Institutional Repository - Research Portal

Dépébt Institutionnel - Portail de la Recherche

UNIVERSITE researchportal.unamur.be
DE NAMUK

RESEARCH OUTPUTS / RESULTATS DE RECHERCHE

A Vision to identify Architectural Smells in Self-Adaptive Systems using Behavioral
Maps

Lima dos Santos, Edilton; Fortz, Sophie; PERROUIN, GILLES; Schobbens, Pierre-Yves

Published in:
ECSA2021 Companion Volume

Publication date:
2021

Document Version _
Peer reviewed version

Link to publication

Citation for pulished version (HARVARD):

Lima dos Santos, E, Fortz, S, PERROUIN, GILLES & Schobbens, P-Y 2021, A Vision to identify Architectural
Smells in Self-Adaptive Systems using Behavioral Maps. in R Heinrich, R Mirandola & D Weyns (eds),
ECSA2021 Companion Volume: 4th Context-aware, Autonomous and Smart Architectures International
Workshop (CASA). CEUR Workshop Proceedings, Véxjo, Sweden, pp. 1, 15th European Conference on
Software Architecture (ECSA 2021), Véaxjo, Sweden, 13/09/21.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
« You may not further distribute the material or use it for any profit-making activity or commercial gain
« You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 02. Jan. 2022

https://researchportal.unamur.be/en/publications/a-vision-to-identify-architectural-smells-in-selfadaptive-systems-using-behavioral-maps(bf3a93aa-06bf-4461-9943-76e80493c1b3).html

A Vision to identify Architectural Smells in Self-Adaptive
Systems using Behavioral Maps

Edilton Lima dos Santos?, Sophie Fortz!, Gilles Perrouin’ and Pierre-Yves Schobbens’

Faculty of Computer Science, University of Namur, Namur, Belgium

Abstract

Self-adaptive systems can be implemented as Dynamic Software Product Lines (DSPLs) via dynamically enabling or disabling
features at runtime based on a feature model. However, the runtime (re)configuration may negatively impact the system’s
architectural qualities, exhibiting architectural bad smells. Such smells may appear in only very specific runtime conditions,
and the combinatorial explosion of the number of configurations induced by features makes exhaustive analysis intractable.
We are therefore targeting smell detection at runtime for one specific configuration determined through a MAPE-K loop. To
support smell detection, we propose the Behavioral Map (BM) formalism to derive automatically key architectural character-
istics from different sources (feature model, source code, and other deployment artifacts) and represent them in a graph. We
provide identification guidelines based on the BM for four architectural smells and illustrate the approach on Smart Home

Environment (SHE) DSPL.

Keywords

Architectural Smells, Dynamic Software Product Lines, Runtime Validation, Self-adaptive Systems

1. Introduction

Self-adaptive systems (SAS) operate in unpredictable, het-
erogeneous environments, are prone to crashes and var-
ious other types of involuntary or required changes at
runtime. Thus, such systems must adjust their struc-
ture or behavior, depending on environmental changes
and (re)configuration plans to work in such environ-
ments. Dynamic Software Product Line (DSPL) engi-
neering implements SAS by dynamically binding or un-
binding features at runtime as prescribed by a feature
model [1]. A feature model represents commonalities
and variabilities in a family of systems as well as rela-
tionships amongst features [2]. It thus describes which
valid (re)configurations can be performed. DSPLs are
challenging to validate because the number of possible
configurations grows exponentially with the number of
features, and this problem is worse if the DSPL can self-
update (e.g., by downloading new features to interface
with a sensor newly plugged into the system) [3].
Moreover, (re)configurations may also negatively af-
fect architectural qualities. Some specific feature inter-
actions may not appear in the feature model (because
it does not capture data and control flows, only acces-
sible via source code analysis) or the resulting config-

