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Navigational Freespace Detection for Autonomous
Driving in Fixed Routes

Dr. Aparajit Narayan1, Dr. Elio Tuci2, William Sachiti1, and Aaron Parsons1

1 Academy of Robotics, United Kingdom
2 University of Namur, Belgium

Abstract. In this paper we propose a means for integrating vision-based road-
detection and route planning in the context of autonomous driving in pre-defined
routes. We train convolutional neural networks with three different input modal-
ities to detect a triangular shape denoting drivable ‘freespace’ on the road which
can also be used to interpret high-level navigational cues relating to turnings,
junctions, intersections. These networks are developed for deployment in the con-
trol software of self-driving delivery cars being built by Academy of Robotics, a
U.K based company which is looking to automate the last-mile delivery process.
Networks are trained with raw camera inputs encoded in the RGB colour space, a
hybrid colour space with no luminance channels and finally from an image com-
posed from perception predictions of other deep neural network modules in the
software pipeline. Results show that these networks even when trained with lim-
ited data are able to successfully learn/detect road-freepsace and adapt shape pre-
dictions appropriately when encountered with roundabouts, intersections etc. In
addition, we propose means of integrating detections from networks correspond-
ing to the three aforementioned input schemes through which further performance
gains can be achieved.

Keywords: Road-Detection · Deep Learning · Autonomous Driving

1 Introduction

Road detection and navigating drivable areas on the road from camera inputs is a crucial
aspect of autonomous driving. While there are a number of sub-fields dedicated to self-
driving cars, the problem can almost be simplified to extracting ‘freespace’ areas on the
input image plane which can then be the basis of navigational commands. This has been
the subject of study for a number of decades and a wide body of work is dedicated to
developing vision and/or control systems that can achieve this. The major challenges in
the way of achieving this are due to the fact that real-world conditions exhibit a great
degree of environmental variation with regards to lighting, road-structure, traffic etc.

This work is sponsored by Academy of Robotics, a UK based company aiming
to develop autonomous delivery vehicles/drones. One of the main focus areas of our
research is navigation in ‘last-mile roads’. ‘Last-mile’ delivery in the logistics indus-
try refers to the exponentially increasing costs of transporting a package from a de-
pot/warehouse to the customers residence. This involves traversing residential, sub-
urban environments where driving behaviour is different from long stretches of high-
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way/motorway conditions. Our company aims to automate this particular aspect of de-
livery with the development of vehicles that robustly navigate such conditions. Design-
ing generalized autonomous-driving software networks occupies the majority of the
research and market space. However, we adopt a ‘terrain-train’ strategy wherein opera-
tional routes are pre-defined and the networks/algorithms comprising the software stack
are trained and calibrated accordingly to ‘specialize’ in them.

1.1 Objective and Background

In this work we propose a novel means of road detection for autonomous driving in a
scenario where the vehicle is required to operate in a fixed route. In such a case prior
knowledge of high-level navigational decisions pertaining to driving in roundabouts,
junctions or other unique features of the route is available. We can approach the problem
of vision based road detection from the perspective of not only denoting ‘driveable’
space on the road but also generating cues through which intersections, junctions etc.
and specific local features of the route can be navigated autonomously.

Traditionally, other academic studies have sought to solve issues related to road
and lane detection as only demarcating which areas of the image correspond to the
‘road’, with route-planning and mapping considered separately. An exhaustive review
of road detection/following is beyond the remit of this work. We shall highlight impor-
tant methodologies, advancements and relevant prior research on this subject by the lead
authors of this work. Within the wider field, some works are limited to detecting lane
boundaries in structured environments such as highway roads. Initial approaches using
manually specified filters for edge-extraction, were erorr-prone due to shadows, vehicle
occlusion and sections where the lane marking disappeared due to weathering. Current
state of the art works such as [5] have moved towards the use of deep convolutional
networks which are better suited for handling the aforementioned issues.

When one considers unmarked paths, sub-urban/residential roads the detection prob-
lem gets greatly compounded. A number of works approach this by devising that can
represent the road and/or non-road areas of the image plane. [8] successfully demon-
strates autonomous driving in large stretches of unmarked desert roads using this prin-
ciple. Here the road is modelled as a mixture of RGB gaussians and this ‘road model’
is updated with pixels from new frames to maintain adaptability on the course. Another
example of successful autonomous driving using an adaptive road-modelling method
can be found in [6], where the authors explore using a variety of colour models be-
yond the standard RGB. In this work new pixels are classified based on their relative
Mahalonobis distance to the road colour distribution. A major factor influencing these
techniques is the choice of features used to build the road/non-road models. Our obser-
vations from testing such methods have shown that in complex and varied operational
conditions, a fixed set of features may not always be accurate in representing the road.

