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Proteins are the molecular workhouses of biological cells, with 
a myriad of tasks including oxygen transport, cellular commu-
nication and energy balance. As a protein’s function is linked 

to its structure and dynamics, its understanding requires resolv-
ing the protein’s three-dimensional shape. Misfolded proteins are 
associated with several neurodegenerative diseases1, and decipher-
ing the structure–function paradigm paves the way to developing 
treatments for Alzheimer’s and Parkinson’s diseases2, amyloidosis3, 
type-2 diabetes4, Creutzfeldt–Jakob disease5, among others.

Proteins are nanoscale and can only be observed indirectly. 
Hence, experimental data are often ambiguous, incomplete or of 
such low resolution that they require interpretation to access their 
information content. A practical example is small-angle X-ray 
scattering (SAXS), where dissolved biomolecules are irradiated 
by X-rays and the scattering intensity is recorded. However, the 
desired molecular electron density is the Fourier transform of the 
experimentally inaccessible complex-valued scattering amplitude. 
Recovering structural models from an intensity, that is, the abso-
lute amplitude squared, is an ill-posed inverse problem. The sparse 
information in the SAXS data is insufficient to determine all degrees 
of freedom in a molecular structure. Protein structure determina-
tion thus depends on combining experimental results and compu-
tational methods, and recent studies highlight the potential of such 
hybrid approaches6–9.

One effective approach is to complement the experimental data 
with molecular dynamics (MD)10,11. MD simulations provide a 
physics-based description of molecular motion and give in-depth 
insight into biomolecular function. Atomistic trajectories are 
derived by integrating Newton’s equations of motion for a system of 
interacting particles, and forces are calculated from empirical inter-
atomic potentials (force fields). In data-assisted MD, an energetic 

restraint on the target data is added to the force field to favour 
conformations consistent with the data. This bias potential is pro-
portional to the least-squares deviation of theoretical data from sim-
ulated structures and the experimental data7,10,12–14. Derived forces 
are assumed to drive the protein towards conformations reproduc-
ing the target data. As a molecular system seeks to minimize its free 
energy, the bias effectively determines a cost for disregarding the 
data in the simulation. The better the simulated structures align to 
the data, the smaller is the energetic penalty in the form of the bias15.

An inherent issue with data-assisted simulations is their reli-
ance on MD parameters7–9. Selecting adequate values is non-trivial 
and crucial for simulation performance, and determining the bias 
potential’s weight is the key challenge. This selection determines 
how experimental and theoretical information is balanced. The 
bias weight is an empirical MD parameter expressing the con-
fidence in the experimental data versus the physics-based force 
field8. In Bayesian methods, the right weighting is derived from a 
statistical treatment13,14. However, such sophisticated approaches 
are practically inapplicable for users with a primarily experimen-
tal background. It is still common practice to manually determine 
an ‘optimal’ bias weight via grid search, that is, an exhaus-
tive search through a fixed subset of the parameter space7,9,12. 
Adopting concepts from computational intelligence, we introduce 
FLAPS (‘flexible self-adapting particle swarm’ optimization), a 
self-learning metaheuristic based on particle swarms, to resolve 
this parameter selection problem. Our contributions include the 
following:

•	 A new type of flexible objective function (OF) to assess a 
data-assisted simulation’s plausibility in terms of simulated 
structures and thus the suitability of the MD parameters used.
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Molecular simulations are a powerful tool to complement and interpret ambiguous experimental data on biomolecules to obtain 
structural models. Such data-assisted simulations often rely on parameters, the choice of which is highly non-trivial and cru-
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we show how FLAPS can be used to find functional parameters for small-angle X-ray scattering-guided protein simulations.
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•	 A self-adapting particle swarm optimizer for dynamically evolv-
ing environments resulting from multiple quality features of dif-
ferent scales in the flexible OF.

•	 Fully integrated and automated MD parameter selection for 
data-assisted biomolecular simulations.

As a proof of concept, we apply FLAPS to the selection of relevant 
MD parameters in SAXS-guided structure-based protein simulations7.

