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Abstract 

For 50 years, ecologists have examined how the number of interactions (links) scales with 

the number of species in ecological networks. Here, we show that the way the number of 

links varies when species are sequentially removed from a community is fully defined by 

a single parameter identifiable from empirical data. We mathematically demonstrate that 

this parameter is network-specific and connects local stability and robustness, 

establishing a formal connection between community structure and two prime stability 

concepts. Importantly, this connection highlights a local stability-robustness trade-off, 

which is stronger in mutualistic than in trophic networks. Analysis of 435 empirical 

networks confirmed these results. We finally show how our network-specific approach 

relates to the classical across-network approach found in literature. Taken together, our 

results elucidate one of the intricate relationships between network structure and stability 

in community networks.  
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Main text 

Understanding which properties of ecosystems determine their response to disturbances 

has become a central question for ecologists. Such disturbances can have various effects on 

ecosystems – going from infinitesimal changes in species densities to species loss. The former 

case has been studied mostly through local stability analysis1, which labels a community as 

stable when it returns to its equilibrium after a pulse disturbance of species densities. Local 

stability – measured with the real part of the dominant eigenvalue of the community matrix – 

has been shown to be impacted by numerous ecosystem properties1–5, the simplest being the 

number of species S and the number of links L between them6.  

These two structural properties, 𝑆 and 𝐿, are known to also impact community robustness, 

which is usually defined as the fraction of species one needs to remove from a community in 

order to lose 50% of the original species richness7,8. This fraction is, in theoretical studies, 

computed through in-silico extinction experiments: because species are interconnected, the 

removal of one of them might cascade into further extinctions. Such extinctions occur when a 

species is left without any resource7–10 or mutualistic partner11,12, which is less likely to happen 

when a community is well connected7,10. We therefore predict that local stability and robustness 

are negatively interrelated13. There is, however, no formal test of this intuition in the current 

literature, as most studies tend to focus on one component of community stability only14.  

The local stability-robustness relationship is further complicated by the fact that 𝐿 and 

𝑆 are also interrelated. The 𝐿~𝑆 relationship has been described since the 1980s as 𝐿 = 𝑎 ⋅ 𝑆!, 

where a and 𝑏 are constants15,16. A dominant approach to estimate the value of these constants 

has been to consider the 𝐿~𝑆 relationship as universal16–18: by computing the 𝐿 and 𝑆 of multiple 

communities, ones should be able to estimate a single 𝑎 and 𝑏 via linear regression in the 

log(𝐿)~log(𝑆) space15–24. However, this approach has led to various values of 𝑎 and 𝑏 and, 

therefore, to various 𝐿~𝑆 relationships ranging from a linear15 (𝑏 = 1) to a quadratic16 (𝑏 = 2) 
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function. Indeed, several factors such as interaction type4,25, environmental constancy5,26,27, 

habitat type28 or spatial scale29,30 affect the value of 𝑏. This variation confirms early work 

suggesting that the 𝐿~𝑆 relationship might in fact be a community-specific property15,22. In that 

case, each community would have a specific 𝐿~𝑆 curve and temporal (or spatial) variations of 

S would move the community along this curve22.  

Here, we reinterpret the 𝐿~𝑆	relationship as a system-specific characteristic and, by doing 

so, discover a structural property that can be easily inferred from empirical data. A key result 

is that this structural property formally predicts both the robustness and local stability of 

biological networks, imposing a trade-off between these two stability properties. We extract 

this structural property from 186 trophic and 249 mutualistic networks taken from the literature 

and public databases, confirming our analytical results and showing that the local stability-

robustness trade-off is stronger in mutualistic than in trophic networks.  

Results 

We begin by introducing the idea of a network-specific 𝐿~𝑆 relationship using in-silico 

extinction experiments. We sequentially and randomly remove species (one at a time) from one 

network and count the number of species (i.e. size) and the number of links (i.e. edges) of this 

network after each removal, until there are no species left. A secondary extinction occurs when 

a species has no resource or mutualistic partner left (for the species having initially in- and 

outgoing links) or when they are isolated (i.e. left without any links, for the species having 

initially no incoming links). This random decomposition, when repeated multiple times, yields 

pairwise observations of 𝐿 and 𝑆 for a given network, and therefore a network-specific 𝐿~𝑆 

relationship (Fig. 1). A power law describes this relationship: 𝐿 = 𝑎 ⋅ 𝑆!, where 𝑎 and 𝑏 are 

network-specific (see Supplementary Equations 1 for a demonstration). The value of 𝑎 and 𝑏 

can be computed through regression in the log(𝐿)~log(𝑆) space, with log(𝑎) being the 
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intercept of this relationship, and 𝑏 its slope (Fig. 1). We applied this approach to predict 

network-specific 𝐿~𝑆 relationships for empirical networks (𝑅"1111 ≥ 0.99, Extended Data Figure 

1). However, this method gives little theoretical insight into community structure and requires 

simulating the entire decomposition process for each network, which is fastidious and time 

consuming.  

To overcome this, we want to relate the values of 𝑎 and 𝑏 to one another. Since our rule 

for secondary extinctions prohibits the persistence of isolated species (relaxation of this rule is 

explored later), a network consisting of only two species should have exactly one link: if 𝑆 = 2 

then 𝐿 = 1. This would imply that 𝑎 = 2#!. Thus, one parameter (𝑏) would fully characterize 

the 𝐿~𝑆 relationship of a community network: 

𝐿 = 6
𝑆
27

!