Deep Convolutional Networks with their ability to learn a robust hierarchy of fea-
tures offer a more attractive solution to this issue of detecting complex road scenes as
shown in [2] and [1]. Using the methodology outlined in [3] we were able to success-
fully demonstrate real-world driving using a deep CNN which detected unmarked, de-
lineated roads. In another previous project ([4]), we used the principles of active-vision,
embodiment and artificial evolution to generate a smaller sized recurrent network that
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could directly control a mobile robot. This network controller was also able to navigate
a robot in real-world environments much different from the virtual roads it was ‘evolved
in. The main draw-back of such neural network-based methods is their relatively lower
operational accuracy in environments much different from the datasets/simulations they
were trained in. Moreover, the issue of navigating junctions/intersections and exhibit-
ing behaviour specific to certain sections of the route (one-way vs two-way) remains
unaddressed by them.

Prior to the development presented in this paper, we created a manual design-based
algorithm/module for road-freespace detection. The specific implementation details of
this shall not be presented here but in short, the objective of this software was to di-
vide the image plane into a grids and predict which grid could be classified as being
‘free’ (or drivable). This algorithm processed output frames from three neural networks
in our software pipeline. More details on these networks, each of which achieves a
specific function (object-detection, scene segmentation, lane detection) can be found
in section 2.3. Examples of the freespace detection using this approach can be seen in
figure 1.

1(a) 1(b)

2(a) 2(b)

Fig. 1. Examples of the ‘intermediate’ images that are processed by our rule based algorithm
along with the corresponding freespace shape. The predicted shape composed of detecting indi-
vidual pixel grids can be seen in images 1(a), 1(b) and 2(b) as the shaded block-like region in the
middle. Image 2(c) is an example of no detectable freespace from the intermediate image.

1.2 Motivation

Whilst being successful in extracting drivable areas using the aforementioned ‘inter-
mediate’ image as a input there were still a number of limitations which led us to the
line of research detailed in this paper. One of the main limitations was that this is still
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a somewhat rule-based method constrained by the assumptions made during the design
process. Therefore, there are some instances when the lower level networks exhibit in-
correct predictions and these errors are carried through to the final freespace detection.
A recurrent example observed by us in our test datasets was in cases of extreme lighting
(bright spots mixed with shadows) which had an effect on the scene segmentation net-
work. Moreover, the lane detection module also incorrectly labelled edges which were
not lanes or road boundaries in some frames. A counter to this could be to simply better
fine-tune the lower level networks on the chosen route. Safety is however of paramount
importance for commercial self-driving applications and we need to supplement this
freespace detection with a system that can be more robust to such types of noise. An-
other argument for implementing an alternate freespace module was that the detections
from the previous design-based method still needed to be supplemented with GPS data
to make navigational decisions during turns, junctions, roundabouts etc. GPS cannot be
relied upon for precision and even if the approximate current location is known it is still
challenging to implement a set of rules that can manage a vehicle during these parts of
the route. It may be better to approach this problem by implementing a neural network
that can indicate upcoming ‘high-level navigational decisions’ from the vision input.

2 Methods

We aim to develop a convolutional neural network based road-freespcae predictor which
is also able to intrinsically provide information for mapping/route-management related
decisions. This work is a comparative study wherein we explore generating mid-sized
convolution networks for this task of ‘navigational freespace’ detection. These networks
have the same architecture but use different input modalities/schemes. Subsequently in
section 2.1 we elaborate the baseline method using a standard RGB image. Here we
also detail the road-freespace shape and network architecture which is common for all
networks. In sections 2 and 3 we explain two alternate input schemes; first using a hy-
brid colour model devoid of luminance and the second using detections of other neural
networks. We also present another methodology in section 2.4 where we propose com-
bining freespace detections of multiple CNNs using a regression model as a potential
means to achieve improved accuracy. Section 2.5 details features of the route dataset
where these networks are trained and tested. Note that while it is an attractive concept
in theory to train a single network and explore if it displays better accuracy with a dif-
ferent input scheme/modality; previous works by this team arrived at the conclusion
that deep neural networks tend to work best when the same input scheme that was used
during training is presented for testing. Therefore, we train separate neural networks,
each corresponding to a particular input scheme.