Particle swarm optimization
Particle swarm optimization (PSO) is a bio-inspired 
computational-intelligence technique to handle computationally hard 
problems based on the emergent behaviour of swarms16. Swarm intel-
ligence is the collective behaviour of decentralized, self-organized sys-
tems. Such systems comprise a population of cooperating particles. 
Although there is no supervising control, this leads to ‘intelligent’ 
global behaviour that is hidden to the individual particles.

PSO iteratively improves a candidate solution with respect to a 
quality-gauging OF. The optimization problem is approached by con-
sidering a swarm of particles, each corresponding to a particular posi-
tion in parameter space. Across multiple search rounds (generations), 
the particles ‘jump’ around in the search space according to their 
positions and velocities. Particles ‘remember’ their personal best loca-
tion and the global best location in their social network, which act as 
attractors in the search space. To propagate a particle to the next gen-
eration, a velocity is added to its current position. The velocity has a 
cognitive component towards the particle’s current personal best and a 
social component towards the current best in its communication net-
work. Each component is weighted by a random number in the range 
[0,ϕi], where the acceleration coefficients ϕi balance exploration ver-
sus exploitation in the optimization. Eventual convergence is achieved 
through progressive particle flight contraction by mechanisms such as 
velocity clamping17, inertia weight18 or constriction19. Altogether, this is 
assumed to move the swarm towards the best parameter combination.

PSO has been demonstrated to work well for various static prob-
lems20. However, realistic problems are often dynamic, and the 
global optimum can shift with time. Application to such problems 
has been explored extensively, revealing that the algorithm needs 
to be enhanced by concepts such as repulsion, dynamic network 
topologies or multi-swarms21,22.

Maintaining a population of diverse solutions enables enormous 
exploration and paves the way to large-scale parallelization. Such 
algorithms can be scaled easily to exploit the full potential of mod-
ern supercomputers23. PSO has several hyperparameters affecting 
its behaviour and efficiency, and selecting them has been researched 
extensively24,25. Strategies include using meta-optimizers26,27 or 
refining them during the optimization28. Reference 29 provides an 
overview of practical PSO applications, while refs. 22 and 30 give 
comprehensive reviews of PSO with a focus on dynamic environ-
ments and hybridization perspectives, respectively.

Multi-response problems
Real-life optimization problems are often determined by multiple 
incomparable or conflicting quality features (responses). To obtain 
compatible solutions, these responses must be taken into account 
simultaneously. This is often accomplished by combining individual 
contributions within one composite OF. PSO has been applied to 
multi-response optimization in many fields31–34. Commonly, the 
set of responses is reduced via multiplication by manually chosen 
weights, henceforth referred to as OF parameters. Choosing OF 
parameters is non-trivial, yet strongly impacts global optimization 
performance by skewing the OF. FLAPS builds on a flexible OF that 
automatically and interdependently balances different responses. 
OF parameters are learned at runtime through iterative refinement, 
yielding a dynamically evolving OF landscape. In this way, FLAPS 
can cope with various responses of different scales.

A flexible self-adapting objective function
Typically, the set of responses is mapped to a scalar score by calcu-
lating the scalar product with fixed weights. These OF parameters 
supposedly reflect relative importance, implicitly encoding arbi-
trary prior beliefs. Instead, we set up a ‘maximum-entropy’ OF with 
the fewest possible assumptions:
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where z is the set of OF parameters, μj is the mean and σj is the stan-
dard deviation of response Rj for a particle at position x. All responses 
are considered equally important but can have different ranges and 
units. To make them comparable on a shared scale, we standardize 
each response’s set of values gathered over previous generations. This 
strategy imitates the concept of rolling batch normalization35. Each 
layer’s inputs are recentred and rescaled with the aim to improve a 
neural network’s speed, performance and stability. Initially proposed 
to mitigate internal covariate shift, batch normalization is believed to 
introduce a regularizing and smoothing effect and promote robust-
ness with respect to different initialization schemes. The OF in equa-
tion (1) depends not only on the parameters of interest, x, in our case 
the MD parameters, but also on a priori unknown, context-providing 
OF parameters, z = ({μ, σ}j), from the standardization. Their values 
cannot be deduced from individual OF evaluations, yet fundamentally 
control OF performance and hence the optimization process.