											(1) 

Given the 𝐿 and 𝑆 of the initial network (i.e. before any species removal), we can compute 𝑏 

as: 

𝑏 =
log"(𝐿)

log"(𝑆) − 1
										(2) 

This value can be used in Equation 1 to predict how 𝐿 changes along the network's 

decomposition (Fig. 1). Remarkably, this single-parameter model predicts the L~S relationship 

as accurately as the two-parameter log-log regression model (𝑅"1111 ≥ 0.96, Extended Data Figure 

1). Equations 1-2 therefore describe the network-specific relationship between 𝐿 and 𝑆 without 

the need to simulate network decomposition; the initial network suffices to compute 𝑏 and, 

therefore, the whole decomposition process. 
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Figure 1 | The network-specific link-species relationship in two empirical networks. (a) Decomposition of the Lake 

Crescent trophic network58: the initial network has 6 species and 7 links. Each dot represents the network after the removal of 

a number of species; the likelihood of reaching each dot in the L~S plane is represented by its size. Black lines are the predicted 

𝐿~𝑆 relationship based on the log-log regression parameters (dotted line, a = 0.29, b = 1.76, 𝑅! = 0.988) and on Equation 1 

(solid line, with 𝑏 = log!(7)/(log!(6) − 1) = 1.77, 𝑅! = 0.976). The orange and red lines are two examples of network 

decompositions: while the red line represents the least frequently observed trajectory (3% of the in-silico extinction 

experiments), the orange one is the most observed trajectory (22%). (b) Decomposition of the plant-pollinator network of the 

Mt Murray59: the initial network has 166 species and 319 links. The predictions based on the log-log regression (dotted line, 

𝑎 = 0.39, 𝑏 = 1.31) and on Equation 1 (solid line, 𝑏 = 1.30) lead to an 𝑅! of 0.996 and 0.992, respectively. (c) Example of 

decomposition process leading to the red (top) and orange (bottom) lines of panel (a). 

Since 𝑏 predicts the decomposition of a specific network, it contains information about 

the consequences of species removal. These can be expressed as the average number of species 

lost ΔS<  when one species is removed (e.g. ΔS< = 1 when there is no secondary extinction). This 

average is the slope of the relationship between the number 𝑛 of species lost after the removal 

of a number 𝑟 of species (Fig. 2a-b): 

Existing species

Removed species

Secondary extinction

Existing link

Removed link

c
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𝑛 = ΔS< ⋅ 𝑟						(3) 

For Δ𝑆</𝑆 sufficiently small, the following equation allows approximation of ΔS<  

(Supplementary Equations 2): 

Δ𝐿<

Δ𝑆<
≈ 𝑏 ⋅

𝐿
𝑆				(3b) 

where Δ𝐿<  is the mean number of links lost when one species is removed and equals the mean 

degree of the network: when a species is removed, the number of links lost is its number of in- 

and outgoing links. Therefore, Δ𝐿< = 2 ⋅ 𝐿/𝑆. Replacing Δ𝐿<  in Equation 3b results in ΔS< ≈ 2/𝑏. 

This approximation of ΔS< holds true if we consider that all species might experience secondary 

extinctions. However, some species ("independent species" hereafter) might not undergo such 

extinctions (e.g. a prey might not depend on its predator for its survival, some plants might self-

reproduce, etc.). To take this into account, we define z as the probability that a randomly-chosen 

species does not undergo secondary extinction: the number of species lost when one species is 

removed is 1 with the probability 𝑧 and 2/𝑏 with a probability (1 − 𝑧). Therefore: 

ΔS< ≈ (1 − 𝑧) ⋅
2
𝑏 + 𝑧									(4) 

To test the effect of 𝑧 on ΔS<, we computed ΔS<  for the empirical networks following two 

scenarios: (1) all species can undergo secondary extinction (𝑧 = 0); (2) species having no 

incoming links are considered as independent7,8,31,32 (i.e. 𝑧 equals the fraction of basal species 

in trophic network and of plants in mutualistic ones). Note that scenario (1) aligns with the 

assumption on which Equations 1-2 are built (isolated species are considered as extinct), while 

scenario (2) does not. Nevertheless, Equations 1-2 describe the network-specific 𝐿~𝑆 

relationship in both scenarios (Extended Data Figure 2). Consequently, Equation 4 predicts the 

number of species lost after removing a defined number of species in all in-silico extinction 

experiments (Fig. 2c, 𝑅"1111 =	0.87 and 0.89 in the first and second scenario, respectively).  
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Figure 2 | Prediction of the number of species lost based on the number of species removed. (a-b) Relationship between 

the number of species removed r (primary extinction) and the number of species lost n (primary + higher order extinctions) 

obtained through network decomposition without independent species (𝑧 = 0) for the example of the Lake Crescent trophic 

network58 (a) and the Mt Murray plant-pollinator network59 (b). Dot size indicates the likelihood of each observation across 

10,000 in-silico experiments. The solid black line corresponds to the 𝑛 = Δ𝑆; ⋅ 𝑟 relationship, with Δ𝑆;  given by Equation 4 

(𝑅!= 0. 838 in (a) and 0.924 in (b)); the dotted horizontal lines indicate the loss of 50% of the species. On panel (a), the orange 

and red lines correspond to the decomposition examples given in Figure 1c. (c) Distribution of the 𝑅! (bin width = 0.05) 

computed for the 435 empirical networks, comparing the predicted numbers of species lost (Equation 3 with Δ𝑆;  computed 

based on Equation 4) with the observations obtained through the in-silico experiment following the first (dark grey, 𝑧 = 0) or 

the second (light grey, 𝑧 > 0) scenario. 