2.1 Baseline Method: RGB

For the first network we feed the raw camera image encoded in the standard RGB (red,
green, blue) as the network input after resizing it to the required shape of 336 x 152 (W
x H). The current deep convolutional network architecture shown in figure 2 was fixed
after a period of experimentation with architectures of different depths and width in
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each layer. We also experimented with implementing 3-D convolutional networks which
require a multi-frame input rather than a single frame. However, this approach did not
yield satisfactory results and we shifted to implementing standard 2-D convolutional
neural networks with input dimensions being Height ∗Width ∗Channels∗. The three
channels of the input image depend on the particular input modality being used. Another
consideration for affixing the network architecture and not adding further convolution
layers is the execution speed, especially considering this is meant to be deployed in a
real-time software pipeline and will be one of the several networks that need to run their
update cycle multiple times per second.

Inputs 336x152x3 Conv1, 28x5x5 
maxpool1, 3x3

Conv2, 22x5x3
maxpool2, 2x2

Conv3, 38x3x3
maxpool 3, 2x2

Conv4, 48x3x3
maxpool 4, 2x2

Fully connected
1024

200

Prediction

Fig. 2. Diagram illustrating the CNN architecture used for these experiments.

Freespace Shape Model The triangular road freespace shape is generated by four
floating point values predicted by a convolutional neural network. These values x1, x2,
x3, y are explained in figure 3 with regards to their role in composing the final triangu-
lar shape. We acknowledged that there are other possible shapes that can be generated
with 4 floating point values which may intuitively better suited for detecting road space.
However, the focus of our work is more on demonstrating the ability of such networks
to learn map specific cues and incorporating this into the detection of freespace on the
road. The triangular road shape is the latest iteration in our attempts at exploring a
suitable model for this particular type of route specific road detection. We were unsuc-
cessful in experiments to train networks that were supposed to output a classification
of grids (road and non-road) on the image plane. The intention was to directly augment
this with the same grid-based classification processed using the design based algorithm
which is part of our current software pipeline (see section 1.1). Without physical on-
vehicle trials it is difficult to develop and calibrate a robust control system for translat-
ing features/predictions generated by the perception software into steering/acceleration
signals. Keeping this in mind we herein propose a simple mechanism which demon-
strates the ability of this freespace shape (when predicted accurately) to be the basis of
generating desired navigational directives. As shown in figure 3, assuming the middle
column of pixels corresponds to the vehicle pointing straight, a simple trajectory can be
generated if two goal points of the centroid and tip of the triangular freespace model are
set. While the freespace shape is enough to provide steering and speed/acceleration sig-
nals on its own, it is likely to be integrated with signals from other modules/algorithms
within an overall decision structure when deployed in our autonomous vehicle.
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1(a) 1(b)

Fig. 3. These two images show examples of the triangular freespace shape being overlaid on the
image plane. Standard image dimensions for our software are 1344 (W) x 608 (H). The three
vertices of the triangular shape have the following coordinates (x1,580), (x2,580), (x3,y); out of
which x1, x2, x3 and y are predicted values. The triangle centroid is shown by the label (cx,cy) in
these images. In 1(a) the vehicle is required to make a sharp left and stay on the left lane of this
junction. In 1(b) the vehicle needs to steer slightly right to avoid coming near the parked cars and
then maintain a straight course. Note that origin coordinates (0, 0) correspond to the top leftmost
pixel.

2.2 Hybrid Colour Model: HSA

One of the drawbacks of the RGB colour space is that colour and brightness are both
represented in a single value; i.e. the level of a particular channel (R, G or B) denotes
how much colour as well how much ‘brightness’ is present. This may not be ideal for
developing robustness to extreme lighting conditions. Therefore, we train a network
with an alternate hybrid colour space with no channels for luminosity. We use ‘Hue
(H)’ and ‘Saturation (S)’ from the HSV colour space and the ‘*a’ channel from the
L*a*b colour space to create a hybrid representation hereon referred to as ‘HSA’. Refer
to figure 4 for visualizing images encoded as ‘HSA’.

