
Received: 16 February 2021 Revised: 15 July 2021 Accepted: 16 July 2021

DOI: 10.1002/nme.6792

R E S E A R C H A R T I C L E

A fast Fourier transform based method for computing the
effective crack energy of a heterogeneous material on a
combinatorially consistent grid

Felix Ernesti Matti Schneider

Institute of Engineering Mechanics,
Karlsruhe Institute of Technology (KIT),
Karlsruhe, Germany

Correspondence
Matti Schneider, Institute of Engineering
Mechanics, Karlsruhe Institute of
Technology (KIT), Karlsruhe, Germany.
Email: matti.schneider@kit.edu

Funding information
Deutsche Forschungsgemeinschaft,
Grant/Award Numbers: GRK 2078,
SCHN 1595/2

Abstract
This work is concerned with computing the effective crack energy of periodic
and random media which arises in mathematical homogenization results for
the Francfort–Marigo model of brittle fracture. A previous solver based on the
fast Fourier transform (FFT) led to solution fields with ringing or checkerboard
artifacts and was limited in terms of the achievable accuracy. As computing the
effective crack energy may be recast as a continuous maximum flow problem,
we suggest using the combinatorial continuous maximum flow discretization
introduced by Couprie et al. The latter is devoid of artifacts, but lacks an effi-
cient large-scale solution method. We fill this gap and introduce a novel solver
which relies upon the FFT and a doubling of the local degrees of freedom which
is resolved by the alternating direction method of multipliers (ADMM). Last
but not least we provide an adaptive strategy for choosing the ADMM penalty
parameter, further speeding up the solution procedure. We demonstrate the
salient features of the proposed approach on problems of industrial scale.
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1 INTRODUCTION

1.1 State of the art

Modern fracture mechanics1 originated from the pioneering work of Griffith,2 who postulated a criterion for the
quasi-static growth of a preexisting crack in a brittle, isotropic and elastic solid based on an energetic reasoning. More
precisely, he considered the change of the potential energy Π with the crack area A and postulated that a crack can only
grow whenever the energy release rate −dΠ∕dA reaches a critical value 𝛾 . Put differently, the crack grows whenever it is
energetically more favorable to increase the surface energy of the crack than to increase the elastic energy stored in the
body.

For three-dimensional isotropic elasticity and a semi-infinite planar preexisting crack in an infinite medium, Irwin3

shifted the attention to the r−
1
2 -stress singularity at the crack tip where r denotes the Euclidean distance to the crack
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tip. He distinguished three different modes which quantify the degree of singularity of the normal, the in-plane and
the out-of-plane shear stresses, respectively, and associated a stress-intensity factor to each mode. Expressing the
energy-release rate in terms of these stress-intensity factors, Irwin converted Griffith’s criterion into an investigation of
the associated stress concentration at the crack tip.4

Independently, Cherepanov5 and Rice6 proposed a clever way to compute the local energy-release rate at a crack trip
in terms of a contour integral around the crack tip, the so-called J-integral. This J-integral offers an elegant way to deal
with the stress singularity at the crack tip numerically, as it is independent of the chosen path of integration.

Griffith’s criterion presupposes the crack path to be known in advance, that is, it may only be used for assessing when
a crack propagates, and not for predicting how it grows. To predict the latter, the most common approaches exploit the
principle of local symmetry7 or follow the postulate of maximum energy-release.8

Linear elastic fracture mechanics was also extended to account for elastoplastic effects, see Dugdale9 and Barenblatt10

for early contributions. Classical finite-element methods may be used in computational approaches to fracture mechanics,
for instance by computing the stress-intensity factors numerically.11 However, it turns out to be difficult to resolve the
singularity at the crack tip. For this purpose, enriched12 or extended13 finite-element discretizations were developed,
which account for the crack-tip by adding special ansatz functions to cracked elements.

Driven by the use of anisotropic materials in industrial practice, in particular wood and composites, linear elastic
fracture mechanics was extended to (homogeneous) anisotropic brittle solids.14-16 All three aforementioned pillars, Grif-
fith’s energy release rate, Irwin’s stress intensity factors and techniques based on the J-integral may be extended to this
scenario, and the formulas become particularly simple for self-similar crack growth, see William’s review article.17 Some
care has to be taken, as the fracture modes are not directly correlated to the normal and tangential jumps in the crack
displacement.18

Francfort and Marigo19 revisited Griffth’s original proposition in the quasi-static setting in order to include crack
nucleation and crack branching, utilizing a variational formulation. More precisely, for a given body Ω and after a dis-
cretization in pseudo-time, they seek the displacement u and the crack surface S as minimizers of the Francfort–Marigo
functional

FM(u, S) = 1
2 ∫Ω⧵S

∇su(x) ∶ C(x) ∶ ∇su(x) dx + ∫S
𝛾(x) dA (1)

under the constraint of crack irreversibility, that is, that the crack set S must contain the crack set of the previous time
step. Here, ∇su denotes the symmetrized gradient of the displacement field, that is, the strain tensor field, C refers to
the stiffness tensor and 𝛾 denotes the critical energy release rate. Some care has to be taken with the formulation (1), as
Griffith’s original proposal concerns only critical points of the functional (1) including local minima, local maxima and
saddle points, whereas a rigorous mathematical treatment20 of the Francfort–Marigo model (1) appears to be limited to
global minimizers. Please note that the formulation (1) accounts for heterogeneities in a natural way.

A pertinent numerical approach to minimize the Francfort–Marigo functional (1) was introduced by Bourdin,21 devel-
oped in close analogy to the Ambrosio–Tortorelli approximation of the Mumford–Shah functional. For each pseudo-time
step, a displacement field u and a scalar damage variable d are sought which minimize the phase-field energy functional

PF𝜂(u, d) = 1
2 ∫Ω

(1 − d(x))2∇su(x) ∶ C(x) ∶ ∇su(x) + 𝛾(x)
[

d(x)2

4𝜂
+ 𝜂 ||∇d(x)||2] dx, (2)

involving a length-scale parameter 𝜂. For 𝜂 → 0, the functional (2)Γ-converges to the Francfort–Marigo functional (1). The
numerical strategy based on minimizing the functional (2) may be interpreted as a nonlocal damage model22,23 involving
the length-scale parameter 𝜂. Due to its similarity to phase-field models, however, this class of numerical approximations
is nowadays referred to as phase-field fracture models.24,25

Owing to their ability to nucleate cracks and to produce complex crack patterns, phase-field fracture models were
subject to a flurry of activity, see Ambati et al.26 for a review. In particular, strategies to account for material anisotropy in
the phase-field framework27-29 were proposed. As for linear elastic fracture mechanics of anisotropic media, such models
may require elaborate and expensive experimental techniques to identify the material parameters.

To alleviate this burden, multiscale methods, in particular homogenization approaches, proved to be very effective for
elastic and hardening-type inelastic material behavior. We refer to Matouš et al.30 for a recent overview. Unfortunately,
when leaving the realm of hardening-type material behavior, multiscale methods face difficulties. For example, Gitman
et al.31 considered a nonlocal damage model with softening behavior and showed by numerical simulations that, in the
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post-peak loading regime, the average stress response tends to zero as the size of the volume element goes to infinity.
In particular, the strategy of computing effective quantities via simulations on representative volume elements—which
works well for hardening-type materials—leads to useless results in case of softening.