Because b allows predicting the number of species lost for a defined number of species 

removed, one can express community robustness as a function of b (and z). Indeed, robustness 

can be defined as the fraction of species one needs to remove from a network in order to lose a 

fraction 𝑥 of all its species7,8. This definition can be formalised via the number 𝑟 of randomly-

chosen species to remove such that 𝑥 ⋅ 𝑆 is the total number of species lost on average (when 𝑆 

is large, see Methods): 𝑥 ⋅ S = ΔS< ⋅ 𝑟. Knowing this, defining robustness as 𝑟/𝑆 leads to Ro𝑏$ =

	𝑥	/	ΔS< . Combining this with Equation 4, we obtain a formal expression for community 

robustness: 

𝑅𝑜𝑏$ =
𝑥

I(1 − 𝑧) ⋅ 2𝑏 + 𝑧J
									(5) 
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Equation 5 matches simulated robustness obtained through the in-silico extinction experiments 

(Fig. 3, 𝑅" ≥ 0.61 for the most commonly used fraction of 𝑥 = 50% 7,8; for other fractions see 

Extended Data Figure 3). 

 

Figure 3 | Robustness (averaged 𝐑𝐨𝐛𝟎.𝟓 over 10,000 simulations) of 435 empirical networks and its prediction based on 

the parameter b shaping the link-species relationship. Circles indicate the robustness when every species in the network 

could potentially be subject to secondary extinctions (𝑧 = 0, R! = 0.60), while triangles indicate simulations where 

independent species are unable to undergo secondary extinctions (𝑧 > 0, with z being the proportion of species having no 

incoming links, R! = 0.73). Error bars show one standard deviation and lines correspond to our analytical predictions 

(Equation 5 with z = 0, 0.25, 0.5, 0.75 and 0.95; S = 35, the median S across all networks). Values of b are computed with 

Equation 2 for each network. 

Species removal is an extreme kind of perturbation31, and one might want to know how 

a community responds to less dramatic changes such as infinitesimal changes in species 

densities. Therefore, we estimated the local stability of each network using the real part of the 

rightmost eigenvalue (ℜ(𝜆%&$)) of its community matrix: lower eigenvalues denote greater 

stability. We find that the single parameter 𝑏 describing the 𝐿~𝑆 relationship (Equation 2) can 

be introduced into known equations for ℜ(𝜆%&$) 2,3 (see Methods). Using these, we can express 

local stability as a function of b: ℜ(𝜆!"#) is proportional to (𝑆/2)(%&') in mutualistic networks 

and to (𝑆/2)(%&')/* in trophic ones (Equation 7-8 in Methods). These novel equations match the 

empirical ℜ(𝜆%&$), obtained by entry-wise multiplication of the network's adjacency matrix 

and random matrices with entries drawn from a half-normal distribution (R" = 0.80 and 0.75 
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for mutualistic and trophic networks, respectively; 1,000 random draws per network): 

everything else being equal, 𝑏 has a higher effect on ℜ(𝜆!"#) in mutualistic than in trophic 

networks. Therefore, one might expect the mean value of 𝑏 to be lower in empirical mutualistic 

networks, which is the case (Fig. 4; Welch test, p < 0.001, Extended Data Figure 4-5). 

Furthermore, the variance of 𝑏 is lower in mutualistic networks (Fig. 4; Levene test, p < 0.001, 

Extended Data Figure 4-5). This can be explained by the fact that, to maintain the local stability 

unchanged when 𝑆 increases, a small decrease of 𝑏 is sufficient in mutualistic networks (small 

var(𝑏)) while a bigger decrease is needed in trophic networks (bigger var(𝑏)). This is 

confirmed by the fact that the slope of the across-network regression of 𝑏 against 𝑆 (i.e. 

cov(𝑺, 𝒃)/var(𝑺)) is less negative in mutualistic than in trophic networks (-0.0005 and -0.0012, 

respectively; p < 0.001; Extended Data Figure 4-5). We found these results to be robust to 

changes in sampling effort between both network types using subsampling (Extended Data 

Figure 4). 

 

Figure 4 | Distribution of the parameter 𝒃 for of the 435 empirical networks used in this study. The black line indicates 

the distribution of b when all networks are considered while the blue histogram corresponds to the distribution of 𝑏 in 

mutualistic networks and the red histogram to the one in trophic networks. The mean value of 𝑏 is 1.387 in mutualistic networks 

and 1.505 in trophic ones; the variances are 0.008 and 0.067, respectively. 
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Finally, because 𝑏 also appears in the robustness equation (Equation 5), one can examine 

how local stability and robustness relate (Fig. 5). These relationships reveal a trade-off between 

the two stability measures, this trade-off being stronger in mutualistic than in trophic networks. 

