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Abstract

We examine a decision-theoretic Bayesian framework for the estimation of

Sharpe Style portfolio weights of the MSCI sector returns. Following van Dijk

and Kloek (1980) an appropriately defined prior density of style weights can

incorporate non-negativity and other constraints. We use factor-mimicking

portfolios as proxies to global style factors such as Value, Growth, Debt and

Size. Our computational approach is based on Monte Carlo Integration (MCI) of

Kloek and van Dijk (1978) for the estimation of the posterior moments and

distribution of portfolio weights. MCI provides a number of advantages,  such as

a flexible choice of prior distributions, improved numerical accuracy of the

estimated parameters, the use of inequality restrictions in prior distributions and

exact inference procedures. Our empirical findings suggest that, contrary to

existing evidence, style factors do explain the MSCI sector portfolio returns for

the particular sample period. Further, non-negativity constraints on portfolio

weights were found to be binding in all cases.
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1. Introduction

The Style Analysis introduced by Sharpe (1988, 1992) is probably the most popular

portfolio performance attribution methodology. It is based on the simple idea that asset

returns can be attributed to the returns of investment management style factors such as

value and size. In its original form, relevant style factors should form a (non-hedge)

portfolio which replicates the returns of the asset under assessment, thus style factor

coefficients should be positive and sum to unity.

Given time series data of asset and style factor returns, style analysis forms a

constrained linear regression problem without intercept. The least squares estimation of

the style portfolio weights –the regression coefficients- under linear equality constraints,

is a typical quadratic programming problem with closed-form solution and known

distribution for the estimator, thus it has become a standard practice. When linear

inequality constraints are imposed to ensure non-negative portfolio weights, it is not

possible to obtain a closed–form solution, thus Judge and Takayama (1966) proposed a

modified simplex algorithm for an iterative solution of the inequality-constrained

quadratic program. In univariate regression, the style coefficient estimator has a truncated

normal distribution if the regression error is normally distributed. However, when there

are more than two independent variables, it can be very difficult to obtain the desired

sampling distributions using standard methods. One could at most assess the superiority

or inferiority of the solution vs. the maximum likelihood estimator using the results of

Judge and Yancey (1986).

In this paper we adopt a Bayesian perspective to formally impose the inequality

parameter restrictions, in the form of a prior probability density of the model parameters.

The latter is then combined with the sampling information as captured by the likelihood

function to provide the joint posterior density function of the model parameters. For a

normal linear model, the posterior density is a function of a multivariate t, thus making

the analytical calculation of functions of the parameters difficult. We use Monte Carlo
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Integration (MCI) as proposed by Kloek and van Dijk (1978) and van Dijk and Kloek

(1980) and further studied by Geweke (1986). This methodology is sufficiently general,

allowing the computation of the posterior distribution of arbitrary functions of the

parameters of interest and enables exact inference procedures that is impossible to treat in

a sampling-theoretic approach.  We apply this methodology on monthly MSCI country

and sector returns and such style factor mimicking portfolios as value, growth, debt and

size, from 1988 until 1998.

The structure of the paper is as follows. In the next section we develop our Bayesian

MCI methodological framework for style analysis under both equality and inequality

constraints. Section three is devoted to the analysis and interpretation of our empirical

results on monthly MSCI data. We conclude and provide thoughts on future research in

section four.

2. Methodology

Following the seminal work of Sharpe (1988, 1992) our portfolio returns Y can be

attributed to a number of style factors X such that

0 and 1

s.t.

!=

+=

!!

!

1'

UXY

(1)

where Y is a vector of T observations of portfolio returns, X a matrix of T observations for

K style factor returns, !  a vector of K style factor betas, 1  is a vector of units  and

),0(~ 2INU " . The least squares estimation of !  in the above model is a constrained

quadratic program. The solution under equality constraints is available in closed-form

and its distributional properties known. When inequality constraints are imposed in

addition, the solution requires iterative optimization, see Judge and Takayama (1966), but

the distributional properties of the estimator are not known. Davis (1978) provides a

solution for the latter problem which requires that one knows which constraints are

binding, an implausible assumption for Sharpe style analysis. One solution to that
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problem is to view the style regression from a Bayesian perspective and impose the

parameter restrictions in the form of information encapsulated  in the prior distribution.