This difficulties with upscaling softening damage or fracture, in particular for complex materials as shown in Figure 1,
become apparent from different perspectives. Classically, a sufficient condition for homogenization to be applicable is
a scale separation between the heterogeneities on the microscale and the typical change of the fields of interest on the
macroscale. For a crack, however, the stress is singular at the crack tip, and this sufficient condition does not hold. From
another perspective, let us consider a nonlocal damage model. The nonlocality is necessary to arrive at mesh-independent
results for a corresponding finite-element model. Thus, two scales are present in such a multiscale nonlocal damage
model—the typical scale of heterogeneity and the length scale of the nonlocality. In upscaling, the scale of heterogeneity
is small, and we wish to pass to the limit of vanishing heterogeneity size. Fixing the nonlocal length scale upon homog-
enization means that the nonlocality essentially screens the influence of the heterogeneities. Tying the nonlocal length
scale to the size of the heterogeneities, however, means that the mesh-dependence of the damage model is recovered
upon homogenization, rendering the procedure illegitimate. Of course, computations of nonlocal damage models34,35

or phase-field fracture36-38 on microstructures may be pursued. Unfortunately, connecting the results to macroscopic
material properties appears challenging as the apparent stresses are inherently size-dependent, see Gitman et al.31

More to the point, the actual form of the effective model is at the heart of the problem. Only in the isotropic and linear
elastic case, there appears to be a universal agreement on the physics of brittle fracture. In particular, the notions of crack
resistance, critical energy-release rate and fracture toughness coincide, and represent a scalar material parameter. Upon
generalization, such an agreement of the different notions may be lost. Consider, for instance, a heterogeneous material
and a crack propagating under quasi-static loading. When crossing a material boundary, in general, the energy-release
rate evaluated on the fly will be a function of time, that is, it may change with each loading increment. Then, it remains
to define the macroscopic, that is, effective, crack resistance, for instance as the maximum or the mean of the encountered
values. We do not intend to evaluate these proposals here, but rather stress that there appears to be some disagreement
on the notion of “effective crack resistance” in the literature, and care has to be taken when comparing these notions.

In the context of classical linear elastic fracture mechanics, Bower-Ortiz39 provided a perturbative solution for a
semi-infinite crack passing through a single, tough inclusion in a matrix. Roux et al.40 discussed an emerging effective
crack resistance for a material whose elastic properties are isotropic and homogeneous, and only the crack resistance is
heterogeneous. In this context, a self-consistent method for estimating the effective fracture toughness of a planar crack
propagating through inclusions is established. For a medium with randomly distributed heterogeneities, they identified

F I G U R E 1 Complex microstructure of bound sand32,33



4 ERNESTI and SCHNEIDER

F I G U R E 2 Schematic of a crack increment in a microstructured material

regions of weak pinning, where the fracture toughness is given by the arithmetic mean of the local toughness, and strong
pinning, where a much higher toughness emerges, see also Démery et al.41 for a related study. Lebihain and coworkers42,43

extended the mentioned studies by accounting for cracks which bypass an inclusion, based on a perturbative, coplanar
approach.44

To account for a heterogeneity in the elastic properties, Hossain et al.45 performed phase-field fracture computations
on heterogeneous microstructures with specific, so-called “surfing” boundary conditions. The emerging effective crack
resistance equals the maximum in time of the J-integral evaluated along the crack tip, see also Kuhn-Müller46 and Brach
et al.47

As an alternative to these approaches, Braides et al.48 proved a mathematical homogenization result for the
Mumford–Shah functional, which corresponds to the Francfort–Marigo19 model upon antiplane-shear loading. More
precisely, in a quasi-static setting and after a discretization in pseudo-time, Braides et al.48 consider a fixed periodic
microstructure (with nondegenerate stiffness and crack resistance), and identify the Γ-limit for vanishing period as the
functional

FMeff(u, S) = 1
2 ∫Ω⧵S

∇su(x) ∶ Ceff ∶ ∇su(x) dx + ∫S
𝛾eff

(
𝜉
)

dA, (3)

where 𝜉 denotes the unit normal to the crack surface S. Here, the (possibly anisotropic) effective stiffness tensor Ceff arises
from the usual elastic homogenization formula based on the classical cell problem.49 The integrand 𝛾eff of the surface
term is a function of a unit vector, and may be computed by a corrector problem involving the local crack resistances
only. However, in contrast to the elastic contribution, the latter surface term involves an infinite-volume limit, as standard
for stochastic homogenization,50-52 also for periodic materials. For cells of finite size, the surface term 𝛾eff(𝜉) may be
interpreted as finding the 𝛾-weighted minimal surface with average normal 𝜉 cutting the microstructure.53

In particular, the volumetric and the surface energies decouple upon homogenization, as a result of the different scal-
ings of these terms in the model (1). Subsequently, the homogenization statement was extended to the case of stationary
and ergodic random materials,54 that is, in engineering terms, the existence of representative volume elements,55,56 sep-
arately for the bulk and the surface part, is ensured. Please note that this volume-surface decoupling is a consequence of
the assumed nondegeneracy of the integrands. In case of degeneracy, an interaction of the two terms is not excluded, see
Barchiesi et al.57 and Pellet et al.58

Recently, Friedrich59 showed the homogenization result (3) for linear elasticity (without the restriction to anti-plane
shear). Let us also highlight that the effective model (3) also emerges when homogenizing the Ambrosio–Tortorelli
approximation of the Francfort–Marigo model, that is, phase-field fracture models, see Bach et al.60

Let us put the homogenization result (3) into context. The heterogeneous fracture problem involves two prominent
length scales: the correlation length of the heterogeneities and the typical size of a displacement increment. Classically,
owing to the quasi-static framework, the size of the displacement increment is assumed infinitesimal. In this interpre-
tation, a crack propagates through a microstructure, and its progress may be hindered by various factors, like being
pinned to an interface. This interpretation is implicit in Hossain et al.,45 for example. In practical applications, however,
the displacement increment is typically of the order of the macroscopic scale. By contrast, Braides et al.48 fix the dis-
placement increment once and for all, and pass to the limit of infinitesimally small heterogeneities, see Figure 2 for an
illustration.
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Another difference is the understanding of the emerging effective properties. As Hossain et al.45 always consider a
time-continuous problem, their crack resistance is defined as the maximum in time of the local J-integral. By contrast,
Braides et al.48 practically work with an energy equivalence between the macroscopic fracture energy and the microscopic
fracture energy, as a result of their energetic framework.

Last but not least, let us remark that Γ-convergence implies the convergence of absolute minimizers, but does not
predict what happens to local minimizers. Although an energy equivalence between the microscopic fracture energy and
the macroscopic fracture energy appears in a natural way, the (absolutely) minimal surface in the cell problem appears to
be a byproduct of Γ-convergence. From a physical point of view, it might be more appropriate to work with crack surfaces
that are just local minima of the weighted area. Still, with assessing the safety of microstructured components in mind,
the absolutely minimal surface serves as a lower bound for the (real) effective crack energy, and is furthermore robust
w.r.t. stochastic fluctuations in the microstructure. To stress the difference to the crack resistance, we will reserve the
terminology “effective crack energy” for the surface integrand 𝛾eff.

Minimizing the fracture energy has been considered earlier by Jeulin61 for predicting crack propagation on
two-dimensional micrographs. In fact, in two spatial dimension, the problem of computing the effective crack energy
simplifies drastically. Indeed, it reduces to the problem of computing minimum (weighted) geodesics, for which efficient
algorithms are available.62,63

A method for computing the effective crack energy for three-dimensional solids based on the homogenization result
of Braides48 and following contributions was proposed by Schneider.53 The approach is based on a convex reformulation
of the minimum-cut problem64 in terms of maximum flow. More precisely, a primal-dual hybrid gradient method65,66 was
used, extending previous FFT-based computational homogenization methods for thermal conductivity and elasticity.

1.2 Contributions

This work is concerned with computing the effective crack energy via an appropriate cell formula (to be discussed in
Section 2.1) corresponding to the mathematical homogenization results.48,54,59 Please note that the computed effective
crack energy may differ from the effective crack resistance, depending on the underlying length scales and loading scenarios
(see section 2.1, item 5, in Schneider53 for a discussion). Still, the computed effective crack energy gives rise to a lower
bound for the effective crack resistance, and may thus be used for assessing the safety of components made of such
composites.

