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. AnX-ray Talbot-Lau interferometer scanning setup consisting of three transmission gratings, a
laboratory-based X-ray source that emits X-rays vertically, and an image detector on the top has been

. developed for the application of X-ray phase imaging to moving objects that cannot be tested clearly

. with conventional absorption contrast. The grating-based X-ray phase imaging method usually employs

. aphase-stepping (or fringe-scanning) technique by displacing one of the gratings step-by-step while

. the object stays still. Since this approach is not compatible with a scanner-type application for moving

. objects, we have developed a new algorithm for achieving the function of phase-stepping without

. grating displacement. By analyzing the movie of the moiré pattern as the object moves across the

. field of view, we obtain the absorption, differential phase, and visibility images. The feasibility of the

. X-ray phase imaging scanner has been successfully demonstrated for a long sample moving at 5 mm/s.

. This achievement is a breakthrough for the practical industrial application of X-ray phase imaging for
screening objects carried on belt-conveyers such as those in factories.

. X-ray phase imaging has been attracting attention because it produces significant contrast for weakly absorbing
objects, such as polymers and soft biological tissues'™*. Among the methods of X-ray phase imaging reported so
. far, X-ray grating interferometry, such as X-ray Talbot interferometry® and X-ray Talbot-Lau interferometrys,
. which is an advanced form of X-ray Talbot interferometry, is especially effective for practical X-ray phase imaging
in clinical and industrial fields because they operate with conventional X-ray generators in hospitals and factories.
A Talbot or Talbot-Lau interferometer detects the slight X-ray refraction caused by an object. When the
object is placed in the interferometer, the intensity change is detected through the gratings at each pixel of an
: image detector. This feature can be seen as a moiré pattern. X-ray phase imaging with interferometers is nor-
. mally performed by analyzing moiré patterns acquired through a specific technique; that is, a fringe-scanning or
© phase-stepping technique by displacing one of the gratings. Moiré fringes contain the information of attenuation,
. phase shift (refraction), and scattering by an object; they appear as the changes of fringe intensity, fringe position,
© and fringe visibility”, respectively. X-ray phase imaging separates these information quantitatively and generates
absorption, refraction, and scattering (in other words, visibility) images.
In the fringe-scanning procedure in combination with the grating displacement, the object is assumed to stay
- still in the field of view (FOV) during the entire scan, which is typically 30s in the clinical application of X-ray
. phase imaging reported in ref. 8. However, in non-destructive testing for industrial production, it is desirable to
scan products that move continuously on a belt-conveyor system. Fringe scanning by grating displacement is not
compatible with such an industrial application.
This paper proposes an approach of a fringe-scanning method without any grating displacement for moving
objects in the configuration of an X-ray Talbot-Lau interferometer. An apparatus (X-ray phase scanner) consist-
* ing of an X-ray source that emits X-rays vertically, X-ray transmission gratings, a sample stage that moves objects
. horizontally like a belt-conveyer, and a photon-counting image detector have been developed to demonstrate the
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approach. A pilot experiment of successful X-ray phase imaging for moving objects larger than the FOV of the
apparatus is presented.

Apparatus and Method

X-ray phase scanner system configuration. An X-ray generator consisting of a tungsten rotating anode
(UltraX 18, Rigaku, Japan) was placed at the bottom of the scanner to generate cone-beam X-rays in the vertical
direction. The generator can be operated at up to 60kV tube voltage and 90 mA tube current (5.4 kW maxi-
mum load). The focus size on the anode surface was 0.3 mm x 3 mm and the effective X-ray source size was
0.3 mm x 0.3 mm, taking into account the take-off angle (6°). The X-ray source size does not satisfy the require-
ment of spatial coherence for a Talbot interferometer, and therefore Talbot-Lau configuration with a source
grating (GO), ©/2-type phase grating (G1) and absorption grating (G2) (Microworks GmbH, Germany) was
employed. The gratings were mounted and aligned using mechanical stages, as shown in Fig. 1. The periods of the
gratings were 8.09 um, 4.12 um, and 8.4 um, respectively, and assuming the design X-ray energy for the interfer-
ometer to be 30keV, the G0-G1 and G1-G2 distances were 397 mm and 417 mm, respectively, which is reasonably
compact for a scanner. The heights of gold pattern for GO and G2 were 115 um and 136 um, respectively. The G1
was made of Ni and its height was 5.21 um. The sample stage was located between G1 and G2 (68 mm above G1)
and the sample was moved horizontally across the FOV. The gratings had line-and-space patterns and the grating
lines were aligned parallel to the sample movement direction.