CASA’21: Context-aware, Autonomous and Smart Architecture
Workshop, September 13-17, 2021, Viixjé, Sweden
& edilton.limados@unamur.be (E.L.d. Santos);
sophie.fortz@unamur.be (S. Fortz); gilles.perrouin@unamur.be
(G. Perrouin); pierre-yves.schobbens@unamur.be (P. Schobbens)
@ 0000-0003-2231-3852 (E. L. d. Santos); 0000-0001-9687-8587
(S. Fortz); 0000-0002-8431-0377 (G. Perrouin); 0000-0001-8677-4485
(P. Schobbens)
© 2021 Copyright for this paper by its authors. Use permitted under Creative

Commons License Attribution 4.0 International (CC BY 4.0).
[== CEUR Workshop Proceedings (CEUR-WS.org)

uration’s architecture may be prone to other issues. It
happens because the (re)configuration process combines
different architectural fragments or solutions via feature
binding/unbinding at runtime. Thus, Architectural Bad
Smells (ABS) may emerge, implying reductions in system
maintainability [4, 5]. Several authors [5, 6, 7] define
an ABS as a set of architectural design decisions that
negatively impact system lifecycle properties, such as
understandability, testability, maintainability, extensibil-
ity, and reusability. Also, it indicates possible design and
implementation issues and helps improving the quality
of the system.

While ABS are well-studied for other type of sys-
tems [4, 5, 6,7, 8, 9], ABS in SAS are less explored [10, 11].
To the best of our knowledge, the only studies targeting
SAS search for ABS at design time: this may lead to smell
detection for invalid configurations (false positives) [10].
Additionally, some ABS may appear more frequently in a
specific configuration. Thus, we are interested in identify-
ing ABS in SAS that may arise after the (re)configuration
process determined which configuration to deploy, al-
lowing to have access to all the necessary artifacts for a
more accurate smell identification.

In this paper, we introduce the Behavioral Map (BM)
formalism: a directed graph capturing interactions de-
fined in the feature model but also capturing control
and data flows interactions inferred from the candi-
date reconfiguration implementation. We describe the
BM framework implementation and how to automati-
cally build such a map from reconfiguration plans and
actual code using static analysis techniques. We pro-
vide guidelines to identify four ABSs based on the in-
ferred map. We exemplify our approach on SHE [12], a
smart home DPSL. Our BM example and smell detection

mailto:edilton.limados@unamur.be
mailto:sophie.fortz@unamur.be
mailto:gilles.perrouin@unamur.be
mailto:pierre-yves.schobbens@unamur.be
https://orcid.org/0000-0003-2231-3852
https://orcid.org/0000-0001-9687-8587
https://orcid.org/0000-0002-8431-0377
https://orcid.org/0000-0001-8677-4485
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

Figure 1: Behavioral Map (BM) process overview.

scripts are available on the companion website: https:
//github.com/edilton-santos/BehavioralMapExample.
The remainder of the paper is as follows. Section 2
formally defines BM and presents the framework allow-
ing them to build them automatically from a given DSPL.
Section 3 discusses the architectural bad smells identified
through the BM and illustrates them on the Smart Home
Environment (SHE) [12] case study. Section 4 presents
the related work. Finally, Section 5 wraps up the paper.

2. Behavioral Map

The role of a Behavioral Map is to capture interactions
between features (described in a feature model [2]) of a
specific (re)configuration to be analyzed before it gets
deployed [13]. Such configurations are produced within
an adaptation loop. We rely on the well-known MAPE-K
loop (Monitor, Analyze, Plan, and Execute over a shared
Knowledge base) proposed by IBM in [14]. We depicted
it left of Figure 1, though any type of control loop may
interact with a BM. Thus, the BM needs to interact with
the component responsible for defining the change plan
used in the adaptation process at runtime and retrieving
the configuration rules. We used the change plan selected
by the self-adaptive system to create the map based on
its configuration rules. Such a strategy was adopted be-
cause we assume that the system implements a MAPE-K
loop [14] to manage the adaptation process at runtime
according to the feature model. We thus avoid building a
BM for an invalid configuration.

