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ABSTRACT
Aquatic herbaceous plants are especially suitable for mapping environmental variability in wetlands, as they respond 
quickly to environmental gradients and are good indicators of habitat preference. We describe the composition of 
herbaceous species in two oligotrophic wetland ecosystems, floodplains along black-water rivers (igapó) and wetlands 
upon hydromorphic sand soils (campinarana) in the Parque Nacional do Jaú and the Reserva de Desenvolvimento 
Sustentável Uatumã in Central Amazonia, both protected areas. We tested for the potential distribution range (PDR) 
of the most frequent species of these ecosystems, which are the ones that occurred in at least two of the sampled 
wetlands, using species distribution models (SDMs). In total, 98 aquatic herbaceous species were recorded, of which 
63 occurred in igapós and 44 in campinaranas. Most igapó species had ample PDRs across the Neotropics, while most 
campinaranas species were restricted to the Amazon Basin. These results are congruent with studies that described 
similar distribution patterns for tree and bird species, which emphasizes a high degree of endemism in Amazonian 
campinarana. However, we also found differences in the potential distribution of species between the two protected 
areas, indicating high environmental variability of oligotrophic ecosystems that deserve further investigation to 
develop effective measures for their conservation and protection.
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Introduction
Aquatic macrophytes are defined as “aquatic 

photosynthetic organisms, large enough to see with the 
naked eye, that actively grow permanently or periodically 
submerged below, floating on, or up through the water surface 
of inland freshwater or brackish waterbodies” (Chambers et al. 

2008). In Amazonian river wetlands, where flood pulses are 
high (Junk et al. 1989), many herbaceous species have short 
life cycles and occur only during the low water (terrestrial 
phase). Their diaspores are well adapted to survive the 
subsequent inundation (aquatic phase). Therefore, these 
seemingly terrestrial plants are included in the group of 
aquatic herbaceous plants (Piedade et al. 2019). Aquatic 
herbaceous plants are highly diverse in terms of growth 
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forms (i.e., immersed, submerged floating plants, with 
floating leaves, epiphytic, among others), which are closely 
associated to differences in resource capture, allocation, stress 
tolerance and survival strategies (Piedade et al. 2019). This 
ensures rapid population recovery from disturbance and 
successfull colonization of highly dynamic environments 
that are subjected to seasonal oscillations of the water level 
and abrupt transitions in the environmental conditions 
along the topographic gradient (Murphy et al. 2019; Piedade 
et al. 2019). Aquatic herbaceous plants are also especially 
suitable for mapping environmental variability in wetlands, 
being sensitive to both long- and short-term changes in 
environmental conditions (Lacoul & Freedman 2006).

According to international criteria of wetland definition, 
wetlands in the Amazon Basin cover an area of more than two 
million square kilometers, including areas that are seasonally 
flooded by lateral river overflows and those that are episodically 
waterlogged by oscillating groundwater levels (Junk et al. 2014). 
Floodplains along large rivers in Amazon Basin cover an area of 
approximately 750,000 km² and are divided in environments 
with fertile conditions (white-water floodplains, called várzea 
with about 450,000 km² extension) and floodplains of low 
to intermediate fertility (black- and clear-water floodplains, 
called igapó, with approximately 300,000 km² extension) 
(Melack & Hess 2010; Wittmann & Junk 2016). Igapó and 
várzea floodplains are influenced by a monomodal flood-pulse 
with amplitudes averaging about 10 m in the Central Amazon 
region, inducing a distinct seasonality (aquatic and terrestrial 
phases) in the floodplains (Junk et al. 1989). Besides nutrient 
contents of waters and soils, the floodplains are influenced 
by the duration of the aquatic phase, resulting in a distinct 
flora of herbaceous (Piedade et al. 2010) and tree communities 
(Wittmann et al. 2012) that can be inundated for periods of 
more than six months per year. The herbaceous communities in 
várzea and igapó are distinct with low floristic similarity (Lopes 
et al. 2019). Because environmental conditions such as water 
transparency and nutrient contents may vary significantly 
between rivers, floristic inventories also show a low similarity 
between the igapó of clear- and black-water rivers (Crema 
2017). In contrast, the campinaranas cover an area of 334,879 
km2 in the Amazon region (Adeney et al. 2016) and occur 
on nutrient-poor sandy soils. The presence of impermeable 
soil layers near the surface, in hydromorphic campinaranas, 
results in low drainage and saturation of the soil during the 
rainy seasons. However, only in some areas the water column 
rises a few centimeters above the soil surface, and the effects 
of flooding or waterlogging are mostly restricted to the plant 
root system (Anderson 1981; Franco & Dezzeo, 1994; Coomes 
1997; Junk et al. 2011; Damasco et al. 2013; Adeney et al. 
2016). In many regions, as along the lower Negro river, the 
distribution of these ecosystems is fragmented within the 
forest matrix (Prance 1996).

Studies on species composition and distribution of 
Amazonian aquatic plants are still scarce considering 
that wetlands occupy about 30 % of the region (Junk et 

al. 2011). Near the city of Manaus (State of Amazonas, 
Brazil) Junk & Piedade (1993; 1994) conducted studies 
with a large sample effort and recorded 388 species of 
aquatic, terrestrial and semiaquatic herbaceous species 
for the várzea. Herbaceous species in black-water igapós of 
different regions in the Central Amazon were less numerous 
and so far a total number of 178 species has been recorded 
(Lopes et al. 2019), while only 52 species were recorded in 
clear-water igapós in Colombian Guiana (Atuesta-Ibargüen 
2019),  and 49 species in clear-water igapós of the Tapajós 
river (Pará, Brazil) (Crema 2017). Inventories of herbaceous 
species in white-sand ecosystems (campinarana) at the 
Parque Nacional do Viruá (Northern Amazon) and Acre 
State (Southwestern Amazon) reported 196 (Costa et al. 
2016) and 110 species (Daly et al. 2016), respectively. 
Both nutrient-poor campinarana and black-water igapó 
are thought to harbor several endemic species adapted to 
these harsh and extreme environments (Kubitzki 1989; 
Wittmann et al. 2010). More knowledge on the composition 
of aquatic herbaceous species and the factors that influence 
their distribution in these oligotrophic environments is 
needed to understand the functioning of these ecosystems 
and in order to contribute to the development of effective 
conservation and management strategies.