An image detector (Hypix-3000, Rigaku, Japan) was mounted on the top of the scanner to capture a movie of
the moiré pattern while the sample is moved across the FOV. The detector is a photon-counting two-dimensional
hybrid pixel array semiconductor detector having an active area of 77.5mm x 38.5 mm with a pixel size of
100 um x 100 pm. The detector has an X-ray photon count rate of greater than 10° cps/pixel with a readout speed
up to 174 fps frame rate.

Phase measurement algorithm. An approach for the fringe-scanning method without grating move-
ment has been reported by generating artificial moiré fringes with the assumption that the gratings are ideally
fabricated and the spacing of the moiré fringes is constant®'!. However, the actual gratings used for a Talbot-Lau
interferometer have slight deformations due to the fabrication process and mounting, and the degradation in
resultant image quality is not negligible. It is not easy to fabricate an ideal grating, especially when a large area is
required. In this study, we propose an algorithm that is applicable even when the gratings are deformed. Thus, the
degradation of image quality is avoided, which leads to reduction in the cost of the apparatus.

The purpose of the algorithm is to calculate three resultant images, namely, absorption A(p, g), refraction ¢(p, q),
and visibility V(p, q) from a recorded moiré movie of sample scanning. Here, p and g are the image coordinates
fixed to the moving sample in the x- and y-directions, respectively, as shown in Fig. 1. Note that we define (p, q) on
the detector plane, and therefore, the coordinates on the sample are calculated by considering the magnification
due to a cone-beam projection. The movement of a sample is assumed to be parallel with the x-axis in this setup.
Therefore, x = p—vt and y =g, where v is the nominal sample speed on the detector plane and ¢ is time.

As a pre-processing, the effect of the built-in moiré pattern, which is normally observed without a sample
because of incomplete grating alignment and slight grating deformation, was measured in advance as an instru-
mental function. For this purpose, we employed the conventional fringe-scanning technique or modified robust
fringe-scanning technique explained elsewhere!? with grating displacement without a sample. Given the moiré
pattern observed at the j-th step of a fringe-scan is I/, y),
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Figure 2. Flowchart illustrating the proposed algorithm for calculating absorption, refraction, and visibility
images of a sample moving across FOV.
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are calculated, as shown in Fig. 2 (Steps 1 and 2). d, is the period of G1, z is the distance between G1 and G2 and
M is the number of phase steps (M > 3). Ay(x, y) is illumination intensity, py(x, ) is the background differential
phase caused by the deformation and alignment of gratings, and V/(x, y) is the visibility of moiré fringes. Note
that @(x, y) is wrapped between — to T, and phase unwrapping is not needed here.

As explained later, this algorithm assumes that every coordinate point (p, q) of the sample must travel across
at least one moiré fringe along the x-axis. Therefore, ,(x, y) must have values spanning from — to T at every
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y (Step 3). If this condition is not satisfied, gratings are re-aligned, for examply by inclining one of the gratings,
so that more moiré fringes are introduced, and steps 1 and 2 are repeated. After ¢ (x, y) is thus defined, the
FOV is divided into n regions, so that the pixel (x, y) having the value of py(x, y) between —m + 2m(k — 1)/n and
—7 + 2mk/n belongs to the n-th region. Further, flag matrices A, (k=1,2, ..., n) (Step 5) are defined as,

i+ 2k — 1) 27k
n

< — nldlog
Alx, y) = <@ley) < —mt n -

0 otherwise (5)

The number of flagged pixels in A at every y is stored in Ny(y) (Step 6). The number n must be more than three
and should be selected as large as possible, provided that sufficiently large values for Ny(y) are available.