Algorithm 1 FLAPS algorithm. Initialize population pop with 
swarm size S particles at random positions xp (p = 1, ..., S) between 
upper and lower bounds of the search space bup and blo, respectively.
for g ← 1 to maximum generations G do
 for particle in pop do
  Evaluate responses at particle.position = xp:
  particle.fargs = [responsej(xp)]j
 end
 Append current generation pop to history histp: histp.append(pop)
  Update OF parameters zg based on current knowledge state of 

responses in histp: zg = updateParams(histp)
 for particle in histp do
  (Re-)evaluate objective function using most recent zg:
  particle.fitness = f(xp; zg)
 end
 for generation in histp do
  for particle in generation do
    Determine personal best ppbest and update global best gbest 

accordingly.
  end
 end
 for particle in pop do
  Update velocity and position:

  
particle.speed+ = rand (0,ϕ1)

(

ppbest − particle.position
)

+

rand (0,ϕ2) (gbest − particle.position)
  Regulate velocity via smax = 0.7 G−1 (bup − blo):
  if particle.speed > smax then
   particle.speed = smax
  end
  if particle.speed < −smax then
   particle.speed = −smax
  end
  particle.position+ = particle.speed
 end
end
Result: gbest
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Our self-adapting PSO variant, FLAPS, solves this problem. 
Provided with a comprehensive history of all previous particles and 
their responses, OF parameters are learned on the fly. They are con-
tinuously refined according to the current state of the optimization, 
yielding a dynamically evolving and increasingly distinct OF topol-
ogy. This environmental dynamism may cause convergence prob-
lems if the OF fails to approach a stable topology. As more particles 
are evaluated, the ranges and distributions of individual responses 
become better understood. Therefore, OF parameters become more 
accurate, improving OF performance in assessing the suitability of 
the actual parameters of interest, x. After each generation, the val-
ues z = ({μ, σ}j) are used to reevaluate the OF for all particles in 
the history. Personal best positions, ppbest, and the swarm’s global 
best position, gbest, are updated accordingly for propagating par-
ticles to the next generation. FLAPS uses a traditional PSO veloc-
ity formulation16. Strategies to prevent diverging velocities include 
introducing an inertia weight18 or a constriction factor19. We regu-
late the velocities by means of a maximum value at each particle 
update17. FLAPS’s pseudo code is shown in Algorithm 1. Inspired 
by the ‘simplifying PSO’ paradigm, it builds on a slim standard PSO 
core and can easily be complemented by concepts such as inertia 
weight18 and swarm constriction19 or diversity increasing mecha-
nisms. Its time complexity is similar to that of a standard PSO with 
O
( S
P · G · Sim+ S ·Opt

)

= O
( S
P · G · Sim+ S2 · G

)

 in Landau 
notation, where P is the number of simulation processors, ‘Sim’ 
the maximal simulation time, and all other variables as defined in 
Algorithm 1.

Application to data-assisted protein simulations
We applied FLAPS to the optimization of MD parameters in 
SAXS-guided protein simulations7. SAXS data are integrated into 
computationally efficient structure-based models, which probe 
dynamics arising from a protein’s native geometry36,37. To assess the 
utility of different MD parameter sets, we need a metric for simula-
tion quality in terms of physically reasonable structures matching 
the data. Designing such an OF in advance is non-trivial and has 
two major aspects: (1) physical plausibility of a simulated ensemble 
of protein structures and (2) its agreement with the target data, that 
is, how well the data are reproduced by simulated structures. To 
represent these aspects, we use the Rosetta energy function 2015 

(REF15)38,39 and the least-squares deviation χ2 of simulated data 
from the target data7.