Fig. 4. The top row shows raw example frames from the dataset. Below these in the second raw is
visualization of the corresponding raw image above, when encoded in the ‘HSA’ colour-scheme.
For the second-row images the red channel is substituted with ‘*a’ from ‘L*a*b’, green with
‘Saturation’ from ‘HSV’ and blue with ‘Hue’ from ‘HSV’. All channels are normalized to the
0-255 range.
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2.3 PERCEPT: Object Detect, Segment, Lane Detection

The third network for navigational freespace is trained on images that are formed by fus-
ing the outputs of three other convolutional neural networks, each performing specific
functions (see figure 5). This is inspired by our prior attempts to develop a design-based
freespace detection algorithm by processing the detections of these three networks (see
section 1.1 and figure 1). Features crucial to autonomous driving such as obstacles, lane
boundaries, road and pavement areas are already explicitly highlighted in this input
scheme. A network using this type of input image may be more adept at detecting ‘nav-
igational freespace’ in noisy environments as these cues will always be visible to some
degree. There are instances where the output frames of the object, lane and segmen-
tation networks are also noisy. By representing such scenarios in the training set, the
freespace network can be immune to these errors. This may not the case if a designed
rule-based algorithm is used, as errors in the initial network detections would reflect
strongly in the final freespace shape. Provided below are details of the three networks
whose outputs are fused to form the input image.

– Object Detection/Classification: This is a implementation of the ‘YOLOV3’ net-
work in the darknet framework, the details of which can be found in [7]. Cur-
rently this is one of the best performing networks for general purpose object detec-
tion/classification in the field. The network outputs bounding box coordinates for
every object detected in the input frame which are then translated to opaque rectan-
gles of different colours on the frame. General objects (traffic lights, road sign etc)
are coloured as pink; cars, trucks, buses are marked blue, two-wheelers including
cycles are coloured red and pedestrians are marked yellow.

– Scene Segmentation: This is a implementation of an end-to-end pixel wise sce-
mantic segmentation network using the ICNET architecture, details of which can
be found in [9]. Each pixel is coloured as one of 18 colours according to the
‘CITYSCAPES’ dataset labelling convention. Pixels for the ‘road’ class are classi-
fied as purple.

– Lane Detection: This is a deep neural network designed for performing end-to-
end detection of lane boundaries from a raw input image. The design features of
this network are detailed in [5]. The network outputs a final frame with coloured
pixels predicting as belonging to the lane and black pixels for all other areas.

Initial attempts involved feeding the prediction frame of each network as a separate
channel to the network. The learning was found to be quite poor using this scheme and
therefore we feed the intermediate image encoded in RGB colour space as the network
input. It should also be noted that none of these networks are fine-tuned for the specific
route as we want to explore the ability for the freespace prediction network to robust
to noise in the detections provided by the prior networks. The final deployment version
will feature networks fine-tuned on images from the designated operational area. The
network corresponding to this input scheme shall hereon be referred to as ‘PERCEPT’
for the remainder of this paper.
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Fig. 5. Figure showing individual predicted frames of the object-detection, lane detection and
segmentation networks, as well as the final fused image which forms the input for the freespace
network. The topmost row shows examples of the object-detection network predicting bounding
boxes around cars and pedestrians. The second from top row shows the output of lane-detection
on the corresponding frames above. The third from top row contains segmentation network out-
puts. The bottom row shows the fnal image that is formed after fusing all three network outputs.

2.4 Mix: Combining multiple network predictions

Besides presenting detection results related to these networks individually, we also ex-
plore ‘navigational freespace’ detections if the shape predictions of the three networks
are to be combined using different techniques. It should be noted that our deployment
software stack is meant to be executed on 6 camera inputs on 2 Nvidia-Drive PX2 com-
puters. Real-time operation is a prime consideration and tests have shown that we can
execute these three networks simultaneously given our computational infrastructure and
that these freespace networks are not very large architectures, having only 4 convolution
layers. We implement five techniques for combining/mixing the three network detec-
tions. The first is a simple averaging scheme. Given every network predicts 4 floating
point numbers, we simply average the corresponding parameters of all three networks
to give 4 final values which translate to the triangular shape. The other 4 are different
regression schemes implemented using the python scikit-learn library. By name these
multi-output regression modles are k-nearest neighbour regression, random forest
regression, decision tree regression (with the depth set at 8) and gradientboost regres-
sion. They are ‘fit’ on the predictions of the three networks against the ground-truth
annotation on 1000 images from the training dataset. It could be argued that fitting
these regression models on test set images could have produced a better fit, however
due to limited testing data we have to use images from the training sequence loops for
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now. Details on each of these particular regression models can be found in https://scikit-
learn.org/stable/index.html.