To build a BM, we follow the process described in Fig-
ure 1. The MAPE-K loop monitors continuously a set
of managed resources and gathers the results in symp-
toms. Then the loop analyses symptoms and determines
if an adaptation is necessary based on Knowledge (which
in our case includes the DSPL feature model). If such
an adaptation is necessary, it will issue a change request
for the plan phase that will determine the appropriate
configuration (a set of enabled and disabled features) to
execute as prescribed by its change plan. The BM build-
ing process (right part of Figure 1) interacts with this
change plan containing, besides the candidate configura-
tion, a set of configuration rules noted CR. These rules
contain information on the features and their dependen-
cies (versions, imported and exported packages) obtained

via extraction (see Section 2.3). The map building process
comprises of Detection, Analysis and Map Building. In
the following, we define the BM formalism and explain
the BM building process.

2.1. Behavioral Map Definition

A BM is a hybrid structure, mixing structure, data, and
control information about one configuration of the DSPL.
Formally, a BM is a tuple:

BM = (C,V,VTypes,vtype, E, ETypes, A, vattributes),

where:

« C'is a configuration, i.e. a valuation of features
from the feature model,

« V C C'is a set of vertices,

« VTypes = {Core, Controller, Sensor, Actuator, Presenter},

- vtype : V x P(VTypes) \ 0 is a function giv-
ing the types of a vertice. We suppose that a
vertice/feature can have multiple types. For ex-
ample, a feature can be core (i.e., present in all
configurations) and also serves as a controller,

« E is a set of edges such as Ve € FE, e =
(v,v',7) where v,v' € V and r € ETypes =
{Controls, Reads, Suppresses, Requires},

« A is the set of all attributes,

« vattributes : V x P{A} is a function giving the
value of all the attributes for a given vertice.

2.2. Behavioral Map Building Process

In the remaining, we describe the BM process shown in
the right part of the figure 1.

2.2.1. Detection

Detection determines interacting features using pairwise
analysis [15] and their directed relationships based on
the CR. Moreover, we assume that in the CR, there are
all features and their configuration policy (including fea-
ture dependencies) used to answer a specific context at
runtime. For example, the feature installation process
used the constraints available in the manifest file used
to describe the feature and its dependencies. Also, this
process can use complementary information defined in
the Change Plan. Such information is used to guide the
installation, configuration, and adaptation process at run-
time.

In this context, we will use the CR defined in the
Change Plan to identify the features and directions of
each relationship. Thus, the Detection process selects a
feature in the CR and identifies its dependencies based

https://github.com/edilton-santos/BehavioralMapExample
https://github.com/edilton-santos/BehavioralMapExample

on the configuration information of the feature. Let us
consider a Feature A which requires to load a Feature B at
runtime. This dependency is defined in the CR file and
is used by the Detection process to create an arrow from
feature A to feature B, indicating the direction of the
relationship between the features. The process repeats
for each feature until all interactions are detected and
created on the map.

2.2.2. Analysis

During the analysis stage, we further refine the inter-
actions identified during detection in categories. We
identify several relationship types (E'T'ypes) as relevant
to highlight runtime interaction problems. The currently
supported types are: i) Controls: a relationship where a
feature has control over another feature, but does not sup-
press its behavior; ii) Suppresses: a relationship where a
feature suppresses the behavior of another one. Also, we
consider as suppressed the relationship between features
where one controlled feature needs to be uninstalled or
unbound by its controlling feature; iii) Requires: a re-
lationship in which a feature is part of another feature’s
implementation. In this relationship, there is no suppres-
sion or control over the feature’s behavior that is part
of the main feature; iv) Reads: This type of relation-
ship occurs when one feature reads data produced by
another feature, but there is no control or suppression of
the feature’s behavior.

2.2.3. Map Building

Based on interaction detection and analysis, we can build
the BM for a configuration of the SAS. We represent this
map as a directed graph where features form the vertices
and relationships form the edges.