Previous work53 provided a computational approach for computing the effective crack energy using an FFT-based
primal-dual hybrid gradient solver and two discretization schemes, that is, trigonometric collocation and the rotated stag-
gered grid. The approach53 has two shortcomings. First, the solution fields are characterized by ringing or checkerboard
artifacts, depending on the discretization. Moreover, the solver does not permit reaching a high accuracy for complex
three-dimensional microstructures. Although the first shortcoming concerns the discretization and the second issue is
related to the numerical resolution, both effects are actually related. Indeed, as computing the effective crack energy
involves a pointwise constraint on a vector field, discretization-related artifacts may interfere with solver performance.

The cell problem for computing the effective crack energy is closely related to the minimum-cut problem put for-
ward by Strang64 in his analysis of the continuous maximum flow problem, see Section 2.1. To be more precise, the
maximum flow problem is rooted in graph theory and seeks a feasible flow through a flow network that obtains the max-
imum possible flow rate under capacity constraints.67 With the help of duality theory for linear programming, it may be
shown that the maximum flow equals the minimum capacity of a cut disconnecting the source and the sink.67,68 Strang64

proposed a continuum generalization of the graph-theoretic maximum flow problem, involving an incompressible flow
field subject to a (continuous) capacity constraint. Similar to the graph-theoretic version, he established a duality result
which equates the maximum flow rate with the capacity of a minimum cut. However, the continuous version is no longer
based on linear duality theory, and requires more sophisticated mathematical tools. Previous work53 realized that the
cell problem corresponding to the mathematical homogenization results48,54,59 may be interpreted as a minimum-cut
problem, where the microscopic (heterogeneous) crack resistance is regarded as a (spatially varying) capacity. Then, the
maximum flow-minimum cut duality, valid on a discrete level, is invoked to construct a suitable primal-dual solver.

For the graph-theoretic maximum flow problem, a variety of efficient solvers is available.67,69-71 Unfortunately, these
solvers are unsuited for the continuous maximum flow problem. Indeed, working with a graph-theoretic discretiza-
tion leads to so-called metrication artifacts, which do not vanish upon mesh refinement.72 More precisely, for the
graph-theoretic version, the capacity constraints are associated to the edges, whereas, when representing the continuous
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maximum flow problem in terms of a finite difference discretization, the capacity constraints are associated to the nodes
of the graph. As a remedy, Couprie et al.73 introduced the combinatorial continuous maximum flow (CCMF) discretiza-
tion, whose node-based capacity constraints account for all adjacent edges in a suitable way. The CCMF discretization, to
be discussed in Section 2.2, naturally avoids metrication errors, and may be implemented into standard convex optimiza-
tion solvers.74 However, as the authors remark themselves: “In 3D, our CCMF implementation is suffering from memory
limitations in the direct solver we used, limiting its performances” [73, sec. 4.4.3].

Our contributions are threefold. For a start, we propose using the CCMF discretization for the effective crack energy
associated to the mathematical homogenization results,48,54,59 see Section 2 for details. In this way, the artifacts of the
previously used discretizations53 are fully eliminated. Our second contribution concerns a novel FFT-based solver for
the maximum flow problem in the CCMF discretization on regular periodic grids, filling the gap mentioned by Couprie
et al.73 The proposed solver, see Section 3, is based on a doubling of the degrees of freedom per cell, which makes the
nonlocal capacity constraint for the CCMF discretization local, at the expense of additional constraints enforcing compat-
ibility of the flow field across the faces of the voxel grid. As a byproduct, we arrive at an expression for the minimum-cut
problem that is much simpler than in Couprie et al.,73 see Section 3.1. Then, the alternating direction method of multipli-
ers (ADMM), pioneered by Michel et al.75,76 in conjunction with FFT-based methods, is used to extract the minimum cut,
see Section 3.2. Last but not least, we study recently proposed,77 adaptive strategies for choosing the penalty parameter
in the ADMM. Finally, we demonstrate the capabilities of our approach in applications of industrial size, see Section 4.
We find that an adaptive parameter-selection strategy is critical for high performance and high accuracy, improving
upon the standard ADMM used by Willot,78 who treats the closely related graph-based maximum flow problem (not the
continuous one).

2 THE EFFECTIVE CRACK ENERGY OF A HETEROGENEOUS MATERIAL

2.1 Cell formulae for the minimum cut and the maximum flow

Let us consider a cuboid cell Y = [0,L1] × [0,L2] × [0,L3], on which a heterogeneous field of crack resistances* 𝛾 ∶ Y → R

is given. For mathematical reasons, we suppose that there are positive constants 𝛾±, s.t. the inequalities

𝛾− ≤ 𝛾(x) ≤ 𝛾+ hold for all x ∈ Y .

We define the effective crack energy 𝛾eff,48,53,54 a function on the unit sphere S2 ⊆ R3, by

𝛾eff(𝜉) = inf
𝜙

1|Y | ∫Y
𝛾
‖‖‖𝜉 + ∇𝜙‖‖‖ dx, 𝜉 ∈ S2, (4)

see Figure 3, where |Y | = L1L2L3 denotes the volume of the cell and the infimum is evaluated over all smooth scalar fields
𝜙 ∶ Y → R which are periodic, together with all their derivatives. This formula computes the (periodic) minimum cut
through the cell Y with mean normal 𝜉 as a 𝛾-weighted minimal surface. The scalar 𝜙 plays the role of a characteristic
function jumping across the cut. Please note that the integrand in the right-hand side of Equation (4) is a function which
is homogeneous of degree one, that is, it satisfies f (𝜆𝜉) = 𝜆f (𝜉) for all vectors 𝜉 ∈ R3 and all scalars 𝜆 > 0. This contrasts
with thermal conductivity,49 where a homogeneity of degree two leads to a linear Euler–Lagrange equation associated to
the variational problem.

For the problem at hand (4), additional complications arise. For a start, due to the one-homogeneity, the functional in
the definition (4) is not differentiable. In particular, the first-order necessary conditions are (strongly) nonlinear. Further-
more, the one-homogeneity permits localization to appear for minimizers of the variational problem (4). This localization
is not unwarranted, as such minimizers actually represent minimum cuts through the microstructure,64 weighted by
the crack resistance, and enable computing the effective crack energy by the local crack resistance averaged over the

*For homogeneous, isotropic materials under certain loading conditions, the term crack resistance, also known as critical energy-release rate, may be
used interchangeably with the notion of fracture toughness, as Griffith’s2 energetic criterion may be equivalently rewritten in terms of stress-intensity
factors,3 see Gross and Seelig [1, ch. 4.6]. In the heterogeneous case, however, this is may not be the case. We therefore restrict to the term crack
resistance, avoiding the term fracture toughness altogether.
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F I G U R E 3 Schematic of a potentially minimal crack traversing a two-phase microstructure for prescribed normal 𝜉

minimum cut. In fact, the minimum cut need not be unique. However, the computed effective crack energy is unique as
a consequence of the convexity of the functional to be minimized.

To circumvent the inherent lack of differentiability characterizing the functional (4), dual and primal-dual formu-
lations may be exploited.79 As an example, the (formal) dual to the variational problem is given by the maximum flow
problem64

1|Y | ∫Y
v ⋅ 𝜉 dx → max

divv=0||v||≤𝛾, (5)

where the maximum is evaluated over all smooth and solenoidal vector fields v ∶ Y → R3 which satisfy the pointwise
constraint ||v(x)|| ≤ 𝛾(x) for (almost) all x ∈ Y . (6)

Due to the nonnegativity of the terms involved, the latter condition may also be recast in the form

||v(x)||2 ≤ 𝛾(x)2 for (almost) all x ∈ Y . (7)

The dual problem (5) maximizes the total flow in direction 𝜉 through the microstructure under the pointwise con-
straints (6). The advantage of the dual formulation (5) over the primal formulation (4) is that it represents a smooth (in fact
linear) optimization problem with linear and quadratic constraints, for which powerful solution methods are available.74

However, some caution is advised, as the primal (4) and the dual problem (5) are strongly dual in the continuous setting
only for a continuous crack resistance 𝛾 .64 As soon as the crack resistance 𝛾 is discontinuous, explicit counterexamples80

to strong duality are known, that is, the maximum computed in the dual problem (5) is strictly less than the minimum
computed for the primal problem (4).

