

OK

Due to the availability of an OK model for the logarithm

base of the Jura dataset in the literature, OK was para-

metrized according to Atteia et al. (1994). It was modeled

with two spherical variograms, with the parameters pre-

sented in Table 4.

HER

This section presents the spatial characterization of the lead

dataset using HER (Fig. 13) and the optimum weights

obtained to be used in aggregation methods (Fig. 14).

Fig. 13a presents the raw infogram from where the

class PMFs (Fig. 13b) and, consecutively, the infogram

(Fig. 13c) were obtained. In Fig. 13b, the Euclidean dis-

tance (in km) relative to the class is indicated after the class

name in interval notation (left-open, right-closed interval)

and, for brevity, only the odd classes are shown. The visual

increasing of the spread of the Dz PMFs given the distance

class (Fig. 13b) is numerically verified also in the infogram

(red curve, Fig. 13c), which presents increasing entropy

(therefore, decreasing spatial dependence or increasing

spatial disorder) with distance. As shown in Fig. 13c, the

calculated range included 20 classes, reaching 1.4 km

(circa three times smaller than the x-domain length of

about 4 km). The range was identified as the point beyond

which the class entropy exceeded the entropy of the full

dataset (seen as the intersect of the blue and red-dotted

lines).

The number of pairs forming each Dz PMF and the

optimum weights (wOR and wAND) obtained for Eqs. 3 and

4, respectively, are illustrated in Fig. 14. About 30% of the

pairs (20 294 out of 66 822 pairs) are inside the range,

where the first class has just under 500 pairs and the last

class inside the range (light blue) has above 1500 pairs.

Decreasing contribution of the weight with the distance is

seen in Fig. 14b, with strong influence of the first six

classes (until about 0.4 km). Furthermore, the optimum

contribution of AND and OR aggregation, Eq. 5, for this

model was a ¼ 0:65 and b ¼ 0.

IK and IK10

This section presents the parameters used in AUTO-IK

program (developed by Goovaerts 2009) to calibrate the

indicator kriging model (called IK) for the paper dataset.

The parameter file employed is available Fig. 15 The

program AUTO-IK described in Goovaerts (2009) is

available on his personal website (https://sites.google.com/

site/goovaertspierre/pierregoovaertswebsite/download/indi

cator-kriging).

Based on this IK model (Fig. 15), the authors also

generate a model using 10 cutoffs, of which nine are

equally spaced p-quantiles of the sample histogram and one

is the zc threshold, i.e., [1.488, 1.543, 1.576, 1.619, 1.667,

1.699 (zc), 1.709, 1.752, 1.816, 1.907]. The decision was

Table 4 Parameters of OK fitted variograms as proposed by Atteia

et al. (1994)

log10ðPbÞ Nugget Sill Range (km)

spherical model 1 0.0096 0.0228 0.287

spherical model 2 0.0131 – 2.605
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based on Goovaerts (1997 p.285), who recommends using

zc as a cutoff to avoid the later interpolation of its proba-

bility and argues that cutoff values beyond the first and

ninth decile of the calibration set may be inappropriate,

since they depend on the spatial distribution of a few pairs

of points. In general, Rossi and Deutsch (2014 p.160) also

Fig. 14 HER model characteristics of the lead dataset. a Class cardinality and b optimum weights – Eqs. 3 and 4

Fig. 13 Spatial characterization of the lead dataset using HER. a Infogram cloud, b Dz PMFs by class, and c infogram
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recommend between 8 and 15 cutoff values. Thus, due to

its 10 cutoff values, this model is called IK10.

HERs

For the sequential simulation model (HERs), we verified

the quality of the reproduction of the realizations similarly

to the work of Goovaerts (1997) and Leuangthong et al.

(2005). The final optimum weights were practically the

same as HER model, with the identical infogram and PMF

of the classes of HER (as in Fig. 13), same cardinality and

similar wOR and wAND (as in Fig. 14), a ¼ 0:55 (inter-

secting PMFs), and b ¼ 0 (averaging PMFs). The small

changes on the optimum weights (automatically obtained)

happened since the number of neighbors used for HERs

was set to seven (instead of 30 used for HER).

Although HER and HERs models resulted both in a pure

intersection of PMFs (since we have just a contribution),

the influence in the number of neighbors plays an important

role when intersecting distributions and, therefore, we

reduced it to seven in HERs. As explored in Thiesen et al.

(2020), the higher the number of (similar) distributions to

be intersected, the smaller the uncertainty of the resultant

distribution. Consequently, due to the sequential procedure

of HERs – in which for each iteration we artificially add an

Fig. 15 Parameter file used for geostatistical analysis of log10ðPbÞ
required by AUTO-IK.exe. Indicator semivariograms for thresholds

corresponding to 68 equally spaced cutoffs plus zc threshold, are

computed using 30 lags of 0.07 km. The models are fitted automat-

ically and used to perform full ordinary indicator kriging using up to

the 32 closest observations located within a radius of 2 km

Fig. 16 Entropy map. Local uncertainty in terms of entropy for IK10
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extra sample to the data to condition the next prediction –

the number of distributions to be intersected greatly

increase in relation to the validation set. Thus, to balance

this decrease in the entropy (uncertainty), the authors have

chosen to reduce the number of neighbors. This imple-

mentation decision (number of neighbors) was done by

simply checking the infogram of each realization, until it

was unbiased in relation to the sample set (Fig. 11a). This

is how we also validate the model regarding ergodic

fluctuations.