1 table <— loadConfigurationRulesFile(CRfile);
2 verticesOnMap <— createVerticesOnMap (table);
3 foreach vertex in verticesOnMap do
4 foreach row in table do
5 if row.name.equals (vertex.name) then
6 foreach relation in row.getAl1Relationships ()
do
7 if relation.relationship is not null then
8 createEdge (vertex,
relation.relationship_type,
relation.featureName);
9 end
10 end
1 end
12 end
13 end

Algorithm 1: Behavioral Map algorithm.

The whole building process is summarized by Algo-
rithm 1. This algorithm begin from a table loaded by
the loadConfigurationRulesFile procedure (line 1
at listing 1) and instantiates the vertices (features) on the

Map Builder
f
Analyzer
t
Interaction Detector
T
Integration Layer

Y NN

Figure 2: Behavioral Map Architecture overview.

map (createVerticesOnMap, line 2). The next step is
to look for each created vertex (feature) and identify its
relationships in the Configuration Rules (table). Conse-
quently, we create three loops, as shown lines 3, 4, and
6. The first loop selects a vertex on the map and then
looks for its information in the table using the second
loop. Line 5 checks for each row of the table whether
it contains the selected vertex. Line 6 retrieves all rela-
tionships (row.getAllRelationships()) related to
the selected vertex on the map. For each relationship,
createEdge creates an edge in the map based on the
following arguments: i) the vertex from which the edge
starts, ii) the relationship type represented by the edge,
iii) the destination vertex (relation. featureName in
line 8). The loop on line 6 will repeats until and thus
edges are created.

2.3. Framework Implementation

We conceived a framework to infer Behavioral Maps
whose architecture is shown in Figure 2. The framework
uses the Neo4]' platform and its Cypher” query language.
The top-most layers, Map Builder, Analyzer, and In-
teraction Detector perform the processes defined in
Section 2. In the following, we focus on the remaining
elements of the framework.

The Integration Layer (IL) serves as an interface be-
tween the DSPL and the map building components, re-
ceiving the data used to build the map. Also, this layer
defines the CR file data type used to build the map as
follows: i) name is the feature name in the system; ii)
exported_packages lists the exported packages or ser-
vices offered via features; iii) imported_packages lists
the packages used by features to compose their func-
tionality; iv) version represents the feature version; v)
status defines if the feature is active or inactive; vi) type
defines the feature type; vii) relationships is a collec-
tion composed of relationship types and associated fea-
tures as describe as follows: a) relationship_type rep-
resents the relationship type, as defined in ETypes; b)
feature_name is the feature name associated with the

!Neo4;j - https://neodj.com/product/
*Cypher - https://neodj.com/docs/cypher-manual/current/
introduction/

https://neo4j.com/product/
https://neo4j.com/docs/cypher-manual/current/introduction/
https://neo4j.com/docs/cypher-manual/current/introduction/

relationship_type field. The IL reads data via Data Ex-
tractor or CR file in formats XML, JSON, or CSV.

The Data Extractor (DE) realizes the runtime integra-
tion between the Integration Layer and the Self-Adaptive
system. The DE runs over the Plan function (see Figure
1), reading the Change Plan information at runtime and
relating the features and CR after the system triggers
the adaptation process. Hence, the DE identifies all fea-
tures used and their relationships regarding the Change
Plan configuration to be deployed. Thereafter, the DE
builds a CR file including all involved features and sends
it to the Integration Layer. The DE component performs
static analysis using the WALA API’. Static analysis al-
lows to identify the dependency relationships among the
class hierarchy used by selected features or perform inter-
procedural dataflow analysis and identify relationships’
types. Also, manifest files, used to install each feature of
the candidate configuration before its deployment, are
exploitable. The DE component can be implemented for
all types of adaptation processes because the data extract
needs to receive as a parameter the features and their
VTypes, the features implementation path in the pack-
ages, and Jar files. Also, we used these parameters to
maps the relation between features and components that
implements each feature.