Protein structure determination relies on quick and reliable 
scoring of many models to select those closest to the native state. 
Structures are rated by energetic scores associated with their confor-
mational state. REF15 is a weighted sum of energy terms efficiently 
approximating the energy of a biomolecular conformation as a 
function of geometric degrees of freedom and chemical identities38. 
With a protein’s native fold corresponding to the state with mini-
mal free energy, a lower-scoring structure is expected to be more 
native-like. Because the scores do not have a direct conversion to 
physical energies, REF15 and structural stability are not correlated 
across different proteins. Similarly, χ2 values without context are 
inconclusive and must be compared for each protein system. Both 
REF15 and χ2 are available from a simulation, yielding a molecular 
system’s atom positions over time.

For SAXS-guided structure-based simulations, two MD param-
eters are particularly important: bias weight kχ and temperature T. 
kχ balances information in the SAXS data with the physical model, 
and T is a measure of available thermal energy and controls the sys-
tem’s conformational flexibility. Thus, a particle corresponds to a 
simulation using a particular MD parameter set, x = (kχ , T). The 
OF is set up as

f (x = (kχ , T) ; z) = [REF15av]std
+
[

χ2
med

]

std

+
[

χ−2
av

]

std.

(2)

The first response evaluates the average physical stability of simu-
lated structures, the second is the median χ2 deviation of simulated 
data from the target data. Owing to the ill-posed nature of the SAXS 
inverse problem, globally distinct protein structures can possess the 
same scattering intensity. As shown in Fig. 1, this can lead to a pro-
nounced ambiguity in χ2. To resolve the resulting non-injectivity in 
the OF, we introduce a third response, the inverse average χ2 devia-
tion. This acts as a regularizer, rewarding deviations from the tar-
get data and thus preventing possible overfitting. Combining these 
responses yields a surrogate model of a simulated ensemble’s simi-
larity to the desired target structure. The smaller the OF, the more 
physical, data-consistent and (likely) similar to the target state the 
simulated structures are.

In physico-empirical structure-based models, different combina-
tions of bias weight and temperature can equally yield useful results. 
There is no MD parameter ground truth for this type of simulation, 
so a purely evidence-based evaluation according to the similarity of 
simulated protein structures to the target is to be applied.

We use the global distance test (GDT)40 to quantify differ-
ences between two conformations of a protein (Methods section 
‘Root-mean-square deviation’). To estimate how similar two super-
imposed structures are, the displacement of each alpha carbon is 
compared to various distance cutoffs. Percentages, Px, of alpha car-
bons with displacements below cutoffs of x Å are used to calculate 
the total score:

GDT = 0.25× (P1 + P2 + P4 + P8) ∈ [0, 100] . (3)

Higher GDT values indicate a stronger similarity between two mod-
els. Structures with GDT > 50 are considered topologically accu-
rate41. The GDT is used to validate the OF as a surrogate model of 
an ensemble’s similarity to the target structure.

Results
We optimized MD parameters of SAXS-guided structure-based 
simulations for two well-characterized proteins: lysine-, arginine-, 
ornithine-binding (LAO) protein and adenylate kinase (ADK).
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Fig. 1 | Ambiguous χ2. The ill-posedness of the SAXS inverse problem 
results in a pronounced ambiguity in the χ2 deviation of simulated data from 
the target data. This manifests in a non-injective ‘two-branch’ behaviour of 
the second response as a function of similarity of simulated structures to 
the desired target state, here quantified by the GDT. GDTsys, GDT between 
initial and target protein structure; kχ, bias weight; ε, energy scale of the 
structure-based model. Data from all lysine-, arginine-, ornithine-binding 
protein holo-to-apo runs are combined.
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Small ligands such as sugars and amino acids are actively trans-
ported into bacteria across cell membranes42. Dedicated transport 
systems comprise a receptor (that is, the binding protein) and a 
membrane-bound protein complex. Interactions of the ligated 
binding protein with the membrane components induce conforma-
tional changes in the latter, forming an entry pathway for the ligand. 
We study LAO protein (Fig. 2a), which undergoes a conformational 
change from an apo (unligated; Protein Data Bank43 (PDB) code 
2LAO44) to a holo (ligated; PDB code 1LST44) state upon ligand 
binding. The structures have a GDT of 39.39. SAXS-guided simula-
tions started from the holo state and aimed at the apo state.