It is important to note that estimating entropy via a finite

sample have the tendency to be underestimated (Darscheid

2017). Therefore, considering the great discrepancy in the

amount of data between the calibration set (259 observa-

tions) and realizations (grid with more than 10,000 targets),

we introduced a bias in the realizations so that they could

be compared to the calibration set (Fig. 11b). This was

conducted by drawing 259 points from each realization

(with no replacement), calculating their entropy, repeating

it 1000 times, and taking the mean of these repetitions.

Fig. 17 OK maps for log10ðPbÞ dataset. a Estimates, b local

uncertainty in terms of entropy, c probability of exceeding the critical

threshold ðzc ¼ 1:699Þ, and d classification of locations as

contaminated by lead on the basis that the probability of exceeding

the critical threshold zc is larger than the marginal probability of

contamination (0.421)
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Although the bias of the calibration set could be estimated

(as proposed by Steck and Jaakkola 2004; Darscheid 2017),

a bias correction of the entropy of the calibration set is not

straightforward since the obtained value is just a reference

to bound the maximum bias and not its exact value. Con-

versely, adding a bias to the realizations allowed the

comparison of the entropy of the calibration set and of the

realizations.

Additionally, the authors verified the existence of con-

nectivity of extremely high and small concentration values

using indicator variograms for the deciles of 0.2 and 0.8

and different realizations (not shown). The results pointed

out no destructuration effect (also known as maximum

entropy property, Goovaerts 1997 p.272 p.393), e.g., for

the realizations #42 and #94 (Fig. 12), due to the similarity

of the indicator variogram of the calibration set and sim-

ulated realizations for the different deciles. Therefore,

HERs present itself as an appropriate method for cases

where extreme values are spatially correlated.

Appendix 2: Extra results

This section consolidates extra results for the local uncer-

tainty of OK, IK, IK10 and HER models. Fig. 16 displays

the entropy map of IK10. It is noteworthy that the E-type,

probability, and classification maps were not included for

IK10 due to their similarity to the ones produced to the

refined IK model.

Fig. 17 displays the local results for the OK model,

including estimation, entropy, probability, and

Fig. 18 Local distribution of targets of the validation set (targets A to D) and grid (targets E and F) for HER (gray), IK (red), and IK10 (purple)

Table 5 Cross-validation results for OK, IK, IK10, and HER method

Method EMA ENS DKL G

OK 0.139 0.199 0.858 0.939

IK 0.135 0.233 0.840 0.928

IK10 0.135 0.230 0.840 0.960

HER 0.134 0.232 0.808 0.938

EMA mean absolute error (best 0), ENS Nash–Sutcliffe efficiency (best

1), DKL Kullback–Leibler divergence (best 0), G goodness statistic

(best 1).
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classification maps. Similar to Goovaerts (1997 p.362), the

estimation map of OK (Fig. 17a), which is optimal for

least-square criterion, tends to overestimate the Pb con-

centration, leading to most locations being classified as

contaminated (Fig. 17d). While the OK estimates (Fig. 17a)

and E-type estimates presented in the paper (Fig. 4) are

similar, their uncertainty (Figs. 17b and 5) are completely

different. The map of OK entropy indicates greater

uncertainty where data are sparse, whereas the uncertainty

is smallest near data locations. Such effect is expected

since OK ignores the observation values, retaining only the

spatial geometry from the data (Goovaerts 1997 p. 180).

The local distributions of IK, IK10, and HER models are

displayed in Fig. 18. In this image, we can relate the bin-

filling effect of the linear interpolation and extrapolation of

the distribution assumed in IK10 with IK.

Table 5 (performance results) and Fig. 19 (accuracy and

PI-width plots) contain information already presented in

the paper, with the inclusion of IK10.

The misclassification given different probability cutoffs

is shown in Fig. 20. Different than expected, all lead

models (OK, IK, and HER) presented the minimum mis-

classification occurring close to the probability of 0.5

instead of the marginal probability of 0.421 (estimated in

Sect. 3.1). This could be explained by the fact that the

marginal probability was calculated on the calibration set

and we are analyzing the models on the validation set, or

by the fact that no declustering of the calibration data was

Fig. 19 OK, IK, IK10, and HER performance. a Proportion of the true lead values falling within the probability intervals (p-PI) of increasing sizes
and b the width of these intervals versus p-PI

Fig. 20 Proportion of validation

locations a that are declared

contaminated with respect to

lead concentration and b that are

wrongly classified for OK, IK,

and HER models
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done before calculating the marginal probability. Although,

for all models, misclassification is not minimal at the

marginal probability of 0.421, they have a similar mono-

tonic tendency of decreasing its values until the minimum

(at about 0.5). IK10 presented similar misclassification in

comparison to IK, which was not plotted to avoid inter-

ference with the visualization.
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