 

Figure 5 | Prediction of local stability based on robustness for trophic (red) and mutualistic (blue) networks. (a) Predicted 

local stability based on robustness (average 𝑅𝑜𝑏%.&	 over 10,000 decompositions per network, with 𝑧 = 0) compared to the 

averaged ℜ(λ'()) over 1,000 random community matrices per network, and this for 186 empirical trophic networks (red, R! =

0.66) and 249 empirical mutualistic ones (blue, 𝑅! = 0.61). Error bars show one standard deviation. (b) Theoretical 

relationship between robustness and local stability for various value of z. As local stability depends on species richness S, we 

show theoretical relationship for S = 35, the median S across all networks. The red and blue lines are based on the analytical 

expression of ℜ(λ'()) for trophic and mutualistic networks, respectively (Equation 7-8 in Methods). Colour shading indicates 

the proportion of independent species (z) in the networks. 

Drawing conclusion from sets of networks having different structural properties as we 

do here is reminiscent of the usual approach used in the literature to describe the relationship 

between 𝐿 and 𝑆 across networks (cf. Introduction). In this approach, the relationship between 

𝐿 and 𝑆 is obtained through linear regression in the log-log space performed on a collection of 

networks having different 𝐿, 𝑆 and 𝑏. Following ordinary least squares, the slope β of this 

across-network relationship is (see Supplementary Equations 3 for a demonstration): 

𝛽 = 𝒃	Y +
cov(log(𝑺)" , 𝒃) 	− 	cov(log(𝑺) , 𝐛)[log(2) + log(𝑺)11111111\

var(log(𝑺)) 						(6) 
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As said before, the first term of this equation is lower in mutualistic than in trophic networks 

(cf. averaged b) while the second term is higher (cf. slope of 𝒃~𝑺), leading to no significant 

difference for β between the two interaction types (p > 0.001), unless more than 200 networks 

are taken into account (Extended Data Figure 4-5). Finally, when one samples a very large 

number of networks with sufficiently different 𝑆 (high variance of log(𝑆)), β equals the 

averaged 𝑏. 

Discussion 

 We predicted that robustness and local stability should be negatively interrelated 

because of the way they correlate with community structure. Our results confirm this intuition 

by formally relating robustness and local stability to a community-specific parameter, 𝑏. The 

value of this parameter describes how the number of species 𝑆 and the number of links	𝐿 in a 

specific community covary as species are sequentially removed from it.  

 The parameter 𝑏 is defined as the exponent of the network-specific power-law between 

𝐿 and 𝑆. This power-law emerges from the degree distribution of ecological communities 

(Supplementary Equation 1) and is sufficiently flexible to accommodate for the full range of 

possible 𝐿~𝑆 relationships from a network made of specialists only (𝑏 = 1) to a fully connected 

network (𝑏 = 2). Using a power-law, however, implies that the 𝐿~𝑆 relationships is monotonic. 

This assumption will be violated when species develop new links to compensate the loss of 

their prey/partners (rewiring)33. Yet, it has been argued before9 that these adaptative links 

should be observed at least once when a network is sampled for a sufficient amount of time.  

 We demonstrated that 𝑏 predicts the relationship between the number of species lost (𝑛) 

and the number of species removed (𝑟) from a system (Fig.2, Equation 3-4): communities with 

lower resistance have steeper 𝑛~𝑟 relationships7,8,11,12. The 𝑛~𝑟 relationship is usually 

described by the average number of secondary extinctions (𝑁"<)34, the extinction area (𝐸𝐴)9,35,36 
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or the extinction slope (𝐸𝑆)37–40. While 𝑁"<  and 𝐸𝐴 were so far estimated based on the results of 

in-silico experiments only, they can now be directly linked to the network structure (because 

𝑁"< = Δ𝑆< − 1 and 𝐸𝐴 is the integral of Equation 3). The extinction slope, for its part, describes 

the 𝑛~𝑟 relationship as a hyperbolic function37–39, while we assumed it is linear. This difference 

is due to the strategy used to remove species from the network8,41: while we performed random 

removals (i.e. errors), other studies have considered "attacks"42 in which the most connected 

species is removed at each step of the decomposition. In this latter case, 𝑛 increases rapidly 

with 𝑟 before slowly stabilizing. The number of species lost is, therefore, higher when facing 

attacks than when facing errors7,8,42. Some studies also explored the consequences of removing 

the least connected species. Our results (i.e. random removals) represent an intermediate case7,11 

and therefore reflect the impact of species loss per se, without any distinction between species' 

functionality 41. However, note that our framework could, in theory, be adapted to predict 

network decomposition following the two other removal strategies by using the actual value of 

Δ𝐿 instead of the mean degree in Equation S2 (Supplementary Equation 2). This adaptation 

could enhance the applicability of our predictions to anthropogenically-caused species 

removals, which are often not random7. This, however, would require knowledge of the exact 

degree distribution of the studied network, whereas the approach used here makes it possible to 

predict the 𝑛~𝑟 relationship based on 𝐿 and 𝑆 only (Equations 3-4).  