Then, using the posterior distribution one can estimates moments and other functions of

the style parameters by means of Monte Carlo Integration.

2.1 A Bayesian Decision-Theoretic Approach

Implementing  the Bayesian-Monte Carlo Integration approach, we first impose the

equality constraint by restating model (1) in deviation form from the k-th style return

0 and 1

s.t.

*

****

!"
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UXY

(2)

where t-th elements of the new variables is tktititktt xxxxyy ,,

*

,,

*
 and #=#= , where i  =

1,…,K-1 is the i-th column of X. Now *!  is a vector of K-1 elements and the K-th beta

can be obtained from *1 !1'# . In our standard Bayesian framework *!  is formally

treated as a random variable in population and all elements of X* are independent of each

other and of 2*  and  , "!U . Then, by Bayes law the posterior density of *!  and 2"  is

given by

( ) ( ) ( )2***2***2* ,Prior     ,, Likelihood,,Posterior "!"!"! $= XYXY

which is the product of the likelihood function and the prior density. Following van Dijk

and Kloek (1980) our prior is composed of an improper uninformative component

regarding 2"  and an informative one regarding *! , which for style analysis it captures

our prior knowledge  0 and 1 ** !" !!1' . By independence

( ) ( )*12* ,Prior !""! q#= (3)

where

( )
%
&
' !"

=
                    otherwise0

0 and 1 if1 **
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q
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Under multivariate normality for U, it can be shown that the likelihood function is

proportional to

( ) [ ]
(
)
*

%
&
'

##+#+ #
)(')'(ˆ

2

1
exp,

****2

2

***
bXXbvXYL

T
!!"

"
""!

where )()'(ˆ ****2 bXYbXYv ##=" , **1** ')'( YXXXb #=  is the OLS estimator and

1+#= KTv . Combining the likelihood and the prior density yields a joint posterior

density function  which is proportional to

( ) [ ] ( )*****2
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 Standard analysis1 to integrate "  out yields the marginal posterior probability density

function of vector *! , which is recognized as a multivariate t density with mean zero,

variance **

2
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and ( ).$  is the gamma function.

2.2 Estimation by Monte Carlo Integration

We shall follow the methodology proposed by Kloek and van Dijk (1978) and further

studied by van Dijk and Kloek (1980). For any function ( ).g , the point estimator of

( )*!g  is given by

                                                                
1
 See Judge et al (1985)
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( )( )
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The numerical implementation of the above estimator using Monte Carlo procedures

requires the specification of a density function ( )*!I  from which random draws of *!

will be drawn; this is called importance function and is a proxy to the posterior density

with convenient Monte Carlo properties. We can then have

( )( ) ( ) ( )
( )

( ) **
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****

***
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!!
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XYgE 2 3

3

4

5

6
6

7

8
=

where the expectation is now taken over ( )*!I . Let **

2

*

1 ,...,, N!!!  be a set of N random

draws from ( )*
!I , then we can prove that

( ) ( )
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**** Posterior 1
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XYg
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ii
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!!
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(5)

apart from a normalizing constant which can be calculated separately. Since ( )*!I  is

supposed to be a proxy to the posterior distribution, the standard Bayesian analysis of the

normal linear model in section 2.1 suggests that we could choose the multivariate t

density. In this case our MCI estimator will be reduced to

( ) ( )*

1

*1
i

N

i

i qg
N

!!9
=

(6)

In our Monte Carlo procedure we generate multivariate t-distributed vectors *

i!  as

follows. We first derive the Cholesky decomposition of the OLS estimator covariance

matrix such that

1**2 )'(ˆ' #= XXAA "

and then generate a K-1 vector zi of independent standard normal random variables. Then

the i-th replication of *

i!  will be

i
z * Abi +=!



7

drawn from a (K-1)-variate normal density. This can be converted to a t-distributed draw,

by generating a #  vector wi of independent standard normal variables and writing

2

1

*

'
 33

4

5
66
7

8
+=

ii

i
ww

Ab
#

!
i
z (7)

which is t-distributed with #  degrees of freedom. Thus our parameter estimates can now

be obtained using (5) and ( ) **

iig !! = . Similarly we can obtain estimates of higher

moments of *!  or any other functions of interest.