3. BM-Based ABS Detection

3.1. Case Study: The SHE Framework

We applied our BM framework on SHE [12]: a smart
home system that uses the MAPE-K loop to identify
changes (such as a new sensor being plugged in) and
make the appropriate changes to the dashboard (e.g., dis-
play data coming from that sensor). The SHE core is com-
posed by Manager, Listener, Loader, Installer, and Presen-
tation Layer. These layers are responsible for controlling
the adaptation, communication, and data presentation
at runtime. Also, we included four optional features as
follows: i) Luminosity: used to read data from the lu-
minosity sensor; ii) Presence: used to read data from
the presence sensor; iii) lampController: responsible
for controlling Lamp feature’s behavior using the infor-
mation read from Luminosity and Presence features; iv)
Lamp: an actuator used to switch on and off lights based
on the lampController feature’s data. This configuration
of SHE is depicted Figure 3.

3.2. Identifying Architectural Bad Smells

While ABS catalogues exist in the literature [16, 8], their
role in self-adaptive architectures is less known [10, 11].
Table 1 presents a list of smells we believe to be relevant

SWALA - https://github.com/wala/WALA

for assessing self-adaptive architecture as well as their
level of support via the BM. For each of them, we briefly
describe how they can be identified via the BM, and we
provide a short discussion on their impact. Also, we
provided a package in GitHub* with a tutorial to do the
configuration of the Neo4] platform, two CR files, and
the scripts used to create the map and analyze the ABSs.

Table 1

Selected Architectural Bad Smells for Self-Adaptive Systems.
Smell Name Detection
Cyclic Dependency (CD) [16] Full
Extraneous Connector (EC) [8] Full
Hub-Like Dependency (HL) [16, 10] Full
Oppressed Monitors (OM)[11] Partial

3.2.1. Cyclic Dependency [16]:

This smell occurs when two or more components depend
on each other directly or indirectly [16]. Components
involved in a dependency cycle can hardly be released,
maintained, or reused in isolation [17].

Identification Guidelines. We determine cycles in
the sub-graph of the BM formed by the features and
the relationships of type Requires using a Depth-First
traversal strategy.

Discussion. Based on relationship categories, other
forms of cyclic dependencies that may be uncovered, such
as control ones which may cause concurrent accesses to
resources and/or deadlocks.

3.2.2. Extraneous Connector (EC) [8]:

This smell happens when two connectors of different
types are used to link a pair of components [8].

Identification Guidelines. The automatic identifi-
cation of extraneous connectors proceeds by analyzing
paths between pairs of vertices in the BM. In a comple-
mentary way, a designer can visually identify EC smells
on the BM. The lampController (Figure 3) uses two types
of connectors to connect with the features Presence, Lumi-
nosity, and Lamp. The lampController uses the Listener
(Publish-Subscribe client to implement the Reads edge)
and procedure call communication (represented by the
Requires edge) with Presence, Luminosity, and Lamp.

Discussion. This smell increases the coupling be-
tween features of the DSPL, negatively impacting its
variability, and thus its adaptability [7]. However, a di-
rect connection may be justified for concurrent operation
[8] and may increase the system’s resiliency in case of
failure of the publish-and-subscribe architecture.

“Behavioral Map example - https://github.com/edilton-santos/
BehavioralMapExample

https://github.com/wala/WALA
https://github.com/edilton-santos/BehavioralMapExample
https://github.com/edilton-santos/BehavioralMapExample

Feature Types Feature(d)

rowar

Relationships | Requires(11) |Reads(s}) [[=lL 5)

Requires Requires

manager

Figure 3: Behavioral Map (BM) for one SHE configuration.

3.2.3. Hub-Like Dependency (HL):

This smell appears when a component has (incoming or
outgoing) dependencies with a large number of other
abstractions (e.g., other components) or concrete classes
[16, 10].

Identification Guidelines. Thanks to its graph struc-
ture, the BM allows to automatically compute the in/out-
degree (number of incoming or outgoing edges) for each
vertex (feature). Features having high in/out-degrees are
subjected to the HL smell. In Figure 3, we see that the
Listener feature is subjected to the HL smell since it is
involved in most of the Requires relationships of the BM.
Besides, if a feature has only many outgoing Requires
edges, it is Hub type called Overreliant Class [16].