For practical considerations, this delicacy does not play much of a role. Indeed, in finite dimensions, convex optimiza-
tion problems with convex constraints always satisfy strong duality provided Slater’s condition is satisfied [74, sec. 5.2].
Slater’s condition states that there is a strictly feasible point, that is, a point where all inequality constraints are satisfied
as strict inequalities. Due to our prerequisite 𝛾 ≥ 𝛾− > 0, the field v ≡ 0 is strictly feasible for the dual problem (5), and
strong duality holds upon discretization. In particular, we may exploit the maximum flow formulation (5), as long as it
arises by formal Lagrangian dualization [74, ch. 5] of a discretization of the cell problem (4).

2.2 The combinatorial continuous maximum flow discretization

In this section, we discuss the combinatorial continuous maximum flow discretization (CCMF)73 for the special case of
regular grids and in the periodic setting. The discretization scheme naturally approximates the continuous maximum
flow formulation (5), and we take it as our point of departure.
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For this purpose, suppose that the unit cell Y = [0,L1] × [0,L2] × [0,L3] is discretized by a regular grid with
Ni (i = 1, 2, 3) voxels for each coordinate direction. Each voxel is assumed to be cubic with edge length h, that is, the
conditions h = Li∕Ni (i = 1, 2, 3) are assumed to hold. In a finite volume discretization, where each individual voxel serves
as a control volume, the flow between adjacent cells is quantified by a flow field v, which is located at the voxel faces, see
Figure 4. The conservation of mass is encoded by the balance of in- and outflow

0 = v
[

i + 1
2
, j, k

]
− v

[
i − 1

2
, j, k

]
+ v

[
i, j + 1

2
, k
]
− v

[
i, j − 1

2
, k
]
+ v

[
i, j, k + 1

2

]
− v

[
i, j, k − 1

2

]
, (8)

where we tacitly assume the integer indices i, j, k to satisfy

0 ≤ i < N1, 0 ≤ j < N2 and 0 ≤ k < N3,

and the Equation (8) should be interpreted in a periodic fashion. Let us denote by

𝛾[i, j, k] = 𝛾
((

i + 1
2

)
h,
(

j + 1
2

)
h,
(

k + 1
2

)
h
)

the evaluations of the crack resistance 𝛾 at the voxel centers, which we sample on a discrete grid YN . Then, for the
CCMF-discretization, the constraint (6) is approximated by the N1N2N3 constraints

v
[

i + 1
2
, j, k

]2
+ v

[
i − 1

2
, j, k

]2
+ v

[
i, j + 1

2
, k
]2

+ v
[

i, j − 1
2
, k
]2

+ v
[

i, j, k + 1
2

]2
+ v

[
i, j, k − 1

2

]2 ≤ 2 𝛾[i, j, k]2. (9)

Here, the constraint (9) is associated to each cell, and accounts for all six in- and outflow variables located on the
corresponding adjacent faces, see Figure 4. Compared with the continuous formulation (7), which involves a vector of
dimension three, twice the number of terms is considered. This is compensated by adding a factor two on the right-hand
side.

Then, for prescribed average crack normal 𝜉 ∈ S2, the CCMF discretization approximates the maximum flow problem
(5) by the maximization problem

1
N1N2N3

∑
i,j,k

𝜉x v
[

i + 1
2
, j, k

]
+ 𝜉y v

[
i, j + 1

2
, k
]
+ 𝜉z v

[
i, j, k + 1

2

]
→ max

v satisfying (2.5) and (2.6)
. (10)

With FFT-based solution methods, to be discussed in Section 3, in mind, we transform the natural finite volume
formulation into a more compact representation that is simpler to manipulate algebraically. For this purpose, we regard
the flow field v as a vector field located at the voxel centers, with the identification

F I G U R E 4 Consistent placement of the flow-field variables on a generic voxel cell
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vx[i, j, k] = v
[

i + 1
2
, j, k

]
,

vy[i, j, k] = v
[

i, j + 1
2
, k
]
,

vz[i, j, k] = v
[

i, j, k + 1
2

]
.

We also introduce a (backwards) divergence-type operator div− via

(div−v) [i, j, k] = vx[i, j, k] − vx[i − 1, j, k] + vy[i, j, k] − vy[i, j − 1, k] + vz[i, j, k] − vz[i, j, k − 1].

Then, the mass conservation (8) is satisfied precisely if div−v = 0 holds. To encode the constraint (9), we introduce the
backwards shift operator S, which operates as follows

S(v)[i, j, k] =
⎡⎢⎢⎢⎣
vx[i − 1, j, k]
vy[i, j − 1, k]
vz[i, j, k − 1]

⎤⎥⎥⎥⎦ . (11)

Then, the constraint (9) is equivalent to the condition

‖v[i, j, k]‖2 + ‖S(v)[i, j, k]‖2 ≤ 2 𝛾[i, j, k]2, (12)

expressed in terms of the Euclidean norm of the involved vectors. Last but not least, let us introduce the L2 inner product
on such vector fields

⟨v, ṽ⟩L2 = 1
N1N2N3

∑
i,j,k

(
vx[i, j, k]ṽx[i, j, k] + vy[i, j, k]ṽy[i, j, k] + vz[i, j, k]ṽz[i, j, k]

)
(13)

with corresponding norm || ⋅ ||L2 . With this notation at hand, we may express the maximization problem (14) in the
compact form

⟨𝜉, v⟩L2 → max
div−v=0||v||2+||Sv||2≤2𝛾2

, (14)

where we regard 𝜉 as a constant vector field and the norm constraint is enforced at every voxel. In the latter formulation,
the similarities (and differences) to the continuous formulation (5) become apparent. Indeed, both the objective function
and the divergence constraint are discretized in the natural way. The norm constraint, however, is replaced by a “nonlocal”
constraint which involves neighboring values of the flow field, as well. Please note that this is a feature rather than a bug,
as the flow-field variables are naturally located on the voxel faces, whereas the crack resistance is associated to the voxel
center. Instead of interpolating the flow-field variables, the CCMF discretization averages the squares of the flow fields.
Such an approach has its merits, as will become clear in Section 4.

3 AN FFT-BASED SOLVER FOR THE CCMF DISCRETIZATION

3.1 The primal formulation for the CCMF discretization

On a voxel grid, we consider the maximum flow problem (14)

⟨𝜉, v⟩L2 → max
div−v=0||v||2+||Sv||2≤2𝛾2

(15)
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in the combinatorial continuous maximum flow (CCMF) discretization. With FFT-based resolution in mind, we compute
the corresponding Lagrangian dual, that is, the associated minimum cut problem.

For later reference please notice that the adjoint of the backward shift operator S (11) w.r.t. the inner product (13) is
given by the (periodized) forward shift operator

S∗(v)[i, j, k] =
⎡⎢⎢⎢⎣
vx[i + 1, j, k]
vy[i, j + 1, k]
vz[i, j, k + 1]

⎤⎥⎥⎥⎦ . (16)

In particular, as backward and forward shifting are mutual inverses, the equation S∗S = Id holds in terms of the
identity operator Id.