Historical climatic factors could influence the current 
distribution pattern of aquatic plants but are rarely 
considered in studies of aquatic vegetation distribution 
(Lopes et al. 2017; Murphy et al. 2019). Although each 
species has its own distribution range, repetitive patterns 
of distribution are common (Marchioretto et al. 2004); 
while some distribution ranges reflect connections to past 
climates, others indicate limits imposed by the present 
environment (Gomes et al. 2020). The use of modeling to 
predict species distribution allows to evaluate both, the 
current characteristics of the environment and to simulate 
the distribution in paleo-, present, and future climates. It 
also allows gaining insights on how species would respond 
to physiological stressors and to changing environments 
under rising CO2 and global warming (Pecchi et al. 2019; 
Santana Jr. et al. 219; Zhang et al. 2019).

The objectives of this study were: (1) to determine the 
composition of aquatic herbaceous plants in black-water 
igapó floodplains and hydromorphic campinarana ecosystems 
of two PELD-MAUA sites (Brazilian Long-term Ecological 
Research Network - Ecology, monitoring and sustainable use 
of wetlands) located in the protect areas Parque Nacional 
do Jaú (JNP) and  Reserva de Desenvolvimento Sustentável 
Uatumã (USDR), (2) to compare them with the flora of 
other Brazilian wetland ecosystems and (3) by using species 
distribution models (SDMs), to estimate the potential 
distribution range (PDR) within the Neotropical region 
for the 10 most frequent species in each ecosystem, as 
well as for the five shared species between ecosystems. We 
hypothesized that the potential distribution ranges of black-
water igapó species are much wider (i.e., Neotropical) than 
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those of campinarana species (i.e., restricted to the Amazon 
basin), because the latter occur in insular and fragmented 
habitats interspersed within the Amazonian rainforest. 
On the other hand, in the black-water igapó floodplain 
the water connectivity would allow a more effective and 
widespread dispersion. In this regard, we also expected 
that the campinarana would share fewer species with other 
Brazilian wetlands than the igapó.

Materials and methods
The PELD-MAUA sites are established in the Parque 

Nacional do Jaú (JNP) and the Reserva de Desenvolvimento 
Sustentável Uatumã (USDR) in the Central Amazon basin, 
with focus on the oligotrophic wetland vegetation of black-
water igapó (from now on, when referring to the study areas, 
called just igapó) and campinarana. The main objective of the 
PELD-MAUA project is to monitor changes in vegetation in 
the background of ongoing climate and land-use changes. The 
distance between both PELD-sites is approximately 300 km.

Reserva de Desenvolvimento Sustentável Uatumã - 
USDR

The USDR is located 150 km northeast of Manaus city, 
shared by the municipalities of Itapiranga and São Sebastião 
do Uatumã (State of Amazonas). The USDR covers an area of 

4,244 km2 of terra-firme forests, igapós, and campinaranas. 
The PELD site is located at 02°10’30”-02°11’30” S and 
59°00’30”-59°01’30” W (Fig. 1). The USDR is cut by the 
Uatumã river through its entire extension. The climate 
is tropical humid, with a pronounced rainy season from 
November to May and a dry season from June to October, 
with mean annual temperature of 27 °C and mean annual 
precipitation of 2,376 mm (IDESAM 2009). The flood pulse is 
monomodal; however, after the construction of the Balbina 
dam, flooding is regulated by the opening and closing of the 
floodgates (Assahira et al. 2017), depending on the level of 
the water reservoir and the demand for power generation.

The USDR consists of different forested ecosystems. 
The largest part of the territory is covered by dense, 
non-flooded upland forests (terra-firme) on plateaus at 
a maximum altitude of approximately 130 m a.s.l.. The 
white-sand vegetation (campinarana) of USDR occurs as 
“islands” in terrain depressions (at approximately 40 m a.s.l.) 
scattered throughout the terra-firme forest, and show great 
heterogeneity in the vegetation physiognomy due to the 
variations of the soil nutrients and flooding (Targhetta et al. 
2015). The open campinarana physiognomies are dominated 
by shrubs, small trees, and a conspicuous herbaceous 
component. The orchid Sobralia granitica G.A.Romero & 
Carnevali, the fern Actinostachys pennula (Sw.) Hook. and 
several species of Eriocaulaceae, Cyperaceae and Xyridaceae 
characterize the herbaceous vegetation. In campinaranas 

Figure 1. Wetlands (campinarana and igapó) inventoried in Parque Nacional do Jaú (JNP) and Reserva de Desenvolvimento Sustentável 
Uatumã (USDR) and location of data from Brazilian wetland inventories: 1) Amazonian várzea floodplains, 257 spp. (Junk & Piedade 
1993); 2) campinaranas of Parque Nacional do Viruá (VNP) in Roraima State, 193 species (Costa et al. 2016);  3) clear-water igapó of 
Tapajós River of Pará State, 49 spp. (Crema 2017); 4) wetlands in the savanna biome, gallery forest (516 spp.), campo limpo úmido  
(42 spp.), campo úmido (108 spp.), campo sujo com murundus (16 spp.), campo limpo de murundus (40 spp.), campo com murundus  
(59 spp.), vereda (65 spp. ) of the Distrito Federal  (Chacon et al. 2015); 5) several wetlands  in the Pantanal of  Mato Grosso and Mato 
Grosso do Sul States, 214 spp.  (Pott & Pott 1997); 6) wetlands in the savanna biome, vereda, 201 ssp. (Silva et al. 2018) and 7) water 
bodies of semi-arid Caatinga biome of Paraiba State, 121 spp. (Torres et al. 2016).
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where the arboreal component dominates species richness 
increases, and the canopy becomes stratified (Fig. 2A).

Black-water floodplain forests (igapó) with a distinct 
zonation of tree species along the flood-level gradient 
dominate along the main-river channel and oxbow lakes 
of the Uatumã river (approximately 25 m a.s.l; Targhetta 
et al. 2015). The low igapó is flooded by up to 265 days per 
year on average and the alternation between the terrestrial 
and aquatic phase determines the dynamics of the annual 
herbaceous plants. With increasing topography, igapó forests 

become more complex and the herbaceous component 
becomes predominantly composed of perennial species 
restricted to the forest understory. At intermediate and 
high topographies flooding duration ranges from about 
100 to 150 days and less than 50 days per year, respectively 
(Fig. 2B). The vegetation of the black-water igapó of the 
Uatumã river was subject to several disturbances due to 
the construction of the Balbina dam, whose consequences 
are summarized in Assahira et al. 2017; Lobo et al. 2019 
and Rocha et al. 2019.