The Bayesian MCI approach offers exact inference which is discussed in van Dijk

and Kloek (1980), Geweke (1986) and Kim et al (2000). In a different context, Lobosco

and DiBartolomeo (1997) pointed out the problem of the lack of a precision measure for

the style regression coefficients and proposed an approximate method based on Taylor

expansions. However, the latter approach is valid only in the special case in which none

of the true style coefficients are zero or one, thus excluding empirically relevant cases.

Kim et al (2000) also apply the results of Andrews (1999) and develop a comparable

Bayesian method to obtain statistically valid distributions and confidence intervals

regardless of the true values of style weights.

3. Style Analysis in the MSCI Sector Portfolios2

We apply the Bayesian MCI approach to perform Sharpe Style analysis for capitalization-

and equally-weighted portfolio returns, representing the sectors of Morgan Stanley

Capital International universe from 1988 until 1998. Our data set is identical to the one

used by Hall et al (2002) and Christodoulakis and Satchell (2002), thus making some

direct comparisons possible. Briefly,  our time series consist of 120 data points for 1154

stocks, thus our data matrix of equity returns is 1154120$ . The MSCI universe we use is

drawn from twenty one countries and nine sectors, where the nine sectors are regrouped

to six: Basic Industries, Capital Goods, Consumer Goods, Energy, Financial, and the

                                                                
2
 I would like to thank Steve Satchell and Soosung Hwang for providing the data set.
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Other group (Resources, Transport, Utilities and Other Sectors). An inspection of the data

uncovers substantial differences in the value and the number of equities in different

sectors. This arises naturally for a number of reasons. It is therefore useful to consider

value-weighted returns versus equally weighted returns. A natural value weighting

scheme would be to consider, at each point in time, the value of the i-th stock relative to

the value of the group of stocks within its sector. In particular

9
=

=
k

N

i

k

ti

k

tik

ti

S

S
w

1

,

,

,

where k denotes the k-th sector, Nk is the number of stocks in the k-th sector, 
k

tiS ,  is the

US dollar market value of equity i in the k-th sector and 1
1

, =9
=

kN

i

k

tiS  for all k.

Since style factors are typically latent, we use style factor mimicking portfolios

(FMPs) as a proxy. That is we construct portfolios of assets that mimic the style factors

themselves in that their returns are designed to be highly correlated with the

(unobservable) factor values or their equilibrium risk premiums. The theory of factor

mimicking portfolios is discussed in Huberman et al (1987), Lehman and Modest (1988)

and Connor and Linton (2000). In constructing FMPs, for each factor Xi the entire MSCI

universe is ranked according to an attribute of Xi. As in Hall et al (2002) and

Christodoulakis and Satchell (2002), we use style attributes for Value, Growth, Debt and

Size defined using observable company data.3 For each attribute, Xa, an equally weighted

hedge portfolio is then constructed which is long the top n-tile and short the bottom n-tile

of the MSCI universe ranked by Xa. The resulting hedge portfolio is the factor mimicking

portfolio of factor X. A better diversification is produced for small n, thus our data set is

constructed for n = 3. Some data providers construct style indices based on measures

which attribute Growth, say, to non-Value stocks. In contrast to the latter approach we

prefer a dual sort, thus recognizing stocks that are ‘growth at the right price’, i.e. cheap

(Value) Growth stocks.
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We have set the number of Monte Carlo replications equal to 106  and have used

GAUSS language as our computational platform. In performing MCI we need to specify

the importance function ( )*

iI ! . A first candidate is the multivariate t distribution as

dictated by standard Bayesian analysis of the normal regression model with an

uninformative volatility prior. We specify its parameters by adopting the OLS estimators

1**2 )'(ˆ and #XXb "  and experimenting with # . We found our results to be insensitive to

the choice of # , so we set 4=# . We also found it was not necessary to multiply

1**2 )'(ˆ #XX"  by any constant as van Dijk and Kloek (1980) mention in page 315. Our

normalization constant in equation (5) is obtained by setting g = 1 in (5) and taking the

inverse.