The shift operator is nonlocal, which makes the inequality constraint in the maximum flow problem (15) nonlocal, as
well. With computational resolution in mind, we seek a local formulation that relies upon a doubling of dimension. For
this purpose, we introduce the linear extension operator A, acting on vector fields v via

(Av) = 1√
2

[
v

Sv

]
, (17)

and producing a vector field with six scalar components per voxel. Then, the problem (15) may be expressed in the
equivalent form ⟨𝜉, v⟩L2 → max

div−v=0||Av||≤𝛾, (18)

where the factor two in front of the crack resistance (15) was transferred into the A-operator (17) and the norm in the
constraint refers to the Euclidean norm of vectors with six components. For later reference, let us remark that the adjoint
of the operator A (17) w.r.t. the six-component version of the L2 inner product (13) is given by

A∗

[
w1

w2

]
= 1√

2
(w1 + S∗w2) (19)

in terms of the backward shift operator (16). In particular, it holds

A∗Av = 1
2
(v + S∗Sv) = v,

that is, A∗A = Id and ||A|| = 1 in operator norm. Thus, the operator A is an isometric embedding, and the operator A∗ is
a left inverse to the operator A. In turn, the operator AA∗ is the orthogonal projector onto the image of the operator A. To
complete the necessary notation, we define the indicator function 𝜄T of a set T via

𝜄T(u) =

{
0 u ∈ T
+∞, otherwise,

which permits encoding a constraint to the set T in terms of an objective function.
With the necessary terminology at hand, we turn our attention to deriving the Lagrangian dual of the maximum flow

problem (15) in the constrained form

⟨𝜉, v⟩L2 − 𝜄{div−v=0}(v) − 𝜄𝛾 (w) → max
w+Av=0

, (20)

where we denote by 𝛾 the set

𝛾 =
{

w ∶ YN → R
6 ||| ||w[i, j, k]|| ≤ 𝛾[i, j, k] for all i, j, k

}
. (21)
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The associated Lagrangian function reads

L(v,w, 𝜉) = ⟨𝜉, v⟩L2 − 𝜄{div−v=0}(v) − 𝜄𝛾 (w) − ⟨𝜉,Av + w⟩L2 (22)

in terms of the Lagrangian multiplier field 𝜉 ∶ YN → R6. To evaluate the dual function

𝜑(𝜉) = sup
v,w

L(v,w, 𝜉),

we rearrange the expression of the Lagrangian (22)

𝜑(𝜉) = sup
v
⟨𝜉, v⟩L2 − 𝜄{div−v=0}(v) − ⟨𝜉,Av⟩L2

⏟⏞⏟⏞⏟
=⟨A∗𝜉,v⟩L2

+ sup
w
⟨𝜉,w⟩L2 − 𝜄𝛾 (w)

=
⎧⎪⎨⎪⎩

1
N1N2N3

∑
i,j,k

𝛾[i, j, k] ||𝜉[i, j, k]||, 𝜉 ∈ 
𝜉
,

+∞, otherwise,

in terms the set of compatible normal fields


𝜉
=
{
𝜉 ∶ YN → R

6 ||| there is some 𝜙 ∶ YN → R, s.t. A∗𝜉 = 𝜉 + ∇+𝜙
}
. (23)

This set may be interpreted as follows. Fields 𝜉 ∶ YN → R6 associate to every voxel six scalar values. These values are
assigned to each face of the voxel. Please note that any face of the voxel mesh is thus assigned with two values, one for each
adjacent voxel. Up to a factor

√
2, A∗𝜉 refers to the facewise average of these two values. The set 

𝜉
contains all fields,

whose averages A∗𝜉 are compatible in the sense that they arise as the sum of a constant vector (which is fixed beforehand)
and the gradient of a scalar field (one scalar per voxel). Thus, up to the facewise averaging, the compatibility constraint
is similar to thermal conductivity or elasticity. The final form

1
N1N2N3

∑
i,j,k

𝛾[i, j, k] ||𝜉[i, j, k]||→ min
𝜉∈

𝜉

(24)

of the dual to the CCMF problem (15) is remarkably close to the original minimum cut formulation (4), cf. the more
involved formulas in Couprie et al. [73, sec. 2.3].

3.2 An FFT-based ADMM solver

To proceed, we rewrite the optimization problem (24) as an equivalent convex program that is amenable to
operator-splitting approaches

f (𝜉) + g(𝜉) → min
𝜉

(25)

in terms of the convex functions

f (𝜉) = 𝜄
𝜉
(𝜉) and g(𝜉) = 1

N1N2N3

∑
i,j,k

𝛾[i, j, k] ||𝜉[i, j, k]||.
The starting point of operator-splitting approaches is the rewriting of the unconstrained problem (25) in constrained form

f (𝜉) + g(e) → min
𝜉=e

. (26)

For solving the problem (26), we utilize the alternating direction method of multipliers (ADMM),81,82 which was
pioneered in the context of FFT-based methods by Michel et al.,75,76 and applied to nonsmooth optimization by Willot.78
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For this purpose, we investigate the augmented Lagrangian function

L𝜌(𝜉, e, v) = f (𝜉) + g(e) + ⟨v, 𝜉 − e⟩L2 + 𝜌

2
‖𝜉 − e‖2

L2 , (27)

involving a penalization factor 𝜌 > 0 and the Lagrange multiplier v ∶ YN → R6. The ADMM is based on the three-term
recursion

𝜉k+1 = argmin𝜉L𝜌(𝜉, ek, vk),

ek+1 = argmineL𝜌(𝜉k+1, e, vk), (28)
vk+1 = vk + 𝜌 (𝜉k+1 − ek+1).

Let us investigate the first line more explicitly,

𝜉k+1 = argmin𝜉L𝜌(𝜉, ek, vk)

= argmin𝜉f (𝜉) + ⟨vk, 𝜉⟩L2 + 𝜌

2
‖‖‖𝜉 − ek‖‖‖2

L2

= argmin𝜉∈
𝜉

‖‖‖‖𝜉 − ek + 1
𝜌

vk‖‖‖‖2

L2
.

Thus, 𝜉k+1 arises as the orthogonal projection of the point ek − vk∕𝜌 onto the set 
𝜉
,

𝜉k+1 = 
𝜉

(
ek − 1

𝜌
vk
)
.

Let us write down an explicit expression for the projection operator
𝜉
. For given w ∶ YN → R6, we seek 𝜉 ∶ YN → R6, s.t.

𝜉 = 
𝜉
(w), i.e., 𝜉 = argmin𝜉∈

𝜉
||𝜉 − w||2L2 holds. (29)

With the help of the orthogonal projector P = AA∗ and its orthogonal, complementary projector Q = Id − AA∗, we
may decompose the vector field 𝜉

𝜉 = 𝜉P + 𝜉Q with 𝜉P = P𝜉 and 𝜉Q = Q𝜉, (30)

s.t., by orthogonality, ||𝜉||2L2 = ||𝜉P||2L2 + ||𝜉Q||2L2 (31)

holds. Then, we may express the set 
𝜉

in the form


𝜉
=
{
𝜉 ∶ YN → R

6 ||| there are 𝜙 ∶ YN → R and 𝜂 ∶ YN → R
6, s.t. 𝜉 = A(𝜉 + ∇+𝜙) + Q𝜂

}
. (32)

To show equivalence of definitions, let us take an element 𝜉 ∈ 
𝜉

according to the former definition (23), which was
characterized by the defining constraint

A∗𝜉 = 𝜉 + ∇+𝜙.