Figure 2. Generic schematic profiles of vegetation structure and some examples of herbaceous life forms in the collection areas.  
A) Campinaranas and B) Igapós. The length and sequence of the physiognomies, as well as the distance from the water table in the dry /  
rainy season (in the campinaranas) and the water levels in the terrestrial / aquatic phase vary from area to area both in the USDR 
and in JNP. Characteristic woody species: 1. Humiria balsamifera; 2. Ilex divaricata; 3. Pradosia schomburgkiana; 4. Aldina heterophylla;  
5. Sterigmapetalum plumbeum; 6. Tovomita calophyllophylla; 7. Mauritia carana; 8. Aldina latifolia; 9. Astrocaryum jauari; 10. Eschweilera 
tenuifolia; 11. Macrolobium acaciifolium; 12. Eugenia inundata.
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Both black-water igapó and campinarana ecosystems 
are characterized by nutrient-poor soils of comparatively 
high acidity. Soil texture in the campinarana plots is 
homogeneously sandy, whereas the igapó plots had more 
variable textures, with predominance of silt and clay soils 
(Targhetta et al. 2015). Despite both campinarana and igapó 
soils being poor in nutrients, exchangeable bases, C, N, P, 
K in the igapó were two to three-fold higher than those in 
the campinarana and 10-fold for Fe (Targhetta et al. 2015).

Parque Nacional do Jaú - JNP
The JNP is located 220 km northwest of the city of 

Manaus in the municipalities of Barcelos and Novo Airão 
of the Amazonas State, and covers an area of approximately 
22,720 km2. The PELD site is established at the coordinates 
01°54’-01°57’ S and 61°27’-61°28’ W (Fig. 1). Mean annual 
temperature is 26.7 °C, and mean annual precipitation 
amounts to 2,300 mm. The rainy season occurs from 
December to May and the dry season from June to 
September. The flooding cycle is monomodal, with a mean 
annual amplitude of 8.17 m; highest water levels occur 
in June and July, and lowest in October and November 
(Ferreira 2000). The soil is derived from ancient tertiary 
sediments, with high levels of kaolinitic clay and large areas 
covered by white sands (podzols) (Junk et al. 2015).

The JNP is also mostly covered by terra-firme forest with 
some isolated campinaranas. As in the USDR, campinaranas 
present a heterogeneous vegetation mosaic. In open areas, 
shrubs and herbs predominate, particularly Everardia montana 
Ridl., Duckea squarrosa (Willd. ex Link) Maguire and many 
species of Eriocaulaceae, Xyridaceae, Lentibulariaceae, among 
others. The forest physiognomies alternate between stratified 
forests with emergent trees of approximately 20 m height to 
very dense forests with trees reaching heights of 5-8 m (Fig. 2A).

Igapó forests dominate along the Jaú river and show the 
typical zonation of tree species along the flood-level gradient. 
The lowest levels of the flood-level gradient are covered with 
monodominant formations of the tree Eschweilera tenuifolia 
(O.Berg) Miers. With increasing topography, tree diversity 
increases to up to 70 species per hectare (> 10 cm diameter 
at breast height) (Fig. 2B). The herbaceous component 
predominates at the lower topographies, being restricted 
to the forest understory at higher topographic positions. 
When compared to the igapó of the USDR, it presents higher 
richness of tree species, however during the last decades 
it has been suffering from large-scale anthropogenic fires 
(PELD MAUA data unpublished).

Field sampling design
In the igapó plots have been established in both forested 

and non-forested areas. In forested areas, three 1-ha plots 
were installed along the flood-level gradient on: (1) high 
(<50 days of inundation year-1), (2) intermediate (100-150 
days of inundation year-1), and (3) low topographies (>265 
days of inundation year-1) (Lobo et al. 2019). Within each 

plot three transects of 25 x 2 m (50 m2) were established to 
inventory all herbaceous plants in densely forested areas. For 
the inventory of herbaceous vegetation in non-forested areas, 
nine transects of 25 x 2 m (50 m2) were installed. To inventory 
herbaceous plants of the hydromorphic campinaranas in the 
USDR (Targhetta et al. 2015), nine plots of 5 x 5 m (25 m2) 
were installed. Distances between plots in the same ecosystem 
ranged from 0.5–3.5 km, while average distance of plots 
between igapó and campinarana was approximately 6 km. 
Herbaceous plants were identified to the lowest taxonomic 
level possible. The scientific names were verified according to 
Flora do Brasil 2020 (Forzza et al. 2020) following the APG 
IV (Angiosperm Phylogeny Group, 2009) system by the R 
3.6.1 program (R Development Core Team, 2020) and the 
flora package (https://CRAN.R-project.org/package=flora). 
Fertile specimens were deposited at the INPA Herbarium, 
and sterile specimens were archived at the herbarium of the 
INPA-MAUA Group. For the analysis of species composition, 
we used the presence of species per plot, ecosystem (igapó 
and campinarana) and site (JNP and USDR).

Potential Distribution Range - PDR
For the analysis of species distribution, we selected the 

five most frequent species on plot level in each inventoried 
igapó and campinarana at each site and five species that were 
found in at least two of the four inventoried sites (total 
of 25 herbaceous species). Georeferenced data gathered 
from the examination of specimens from CRIA herbaria 
(CRIA 2020) and GBIF (Global Biodiversity Information 
Facility, 2020) were used. The data were standardized, and 
duplicates excluded.

To estimate and map the potential distribution of these 
species we started with gridded data sets at 10 km × 10 km 
resolution of 41 variables, including bioclimatic variables, 
vegetation cover, and soil nutrients as predictors (Tab. S1 
in supplementary material). A principal component analysis 
(PCA) was performed with these variables to eliminate 
collinearity between predictor variables and for controlling 
the overfitting of models (Guisan & Zimmermann 2000; 
Dormann et al. 2013).  The PCA axes that added up 90 % 
of the variation within the Neotropical region were used 
as predictor variables. We utilized the rasterPCA function 
of the RStoolbox package (Leutner et al. 2017) in R 4.2.0 
(R Development Core Team 2020).