Adenosine triphosphate (ATP) is the universal energy source 
in cells and is vital to processes such as muscle contraction and 
nerve impulse propagation. By continuously checking ATP levels, 
ADK provides the cell with a mechanism to monitor energetic lev-
els and metabolic processes. The transition between an open (PDB 
code 4AKE45) and closed (PDB code 1AKE46) state is quintessen-
tial to its catalytic function47. The structures have a GDT of 33.06. 
SAXS-guided simulations started from the open conformation and 
aimed at the closed one.

Artificial target data were calculated from known structures with 
CRYSOL48. Statistical uncertainties were modelled following ref. 49.

We performed seven FLAPS runs with different initial condi-
tions for each protein. Swarm-based metaheuristics such as FLAPS 
have hyperparameters influencing the optimization behaviour, and 
their efficacy can only be demonstrated empirically by a finite num-
ber of computational experiments. We present results for a swarm 
of 10 particles and 15 generations as a workable trade-off between 
optimization performance and compute time for the considered 
application. This set-up was found to be sufficient for convergence 
in preceding trial runs. Calculations were performed on 1,000 cores 
of a supercomputer. One run cost ~40,000 core hours. The results 
of the three best runs are listed in Table 1 (complete results are pro-
vided in Supplementary Tables 1 and 2).

As shown for LAO protein in Fig. 3, the OF consistently con-
verged to a stable topology (Supplementary section ‘Analyzing 
swarm convergence’).

For each simulation, we calculated the median GDT with respect 
to the target state from all structures in the trajectory. To validate 
the OF, we state its Pearson correlation ρ with the median GDT as a 
measure of linear correlation. Because minimizing the OF should be 
equivalent to maximizing the GDT, negative correlations, ideally −1, 
are expected. The OF’s suitability is confirmed for both LAO pro-
tein and ADK with correlations up to −0.94 and −0.85, respectively.  

As the Pearson correlation only reflects linearity, we also studied 
the exact relations between the OF and the median GDT (Fig. 4). 
To identify the best MD parameter combinations, the OF must have 
low values for large GDTs, irrespective of the actual relationship’s 
complexity. This is the case for both test systems.

Global best positions, gbest, returned functional MD parameter 
combinations throughout. For LAO protein, gbest median GDTs were 
consistently of the order of 70 and correspond well to the best values 
reached. This means that for half of the simulated structures, at least 
70% of all alpha carbons lie within a small radius from their posi-
tions in the target state. These results indicate the structural accu-
racy of the simulated ensemble for gbest and thus convergence to the 
target state and successful refinement against the data. The same is 
true for ADK, where gbest and the best median GDTs are around 63 
and more similar than those of LAO protein. Example structures 
from gbest simulations, shown in Fig. 5, are in nearly perfect accor-
dance with the target states.

Additionally, we considered the reversed conformational transi-
tions, that is, from apo to holo state for LAO protein and closed to 
open state for ADK (Supplementary Tables 3 and 4, respectively). 
With ρ between −0.56 and −0.88, FLAPS could also identify func-
tional MD parameters for SAXS-guided apo-to-holo simulations of 
LAO protein. gbest and the best median GDTs were consistently slightly 
below 70, indicating high similarity of the simulated structures and 
the desired target state for the MD parameter combinations found.

By comparison, Pearson correlations up to −0.53 and gbest median 
GDTs of ~45 indicate only average structural accuracy for the 
closed-to-open transition of ADK. However, overall best median 
GDTs were around 50. With only half of all alpha carbons within a 
small radius from their target positions, the observed behaviour is not 
a problem of FLAPS, but is due to the limits of the underlying simula-
tion method7. The information in the coarse-grained structure-based 
model and the low-resolution SAXS data seems to be insufficient to 
determine the molecular structure with the same accuracy as for the 
other test cases. However, even under these circumstances, FLAPS 
was capable of determining acceptable parameters.