Equation 3-4 highlight the fact that, when a network is more connected (high value of b), it 

resists species removal better (lower Δ𝑆< ), which is in accordance with studies about the average 

number of secondary extinctions34, extinction area35 and extinction slope37. This result is also 

in line with the positive relationship between community robustness (𝑅𝑜𝑏'.)) and connectance 

(𝐶 = 2 ⋅ 𝐿/𝑆") observed in previous studies7,10,34,35 (but see43,44). Robustness and connectance 

are usually related logarithmically7,35. Our analytical expression of 𝑅𝑜𝑏'.) (Equation 5) 
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confirms this relationship: because b can be expressed as a function of log(𝐶) (𝑏 = *+,-.⋅0!/"2
*+,(0/")

), 

so can the robustness (𝑅𝑜𝑏$ = (𝑥/2) ⋅ *+,-.⋅0
!/"2

*+,(0/")
, for 𝑧 = 0). To our knowledge, this is the first 

analytical link between community structure and robustness. 

Interestingly, if we assume that all species might undergo secondary extinction (𝑧 = 0), 

robustness increases linearly with b (𝑅𝑜𝑏'.) = 𝑏/4, Fig. 3). Two cases, however, can lead to a 

non-linear relationship between 𝑅𝑜𝑏$ and b. A first case is where species do not entirely depend 

on their neighbours for their survival. We tested this case by using a non-zero value for z in 

Equation 5. As an example, we assumed that species having no incoming links are independent 

(i.e. do not depend on other species for their survival)7,10,11,31,32,36,45. Because there is no 

rewiring, this assumption does not impact the decomposition process itself but only maintains 

higher richness along the decomposition and leads, therefore, to higher robustness (see 

Methods). The decomposition is also not affected if we consider species having only incoming 

links as independent. However, if independent species have in- and outgoing links, they prevent 

extinction cascades, affecting the decomposition process. Such scenarios are not taken into 

account in this study but techniques could accommodate these46. However, assuming a whole 

fraction of a network as independent is not representative of reality12,47–49 and 𝑧 should be 

estimated based on data and prior knowledge. One approach is, for example, to use species life 

history traits to define an intrinsic demographic dependence on mutualism for a given 

community43,44 (∝ 1	 − 	𝑧). This approach has shown that, when the intrinsic demographic 

dependence is lower, robustness is higher43,44. These results suggest that, in cases where 𝑧 takes 

realistic values, the positive effect of 𝑧 on robustness described by Equation 5 still stands (Fig. 

3). A second case where a non-linear relationship between robustness and 𝑏 can emerge is the 

one where species might go extinct when some (as opposed to all) of their resources are extinct. 

Equation 5 tacitly assumes that species are able to compensate the loss of prey/partners by 
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interacting more strongly with their remaining prey/partners7,8,10,11,31. Relaxing this assumption 

(by, for example, taking the interaction frequency into account) will lead to more secondary 

extinctions and, thus, to a lower robustness34,36,50. Equation 5 is therefore the best-case scenario9 

without rewiring32,51 when species are randomly removed. 

 We linked community robustness to local stability and highlighted a trade-off between 

these two stability measures (Fig. 5): when a network is well connected, species are able to 

compensate the loss of their neighbours7,10,34 but a small change in species densities will 

propagate further into the network1,4,5,52. While this result is quite intuitive, the equations we 

presented allow a formal reduction of the dimensionality of stability13. Interestingly, while one 

equation suffices to predict robustness for both mutualistic and trophic networks, the local 

stability of these two interaction types differs in how they relate to community structure2,3: 

when 𝑆 increases, a small decrease of 𝑏 should allow to maintain local stability in mutualistic 

networks while a larger decrease of 𝑏 would be needed in trophic ones. This will hold true as 

long as a change in S does not lead to a change in the mean interaction strength μ, their variance 

σ or correlation ρ. If, for example, σ decreases when S increases, 𝑏 might stay unchanged. 

Comparing var(𝑏) as well as the slope of the 𝒃~𝑺 relationship between the two interaction 

types confirmed the expectation that 𝑏 decreases faster with 𝑆 in trophic than in mutualistic 

networks. These results, combined with similar trends found in other studies4,53 suggest that 

local stability constrains community structure by imposing a stronger trade-off between 𝑏 and 

𝑆 in trophic networks. 

The results we obtained comparing the mean value of b (𝑏51111 < 𝑏6111 ) suggest a lower connectance 

in mutualistic than trophic networks, which differs from what is proposed in the literature4,53. 

This difference can be due to interaction strengths differences or to dataset size: in our study, 

difference in 𝑏1 only appear when considering more than 160 networks (Extended Data Figure 

4). Instead, most available studies use smaller datasets (e.g. 57 and 44 networks in 4,53) because 
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they select networks with high sampling effort. Because sampling effort has consequences on 

S and L54,55, further studies should test its impact on b, even though it will be lower than the 

impact on connectance (because 𝑏 is defined in the log-space). Across-network studies, in 

which the shape of the 𝐿~𝑆 relationship is computed based on log(𝑳)~log(𝑺) regression 

through multiple networks, have for example shown that low sampling effort tends to lead to 

scale invariance of 𝐿/𝑆 (i.e. 𝐿	 = 	α ∙ 𝑆) for intrinsically scale-dependent systems (i.e. 𝐿 = α ∙

𝑆")56.  