Then, by definition of 𝜉P, we observe

𝜉P ≡ P𝜉 = AA∗𝜉 = A(𝜉 + ∇+𝜙),

and 𝜉 is contained in the set (32). Conversely, applying A∗ to an element 𝜉 of the set (32) yields

A∗𝜉 = A∗A
⏟⏟⏟

=Id

(𝜉 + ∇+𝜙) + A∗Q
⏟⏟⏟

=0

𝜂 = 𝜉 + ∇+𝜙,
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which shows that 𝜉 lies in the original set (23). Returning to the projection problem (29)

𝜉 = argmin𝜉∈
𝜉

||𝜉 − w||2L2 ,

we decompose w = wP + wQ in the same form (30). Due to the Pythagorean theorem (31), we observe

𝜉 = argmin𝜉∈
𝜉
||𝜉 − w||2L2

= argmin𝜉∈
𝜉
||𝜉P − wP||2L2 + ||𝜉Q − wQ||2L2

= argmin𝜙,𝜂||A(𝜉 + ∇+𝜙) − wP||2L2 + ||Q𝜂 − wQ||2L2 ,

where we inserted the definition (32) in the last line. We observe that the optimization problems for the variables 𝜙

and 𝜂 decouple. The problem for Q𝜂 is particularly simple, and is solved by Q𝜂 = wQ ≡ Qw. Using that A is an isometric
embedding, the problem for 𝜙 becomes

‖‖‖𝜉 + ∇+𝜙 − A∗w‖‖‖2

L2
→ min

𝜙
.

The corresponding critical point satisfies

div−
[
𝜉 + ∇+𝜙 − A∗w

]
= 0 ⇔ div−∇+𝜙 = div−A∗w.

The latter equation may be solved formally to give

𝜙 = (div−∇+)†div−A∗w,

where † denotes the Moore–Penrose pseudo inverse. Reinserting the found expressions into the definition (32), we find

𝜉 = A𝜉 + A∇+(div−∇+)†div−A∗w + (Id − AA∗)w,

which we may also write in the more convenient form


𝜉
(w) = A𝜉 + (Id − AA∗ + AΓA∗)w with Γ = ∇+(div−∇+)†div−. (33)

The second line (28) can be rewritten using Moreau’s identity [79, eq. (3.8)] in the form

ek+1 =
[
vk + 𝜌 𝜉k+1 − 𝛾

(
vk + 𝜌 𝜉k+1)] ∕𝜌,

where 𝛾 is the orthogonal projector

(𝛾 (w)
)
[i, j, k] =

{
𝛾[i, j, k] w[i, j, k]∕||w[i, j, k]||, ||w[i, j, k]|| > 𝛾[i, j, k],
w[i, j, k], otherwise,

onto the constraint set 𝛾 (21). Thus, we are led to the following scheme

𝜉k+1 = A𝜉 − 1
𝜌

(Id − AA∗ + AΓA∗)
(

vk − 𝜌 ek) ,
ek+1 =

[
vk + 𝜌 𝜉k+1 − 𝛾

(
vk + 𝜌 𝜉k+1)] ∕𝜌,

vk+1 = vk + 𝜌 (𝜉k+1 − ek+1).

(34)

A recent study77 highlighted the importance of utilizing a damping factor and choosing the penalty factor 𝜌 adaptively.
For this purpose, we consider the modified scheme
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𝜉k+1∕2 = A𝜉 − 1
𝜌k

(Id − AA∗ + AΓA∗)
(

vk − 𝜌k ek) ,
𝜉k+1 = 2(1 − 𝛿)𝜉k+ 1

2 − (1 − 2𝛿)ek,

ek+1 =
[
vk + 𝜌k 𝜉k+1 − 𝛾

(
vk + 𝜌k 𝜉k+1)] ∕𝜌k,

vk+1 = vk + 𝜌k (𝜉k+1 − ek+1).

(35)

with damping 𝛿 ∈ (0, 1) and adaptive penalty parameter 𝜌k. In general, the overrelaxation 𝛿 = 1∕4 is recommended.77,83,84

Simple choices for the parameter 𝜌k are based on the Lorenz–Tran–Dinh scaling85

𝜌k = ||vk||L2||ek||L2

or the Barzilai–Borwein scaling86

𝜌k =
⟨vk − vk−1, ek − ek−1⟩L2||ek − ek−1||2L2

and an additional safeguard [77, sec. 2.5]. In our computational experiments, the latter two schemes outperform, both,
constant penalty parameter 𝜌 and residual balancing.87

Last but not least, let us stress that the operator Γ has an explicit form in Fourier space, see Willot et al. [88, eq. 18].

4 COMPUTATIONAL EXPERIMENTS

4.1 Setup

The algorithm (35) was integrated into an existing FFT-based computational homogenization code for thermal
conductivity,89 written in Python with Cython extensions (and OpenMP). In the context of small-strain inelasticity,
the implementation of the ADMM (35) and the memory-efficient computation of the penalty factor is discussed in
Schneider.77 In the same paper, the convergence criterion

‖‖‖ek − 𝜉k+ 1
2
‖‖‖L2

≤ tol ‖‖⟨v⟩Y
‖‖ , (36)

for prescribed tolerance tol, is identified as suitable. All computational experiments were run on a desktop computer with
32GB RAM and six 3.7GHz cores, and on a workstation with 512 GB RAM and two Intel Xeon(R) Gold 6146 processors
(12 × 3.20 GHz), respectively. If not mentioned otherwise, we will use ADMM with damping factor 𝛿 = 0.25 and the
Barzilai–Borwein adaptive choice for the penalty factor. The default tolerance tol (36) was set to tol = 10−4.

4.2 A single spherical inclusion

As a first example, we build upon previous numerical experiments [53, sec. 4.2.2] and compare the CCMF-discretization
to previously investigated discretization schemes, namely, the rotated staggered grid90-92 and the Moulinec–Suquet
discretization.93,94 We consider a 643 box containing a single spherical inclusion with a diameter of 32 voxels. The crack
resistance of the inclusion is chosen as 𝛾sphere = 10 𝛾matrix. We prescribe a unit vector 𝜉 = ex in x-direction as the crack
normal. We solved the problem up to a tolerance of 10−4 using ADMM and chose the penalty factor as lower bound
𝜌 = min{𝛾sphere, 𝛾matrix}, which was the preferred choice for the primal-dual hybrid gradient method [53, sec. 3]. Solution
fields on a central cross-section are shown in Figure 5.

The local flow fields v are shown in Figure 5A. The Moulinec–Suquets discretization shows significant artifacts, which
is characteristic for Fourier spectral discretizations. The rotated staggered grid discretization, on the other hand, features
checkerboard artifact, although at a lower degree. By contrast, the flow field corresponding to the CCMF-discretization
is much smoother, similar to the explicit jump discretization in the context of thermal conductivity.89,95 The differences
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F I G U R E 5 Flow v and normal 𝜉 fields on a cross-section through a 643 single-sphere microstructure for 𝜉 = ex , 𝛾ball = 10 𝛾matrix and
different discretizations

in the local crack-normal field 𝜉 for the CCMF and the rotated staggered grid discretization are negligible and differ from
the Moulinec–Suquet discretization in the local maximum values close to the central inclusion, see Figure 5B.

All discretization methods give rise to the same effective crack energy, that is, 𝛾eff = 𝛾matrix, as the crack bypasses the
inclusion in a plane. This is independent of the material contrast, as long as the crack resistance of the matrix exceeds the
crack resistance of the single sphere [53, sec. 4.2.2].

As the Moulinec–Suquet discretization shows the strongest artifacts, we focus on the remaining two discretization
methods for the remaining investigations.

4.3 A continuously fiber-reinforced composite

In this section, we wish to assess the performance of the ADMM solver introduced in Section 3. As a measure of verifica-
tion, we choose a comparatively simple microstructure which enables us to employ a high-fidelity interior-point solver96

for second-order cone programs. The latter produces high-precision solutions, but is limited in terms of problem size.
Accounting for this limitation, we consider a continuously fiber-reinforced composite with 50% filler content.