We used eight algorithms offered in the BIOMOD2 
package  (Thuiller et al. 2019) to generate SDMs, categorized 
as 1) one regression method (Generalized Linear Models - 
GLM (McCullagh & Nelder 1989)); 2) four machine-learning 
or complex methods (Artificial Neural Networks – ANN 
(Hopfield 1982), Generalized Boosted Models -  GBM 
(Friedman et al. 2000), Maximum Entropy - MaxEnt (Phillips 
et al. 2006) and Random Forests – RF (Breiman 1999)); 3) 
two classification methods (Classification Tree Analysis - 
CTA (Breiman et al. 1984), Flexible Discriminant Analysis 
- FDA (Hastie et al. 1994)); 4) Surface Range Envelope – SRE 

https://minio.scielo.br/documentstore/1677-941X/XxLmDDsfMBP7tGcjNHCGvhx/62a581f6b3b8ce96676472d6bac873a59c2585e1.pdf
https://minio.scielo.br/documentstore/1677-941X/XxLmDDsfMBP7tGcjNHCGvhx/62a581f6b3b8ce96676472d6bac873a59c2585e1.pdf
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model, very similar to Bioclim (Jiguet et al. 2011). The R 
script was prepared by Pedro V. Eisenlohr (https://github.
com/pedroeisenlohr/niche_modelling).

Because our data consisted of species presence records 
only, we generated pseudo-absence (background) points, 
sampled across the study area. When fitting models CTA, 
RF, and GBM we generated as many pseudo-absence points 
as our species distribution records, whereas for models 
ANN, SRE, FDA, GLM, and MAXENT we used 1,000 pseudo-
absence points (Barbet-Massin et al. 2012). In both cases, 
we produced 10 replicates of pseudoabsence data and used 
70 % of the species presence data to fit models and 30 % 
to assess model accuracy, repeating this process 10 times.

As suggested by Brown & Yoder (2015) the true skill 
statistic (TSS) (Allouche et al. 2006) was used as a filter for 
algorithms with number of occurrences above nine. TSS 
values range from −1 to 1, where 0 indicates no predictive 
power. The algorithms with TSS ≤ 0.4 were excluded from 
the final consensus model, because of their low accuracy 
(Allouche et al. 2006; Zhang et al. 2015). The remaining 
algorithms were used to produce a combined projection or 
consensus map (Araújo & New 2007). This technique consists 
in generating a consensus model, based on binary maps of 
each algorithm chosen, where areas of high suitability will 
be those that most models have indicated as being prone to 
the occurrence of the species (Giannini et al. 2012).

To quantify the uncertainty among the eight different 
models and the consensus models we calculated the mean, 
standard deviation and coefficient of the uncertainty 
measures that BIOMOD2 provides: sensitivity–probability 
that a test result will be positive when the species is present 
(true positive rate, expressed as a percentage); specificity–
probability that a test result will be negative when the species 
is not present (true negative rate, expressed as a percentage); 
and the cutoff point (Thuiller et al. 2019). We classified the 
consensus model generated for each species based on the 
values of mean sensitivity and sensitivity standard deviation 
(SD). Better-performing methods have sensitivities close to 
one hundred. We assigned an overall category of robustness 
or reliability adapted from Ochoa-Ochoa et al. (2016): poor 
(sensitivity ≤50 or SD ≥ 50), medium (sensitivity ≥50 with 
SD ≤ 45), good (sensitivity ≥70 with SD ≤ 30) and optimum 
(sensitivity ≥90 with SD ≤ 30).

We used the consensus map to generate the final 
potential distribution range (PDR) map. The PDR had a 
range of values from 0 to 100 which were regrouped into 
four classes of potential habitats: “high potential” (>60), 
“good potential” (40-60), “moderate potential” (20-40) 
and “least potential” (<20).  Potential distribution maps 
were created by ArcGIS Software 9.0 (Esri 2013) for the 
Neotropical region, Amazon basin, JNP, and USDR. We 
used the data collected in JNP and USDR (which did not 
enter the model) to verify that the consensus model was 
also able to predict the occurrence of the selected species 
in these protected areas.

Species Similarity to other Brazilian Wetlands
To test the hypothesis that campinaranas share fewer 

species with the black-water igapó surveyed (JNP and USDR) 
and other Brazilian wetland ecosystems, we compared our 
floristic data with herbaceous species inventories (Junk & 
Piedade 1993; Silva et al. 2018; Chacon et al. 2015; Pott 
& Pott 1997; Costa et al. 2016; Torres et al. 2016; Crema 
2017) from other locations (Fig. 1, Tab. 1), after updating 
the synonyms by Flora do Brasil 2020 (Forzza et al. 2020). 
We calculated the level of similarity using Jaccard’s index J 
= c/ (a + b - c), where a is the number of species in region 1, 
b is the number of species in region 2, and c is the number 
of shared species between both regions. J-index ranges 
between zero and one, indicating complete dissimilarity and 
similarity, respectively. To recognize characteristic floristic 
groups, we constructed a phenogram using an unweighted 
pair-group procedure (UPGMA) from the similarity matrix. 
UPGMA uses arithmetical averaging between the similarity 
indices of different groups. For cluster recognition in the 
phenogram, we conducted bootstrapping on the species-area 
matrix, using 5000 interactions and recomputing Jaccard’s 
index among different sites in each calculation.

Results
A total of 98 aquatic herbaceous species were found 

belonging to 32 families (Tab. S2 in supplementary material). 
At JNP we recorded 33 species in the igapó and 10 species in 
the campinarana, being four of them present in campinarana 
and igapó (Everardia montana, Miconia subsimplex, Ischnosiphon 
cannoideus and Trichomanes martiusii. In the USDR we 
recorded 30 species in the igapó and 34 species in the 
campinarana, with no species found in the two ecosystems. 
The igapós of JNP and USDR shared four species (Utricularia 
foliosa, Oryza grandiglumis, Montrichardia arborescens and 
Tassadia trailiana). Only Trichomanes martiusii occurred in the 
campinaranas of both study regions and in the igapó of JNP 
(Tab. S2 in supplementary material). Thus, we selected the 
species E. montana, M. subsimplex, U. foliosa, O. grandiglumis 
and T. martiusii for the elaboration of PDRs.