 We connected our network-specific property 𝑏 to the usual across-network regression 

(Supplementary Equation 3). When the variance of 𝑆 is sufficiently large, the slope β of the 

across-network regression corresponds to the value of the network-specific b averaged across 

all networks (𝑏1). When var(𝑺) is smaller, however, β also contains information about cov(𝒃, 𝑺) 

and the distribution of S. The cov(𝒃, 𝑺) can contain actual biological effects but also effects of 

sampling effort. This highlights the importance of using non-biased datasets when comparing 

β. Moreover, using the across-network regression only leads to significant difference between 

the two interaction types when large data sets are used (more than 200 networks). In contrast, 

the network-specific approach highlighted such differences in terms of 𝑏1, var(𝑏) and slope of 

the 𝒃~𝑺 relationship even in small datasets. Using a network-specific approach therefore 

extracts information that the across-network regression might overlook, while reliant on exactly 

the same data as the across-network approach. In addition, this approach echoes early work 

suggesting that the 𝐿~𝑆 relationship is not universal but might be community-specific15,22 and 

change along temporal5,26,27 and spatial gradients28–30. 

 Reinterpreting the 𝐿~𝑆 relationship as a network-specific property allowed us to 

identify a single parameter that summarizes how both 𝐿 and 𝑆 relate along gradient of sequential 

and random species removal. This parameter formally links community robustness and local 

stability. While more realism (e.g. rewiring, competitive links, non-random removal, or 
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interaction strengths) still need to be added to the framework, it elucidates the intricate 

relationships between network structure and stability in ecological communities. Moreover, 

because our approach is based on networks degree distribution, our results are expected to also 

hold for various type of scale-free networks57 such as cellular, communication, or social 

networks (see Supplementary Equation 1 for a demonstration). The method presented here is 

therefore not restricted to ecological communities, and could be used to explore the relationship 

between structure and stability in a much broader class of real-world networks. 
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Methods 

Empirical network dataset. 

The empirical networks used in this study come from seven articles60–66 and three databases: 

GlobalWeb (http://globalwebdb.com), Interaction Web Database 

(https://iwdb.nceas.ucsb.edu/) and WebOfLife (www.web-of-life.es). Networks published 

before the 1990s were removed from the original dataset, as most of these were not designed to 

study network architecture and they have been described as poorly resolved, highly aggregated, 

and containing little diversity55,56,67. Furthermore, we excluded networks with potential errors 

(e.g. 𝑆 and/or 𝐿 not identical in publication and database). If networks appeared in multiple 

databases, only one copy was kept. We thereby obtained 435 networks: 186 trophic networks 

(110 food webs and 76 herbivory networks) and 249 mutualistic ones (229 pollination and 20 

seed dispersal networks). Supplementary Data 1 contains the list of used networks. The number 

of species ranges from 5 to 266, with a median value of 35 (Extended Data Figure 6). The 

number of links ranges from 6 to 3584, with a median value of 58 (Extended Data Figure 6). 

Each network is represented by its signed adjacency matrix 𝐴; when species i and j interact, the 

elements 𝑎78 and 𝑎87 are set, respectively, to -1 and 1 in trophic networks and to 1 and 1 in 

mutualistic ones. When i and j do not interact, 𝑎78 = 0 and 𝑎87 = 0. Cannibalism was not taken 

into account. The number of species (𝑆) is defined as the size (number of rows) of 𝐴; the number 

of links (𝐿) is the number of edges in the network and, therefore, half the number of non-zero 

entries in 𝐴. Species with no interactions were removed from the original network. 

Network decomposition. 

For each network, we performed in-silico extinction experiments by sequentially removing 

species: at each step of one decomposition process, one random species is removed from the 

network (primary extinction). A secondary extinction occurs when a non-independent species 



 - 22 - 

loses all its resources or has no links left. Resources are prey in trophic networks and hosts in 

the mutualistic ones11. An independent species is defined as a species that might undergo 

primary extinction but does not undergo secondary extinction. The effect of independent 

species was tested by simulating network decomposition following two scenarios: in scenario 

1, all species can undergo both primary and secondary extinction while scenario 2 assumes that 

a fraction 𝑧 of species is independent. In this last scenario, independent species were the ones 

without any incoming links. In the mutualistic networks, the scenario 1 therefore represented a 

system where plants and animals are mutually dependent while, in scenario 2, we considered 

that plants do not depend on their partners for their persistence (e.g. they self-reproduce). In 

trophic networks, the scenario 1 assumed that predators are needed for the survival of the basal 

species while the scenario 2 hypothesised that these species persist after their predator 

extinction (extinctions cascade only to higher trophic level).  

Because we assumed the independent species to be the ones without any incoming links, 

scenario 2 only impacts 𝑆: when a prey/plant has no predator/partner left, the fact that it stays 

or not in the network does not matter for the rest of the decomposition (because there is no 

rewiring) but only allows to maintain higher value of S. This holds true if the independent 

species are the ones without any outgoing links (e.g. top predators in trophic networks and 

animal in mutualistic ones).  

We performed 10,000 simulations per scenario per network. The decompositions were stopped 

when there were no species left in the network. At each step of the decomposition, we computed 

the 𝑆 and 𝐿. 

Inferring the 𝑳~𝑺 relationship.  