The two-dimensional microstructure, containing 32 circular inclusions, was generated by the mechanical-contraction
method97 and discretized on a 1282 voxel grid. The inclusions were furnished by a crack resistance of 𝛾fiber = 10 𝛾matrix. We
investigate the effective crack energy in direction 𝜉 = ex and compare the CCMF discretization and the rotated staggered
grid discretization, as well as different ADMM damping parameters 𝛿, namely, 𝛿 = 0.25 and 𝛿 = 0.5. Furthermore, we
investigate different selection strategies for the ADMM penalty-factor, the lower bound 𝜌 = min{𝛾fiber, 𝛾matrix}, preferred
in Schneider53 and the Barzilai–Borwein scaling,86 as well as the Lorenz–Tran Dinh scaling85 and residual balancing.87
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As announced earlier, we compare the effective crack energy to solutions obtained by the high-fidelity solver ECOS96

applied to conic reformulations of the minimum-cut problem (24) for the CCMF scheme and the discretization on a
rotated staggered grid. We assess the solver quality in terms of the relative error

error =
|𝛾eff − 𝛾accurate

eff |
𝛾accurate

eff

(37)

in the effective crack energy, where 𝛾accurate
eff is computed by the interior-point solver96 with a residual of 10−10.

Figure 6A shows the local flow field for, both the CCMF discretization and the rotated staggered grid discretization.
For the rotated staggered grid, the flow field exhibits significant checkerboard artifacts in the inclusions as well as the
matrix. The CCMF solution, on the other hand, is devoid of such artifacts. The corresponding crack paths are shown in
Figure 6B. The cracks bypass the inclusions and look qualitatively similar for both discretizations. However, the rotated
staggered grid discretization shows a wider crack path, whereas the CCMF crack path is sharper. This allows the CCMF
crack path to avoid several inclusions in a straight line, whereas the rotated staggered grid crack path has to avoid them,
resulting in a less straight crack path. This observation is also reflected in the resulting effective crack energy, that is,
𝛾eff = 1.021 𝛾matrix for the rotated staggered grid and 𝛾eff = 1.014 𝛾matrix for the CCMF discretization.

Figure 7A shows the residual of the solver versus the iteration count for the two strategies for selecting the penalty
factor, two damping factors and the two discretizations under consideration. During the first 1000 iterations, all solvers
behave similarly, with a slight advantage for the choice 𝛿 = 0.25. After 2000 iterations, all solvers result in a residual below
10−3. For the CCMF discretization, the ADMM solver with 𝛿 = 0.25 and Barzilai–Borwein penalty-choice speeds up at
1600 iterations and reaches the required tolerance of 10−5 shortly thereafter. For 𝛿 = 0.5 a similar acceleration occurs
after slightly more than 8000 iterations. Selecting the lower bound for the penalty factor 𝜌 does not reach the required
tolerance within 10,000 iterations.

For the rotated staggered grid discretization, the Barzilai–Borwein penalty-factor outperforms the constant choice, as
well. For this discretization, the difference between the two damping factor choices is much smaller than for CCMF.

The investigations are supplemented by Figure 7B, which records the associated relative error (37).
Indeed, the relation between the residual (36) and the error in the quantity of interest (37) is not directly apparent. We

know that convergence of effective properties is implied by convergence of the fields. However, the quantitative relation
between these may only be determined by comparison with a ground truth. For the CCMF discretizations, the relative
error (37) correlates with the residual rather well, reaching an accuracy below 10−4 at convergence. By contrast, the
solution for the rotated staggered grid leads to an error of only 0.5%, that is, hits a “stall.”

In addition to the mentioned penalty-factor choices, we studied two further (less competitive) approaches, namely,
residual balancing,87 which is often recommended in the literature, as well as an the averaging approach suggested
by Lorenz–Tran–Dinh,85 which proved to be promising in small-strain micromechanics.77 To increase readability, the
residual and the error (37) were moved to Figure A1B of Appendix A.

With this validation at hand, we restrict to the CCMF discretization in combination with ADMM, damping factor
𝛿 = 0.25 and the Barzilai–Borwein penalty-factor for the remainder of this work.

F I G U R E 6 Cross-section through the solution fields v and 𝜉 for a 1282 microstructure, containing 32 circular inclusions for CCMF and
rotated staggered grid discretization for 𝜉 = ex and 𝛾fiber = 10𝛾matrix
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F I G U R E 7 Residual and error measure (37) for CCMF and rotated staggered grid discretizations, comparing different solver parameters

F I G U R E 8 Microstructure and effective crack energy for the fiber-reinforced composite

4.4 A fiber-reinforced composite

After the necessary verification steps, we turn our attention to problems with a higher degree of complexity. We consider
a short-fiber reinforced composite with 18% filler content. The synthetic structure contains 376 fibers with an aspect ratio
(length/diameter) of 20, and was generated by the SAM algorithm.98 The prescribed fiber-orientation tensor of second
order99,100 was diag(0.75, 0.19, 0.06), that is, the fibers lie almost exclusively in the x-y-plane with a strong preference in
x-direction. The fibers are discretized with eight voxels per diameter, resulting in a volume image with 2563 voxels, see
Figure 8A. Since the computations on such large structures are costly, we first investigate the influence of the tolerance
entering the stopping criterion (36). For a configuration 𝛾fiber = 50 𝛾matrix, we computed the effective crack energy in
direction 𝜉 = ex. After 1000, 2500, 5000, 7500, and 10,000 iterations, we take a look at the corresponding residual and the
computed effective crack energy, see Table 1. We observe that, after 1000 iterations we reach a residual of almost 10−3

with a relative deviation in effective crack energy about 2% compared with the prediction after 10,000 iterations. After
2500 iterations, the relative error is below 1% with a residual at about 6 ⋅ 10−4. For more than 5000 iterations, the effective
crack energy does not change in the third significant digit, whereas the residual decreases only slowly.
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T A B L E 1 Residual and computed effective crack energy with normal
𝜉 = ex depending on the number of ADMM iterations for a fiber-reinforced
composite, see Figure 8A, with material parameters 𝛾fiber = 50 𝛾matrix

#Iterations Residual 𝜸eff∕𝜸matrix

1000 1.7 ⋅ 10−3 2.94

2500 6.1 ⋅ 10−4 2.89

5000 1.9 ⋅ 10−4 2.87

7500 1.0 ⋅ 10−4 2.87

10,000 5.5 ⋅ 10−5 2.87

F I G U R E 9 Cross-section through crack surface for 𝛾fiber = 50 𝛾matrix at different ADMM iterations

To complement these numbers, we take a look at a cross-section through the computed crack surface at different
iteration counts, see Figure 9. We observe an influence of the solver accuracy on the solution field 𝜉. Indeed, after 1000
iterations, several distinct crack paths are present in the vicinity of the solution. These different cracks, however, come
with different “intensities,” as well. This ambiguity is reduced after 2500 iterations. Only after 5000 iterations, the solver
finds a unique crack surface.

Please note that, in general, we do not expect the minimum-cut problem (4) to have a unique solution. Rather, for
the problem at hand, a unique crack is formed and, at low levels of the residual, additional cracks appear, compare also
Schneider [53, sec. 4.1.2]. These vanish, however, at high accuracy.

To balance accuracy and ensuing computational costs, we fix the tolerance to 5 ⋅ 10−4.
Next, we investigate the resulting crack surfaces and effective crack energies corresponding to different crack nor-

mals, see Figure 10. In ex-direction, the effective crack energy is highest. This is caused by preferred fiber direction in
this direction, forcing the crack surface to bypass the numerous inclusions. In ey-direction, see Figure 10B, the crack sur-
face looks roughly similar. However, the crack needs to avoid fewer fibers, resulting in a lower effective crack energy. In
ez-direction, the crack surface is almost straight, see Figure 10B, resulting in the lowest effective crack energy.

Last but not least, we investigate the influence of the material contrast on the computed effective crack energy in 𝜉 =
ex-direction, see Figure 8B. This contrast is responsible for the allowed crack-inclusion interaction-mechanisms. Indeed,
for high contrast, the inclusions can only be avoided, that is, inclusion bypass is the only viable option. In general, the
particles’ anisotropy (encoded by the aspect ratio and the fiber orientation for the example at hand) and the filler content
determine the threshold in contrast where only inclusion bypass is permitted. For the example at hand, Figure 8B reveals
that this threshold is roughly at a material contrast of 40. In Table 2, the influence of the material contrast on the ADMM
iteration count is listed. For a contrast of 10, the solver requires 404 iterations to reach the desired tolerance. Above a
contrast of 20, the iteration count stabilizes at approximately 2700.