2.5 Route Dataset

We recorded 5 videos of a GoPro camera mounted on a car (in the same configuration,
height) driving around a fixed route from start to finish. These drives, carried out in
different dates and time of the day were meant to capture the environmental variation
that is present within the same route of road. Variation with regards to traffic (some
videos were captured during peak hours), lighting conditions, presence of pedestrians
etc. were observed in this compilation of videos. Frames for each video were extracted
at 4 fps providing 5 datasets with 1341, 1276, 1299, 1205, 1038 frames respectively.
The drives took place in a mostly residential area of Surrey, London and involve the
vehicle being driven from a fixed starting point, exiting the residential area which is
a one lane road onto the high-street which is a two-lane road, going 360 degrees on
a round-abound and returning to the starting-point travelling in the opposite direction.
The route also features two junctions where the correct turn needs to be made on the
way forth and back. The residential sections of the road have restricted space with rows
of cars often parked on the side. On-road traffic increases significantly after the second
turn onto the high-street. Refer to figure 6 for a map overview of the route trajectory.
3 of these datasets/image-sequences were used for training and in section 3 we present
results of their testing on two sequences with 1205 (testset 1) and 1038 (testset 2) frames
respectively.

Fig. 6. Image showing a map-level overview of the route. Arrows indicate the direction of travel.
Red beacon marks the start/finish point. The entire loop takes approximately 8-10 minutes to
drive.
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3 Results

Fig. 7. Examples of the triangular shape prediction being overlayed on four image sequences.
The predictions are examples of the ‘PERCEPT’ network. It should be noted that the shape de-
rived from the other two networks (RGB, HSA) and those from the combination of all three also
exhibited similar behaviour. In the sequence (left to right) shown in topmost row the vehicle is in
a two-lane road and needs to stay on the current lane while being surrounded by traffic on both
sides/directions. The network correctly predicts a straight, narrow triangle keeping sufficient dis-
tance away from the truck and cars. In the second from top sequence the vehicle requires to make
a U-Turn on the upcoming round-about. The network steadily shifts the triangle base to the left
whilst also shifting the vertices to suggest going right. In the third row from top the vehicle is
required to exit the current lane and take a sharp right turn. The network recognizes this portion of
the route and changes the triangular shape to denote this turn even though the vehicle orientation
seems to keep moving straight. In the bottom sequence there is a need to take a sharp left at this
junction and stay on the left lane. This is again correctly predicted by the low triangular shape
(with the tip pointing left) thereby giving no space for driving straight.

The results detailed in this section are form freespace predictions of the three net-
works detailed in section 2.2 (RGB, HSA, PERCEPT), and further experiments where
the detections of these individual networks were combined through the different schemes
detailed in section 2.4. Statistics for these combined or mixed predictions detailed in ta-
bles 1 and 2 are presented with the prefix ‘MIX’ and the post-fix labelling the particular
combination scheme used (avg, knn, rf, dtree, gradient). Error statistics are calculated
from the comparison of the triangular shape generated from these predictions against
the human ground-truth annotation. These human ground-truth annotations can be con-
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sidered noisy as it was left up to the annotator to subjectively define the triangular
freespace with only a few rules set by us to adhere.

From the 8 detection sequences (3 individual, 5 combined) for each of the 2 test-
sets it could be observed that in almost all frames the projected freespce shape could
accuractely capture drivable areas of the road. The networks were also successful in
learning to avoid including portions of the sidewalk, curb, pedestrians and other cars
in the freespace. There were some frames for the networks with HSA and RGB input
channels (when tested individually) where small portions of the projected triangle in-
cluded non-drivable areas. These were however limited and it could be observed that
the networks made adjustments in subsequent frames to bring the detection back within
drivable space (even though each frame is treaded independently). Moreover it was ob-
served that the PERCEPT network was especially adept at keeping the detection away
from such non-drivable areas and there were no instances where it could be observed
that the detection would lead the vehicle onto another car, pedestrian or onto the wrong
lane. This was also true for the scenarios where predictions from all three networks
were combined using regression methods.