The network-specific 𝐿~𝑆 relationships were inferred based on 10,000 decompositions per 

network per scenario: for each network-scenario combination, we performed a linear least-
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squares regression in the log(𝐿)~log(𝑆) space, leading to one value of 𝑎, 𝑏 and 𝑅" per network 

(Extended Data Figure 1). The values presented in the Results are, therefore, the averaged 𝑅"1111 

across all networks (details in Extended Data Figure 1). The 𝑅" obtained by regression were 

compared to the 𝑅" obtained by Equation 1 (with 𝑏 obtained from Equation 2) for each network 

(Extended Data Figure 1-2). The 𝑅" of Equation 1 were also computed in the log(𝐿)~log(𝑆) 

space to allow comparison with the regression approach. 

Performance of ∆𝑺%  prediction. 

For each network and scenario, we compared the predicted number of species lost ~ removed 

relationship (Equation 3 with ∆𝑆<  based on Equation 4) to the relationship observed trough the 

10,000 in-silico experiment. This comparison led to an 𝑅" for each network in each scenario: 

the 𝑅"1111 presented in the result is the averaged 𝑅" across all networks. 

Robustness analysis.  

For each decomposition, we assess the number of species one needs to remove such that at least 

a fraction 𝑥 of species is lost. The robustness 𝑅𝑜𝑏$ is then this number divided by the initial 

species richness and averaged over the 10,000 decompositions of each network and scenario. 

We also computed the variance of robustness across the 10,000 decompositions. 

Because we assessed the robustness as the fraction of species to remove such that we exceeded 

the threshold x, we needed to consider the difference between the theoretically desired threshold 

𝑥 and the biologically realistic (effective) threshold 𝑥9::. This difference arises because S is an 

integer. In a network composed of three species, for example, finding the robustness at 𝑥 =

0.50 requires finding how many species to remove such that we lose at least 1.5 species, which 

translates to the loss of 2 species. In this case 𝑥9:: = 2/3 which corresponds to 𝑐𝑒𝑖𝑙(𝑥 ⋅ 𝑆)/𝑆, 

where 𝑐𝑒𝑖𝑙(•) is the ceiling function. The difference between	𝑥 and 𝑥9:: is small when S is 
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large but does matter when S is small. Therefore, the predicted 𝑅𝑜𝑏$ presented in the Results 

are based on Equation 5 adjusted by replacing x with ceil(𝑥 ⋅ 𝑆)/𝑆. Note that this way of 

measuring robustness might lead to its overestimation, with 𝑥 being always ≤ 𝑥9::. 

Computation of local stability. 

We created 1,000 community matrices (𝑀) for each empirical network in our database. Each 

matrix 𝑀 is defined as 𝑀 = 𝑊 ∘ 	𝐴. Here, 𝑊 is the interaction strength matrix, 𝐴 is the 

adjacency matrix and ∘ denotes the Hadamard (element-by-element) product of two matrices. 

As in Allesina and Tang2, the elements of 𝑊 are drawn from a half-normal distribution 

|N(𝜇, 𝜎")|, with 𝜇 = 0 and 𝜎" = 1. Because of this construction, pairwise interactions in M are 

correlated52 with a coefficient 𝜌 = −2/𝜋 in trophic networks and 𝜌 = 2/𝜋 in mutualistic ones. 

Species’ self-limitation terms (diagonal elements of 𝑀) are set to 𝑑 = 0. Note that setting 

another value for 𝑑 would only shift the support of the eigenvalues on the complex plane (to 

the left if we lower 𝑑 and to the right otherwise). Therefore, the value of 𝑑 will not qualitatively 

impact the trade-off between local stability and robustness. 

We computed the eigenvalues of 𝑊 using the function linalg.eig from the NumPy library in 

Python and used the real part of the highest of these eigenvalues to infer matrix local stability 

(observed ℜ(𝜆%&$)). Reproducing this process for 1,000 community matrices per empirical 

network allows to compute the averaged ℜ(𝜆%&$) and its variance for each of these networks. 

Prediction of local stability. 

We predicted ℜ(𝜆%&$) for each network based on random matrix theory2,3. As long as the 

number of species S is large, the real part of the rightmost eigenvalue of the community matrix 

𝑀 in the case of trophic networks can be obtained as2: 

ℜ(𝜆%&$) = −𝑑 + 𝜎 ⋅ √𝑆 ⋅ 𝐶 ⋅ (1 + 𝜌) 
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Because connectance 𝐶 in this equation is based on the number of non-zero entries in the 

community matrix, 𝐶 equals 2 ⋅ 𝐿/𝑆" and therefore: 

ℜ(𝜆%&$) = −𝑑 + 𝜎 ⋅ {2;#! ∙ 𝑆!#; ∙ (1 + 𝜌) 

ℜ(𝜆%&$) = −𝑑 + 𝜎 ⋅ {(𝑆/2)!#; ⋅ (1 + 𝜌)									(7) 

This equation predicts ℜ(𝜆%&$) of both food webs and herbivory networks: even though the 

latter are bipartite, the influence of their anti-modular structure is negligible because the 

networks of our database have comparable numbers of plants and animals, as explained with 

Supplementary Equations 4. Note that, for less well-balanced systems, Equation 7 would lead 

to an underestimation of ℜ(𝜆%&$) and consequently to an overestimation of local stability. 