For lower contrast, it may be energetically more favorable to cross some of the inclusions. For decreasing material
contrast, this inclusion-crossing mechanism occurs more frequently.
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F I G U R E 10 Crack surfaces for the Cartesian normals, material contrast 𝛾fiber∕𝛾matrix = 50 and the fiber-reinforced composite, see
Figure 8A

T A B L E 2 Number of ADMM iterations
for varying material contrast 𝛾fiber∕𝛾matrix

𝜸fiber∕𝜸matrix #Iterations

10 404

20 2701

30 2633

40 2626

50 2717

4.5 Microstructures with a monodisperse pore distribution

As our next example, we consider microstructures with monodisperse, spherical pores and varying degree of porosity. For
a porosity between 5% and 50%, we generated microstructures with 200 spheres by the mechanical contraction method,97

see Figure 11. All structures were discretized on a 2563 voxel grid. The solid material has crack resistance 𝛾 , and the
spherical pores are furnished with a vanishing crack resistance, resulting in an infinite material contrast. Please note that
in the previous study [53, sec. 4.1.1], the pores were furnished with a nonvanishing (yet small) crack resistance to ensure
robust convergence of the utilized solution scheme. Such a restriction appears unnecessary for the improved solution
method presented in this article.

The effective crack energy in direction 𝜉 = ex and the required ADMM iterations are listed in Table 3. Following physi-
cal intuition, the effective crack energy decreases for increasing porosity. If the crack were straight, its crack energy would
be proportional to the in-plane porosity of the crack plane. For a curved crack, there is a competition between “maxi-
mizing the porosity” and remaining as straight as possible, see Figure 11. The iteration count appears to be uncorrelated
with the porosity. As a remark, we found the iteration count to be strongly dependent on the specific realization of the
microstructure, in general. Thus, we expect that no such correlation may be inferred from a single sample, but would
require a more elaborate study.

4.6 Sand-binder composite

In our final example, we examine the microstructure of a sand-binder aggregate which is characteristic for inorgani-
cally bound sand cores used in casting applications. The synthetic structure was generated by a mechanical-contraction
type method,32,33 and is shown in Figure 1. The microstructure consists of three phases: The sand grains (58.6%),
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F I G U R E 11 Crack surface through microstructures with varying porosity

T A B L E 3 Influence of the porosity on the
effective crack energy and solver performance for
varying porosity

Porosity in % 𝜸eff∕𝜸 Iterations

5 0.871 4986

25 0.535 3300

40 0.412 3327

50 0.305 2358

T A B L E 4 Material parameters, effective crack energies, as well as iteration count for the three cases under consideration

𝜸matrix in MPa⋅𝛍m 𝜸grain in MPa⋅𝛍m 𝜸binder in MPa⋅𝛍m 𝜸eff in MPa⋅𝛍m Iterations

#1 0 1 1 0.074 3204

#2 1 10 1 1.133 1711

#3 10 1 10 3.246 3971

connected by a binder phase (1.3%), and a third phase (40.1%). In the physical applications, the latter phase
represents the pore space. We wish to utilize the microstructure to get insights for a number of physical scenarios,
and we will refer to the third phase more generally as the “matrix” for reasons that will become clear
shortly.

The crack resistances associated to the phases are denoted by 𝛾grain, 𝛾binder, and 𝛾matrix, respectively. To investigate the
effective crack energy and possible crack surfaces through the microstructure, we consider three different parameter sce-
narios, where the single phases model different physical scenarios. The governing parameters and their resulting effective
crack energy are listed in Table 4, together with the required iteration count. In parameter case #1, the crack resistance
of the grains and the binder are equal, and the matrix material corresponds to a pore space. The resulting crack surface
is shown in Figure 12A. We notice that the crack is fully contained in the binder phase. The effective crack energy is
reduced to 7.5% of the crack resistance which grain and binder share. The second parameter case models the structure as a
matrix material with tougher sand-grain inclusions. The binder phase is treated as additional matrix material. Figure 12B
shows the crack surface avoiding the sand-grain shaped inclusions. The resulting effective crack energy of the composite
is 1.133 𝛾matrix. The third case deals with the same contrast, that is, the binder phase is once again treated as additional
matrix. This time, however, the sand-grain shaped inclusions are weaker than the surrounding material. The effective
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F I G U R E 12 Crack surfaces through the bound sand-grain microstructure for three different combinations of crack resistances for
matrix, inclusion, and binder

crack energy is 32% of the matrix crack resistance. Figure 12C shows the crack surface crossing several grains in order to
avoid the matrix phase as much as possible.

5 CONCLUSIONS

In this work, we presented a powerful FFT-based solution method for computing the effective crack energy of
industrial-scale composite microstructures. Based on a homogenization result for the Francfort–Marigo model,19 see
Braides et al.48 and following contributions,54,59 a cell formula for computing the effective crack energy was investigated.
This cell formula may be interpreted as a minimum cut/maximum flow problem,64 which finds various applications, for
instance in graph networks and image segmentation. Following Couprie et al.,73 we considered the CCMF discretiza-
tion on regular voxel data and integrated it into an FFT-based computational homogenization framework. In comparison
with traditional spectral and finite-difference discretizations, we found the CCMF discretization to significantly reduce
artifacts in the local fields.

For solving the discretized equations, we investigated the alternating direction method of multipliers (ADMM) with
various adaptive strategies, and found a damping parameter 𝛿 = 0.25 combined with the Barzilai–Borwein penalty-factor
choice to be the most effective. We demonstrated the applicability of our approach to various large-scale problems,
considering complex microstructures, as well as large or even infinite contrast in the local crack resistance. The pre-
sented framework was implemented into an existing homogenization code for thermal conductivity, and although
we ran some computations on a workstation, all presented computations could be done on a conventional desktop
computer.

Future work on this topic may focus on accounting for anisotropic crack resistance. This may be of interest in
a two-step homogenization framework for braided or SMC composites,101 and for brittle fracture in polycrystalline
materials. Furthermore, accounting for weak interfaces may extend the applicability of the presented framework.
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APPENDIX A. PERFORMANCE OF ADDITIONAL PENALTY FACTOR CHOICES

In addition to the lower bound and the Barzilai–Borwein strategy for choosing the penalty factor 𝜌 in combination with
different damping parameters 𝛿, see Section 4.3, we investigated two additional choices which are popular in the lit-
erature. More precisely, we consider residual balancing87 and the averaging strategy proposed by Lorenz–Tran–Dinh,85

which perform admirably for linear elastic and inelastic homogenization problems.77 The resulting residual and error
plots are shown in Figure A1. For the CCMF-discretization and the damping parameter 𝛿 = 0.5, the residual balancing
strategy led to an unstable behavior. The choice 𝛿 = 0.25 resolves this instability. However, this approach does not lead to
a high accurate solution. The averaging strategy by Lorenz–Tran–Dinh85 shows more promising results, reaching a tol-
erance of 10−4 in fewer than 2000 iterations and 𝛿 = 0.25. However, this parameter choice turns out to be inferior to the
Barzilai–Borwein approach. The relative error (37), shown in Figure A1B correlates with the residual in a similar way
as for the choices considered in Section 4.3. For the rotated staggered grid discretization, the Lorenz–Tran–Dinh scaling
with 𝛿 = 0.25 shows the best performance. However, only low accuracy in terms of the relative error (37) may be reached.

F I G U R E A1 Residual and error measure for CCMF and rotated staggered grid discretizations, comparing different solver parameters