We present our empirical results for the six capitalization- and value-weighted MSCI

sector portfolios in tables I to VI. For comparison reasons we also report OLS and

equality-restricted OLS estimates. We observe that unrestricted OLS produces Value and

Growth portfolio weights that violate both the positivity and equality constraints in all six

sector portfolios. Equality-restricted OLS still violates the positivity but to a lesser extent,

primarily for the Value factor.

-- Insert Tables I and II around here --

Inspecting our results from the Bayesian Monte Carlo Integration approach, we observe

that this methodology always produces positive portfolio weights which sum to unity.

Since the MCI results are based on the empirical posterior density of the *!  vector, it is

flexible enough to produce estimates of more complicated functions than the mean. In

particular, tables I to VI report estimates of standard errors, skewness and kurtosis

coefficients as well as the Bera-Jarque normality statistic. It is evident that most of the

beta coefficients are highly non-normal exhibiting positive skewness and in some cases

excess kurtosis. There is only one case in which normality cannot be rejected, namely the

                                                                                                                                                                                                
3
 For the explicit definition see Christodoulakis and Satchell (2002)
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weight of size style factor for the capitalization-weighted energy sector portfolio. Also, a

small number of style portfolio weights exhibit non-normality to a smaller extent

compared to the majority of weights, e.g. the value factor weight for the capital goods

sector and the debt factor for consumer goods and capital goods, due to platikurtosis.

-- Insert Tables III and IV around here --

The Bayesian MIC values of the value and growth factor weights for our six

different portfolios range from 0.20 to 0.27 for both the capitalization- and equally-

weighted portfolios. Similarly, the size style weight takes values from 0.08 to 0.31 whilst

the debt factor takes values from 0.09 to 0.46. Thus, contrary to existing evidence

presented in Hall et all (2002) our approach presents evidence that style factors do

explain the return performance of the MSCI sector portfolios fairly uniformly for the

period of 1988 to 1998.

-- Insert Tables V and VI around here --

Our exact inference procedure provides easily constructed confidence intervals for the

point parameter estimates. The latter can take the form of a Bayesian Highest Posterior

Density (HPD) interval ( )UL,  which, for a given confidence level 1-a, is given by the

shortest interval over which the cumulative posterior probability equals 1-a. Following

Kim et al (2000) the interval ( )UL,  is be given by ( )*

1,,0 ai #!  if

( ) ( )***

1,

** ,posterior,0posterior XYXY ai #> !  where 
*

1, ai #!  is the value of factor weight at

which the cumulative posterior probability equals a#1 . Further, if

( ) ( )***

1,

** ,posterior,0posterior XYXY ai #= !  then the shortest interval ( )UL,  can be

found numerically. We graph the empirical posterior distribution for the four style factor
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weights on the MSCI Energy sector4. An inspection uncovers clearly the effects of the

non-negativity constraints which appear to be binding in all eight cases, thus truncating

the posterior density of the beta coefficients. Note that the effect of the truncation is

smaller for the size style factor which also deviated less from the normal distribution.

-- Insert Graphs around here --

4. Conclusions

We have presented a framework for Sharpe Style Analysis in the MSCI sector portfolios

from 1988 to 1998. Following Kloek and van Dijk (1978) and van Dijk and Kloek (1980)

we consider style portfolios from a Bayesian perspective and can formally incorporate

non-negativity constraints for the beta coefficients through a appropriately specified prior

density function. We can estimate any function of the parameters of interest using the

Monte Carlo Integration method. The framework allows for exact inference procedures

that have been further studied in an asymptotic framework by Kim et al (2000). Also,

Andrews (1999) provides an asymptotically valid inference procedure for parameters on

the boundary.

Contrary to existing studies, our empirical results provide evidence for a relatively

uniform significance of style factors in determining the MSCI sector portfolio returns for

the given sample period. We also observe that non-negativity constrains are strikingly

binding in the majority of the cases, thus truncating the posterior distribution of beta

coefficients. In a few cases beta coefficients can be well represented by normal densities.

Future research involves the development of a MCI methodology for betas and

volatility that follow conditionally stochastic processes over time as in Christodoulakis

and Satchell (2002). This approach would maintain the normality assumption in its

conditional form whilst would allow for unconditional non-normality, see Geweke (1989)

and Koop (1994) for similar work in the ARCH volatility framework.