Overall, the families with the highest number of species 
were Cyperaceae (17 spp.), Poaceae (14 spp.), Orchidaceae 
(seven spp.), Marantaceae (six spp.) and Eriocaulaceae (five 
spp.). In the campinaranas of JNP, Xiridaceae was the most 
speciose family with 3 spp. and the Orchidaceae (seven 
spp.) in the USDR. Cyperaceae (eight spp.) and Poaceae 
(eight spp.) were the most species-rich families at JNP and 
USDR, respectively. Four species were listed in the IUCN 
Red List of Threatened Species (IUCN 2020), three being 
classified as LC (least-concern), Alternanthera paronychioides, 
Utricularia foliosa, Schizaea elegans, and Voyria aphylla as DD 
(data deficient). Our inventory includes the first record of 
Evolvulus genistoides in the Amazon region, which, according 

https://minio.scielo.br/documentstore/1677-941X/XxLmDDsfMBP7tGcjNHCGvhx/62a581f6b3b8ce96676472d6bac873a59c2585e1.pdf
https://minio.scielo.br/documentstore/1677-941X/XxLmDDsfMBP7tGcjNHCGvhx/62a581f6b3b8ce96676472d6bac873a59c2585e1.pdf
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to Flora do Brasil 2020 (Forzza et al. 2020), occurs in the 
States of Espírito Santo, Minas Gerais and Rio de Janeiro. 
No species is considered invasive according to the Brazil 
National Invasive Alien Species Database (Instituto Hórus, 
institutohorus.org.br). Oryza rufipogon with origin from 
Asia and Digitaria ciliaris, originally from Asia and Africa 
are considered naturalized according to the Brazilian Flora.

Few species were shared among JNP and USDR and other 
Brazilian herbaceous wetland inventories (Pott & Pott 1997; 
Junk & Piedade 1993; Chacon et al. 2015; Costa et al. 2016; 

Silva et al. 2018). The igapó of JNP showed flora composition 
closely related with the Central Amazonian várzea and the 
campinarana of the Parque Nacional do Viruá (VNP) with 
eight and seven species in common, respectively. However, 
the campinarana of the JNP only shared three species with 
the same ecosystem at the VNP. The igapó at USDR had 19 
species found in the várzea and eight in the campinarana of 
the VNP, while the campinarana of the USDR shared only 
two species with the same ecosystem at the VNP (Tab. 1).

Table 1. Presence of herbaceous species in the wetlands (campinarana and igapó) inventoried in Parque Nacional d Jaú (JC= Jaú 
campinarana, JI= Jaú igapó) and Reserva de Desenvolvimento Sustentável Uatumã (UC= Uatumã campinarana, UI= Uatumã igapó) and 
other Brazilian wetland inventories: 1) Amazonian várzea floodplains (Junk & Piedade 1993); 2) campinaranas of Parque Nacional do 
Viruá (Costa et al. 2016); 3) clear-water igapó of Tapajos River (Crema 2017); 4) wetlands in the savanna biome, gallery forests (4A), 
campo limpo úmido (4B), campo úmido (4C), campo sujo com murundus (4D), campo limpo de murundus (4E), campo com murundus (4F) 
and vereda (4G) (Chacon et al. 2015); 5) Pantanal (Pott & Pott 1997); 6) wetlands in the savanna biome (Cerrado), vereda (Silva et al. 
2018); 7) semi-arid Caatinga (Torres et al. 2016).

Species JI JC UI UC 1 2 3 4A 4B 4C 4D 4E 4F 4G 5 6 7
Abolboda grandis Griseb. X

Aciotis ornata (Miq.) Gleason X
Acroceras zizanioides (Kunth) Dandy X X X

Actinostachys pennula (Sw.) Hook. X
Aechmea huebneri Harms X

Alternanthera paronychioides A.St.-Hil. X X
Bacopa egensis (Poepp.) Pennell X X X

Bifrenaria longicornis Lindl. X
Brassavola martiana Lindl. X
Bromelia tubulosa L.B.Sm. X

Bulbostylis junciformis (Kunth) C.B.Clarke X X X
Catasetum ciliatum Barb.Rodr. X

Comanthera kegeliana (Körn.) Moldenke X
Croton dissectistipulatus Secco X

Cuphea annulata Koehne X
Cyperus aggregatus (Willd.) Endl. X X X

Cyperus distans L. X X X
Digitaria ciliaris (Retz.) Koeler X X

Diplasia karatifolia Rich. ex Pers. X
Duckea squarrosa (Willd. ex Link) Maguire X X

Echinochloa polystachya (Kunth) Hitchc. X X X X X
Eleocharis minima Kunth X X X X

Encyclia mapuerae (Huber) Brade & Pabst X
Epidendrum orchidiflorum (Salzm.) Lindl. X X

Erechtites hieracifolius (L.) Raf. ex DC. X X X X
Euploca filiformis (Lehm.) J.I.M.Melo & Semir X X

Everardia montana Ridl. X X
Evolvulus genistoides Ooststr. X

Fimbristylis aestivalis Vahl X
Fimbristylis miliacea (L.) Vahl X X
Fimbristylis vahlii (Lam.) Link X X X

Goeppertia acuminata (Steyerm.) Borchs. & S. Suárez X
Guadua ciliata Londoño & Davidse X

Hymenachne amplexicaulis (Rudge) Nees X X X X X
Hypolytrum longifolium (Rich.) Nees X

Hyptis atrorubens Poit. X
Hyptis parkeri Benth. X X

Ipomoea rubens Choisy X X
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Species JI JC UI UC 1 2 3 4A 4B 4C 4D 4E 4F 4G 5 6 7
Irlbachia poeppigii (Griseb.) L.Cobb & Maas X

Ischnosiphon cannoideus L.Andersson X X
Ischnosiphon leucophaeus (Poepp. & Endl.) Körn. X
Ischnosiphon polyphyllus (Poepp. & Endl.) Körn. X X

Justicia comata (L.) Lam. X X
Lagenocarpus rigidus Nees X X X X X X

Lepidaploa arenaria (Mart. ex DC.) H.Rob. X
Lindsaea schomburgkii Klotzsch X

Ludwigia erecta (L.) H.Hara X X
Ludwigia hyssopifolia (G.Don) Exell X X

Miconia calvescens DC. X X
Miconia subsimplex Pilg. X X

Montrichardia arborescens (L.) Schott X X X X X
Neoregelia eleutheropetala (Ule) L.B.Sm. X