To evaluate FLAPS’s efficiency, we performed comparative 
grid-search optimizations where we found superior performance of 
FLAPS for all considered protein systems (Supplementary section 
‘Comparison to grid search’).

Discussion
The inverse problem of reconstructing molecular structures from 
low-resolution SAXS data is still unsolved. Biomolecular simula-
tions are among the most powerful tools for eliminating the arising 
ambiguity and access the valuable structural information content of 
such data. However, data-assisted simulations rely on MD param-
eters, where, most importantly, experimental information must be 
weighted accurately with respect to the physical model.

Here, we have shown how computational intelligence can be 
used to systematically explore MD parameter spaces and optimize 
the performance of complex physics-based simulation techniques. 
We introduced FLAPS, a data-driven solution for a fully automatic 
and reproducible parameter search based on particle swarms.

To identify the best MD parameters for SAXS-guided protein 
simulations, we designed an OF as an accurate surrogate of simu-
lation quality in terms of physical structures matching the target 
data. A suitable OF will typically depend on multiple quality fea-
tures of different scales to equally reflect a data-assisted simulation’s 
physical plausibility and its agreement with the data. To handle 
multiple responses in classical PSO, they need to be mapped to a 
scalar score via multiplication by fixed weights. These additional OF 
parameters must either be chosen manually (and probably subop-
timally) in advance or be absorbed into the search space, resulting 
in a massive increase in dimensionality. FLAPS solves this prob-
lem by intelligently learning OF parameters in the optimization 

a b
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Cα displacement (Å)
average 5.30
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Fig. 2 | test systems. a, Lysine-, arginine-, ornithine-binding protein in its 
holo (coloured) and apo (grey) state, with a GDT of 39.39. b, Adenylate 
kinase in its open (coloured) and closed (grey) state, with a GDT of 33.06. 
The colouring indicates the displacement of each alpha carbon in the 
initial structure with respect to the target state. The average alpha-carbon 
displacement in each coloured structure with respect to each grey 
structure is given. Structures are visualized with PyMOL58.
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process, avoiding the need to set them as ‘magic numbers’, while 
reducing the search-space dimensionality to a minimum. Various 
responses are automatically balanced with respect to each other to 

enable a meaningful and unbiased comparison on a shared scale. 
Implemented in FLAPS, our conceptual OF reliably identified use-
ful MD parameters for two different proteins, where we observed 

Table 1 | FlAPS optimization results

System lAO protein (holo to apo) Adenylate kinase (open to closed)

Seed 1790954 1791104 1791106 1795691 1798723 1810891

ρ −0.94 −0.87 −0.87 −0.85 −0.81 −0.74

fmin −2.34 −1.79 −1.99 −1.42 −1.57 −1.62

fmax 8.32 5.86 4.41 6.92 9.05 7.47

Best simulation in terms of OF

kχ 2.170 × 10−10 3.339 × 10−11 5.081 × 10−11 1.969 × 10−9 1.970 × 10−9 1.819 × 10−9

T 13.19 28.82 11.06 16.90 10.56 10.09

GDTmed 70.59 69.22 69.44 63.20 63.78 63.55

Best simulation in terms of GDTmed

GDTmed 70.69 69.54 70.69 63.78 63.78 63.90

f
(

GDTmed
)

−2.03 −1.73 −1.55 −1.28 −1.57 −1.59

kχ 3.001 × 10−10 3.422 × 10−11 4.190 × 10−10 2.030 × 10−9 1.970 × 10−9 2.170 × 10−9

T 11.98 29.63 10.03 10.84 10.56 10.23

For each protein system, the best three runs are listed. OF, objective function f; ρ, Pearson correlation of OF and median global distance test; kχ, bias weight; T, temperature; GDTmed, median global distance 
test (total score).
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system; ε, energy scale of the structure-based model.
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convergence of simulated structures to the target state. Owing to 
the dedicated in situ processing, the algorithm leverages available 
computing resources and transparently scales from a laptop to cur-
rent supercomputers.