                                                                
4
 Because of space requirements we do not present distribution graphs for the remaining five portfolios.
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Table I. Basic Industries, 1988-1998

OLS OLS-Restricted Bayesian Monte Carlo Integration

Beta Std Error Beta Std Error Beta Std Error Skew Kurtosis B-J Stat

e

v

c

v

!

!
-0.1458
0.0305

0.0209
0.0195

0.0494
0.3359

0.2009
0.1919

0.2574
0.2786

0.1883
0.2011

0.7477
0.6977

2.9115
2.7880

166.4
179.8

e

g

c

g

!

! -1.0434

-1.2444

0.0426

0.0397

-0.3779

-0.2033

0.2816

0.2690

0.2244

0.2150

0.1758

0.1760

0.9509

0.9883

3.4066

3.4611

280.4

371.9

e

s

c

s

!

! 0.5222

0.2955

0.0278

0.0259

0.7256

0.6137

0.2819

0.2692

0.1310

0.1054

0.1083

0.0940

1.3381

1.6101

5.0076

6.1976

830.1

1859

e

d

c

d

!

! 0.5493
0.1700

0.0008
0.0078

0.6029
0.2537

0.0865
0.0826

0.3873
0.4010

0.2228
0.2318

0.1936
0.1563

2.1110
2.0657

69.73
87.64

Note: (c) capitalization-weighted, (e) equally-weighted, (v) value, (g) growth, (s) size, (d) debt, 10
6
 replications

Table II. MSCI Capital Goods, 1988-1998

OLS OLS-Restricted Bayesian Monte Carlo Integration

Beta Std Error Beta Std Error Beta Std Error Skew Kurtosis B-J Stat

e

v

c

v

!

!
-0.5714

-0.2260

0.0179

0.0175

-0.2725

0.0917

0.1770

0.1742

0.2669

0.2360

0.2034

0.1883

0.6148

0.9584

2.2711

3.4135

19.83

175.7

e

g

c

g

!

!
-0.6752

-1.0714

0.0364

0.0356

0.3441

0.0118

0.2481

0.2442

0.2530

0.2365

0.2030

0.1953

0.9369

1.1146

3.2782

3.8451

34.83

259.7

e

s

c

s

!

!
0.0624
0.2000

0.0238
0.0232

0.3739
0.5311

0.2483
0.2445

0.1012
0.0926

0.1003
0.0967

1.6857
2.1739

6.2235
9.0893

211.2
2558

e

d

c

d

!

!
0.4725

0.2782

0.0072

0.0070

0.5545

0.3653

0.0762

0.0750

0.3790

0.4349

0.2413

0.2454

0.3297

0.0495

2.0854

1.9605

12.34

49.83

Note: (c) capitalization-weighted, (e) equally-weighted, (v) value, (g) growth, (s) size, (d) debt, 10
6
 replications
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Table III. MSCI Consumer Goods, 1988-1998

OLS OLS-Restricted Bayesian Monte Carlo Integration

Beta Std Error Beta Std Error Beta Std Error Skew Kurtosis B-J Stat

e

v

c

v

!

!
-0.6730

-0.3765

0.0150

0.0153

-0.4514

-0.1382

0.1467

0.1510

0.2251

0.2030

0.1977

0.1745

1.2277

1.1098

4.2956

3.7228

74.82

233.6

e

g

c

g

!

!
-0.0174

-0.4242

0.0305

0.0313

0.7383

0.3884

0.2057

0.2116

0.2721

0.2460

0.2101

0.1974

0.7939

0.9097

4.2956

3.1606

24.68

143.0

e

s

c

s

!

!
0.1481

0.2492

0.0199

0.0204

0.3790

0.4975

0.2059

0.2118

0.1024

0.0860

0.1035

0.0856

1.7552

1.9238

6.4459

8.0499

234.9

1728

e

d

c

d

!

!
0.2732
0.1869

0.0060
0.0061

0.3340
0.2522

0.0632
0.0650

0.4005
0.4650

0.2477
0.2402

0.1656
-0.045

1.9433
2.0654

11.90
37.81

Note: (c) capitalization-weighted, (e) equally-weighted, (v) value, (g) growth, (s) size, (d) debt, 10
6
 replications

Table IV. MSCI Energy, 1988-1998

OLS OLS-Restricted Bayesian Monte Carlo Integration

Beta Std Error Beta Std Error Beta Std Error Skew Kurtosis B-J Stat

e

v

c

v

!