Olyra longifolia Kunth X
Oryza glumaepatula Steud. X X X

Oryza grandiglumis (Döll) Prod. X X X
Oryza rufipogon Griff. X X X

Oserya perpusilla (Went) P.Royen X
Paepalanthus fasciculatus (Rottb.) Kunth X

Pariana radiciflora Sagot ex Döll X
Paspalum multicaule Poir. X X X

Paspalum pulchellum Kunth X
Paspalum repens P.J.Bergius X X X X X

Piriqueta cistoides (L.) Griseb. X X
Pleurostachys sparsiflora Kunth X

Prosthechea fragrans (Sw.) W.E.Higgins X
Psychotria stipulosa Müll.Arg. X

Reimarochloa brasiliensis (Spreng.) Hitchc. X X
Rhynchospora amazonica Poepp. & Kunth X

Rhynchospora divaricata (Ham.) M.T.Strong X
Sagittaria guayanensis Kunth X X X
Saxofridericia aculeata Körn. X
Schizaea elegans (Vahl) Sw. X

Scleria gaertneri Raddi X X X X
Scleria microcarpa Nees ex Kunth X X

Scleria secans (L.) Urb. X X
Sobralia granitica G.A.Romero & Carnevali X

Syngonanthus longipes Gleason X X
Syngonanthus setifolius Hensold X

Syngonanthus williamsii (Moldenke) Hensold X
Tassadia berteroana (Spreng.) W.D.Stevens X X

Tassadia trailiana (Benth.) Fontella X X
Tillandsia adpressiflora Mez X

Tococa subciliata (DC.) Triana X
Trichomanes martiusii C.Presl X X X
Trichomanes pinnatum Hedw. X

Utricularia foliosa L. X X X X X X
Utricularia gibba L. X X X X

Utricularia olivacea C.Wright ex Griseb. X X
Voyria aphylla (Jacq.) Pers. X X

Voyria caerulea Aubl. X
Wedelia calycina Rich. X X
Xyris involucrata Nees X X

Xyris subuniflora Malme X X

Table 1. Cont. 
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The floristic similarity (100 × J) between wetland sites 
distributed throughout Brazil ranged from 0 to 10.8 % 
(Tab. 2) indicating low proportion of shared species. The 
highest J-values were obtained between vereda and campo 
com murundus of the Distrito Federal. In the UPGMA 
analysis, campinaranas of VNJ and phytophysiognomies 
of Cerrado (Distrito Federal, Brazil) grouped into one 
cluster, while others Amazonian ecosystems, Pantanal and 
Caatinga grouped into the second cluster. The campinarana 
of USDR appeared separated from these groups (Fig. S1 in 
supplementary material).

For the 25 species chosen to PDRs at JNP and USDR 
the data available in digital herbaria (Specieslink and 
GBIF) showed few previous records of collection in these 
two sites and surroundings (Figs. 3, 4, 5). Based on the 
record data, distribution of the species that occurred in the 
campinaranas of JNP was restricted to the Amazon Basin, 
while the species of the igapó from this site showed a much 
wider Neotropical distribution. On the other hand, species 
from the campinarana and igapó of the USDR showed a wide 
geographic distribution across the Neotropics (Figs. 3-5).

The sum of 11 axes of the PCA captured 90.4 % of the 
data variation (Tab. S3 in supplementary material). The 
number of records varied between 13 and 829 per species 
and all consensus models were considered good or optimum 
(Tab. S4 in supplementary material). The algorithm with 
best values of TSS were ANN and GBM, whilst the SRE 
showed the worst values. The algorithms used for the 
consensus model of each species can be consulted in Table 
S4 in supplementary material.

The PDRs for the Neotropical region were consistent with 
the patterns shown from data records, just expanding the 
probability of occurrence around these data records. At the 
regional level, the SDMs projected contrasting patterns of 
distribution for igapó and campinarana herbaceous species.  
The potential distribution range of the USDR igapó species 
in the Amazon Basin was larger mainly along the major 
rivers, such as the Amazon and Branco (Fig. 4A), while those 
from campinarana showed a wide distribution pattern. Two 
species of the igapó from JNP were widely distributed in the 
Amazon Basin, while the other three were mostly restricted 
to the large rivers (Fig. 4B). In contrast, the campinarana 
species had a wider distributional range in the Northern part 
of the Amazon Basin (Fig. 3A, B). Miconia subsimplex and 
Alternanthera paronychioides had a much broader potential 
distributional range across the Amazon Basin than the 
area with currently collected occurrences, while the other 
campinarana species had their potential distribution only 
narrowly expanded around the current collection areas.

The potential distribution of the selected species in the 
protected areas was quite variable. Eight of the 10 species 
at the USDR had a potential distribution of more than 60 %, 
while the other two species had a limited occurrence around 
20 % for the reserve (Figs. 3A and 4A). On the other hand, the 
species that occurred at JNP had a high potential distribution 
in small areas within the protected area (Fig. 4B). For the 
species that occurred in more than one ecosystem and/or 
study site, the potential distributional range in the reserves 
was over 40 % and quite variable (Fig. 5). The consensus 
models predicted well the occurrence of 88 % (22 out of 25) 
of the species in the inventoried protected areas.

Table 2. Jaccard Similarity Index (J*100) between the wetlands (campinarana and igapó) inventoried in Parque Nacional do Jaú (JC= 
Jaú campinarana, JI= Jaú igapó) and Reserva de Desenvolvimento Sustentável Uatumã (UC= Uatumã campinarana, UI= Uatumã igapó) 
and other Brazilian wetland inventories: 1) Amazonian várzea floodplains (Junk & Piedade 1993); 2) campinaranas of Parque Nacional 
do Viruá (Costa et al. 2016); 3) clear-water igapó of Tapajos River (Crema 2017); 4) wetlands in the savanna biome, gallery forests 
(4A), campo limpo úmido (4B), campo úmido (4C),  campo sujo com murundus (4D), campo limpo de murundus (4E), campo com murundus 
(4F) and vereda (4G) (Chacon et al. 2015); 5) Pantanal (Pott & Pott 1997); 6) wetlands in the savanna biome (Cerrado), vereda (Silva 
et al. 2018); 7) semi-arid Caatinga (Torres et al. 2016).