After this preparation, a movie is recorded while the sample moves linearly in the x-direction across the FOV
(Step 7). Giving I(x, y, t;) as the movie frame at ¢, where i indicates the frame number (i=1, 2, ... m), J; (p, q) is
calculated (Step 8) by

k)= > Ip— vty g t) - A(p — vt IN(DIA(ps ).
p—vtEFOV (6)

As mentioned above, the coordinate (p, g) is fixed to the sample and relates to the coordinate (x, y) in the FOV
with x=p—vt;and y=gq. Thus, J; (p, q), which corresponds to the k-th step of fringe-scanning, is obtained with-
out moving gratings but rather by utilizing the movement of the sample. Next, the resultant images are calculated
with conventional formulae (Step 9):

A (Pr q) = Z]k(P: q))
k=1

(7)
- .k
o(p, q) = arg > J(p, 9) exp[—127r—] R
k=1 " (8)
257 (s @) exp(— i2m%)
V(p, q) = n”
2 A ) - W(@) ©
where,
Wi(g) = W(y) = Vi(x, y)
K g xE%)V ‘ (10)

is introduced to compensate the non-uniform visibility, especially in the y (¢) direction due to cone-beam illumi-
nation. The raw images with moiré fringes generated by the experimental setup and an example of the definition
of A, are shown in Fig. 3.

Result and Discussion

In this demonstration, the X-ray generator was operated at 60-kV tube voltage and 70-mA tube current. Samples
were moved at a speed of 5mm/s continuously and movies were recorded at 14-ms X-ray exposure per frame (71
fps). These parameters were chosen so that the nominal speed of the sample at the detector plane was one pixel
per frame. The mean visibility of moiré fringes (V, given by Equation (3) and shown in Fig. 3) was 52% around
the center of the FOV.

Figure 4(a—c) show an absorption image, a refraction image, and a visibility image reconstructed for a high-
lighter pen. Figure 4(d-f) show close-up images of the red rectangular areas marked in Fig. 4(a—c), respectively.
The lining structure, tip stoppers, cap locking mechanism, ink flow connector to the tip of the highlighter pen,
sponge filled with ink and other small details are revealed in the resultant images. The contrast of the sponge
filled with ink is especially remarkable in the visibility image as the contrast is considered to be generated by
the ultra-small-angle scattering depending on the amount of ink in the sponge. The refraction image provided a
significant signal of an air bubble inside the plastic cap as shown in Fig. 4(e). The two vertical dark areas in these
images are the shadows caused by the metallic components of the sample holder stage.

The standard deviation o of the refraction image calculated from 50 x 50 pixels near and outside of the sample
in Fig. 4(b) was 0.014 rad in terms of moiré-fringe phase, which corresponds to 0.053-urad beam deflection at
the sample. Assuming that the o is mainly caused by photon statistics, thanks to the low-noise property of the
employed photon counting detector, the o is theoretically proportional to the square root of total X-ray exposure,
which is inversely proportional to the square root of sample speed v under a given X-ray intensity. Figure 5(a)
shows the o as a function of v and also a fitting curve by \/Ij suggesting the validity of this assumption.

The sample speed is crucial to the spatial resolution in terms of motion blur. The spatial resolution at the
detector plane in the x-direction was evaluated by the full width at half maximum (FWHM) of the differential
edge profile of the sample feature in the absorption image. The spatial resolution in the y-direction, which was
independent of the motion blur, was evaluated by the FWHM of a sharp edge profile in the refraction image. They
are shown as functions of v in Fig. 5(b). As mentioned above, the sample speed of 5mm/s corresponds to 1 pixel/
frame; therefore, the effect of motion blur is not a concern below this speed in the x-direction. Actually, the spa-
tial resolution near the Nyquist limit was attained below 5mm/s, and clear degradation of the spatial resolution

SCIENTIFICREPORTS|7:6711|DOI:10.1038/s41598-017-07032-y 4



www.nature.com/scientificreports/

Step 1 (M =5)

Figure 3. Graphical illustration from Step 1 to Step 5 shown in Fig. 2. Vi (x, y) and ¢(x, y) are measured
from moiré images (Step 1 to Step 2). The image labeled by A, shows all regions (k=1, 2, ..., n) together with
different colors to which the flagged pixels in A, belong. n=20.