For all cases the predicted freespace triangles exhibit desired detection behaviour
in special sections of the route related to junctions, sharp turns, lane changes etc. They
were able to differentiate between areas where the road was a 2-way drive (in the high
street) and kept detection within the desired lane even though there was space avail-
able in the adjoining lane. Another characteristic observed was that the networks could
adjust to dynamic movement of obstacles (cars, pedestrians) in subsequent frames and
change the trajectory downwards/sideways to keep away from there. Analysis of sam-
ple detection frames for the PERCEPT network displaying the characteristics discussed
above can be found in Figure 7. Table 1 shows the median and standard deviation of

Networks
Test 1 Test 2

Centroid◦ Tip◦ Centroid◦ Tip◦

med std med std med std med std
RGB -5.7 24.9 1.2 20.8 -1.3 20.9 -4.9 17.8
HSA -5.9 29.3 2.8 22.1 3.4 24.3 -2.1 25.6

PERCEPT -4.5 23.5 1.5 19.1 1.0 19.0 -2.1 15.5
MIX(avg) -5.8 22.5 1.8 15.3 0.0 18.0 -2.7 14.3
MIX(knn) -2.1 19.5 0.4 12.3 2.2 18.6 -0.4 14.3
MIX(rf) -2.5 20.7 2.3 13.7 2.4 17.9 -1.4 13.9

MIX(dtree) -1.5 27.3 0.9 17.5 -0.7 16.3 -0.4 13.8
MIX(gradient) -2.4 18.0 2.0 14.4 2.6 15.5 -1.3 12.6

Table 1. Table showing median (med), standard deviation (std) of errors relating to centroid and
tip angles (in degrees) to for both test sets. Centroid angle refers to the angle generated by a vector
arising from point [672 (x), 580 (y)] in a 1344x608 image to the freespcae triangle centroid. Tip
angle refers to the angle generated by a vector arising from the freespace triangle centroid to its
tip formed by predicted parameters (x3, y). Refer to figure 3 for a better understanding of these
vectors. For reference we use a pixel coordinate system where the top-left pixel is (0,0).

errors for the two test image sequences/datasets (see section 2.5) for two parameters
(centroid angle and tip angle) that are inferred from the predicted triangle shape. In sec-
tion 2.1 we make the case of generating steering/trajectory commands on the basis of
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these two angles. Analysing the error statistics of these angles in table 1, for individual
networks ‘PERCEPT’ is marginally more accurate than ‘RGB’ and ‘HSA’. Accuracy
also improves when a combination of all three networks is employed using the regres-
sion models. In all cases errors for the tip angle are relatively lower than the centroid
angle. This is attributed to the networks being more accurate or consistent with the
ground-truth in predicting the top-vertex (x3, y) values than x1 and x2 which mark the
base of the freespace triangle (see figure 3). A major feature of the predicted triangle se-
quences was even though within drivable road areas the predicted shape do not always
match the manual annotated ground truth shape. Indeed, the predicted freespace shapes,
irrespective of the network and/or combination scheme were generally narrower at the
base compared to annotated triangles. This contributes to the higher standard deviation
errors for the tip angle parameter in table 1. Some examples of the discrepancy between
ground-truth and predicted freespace shapes can be seen in figure 8.

Networks
Test 1 Test 2

overlay % only out % overlay % only out %
med std med std med std med std

RGB 19.2 25.1 49.6 36.2 12.3 23.5 43.3 34.1
HSA 15.2 24.7 58.1 36.6 15.3 23.8 57.3 36.2

PERCEPT 21.3 25.7 38.1 35.8 24.2 24.5 28.1 33.2
MIX(avg) 21.8 22.7 27.3 34.7 21.9 20.9 21.4 32.6
MIX(knn) 24.5 25.7 16.1 34.3 24.8 25.3 15.0 32.5
MIX(rf) 17.9 19.3 14.9 35.7 24.3 19.2 10.6 31.6

MIX(dtree) 26.2 26.0 17.8 36.5 27.3 19.9 10.5 34.3
MIX(gradient) 21.7 21.0 14.7 34.9 26.8 19.6 10.8 32.0
Table 2. Table showing median and standard deviation of two parameters which analyse the
degree of overlap between the predicted and ground-truth triangles for both tests. The column
named ‘overlay’ refers to percentage of overlap between the two said triangles. ‘only out’ refers
to the percentage of predicted triangle that lies outside the ground-truth area. RGB, HSA and
PERCEPT are the three trained networks described in section 2.2. The remaining rows with the
prefix MIX display results with the predictions of the three aformentioned networks combined
using different techniques (see section 2.4).