JI JC UI UC 1 2 3 4A 4B 4C 4D 4E 4F 4G 5 6 7
JI 10.26 6.90 1.61 3.20 3.20 8.11 0.37 0.00 0.00 0.00 0.00 0.00 0.00 2.92 0.00 0.65
JC 10.26 0.00 2.56 0.00 1.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
UI 6.90 0.00 0.00 7.12 3.74 7.04 0.18 0.00 0.74 2.27 0.00 0.00 1.08 2.53 1.32 3.45
UC 1.61 2.56 0.00 0.00 0.90 0.00 0.18 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.43 0.00
1 3.20 0.00 7.12 0.00 3.69 5.92 0.65 0.00 0.55 0.00 0.34 0.32 0.31 10.82 1.10 9.57
2 3.20 1.50 3.74 0.90 3.69 9.09 0.85 0.43 2.03 0.48 0.87 1.61 4.88 7.67 10.06 2.28
3 8.11 0.00 7.04 0.00 5.92 9.09 0.36 0.00 0.65 0.00 0.00 0.00 0.90 12.02 0.81 3.07

4A 0.37 0.00 0.18 0.18 0.65 0.85 0.36 2.57 3.65 0.76 1.65 1.59 4.31 0.69 3.17 0.31
4B 0.00 0.00 0.00 0.00 0.00 0.43 0.00 2.57 1.35 3.57 5.13 5.21 5.94 0.00 4.29 0.00
4C 0.00 0.00 0.74 0.00 0.55 2.03 0.65 3.65 1.35 2.48 4.96 8.44 12.34 0.00 5.82 0.00
4D 0.00 0.00 2.27 0.00 0.00 0.48 0.00 0.76 3.57 2.48 0.00 1.35 3.85 0.00 1.40 0.00
4E 0.00 0.00 0.00 0.00 0.34 0.87 0.00 1.65 5.13 4.96 0.00 2.06 3.96 0.40 2.55 0.00
4F 0.00 0.00 0.00 0.00 0.32 1.61 0.00 1.59 5.21 8.44 1.35 2.06 10.71 0.00 5.69 0.56
4G 0.00 0.00 1.08 0.00 0.31 4.88 0.90 4.31 5.94 12.34 3.85 3.96 10.71 1.09 8.13 0.00
5 2.92 0.00 2.53 0.00 10.82 7.67 12.02 0.69 0.00 0.00 0.00 0.40 0.00 1.09 1.47 4.69
6 0.00 0.00 1.32 0.43 1.10 10.06 0.81 3.17 4.29 5.82 1.40 2.55 5.69 8.13 1.47 0.63
7 0.65 0.00 3.45 0.00 9.57 2.28 3.07 0.31 0.00 0.00 0.00 0.00 0.56 0.00 4.69 0.63

https://minio.scielo.br/documentstore/1677-941X/XxLmDDsfMBP7tGcjNHCGvhx/62a581f6b3b8ce96676472d6bac873a59c2585e1.pdf
https://minio.scielo.br/documentstore/1677-941X/XxLmDDsfMBP7tGcjNHCGvhx/62a581f6b3b8ce96676472d6bac873a59c2585e1.pdf
https://minio.scielo.br/documentstore/1677-941X/XxLmDDsfMBP7tGcjNHCGvhx/62a581f6b3b8ce96676472d6bac873a59c2585e1.pdf
https://minio.scielo.br/documentstore/1677-941X/XxLmDDsfMBP7tGcjNHCGvhx/62a581f6b3b8ce96676472d6bac873a59c2585e1.pdf
https://minio.scielo.br/documentstore/1677-941X/XxLmDDsfMBP7tGcjNHCGvhx/62a581f6b3b8ce96676472d6bac873a59c2585e1.pdf
https://minio.scielo.br/documentstore/1677-941X/XxLmDDsfMBP7tGcjNHCGvhx/62a581f6b3b8ce96676472d6bac873a59c2585e1.pdf
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Figure 3. Current (black dots) and potential (colored area) distribution of the most frequent herbaceous plants of the campinarana 
ecosystem in A) the Reserva de Desenvolvimento Sustentável Uatumã (indicated by the shape in the high-resolution maps). B) the 
Parque Nacional do Jaú (indicated by the shape in the high-resolution maps).

Figure 4. Current (black dots) and potential (colored area) distribution of the most frequent herbaceous plants of the igapó ecosystem 
in: A) the Reserva de Desenvolvimento Sustentável Uatumã (indicated by the shape in the high-resolution maps); B) the Parque 
Nacional do Jaú (indicated by the shape in the high-resolution maps).
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Figure 5. Current (black dots) and potential (colored area) distribution of the most frequent herbaceous that occurred in more than 
one sample in the campinarana and igapó wetlands of the JNP and USDR (shapes indicated in the high-resolution maps); JC= Jaú 
campinarana, JI= Jaú igapó, UI= Uatumã igapó.
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Discussion
The comparison of our species list with those of other 

Brazilian wetlands revealed a very low floristic similarity. 
With 29 species, Amazonian várzea (Junk & Piedade 1993) 
presented the highest number of species in common 
with our inventories, being most similar to the igapó 
floodplains of both study sites. This might be related to 
mutual adaptation of species to monomodal flood pulses 
of high amplitudes. Campinaranas of the VNP (Costa et 
al. 2016) had 18 species in shared with the PELD-MAUA 
campinarana sites, showing a higher similarity with the same 
ecosystem at both sites. In general, the várzea floodplain 
of Central Amazonia has a higher richness and diversity 
of herbaceous aquatic plants compared to the igapó (Lopes 
et al. 2014; 2019) and campinaranas (Costa et al. 2016). 
Both the igapós and campinaranas have other stressors such 
as low nutritional quality of soils and anoxic or hypoxic 
conditions induced by flooding or waterlogging (Anderson 
1981; Wittmann et al. 2010; Junk et al. 2015; Targhetta et 
al. 2015), likely contributing to the low observed species 
richness. Although many species of the campinaranas are 
not resistant to prolonged flooding (Targhetta et al. 2015), 
the oligotrophic conditions make aquatic herbaceous species 
richness of igapó and campinarana comparable to those of 
other extreme environments, such as those found in arid 
and semiarid ecosystems of the dry forest (Caatinga) of 
Northeastern Brazil (Henry-Silva et al. 2010).