Figure 4. Results obtained for a highlighter pen by the proposed algorithms: (a) absorption image, (b)
refraction image, and (c) visibility image. (d-f) are close-up images of the red rectangular areas shown in (a-c),
respectively. The gray scales are set to (0.30, 0.42) transmittance for (a), (—2.08 prad, 2.08 urad) beam deflection for
(b), and (0%, 50%) visibility reduction for (c). The arrow in (e) indicates an air bubble detected inside the cap.

is found over that speed. Although the spatial resolution in the y-direction was almost constant as expected, the
slight degradation shown in Fig. 5(b) is considered to be due to the effect of the vibration of the sample stage
which increases with the sample speed. This was confirmed by evaluating the moiré movie of the sample scan
where an increase in the sample vibration (below one pixel on average) was found with sample speed increment.
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Figure 5. (a) The standard deviation o of the refraction image, and (b) the spatial resolutions in x- and
y-directions as functions of sample speed v.

The apparatus presented here was developed mainly to demonstrate the function of the proposed algo-
rithm to realize phase imaging for moving objects. In order to translate this result into the development of
practical apparatuses for use in factories, various improvements are needed, such as increasing the sample
speed and expanding the FOV. The spatial resolution due to vibration at higher speed could be improved, for
example, by equipping a rigid and X-ray transparent stage, to which belt-conveyers are adjacent and products
moving on the belt-conveyers are transferred smoothly. In order to increase the sample speed, detector sen-
sitivity is essentially important. The detector employed in this study (Hypix-3000) was dedicated originally
for low-energy X-ray experiments, which can be replaced for example with a CdTe-based photon counting
image detector suitable for high-energy X-rays used for non-destructive testing. Fabrication of gratings with
a high-aspect-ratio is also needed to enable the use of higher energy X-rays. While the height of the gold
pattern of G2 was about 100 pum, a fabrication technique for realizing a height of 160 um has been utilized for
an experiment with 183-keV X-rays'®. Thus, it is feasible to improve the apparatus design for a high-energy
phase-imaging scanner.

In order to expand the FOV especially in the y-direction, larger gratings and a larger image detector are nec-
essary. Fabrication of a large grating is a challenging task, but gratings of a 10 cm x 10 cm area'* have been fabri-
cated. However, when a larger grating is employed with a cone-beam illumination, a curved form is required for
a high-aspect-ratio grating, which creates another technical challenge. Instead, it is also possible to align multiple
flat gratings and detectors to cover an area larger than the FOV of each grating-detector set.

Although the scanner was developed for imaging continuously moving objects, the concept can be applied
for the relative movement between objects and the Talbot-Lau interferometer system. Therefore, scanning the
Talbot-Lau interferometer with an X-ray source and detector against a stable object is feasible with the same con-
cept of image formation. As a result, this study can be expanded to the examination of big structures that cannot
be moved easily and to the human body for medical diagnoses.

Conclusions

An X-ray phase-sensitive scanner with the Talbot-Lau interferometer configuration and a laboratory-based X-ray
source was demonstrated. While conventional phase imaging is performed for an object stable in the FOV with
the fringe-scanning technique, a special algorithm was proposed and implemented in this study for an object
moving across the FOV. It should be noted that this algorithm allows the use of slightly deformed gratings. X-ray
phase imaging was successfully performed for a sample moving at 5 mm/s with a spatial resolution of about
200 um, which corresponded to the Nyquist frequency of the detector. Thus, the presented X-ray scanning setup
is promising for practical use of X-ray phase imaging at factories for quality control of products moving on a
belt-conveyor system.
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