In previous studies, the bias weight is conveniently chosen as 
the smallest value yielding satisfactory χ2 (refs. 7,8). This purely 
data-based selection criterion neglects the physical informa-
tion provided by the molecular simulations, risking the selection 
of physically dysfunctional values due to the ill-posedness of the 
SAXS inverse problem. The flexible composite OF in FLAPS allows 
us to include multiple selection criteria, yielding a direct surro-
gate of simulation quality in terms of not only data conformity but 
also the physical plausibility of simulated structures. In contrast to 
grid search, the optimization does not rely on a predefined list of 
manually chosen and a priori fixed candidates. This circumvents 
either missing an optimum, spanning large search spaces due to 
fine-grained grids, or both. Instead, a directional search led by the 
most current best solutions provides guidance in the selection pro-
cess and a valid context for meaningful interpretation of multi-layer 
criteria. Additionally, the compute time to find useful parameters is 
decreased by reducing the dimensionality.

FLAPS can be transferred easily to optimize other life-sciences 
applications, such as simulation methods incorporating data from 
various experimental sources11. In a more general context, it solves 
the problem of weighting different contributions of composite 
OFs in multi-response optimization. Such problems often occur in 
industrial manufacturing, processing and design, where manually 
chosen weights are commonly used32,33. In FLAPS, OF parameters 
can be learned in a self-improving manner according to any desired 
scheme, for example, standardization, rescaling, mean normaliza-
tion or a relative weighting after one of the aforementioned steps. 
FLAPS shows how computational-intelligence concepts can be har-
nessed successfully for practical optimization problems at the fore-
front of life sciences.

Methods
SAXS-guided protein simulations. SAXS-guided protein simulations were set 
up as described in ref. 7 and run with the MD engine GROMACS 5, including 
the scattering-guided MD extension12. Simulation input files are available on 
GitHub (github.com/FLAPS-NMI/FLAPS-sim_setups). We used the popular 
CRYSOL software48 in default mode to compute artificial SAXS intensities from 
known initial and target structures. Each intensity contained 700 equidistant data 
points up to a momentum transfer of q = 0.35 Å−1. During a simulation, the SAXS 
intensities of simulated structures are calculated internally in GROMACS7,12 using 

the Debye equation50 with amino-acid scattering factors corrected for displaced 
solvent51. The CRYSOL intensities were rescaled such that the extrapolation 
of the forward scattering matches the internally calculated GROMACS value. 
Uncertainties were modelled as described in ref. 49. Target SAXS data were 
calculated as the difference of rescaled CRYSOL intensities, including uncertainties, 
of known initial and target structures. The initial structure’s rescaled CRYSOL 
intensity, including uncertainties, served as the absolute reference scattering in 
the simulations7. We included 17 data points selected as the difference curve’s 
local extrema and interjacent points centred between each two extrema. For both 
proteins, this corresponds well to the number of independent Shannon channels 
giving the number of independent data points in a SAXS curve10.

Root-mean-square deviation. In addition to the GDT analysis presented in the 
main text, we considered the more common root-mean-square deviation (RMSD) 
as a structural similarity measure. The results are presented in Supplementary 
Tables 1–4.

The RMSD is the minimal mass-weighted average distance between N atoms 
(usually backbone or alpha carbon) of two superimposed structures over all 
possible spatial translations and rotations,

RMSD = min
trans, rot

√

√

√

√

1
M

N
∑

i=1
mi||ri − ri,0||2 , (4)

where M =

∑N
i=1 mi and mi is the mass of atom i. ri and ri,0 are the positions of 

atom i in the mobile and reference structure, respectively. Holo/apo LAO protein 
and open/closed ADK have alpha-carbon RMSD values of 4.7 Å and 7.1 Å, 
respectively.