In the mutualistic networks, however, the bipartite structure has a strong destabilizing effect 

(because 𝜇 > 0) and must, therefore, be considered separately. The adjacency matrix 𝐴 of a 

bipartite network is divided into two systems (e.g. "plants" and "pollinators" in pollination 

networks) and species only interact between systems but not within them. This leads to a block-

structure in 𝐴 such that3: 

𝐴 = }0 𝑍
𝑌 0� 

where 𝑍 is an 𝛼 ⋅ 𝑆 × (1 − 𝛼) ⋅ 𝑆 and 𝑌 is a (1 − 𝛼) ⋅ 𝑆 × 𝛼 ⋅ 𝑆 matrix (𝛼 being the proportion 

of species belonging to the first system with, 𝛼 ≤ 1/2). This representation allows one to 

compute the eigenvalues of M: their support is estimated via a square-root transformation of 

the ellipse containing the eigenvalues of the matrix ZY - except for two outliers3,68. The 

ℜ(𝜆%&$) is therefore given by (details in Supplementary Equations 4): 

ℜ(𝜆%&$) = −𝑑 + I
𝑆 ⋅ C ⋅ 𝜇

2 ⋅ {𝛼 ⋅ (1 − 𝛼)
J +

𝜌 ⋅ 6𝜎" + 61 − C
2 ⋅ 𝛼 ⋅ (1 − 𝛼)7 ⋅ 𝜇

"7

𝜇 ⋅ {𝛼 ⋅ (1 − 𝛼)
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The second term is proportional to 𝑆 ⋅ 𝐶 ∝ 𝑆(!#;) while the third is proportional to 𝐶 ∝ 𝑆(!#"). 

Therefore, for large 𝑆: 

ℜ(𝜆%&$) ≈ −𝑑 +
(𝑆/2)!#; ⋅ 𝜇

2 ⋅ {𝛼 ⋅ (1 − 𝛼)	
										(8) 

Statistical analyses. 

Because the value of 𝑏 is based on 𝑆, we need to test if the differences observed in the 

distribution of 𝑏 between the two interaction types is not due to biased in either dataset. 

Therefore, we determined whether the distribution of 𝑆 is the same in mutualistic and trophic 

networks, and whether the number of networks analysed impacted the results. To do so, we 

randomly drew 𝜂 mutualistic and 𝜂 trophic networks from our dataset (with 𝜂 ∈ [20, 190] with 

a step of 10) and performed three statistical tests (Extended Data Figure 4): (1) we compared 

the distribution of 𝑏 (and 𝑆) in the drawn mutualistic and trophic networks through two-sample 

Kolmogorov–Smirnov tests; (2) we performed a Levene test to compare the variance of 𝑏 (and 

𝑆) between the two types of networks; (3) we used an unequal variances t-tests (Welch t-tests) 

to compare their mean value of 𝑏 (and 𝑆). We also computed the slope of the relationship 

between 𝑏 and 𝑆 in the 𝜂 mutualistic and 𝜂 trophic networks (using linear regression) and the 

slope β of the across-network 𝑳~𝑺 relationship for these two types of networks (using log-log 

regression). To make sure the results were not due to a particular sampling of our dataset, we 

repeated this process 100 times per sample size 𝜂. This also allowed to test the normality of the 

distributions of the mean 𝑏 and 𝑆 (assumption of the Welch t-test) by performing a Shapiro test 

on the 2 ⋅100 means computed for each sample size 𝜂. Moreover, we tested the difference 

between the slope between	𝑏 and 𝑆 in mutualistic and trophic networks using Welch t-tests on 

the 2 ⋅100 values obtained per sample size	𝜂 (because we worked with the 2 ⋅100 values, the 

normality assumption of these Welch t-test was considered as fulfilled). Finally, we tested the 
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difference between the slope β of the log-log regression in mutualistic and trophic networks 

using Welch t-tests on the 2 ⋅100 values obtained per sample size	𝜂.  

To perform these analyses, we used the package SciPy in Python. The functions used were: 

scipy.stats.ks_2samp, scipy.stats.levene, scipy.stats.ttest_ind and scipy.stats.linregress. 

Data Availability 

The empirical network matrices that support the findings of this study are available from seven 

datasets published on Dryad60–66 and from three online databases: 

• The GlobalWeb (http://globalwebdb.com) hosted by the University of Canberra 

(Canberra, Australia). 

• Interaction Web Database (https://iwdb.nceas.ucsb.edu/) hosted by the National Center 

for Ecological Analysis and Synthesis (University of California, Santa Barbara, 

U.S.A.). 

• This work has used the Web of Life dataset (www.web-of-life.es), a service created by 

Raúl Ortega, Miguel Angel Fortuna, and Jordi Bascompte and provided by the 

Bascompte Lab at the Spanish Research Council.   

The empirical networks used are listed in Supplementary Data 1. This file also contains the 

metrics computed based on the in-silico experiments and the equations: these data allow the 

reproduction of Figure 2c, 3, 4 and 5. 

Code Availability 

Code needed to reproduce the results presented in the article is available at Zenodo with the 

identifier https://doi.org/10.5281/zenodo.467157969. 