Discussion. The presence of the HL smell in the Lis-
tener feature is motivated by the publish-and-subscribe
architecture adopted by the SHE framework. The Listener
centralizes all the communication processes in this soft-
ware architecture and works as a communication broker.
It is therefore acceptable in this case [16, 17]. However,
hubs form points of attention in case of failure.

3.2.4. Oppressed Monitors [11] (OM):

According to [11], this smell is characterized by a set of
monitors (retrieving information from sensors) indepen-
dent from each other that are managed with the same
data polling rate and predefined execution order, yielding
sub-optimal data acquisition and failure of subsequent
monitors if one monitor in the sequence fails.
Identification Guidelines. Fully identifying this
smell involves delving into the source code and getting
information about polling rate since sequencing of sensor
calls is not present on the map. Yet, if several sensors

presentation

Raquiras g

Feads

e

courioad

spEsy

Controls _——_._._-“

lamp

are controlled by the same controller, the map can help
locating the features to look for this smell.

Discussion. In some cases, this smell is acceptable,
especially when there are simple monitors with similar
polling rates [11]. However, this smell limits the adapt-
ability and resiliency of the system, which are important
criteria for self-adaptive systems.

These examples illustrate the two complementary us-
ages of the BM. First, the BM is a formal model amenable
to automated detection of smells using graph algorithms.
Second, visual representations help designers and engi-
neers to visualize runtime configurations.

4. Related Work

We found two works dedicated to the identification of
ABS in self-adaptive systems. The first study [10] relies
on the Arcan [17] tool to identify ABS in 11 self-adaptive
systems. Arcan creates a graph database with the struc-
ture of classes, packages, and dependencies of the ana-
lyzed project, allowing the execution of algorithms on
the graph to detect the ABS at design time. Our approach
also uses a graph for ABS detection, but there are two
differences: i) we create a map for each SAS configura-
tion identified at runtime; and ii) we identify the ABS
at the level of features defined in the system’s feature
model. Thus, to analyze the architecture, we associate
the features defined in the model with the structure of
classes, packages, and dependencies implemented in the
source code. This process allows us to relate a feature to
its implementation.

The second study [11] presents two new ABSs specific
to self-adaptive systems: the Obscure Monitor and the
Oppressed Monitors. Also, it defines the algorithms to

identify each smell at design time. To validate the pro-
posed smells, the authors identified the proposed smells
in 8 SASs in the manual and discussed how to refactor
the system affected for those smells. We believe that our
work on smells identification at runtime may uncover
new ABS specific to SAS.

5. Concluding Remarks

We defined behavioral maps (BMs) to reason on architec-
tural issues in self-adaptive systems. A BM is informed
by a feature model and by the considered configuration
before its runtime deployment. We implemented a flexi-
ble framework inferring BMs from heterogeneous infor-
mation sources, relying on static analysis to characterize
interactions more finely than with a feature model. We
illustrated its application on a smart home dynamic soft-
ware product line. As a work in progress paper, there
is room for future work. First, we want to use the BM
to provide new smells specific to SAS architectures and
perform self-adaptive architecture assessments beyond
general ones [10]. Then, we envision other BM usages
such as test prioritization strategies, notably when new
features appear via hot-plugging mechanisms.

Acknowledgments

Edilton Lima Dos Santos is funded by a CERUNA grant
from the University of Namur. Sophie Fortz Sophie Fortz
is supported by the FNRS via a FRIA grant. Gilles Per-
rouin is an FNRS Research Associate.

References

[1] N. Bencomo, P. Sawyer, G. S. Blair, P. Grace, Dy-
namically adaptive systems are product lines too:
Using model-driven techniques to capture dynamic
variability of adaptive systems., in: SPLC (2), 2008,
pp- 23-32.

K.C.Kang,S. G. Cohen, J. A. Hess, W.E. Novak, A. S.
Peterson, Feature-oriented domain analysis (FODA)
feasibility study, Technical Report, CMU-SEIL, 1990.
N. Cardozo, I. Dusparic, Learning run-time com-
positions of interacting adaptations, in: Proceed-
ings of the IEEE/ACM 15th International Sympo-
sium on Software Engineering for Adaptive and
Self-Managing Systems, 2020, pp. 108-114.