A disadvantage is that RMSD correlates strongly with the largest displacement 
between two structures, and small numbers of displaced atoms induce large 
changes. We use GDT40,52,53 as the main target metric as it more accurately accounts 
for local misalignments.

Implementation. FLAPS is implemented as a stand-alone solver in Hyppopy, a 
Python-based hyperparameter optimization package available at https://github.
com/MIC-DKFZ/Hyppopy. Hyppopy provides tools for blackbox optimization. It 
has a simple, unified application programming interface (API) that can be used to 
access a collection of solver libraries. Our implementation of FLAPS is available 
on GitHub54,55. We implemented a Message-Passing-Interface (MPI)-parallel 
version of the code using a sophisticated parallelization architecture as described 
in Supplementary Fig. 13. Available compute nodes comprising a given number of 
processors are divided into blocks, each of which corresponds to one particle in the 
swarm. Within one block, the simulation itself runs on a single core, while all the 
other cores process the generated frames in the trajectory on the fly. This results in 
a massive reduction in runtime.

The experiments were run on the ForHLR II cluster system located at the 
Steinbuch Centre for Computing at Karlsruhe Institute of Technology. The system 
comprises 1,152 thin, that is, solely central processing unit (CPU)-based, compute 
nodes. Each node is equipped with two 10-core Intel Xeon E5-2660 v3 Haswell 
CPUs at 3.3 GHz, 64 GB of DDR3 main memory and 4x Mellanox 100-Gbit EDR 
InfiniBand links. The software packages used were a RHEL Linux with kernel 
version 4.18.0 and Python 3.6.8.

Each run used 51 compute nodes (1,020 cores in total). Owing to the 
magnitude of metadata and I/O operations, we used a private on-demand file 
system (BeeGFS On-Demand) with a stripe count of 1, where one node was 
reserved for the metadata server56. Each block in the underlying simulator-worker 
scheme consisted of five nodes, that is, 100 cores (one simulator, 99 workers). Each 
run cost ~40,000 CPU hours. For the presented application, we used cognitive 
acceleration coefficient ϕ1 = 2.0 and social acceleration coefficient ϕ2 = 1.5 
in the particle update (Algorithm 1). The complete set-up, including all PSO 
hyperparameters used, is available on GitHub57.

Data availability
The software for the metaheuristic molecular dynamics parameter optimization 
of SAXS-guided structure-based protein simulations used in this work54,55 is 
publicly available at https://github.com/FLAPS-NMI?tab=repositories. A minimal 
dataset to reproduce the presented results57 is publicly available at https://github.
com/FLAPS-NMI/FLAPS-sim_setups/releases/tag/v1.0 and published under the 
Creative Commons Attribution 4.0 International Public License.

Code availability
All code used in this work is publicly available at https://github.com/
FLAPS-NMI?tab=repositories and published under the New BSD Licence. The 
MPI-parallelized FLAPS solver is implemented in Optunity, a hyperparameter 
tuning package for Python. Our extended version of Optunity55 is available 
at https://github.com/FLAPS-NMI/FLAPS-optunity/releases/tag/v1.0 and 
integrated into Hyppopy, a Python-based toolbox for blackbox optimization. Our 
extended version of Hyppopy54 is available at https://github.com/FLAPS-NMI/
FLAPS-Hyppopy/releases/tag/v1.0.

a b

Cα displacement (Å)
average 0.94 

0.14 12.240.10 3.48

Cα displacement (Å)
average 2.14

Fig. 5 | Representative structures from global best simulations. a,b, LAO 
protein (seed 1790954) (a) and ADK (seed 1795691) (b). Structures 
with maximum GDT are shown (coloured) and are almost identical to the 
respective target states (grey). The colouring indicates the displacement 
of each alpha carbon in the simulated structure with respect to the target 
state. The average alpha-carbon displacement in each coloured structure 
with respect to each grey structure is given. Structures are visualized with 
PyMOL58.
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