In the upper Negro river basin, several studies indicated 
high floristic similarity between the arboreal flora of the 
igapós and campinaranas (Kubitzki 1989; Daly & Prance 
1989; Damasco et al. 2013). This similarity may be linked 
to the fact that the vegetation upon nutrient-poor soils is 
strongly floristically related (Guillaumet 1987; Tuomisto et 
al. 1995). This is not what we found. Despite occurring in 
extremely nutrient-poor and acidic soils (Adeney et al. 2016), 
the studied igapós and campinaranas showed an extremely 
low floristic similarity of herbaceous plants even at the 
family level. Similar results were described by Targhetta et 
al. (2015) for the arboreal vegetation, which observed an 
extremely low floristic similarity between the campinarana 
and igapó forests in the USDR. Sand content and other 
physiochemical soil properties might vary at macro- and 
microscales and likely have a strong effect on vegetation 
structure of white‐sand ecosystems (Demarchi et al. 2018). 
Because of the geographic isolation in a terra-firme matrix, 
campinaranas hardly recover species that have once lost 
(Álvarez-Alonso et al. 2013).

The performance of the eight tested models varied, 
however results in terms of ROC sensitivity were similar, 
except for the SRE and GBM, which performed lower than 
the other tested algorithms. The Maxent is often reported as 
performing well with low sample sizes (Pearson 2007; Wisz 
et al. 2013). Besides Maxent, ANN, FDA and RF also provided 

good accuracy for all species with small numbers of samples 
(9-24). As a result, reliability of the consensus models was 
rated “good” and “optimum” by ROC sensitivity for all 
species. So far there is no single PDR model that perform 
well in all cases (Araújo & New 2007; Li & Wang 2013) and 
the use of consensus models encompassing different kinds 
of algorithms has been proved to be a successful strategy 
(Araújo & New, 2007; Loyola et al. 2012; Ochoa-Ochoa 
et al. 2016). This was also the case here, where the use of 
multi algorithms models were efficient in predicting the 
occurrence of aquatic herbaceous plants in the Neotropics 
and at regional (Amazon basin) level. On a more local scale, 
we were able to predict the distribution of 22 out of the 
25 species when data point locations collected for each 
of these species in JNP and USDR were overlaid on the 
generated PDR maps.

The more restricted PDR of campinarana species 
compared to igapó species corroborates findings from 
other studies that investigated the distribution of different 
campinarana taxa. Amazonian white-sand areas are known 
for their elevated degree of both endemic tree (Fine et 
al. 2004; Guevara et al. 2016) and birds’ species (Borges 
et al. 2001; Guilherme & Borges 2011). In the central 
Amazon, campinaranas are fragmented, small-sized, and 
insulated areas that are interspersed in dense Amazon 
rainforest (Adeney et al. 2016). In campinaranas, small 
variations in soil grain size and nutrient contents can 
influence species composition and distribution at local 
scales (Damasco et al. 2013; Demarchi et al. 2018); soils 
consist of almost pure quartz sands and concentration 
of important nutrients in the topsoil, such as K, Ca and 
Mg, is even lower than in igapó substrates (Targhetta et al. 
2015). Due to the low water retention capacity of sandy 
soils, campinarana plant species undergo severe drought 
stress during the dry seasons (Junk et al. 2011), while soils 
turn into hydromorphic or even superficially inundated 
during the rainy seasons.

For campinarana trees species richness and forest stature, 
the water-saturation gradient is an important determinant, 
with the lowest richness and lowest stature occurring in areas 
of the longest saturation (Junk et al. 1989; Worbes 1997; 
Wittmann & Junk 2016). As arboreal competition is low 
and areas are relatively unshaded upon these waterlogged 
soils, they are the habitat where herbaceous species are most 
competitive (Junk et al. 2011). These areas, however, are 
mostly small and isolated and have reduced connectivity 
to other wetlands. Propagules from herbaceous species as 
such originate from the surrounding terra-firme forest, 
where their occurrence is rare or in very low population 
density or, more likely, have to be brought in by animals 
from distant areas (Macedo & Prance 1978). Like trees in 
the surrounding campinarana forest, it is thus most likely 
that most herbaceous species developed high degrees of 
endemism under these conditions, which is expressed in 
their narrow PDR within the Amazon basin.
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Conversely, herbaceous species of igapós are widely 
distributed over the Neotropical region. River floodplains 
in the Amazon cover an area of more than 750,000 km2 
(Wittmann & Junk 2016). Although white-water and 
black-water river floodplains are known for their diverging 
flora for both, arboreal and herb communities (i.e., Junk 
et al. 2012; 2015), most trees and herbaceous species from 
one ecosystem are known to occur with low population 
densities in the other. The river floodplains thus form 
highly connected corridors for plant dispersal, which 
is promoted through water currents, fish and/or other 
aquatic animals (Parolin et al. 2013; Geremew & Triest 
2019). Some Amazonian rivers also originate from outside 
the Amazon basin, such as the Xingu and Tocantins rivers, 
come from the southern Brazilian Shield and Cerrado 
biome. For trees, rivers are important migration corridors 
that connect the Amazon, Orinoco, Cerrado and Atlantic 
rainforest domains (Wittmann et al. 2017). Herbaceous 
floodplain species often have very effective dispersal 
mechanisms through hydrochory and/or vegetative 
propagation (Piedade et al. 2019), and it is therefore not 
surprising that most of them had wide PDR across the 
entire Neotropical region.

The narrow PDR of many campinarana herbs provides 
one more argument for the urgent need of more inventories 
and the establishment of efficient conservation strategies 
in the unique Amazonian white-sand ecosystems. Some of 
the studied species are listed in the IUCN Red List (IUCN 
2020) with DD, because do not have enough data to be 
even categorized. An urgent increase in areas of floristic 
inventories and sampling effort is necessary to generate 
information that subsidizes the risk assessment of many 
species, since several of them may be threatened due to 
anthropogenic disturbance in this vulnerable environment 
(Ferreira et al. 2013; Adeney et al. 2016).

Conclusion
The environmental variables were able to calculate 

the potential distribution with adequate ROC sensitivity 
percentage, efficiently predicting the occurrence of all 
analyzed species at the PELD-MAUA sites. The herbaceous 
species found in the igapó are widely distributed in the 
Neotropics, indicating an absence of barriers for their 
dispersal. Most campinarana species had their potential 
distribution more restricted to the Amazon Basin, probably 
due to the distribution of these ecosystems in isolated 
patches in the Amazonia rainforest matrix. There was 
a low floristic similarity of less than 11 % between the 
campinarana and igapós areas of the two PELD-MAUA 
sites, indicating that local environmental factors linked 
to hydrology, soils and disturbance events need to be 
better investigated to understand these local characteristics 
and to establish adequate management plans at local and 
regional levels.
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