!
-0.6238
-0.4408

0.0167
0.0180

-0.2088
-0.0331

0.1733
0.1844

0.2067
0.2179

0.1637
0.1693

1.0315
0.9241

3.7633
3.3913

692.30
504.06

e

g

c

g

!

!
-1.0485

-1.3722

0.0340

0.0367

0.3666

0.0179

0.2429

0.2585

0.2144

0.2248

0.1697

0.1776

0.9453

0.9340

3.3659

3.3608

530.61

511.26

e

s

c

s

!

!
0.2886
0.4928

0.0222
0.0240

0.7212
0.9177

0.2431
0.2588

0.3102
0.2577

0.1339
0.1286

-0.017
0.3057

2.8026
3.1525

5.7456
56.076

e

d

c

d

!

!
0.0072

-0.0141

0.0067

0.0072

0.1210

0.0976

0.0746

0.0794

0.2687

0.2995

0.1724

0.1880

0.4473

0.4072

2.4532

2.4255

157.31

140.30

Note: (c) capitalization-weighted, (e) equally-weighted, (v) value, (g) growth, (s) size, (d) debt, 10
6
 replications
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Table V. MSCI Financials, 1988-1998

OLS OLS-Restricted Bayesian Monte Carlo Integration

Beta Std Error Beta Std Error Beta Std Error Skew Kurtosis B-J Stat

e

v

c

v

!

!
-0.6947

-0.4466

0.0198

0.0175

-0.5659

-0.1557

0.1888

0.1728

0.2137

0.2083

0.1707

0.1747

0.9687

1.0972

3.4139

3.7558

292.07

756.55

e

g

c

g

!

!
-0.2324

-0.6233

0.0403

0.0356

0.2067

0.3686

0.2646

0.2423

0.2687

0.2477

0.1952

0.1943

0.7178

0.8932

2.8463

3.1602

155.14

451.87

e

s

c

s

!

!
0.7166
0.3305

0.0263
0.0232

0.8508
0.6337

0.2649
0.2425

0.1851
0.1058

0.1228
0.0894

0.8937
1.6719

4.3954
7.1986

382.62
4046

e

d

c

d

!

!
0.4731

0.0736

0.0079

0.0070

0.5084

0.1533

0.0813

0.0744

0.3325

0.4382

0.2084

0.2362

0.3581

-0.040

2.2777

1.9649

77.002

151.40

Note: (c) capitalization-weighted, (e) equally-weighted, (v) value, (g) growth, (s) size, (d) debt, 10
6
 replications

Table VI. MSCI Other Sectors, 1988-1998

OLS OLS-Restricted Bayesian Monte Carlo Integration

Beta Std Error Beta Std Error Beta Std Error Skew Kurtosis B-J Stat

e

v

c

v

!

! -0.5608

-0.3842

0.0165

0.0165

-0.2758

0.0130

0.1634

0.1703

0.2088

0.2316

0.1709

0.1797

1.0630

0.9523

3.6624

3.3994

294.62

625.03

e

g

c

g

!

!
-0.7548

-1.1676

0.0335

0.0336

0.2172

0.1867

0.2290

0.2387

0.2389

0.2301

0.1895

0.1846

0.8549

0.9415

2.9717

3.2998

173.73

599.99

e

s

c

s

!

!
0.3311

0.2687

0.0219

0.0219

0.6282

0.6826

0.2293

0.2390

0.1039

0.1231

0.0907

0.0905

1.5919

1.2536

6.4776

5.3875

1320.8

1978.1

e

d

c

d

!

!
0.3521

0.0088

0.0066

0.0066

0.4303

0.1177

0.0703

0.0733

0.4485

0.4151

0.2332

0.2247

-0.049

0.0342

2.0008

2.0392

59.915

153.13

Note: (c) capitalization-weighted, (e) equally-weighted, (v) value, (g) growth, (s) size, (d) debt, 10
6
 replications
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