M. Lippert, S. Roock, Refactoring in large software
projects: performing complex restructurings suc-
cessfully, John Wiley & Sons, 2006.

H. S. de Andrade, E. Almeida, I. Crnkovic, Archi-
tectural bad smells in software product lines: An

(2]

(5]

(16]

exploratory study, in: Proceedings of the WICSA
2014 Companion Volume, 2014, pp. 1-6.

F. A. Fontana, P. Avgeriou, I. Pigazzini, R. Roveda,
A study on architectural smells prediction, in: 2019
45th Euromicro Conference on Software Engineer-
ing and Advanced Applications (SEAA), IEEE, 2019,
pp. 333-337.

J. Garcia, D. Popescu, G. Edwards, N. Medvidovic,
Toward a catalogue of architectural bad smells, in:
International conference on the quality of software
architectures, Springer, 2009, pp. 146-162.

J. Garcia, D. Popescu, G. Edwards, N. Medvidovic,
Identifying architectural bad smells, in: 13th Eu-
ropean Conference on Software Maintenance and
Reengineering, IEEE, 2009, pp. 255-258.

H. Mumtaz, P. Singh, K. Blincoe, A systematic
mapping study on architectural smells detection,
Journal of Systems and Software (2020).

C. Raibulet, F. A. Fontana, S. Carettoni, A prelim-
inary analysis of self-adaptive systems according
to different issues, Software Quality Journal (2020)
1-31.

M. A. Serikawa, A. d. S. Landi, B. R. Siqueira, R. S.
Costa, F. C. Ferrari, R. Menotti, V. V. De Camargo,
Towards the characterization of monitor smells in
adaptive systems, in: X Brazilian Symposium on
Software Components, Architectures and Reuse
(SBCARS), IEEE, 2016, pp. 51-60.

E. Santos, I. Machado, Towards an architecture
model for dynamic software product lines engineer-
ing, in: IEEE International Conference on Informa-
tion Reuse and Integration (IRI), IEEE, 2018, pp.
31-38.

E. L. dos Santos, Stars: Software technology for
adaptable and reusable systems, in: Proceedings of
the 25th International Systems and Software Prod-
uct Line Conference (SPLC), ACM, 2021.

IBM, An architectural blueprint for autonomic com-
puting, IBM White Paper 31 (2006) 1-6.

L. R. Soares, J. Meinicke, S. Nadi, C. Kastner, E. S.
de Almeida, Varxplorer: Lightweight process for dy-
namic analysis of feature interactions, in: Proceed-
ings of the 12th International Workshop on Vari-
ability Modelling of Software-Intensive Systems,
2018, pp. 59-66.

U. Azadi, F. A. Fontana, D. Taibi, Architectural
smells detected by tools: a catalogue proposal, in:
2019 IEEE/ACM International Conference on Tech-
nical Debt (TechDebt), IEEE, 2019, pp. 88-97.

F. A. Fontana, I. Pigazzini, R. Roveda, M. Zanoni, Au-
tomatic detection of instability architectural smells,
in: IEEE International Conference on Software
Maintenance and Evolution (ICSME), IEEE, 2016,
pp. 433-437.

	1 Introduction
	2 Behavioral Map
	2.1 Behavioral Map Definition
	2.2 Behavioral Map Building Process
	2.2.1 Detection
	2.2.2 Analysis
	2.2.3 Map Building

	2.3 Framework Implementation

	3 BM-Based ABS Detection
	3.1 Case Study: The SHE Framework
	3.2 Identifying Architectural Bad Smells
	3.2.1 Cyclic Dependency azadi2019architectural:
	3.2.2 Extraneous Connector (EC) garcia2009identifying:
	3.2.3 Hub-Like Dependency (HL):
	3.2.4 Oppressed Monitors serikawa2016towards (OM):

	4 Related Work
	5 Concluding Remarks