Table 2 shows results from comparing the area overlap between the predicted and
ground-truth freespace shapes. We devise two parameters for this measure. These are,
‘overlay’ which is the amount of overlap between the two shapes and ‘only lab’ which
is percentage of the predicted triangles outside the ground-truth triangle. It can be gen-
erally inferred from these statistics (combined with visual examination of frame se-
quences) that out of the three individual networks, the PERCEPT network performed
better when it comes to not including non-annotated areas in their freespace projection.
In other words, the predicted freespace triangles for this network stay within the area of
the ground-truth to a greater degree than the other two. The results also seem to suggest
that there is merit in combining the detections of the three individual networks using
the regression approach detailed in section 2.4. This led to generally less error rates and
in none of the frames belonging to these sequences could we observe the projection
including non-traversable areas.
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1(a) 1(b) 1(c)

2(a) 2(b) 2(c)

3(a) 3(b) 3(c)

Fig. 8. Examples of the triangular shape prediction being overlayed on three image sequences.
The predictions are examples of the ‘PERCEPT’ network shown as pink triangles and the manual
ground-truth annotations as green triangles. It should be noted that the shapes derived from the
other two networks (RGB, HSA) and those from the combination of all three also exhibited
similar behaviour. In images 1 (a, b, b) we can see the vehicle needing to travel through a narrow
section of the road whilst being obstructed by a lorry/truck on the left and an incoming car on the
opposite lane to the right. The manual triangle annotation in green maintains a generally straight
triangle with the perimeter being closer to the non drivable space. The pink predicted shape is
much narrower and in case of 1 (c) narrows down to almost a line. The top vertex however remains
close to that of the annotated triangle. Images 2(a, b, c) are three unconnected frames showing
instances of the predicted triangular shape being much narrower contributing to larger errors for
x1, x2 when compared to x3 and y (the top vertex coordinates). Images 3(a,b, c) show an instance
where the vehicle is required to travel on the right branch of the junction with a car approaching
from the opposite direction. There is a mismatch between annotated and predicted shapes in
frames 2(a) and 2(b), although it could be argued that the predicted shape is still projected within
‘road space’.

4 Conclusion and Future Work

The methodologies presented in this work have laid the foundation for an interesting
avenue of research which can provide a novel means for translating camera inputs to
directional cues that integrate mapping/route-planning information. Despite limitations
arising from limited training images and noisy annotation, all three individual networks
trained were found to be generally capable of learning road ‘freespace’ i.e include only
road areas in their projected shapes as well as appropriately alter the freespace predic-
tions in junctions and roundabouts. Within these individual networks the ‘PERCEPT’
network was found to be more robust and less prone to including areas beyond the
ground-truth adding weight to our method of using fused perception outputs of other
neural networks as the input image. We also observe that combining the freespace pre-
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dictions of these individual networks via simplistic regression models increase the per-
formance. The final triangle prediction arising from this regression-based combination
scheme negates errors that may be present in individual network detections.

Our focus for upcoming works is to explore the use of these projected triangle
shapes to control a real autonomous platform. We are especially interested in replac-
ing the regression method with a recurrent neural network that can use sequences of
freespace triangles generated by one or multiple such convolutional networks to pro-
vide a final triangular shape. This final freespace shape can be integrated with the de-
sign based freespace algorithm discussed earlier (section 1.1) to provide steering and
speed commands for the vehicle. A parallel line of research is to have a recurrent neu-
ral network using these predicted freespacce shapes to directly predict control outputs
(speed, steering). While such a scheme may not be possible when using the full resolu-
tion image, using only sequences of multiple freespace triangles may offer an effective
means of dimensionality reduction for a recurrent neural network to directly control an
autonomous vehicle. In conclusion this work presents a novel approach of considering
road-detection and shows that neural network models when trained with the right con-
ditions and architecture can learn to predict freespace in a manner that can also direct
an autonomous vehicle in areas where multiple trajectories are possible and/or a special
type of detection behaviour is required.
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