
Faculty of Science and Technology
Department of Computer Science

Developing a Local-First Application with Automerge

Stian Økland
INF-3981 Master’s Thesis in Computer Science - June 2021

This thesis document was typeset using the UiT Thesis LaTEX Template.
© 2021 – http://github.com/egraff/uit-thesis

http://github.com/egraff/uit-thesis

“There is no cloud, it’s just someone else’s computer”
–Twitter sticker

“You have to stop procrastinating that bug fix,
that bug is not going to fix itself ... Probably”

–Delaina Moore

Abstract
In modern time, cloud services have been the go-to approach to store infor-
mation and documents, and cloud makes documents accessible for users and
make it easier to manage items. Cloud is an excellent option to have when
data need to be available, but what if collaboration is only needed a few times
a week? Once a month? Or unstable connection leading to disconnection to
the network? A solution is a Local-first approach. This means all items and
documents a user has created is store locally on the device it is created on and
provide a feeling of ownership to what is created. Local documents are treated
as primary copies, and potential backups stored in an external cloud own by
big companies are secondary copies.

Different communication technologies are explored, tested, and evaluated in
this thesis in combination with a Local-fist approach and Automerge. A pro-
totype is developed to connect all these ideas and concepts and to better
understand which technologies do fit together and provide the necessary fea-
tures to achieve a Local-first application for collaboration between computers
and mobile.

Acknowledgements
I would like to thank my supervisor Weihai Yu for his guidance and help
through the process of writing this master thesis.

Thanks tomy classmates for coffee breaks, interesting conversations andhealthy
distraction during the stressful times of writing.

I would also like to thank my family and friends for supporting me through
ups and downs during all five years of studying at UiT.

Contents
Abstract iii

Acknowledgements v

List of Figures ix

List of Listings xi

1 Introduction 1
1.1 Goals . 2
1.2 Method . 2
1.3 Outline . 2

2 Technical Background 5
2.1 Local-first . 5
2.2 Communication . 6

2.2.1 Hypertext Transfer Protocol 7
2.2.2 User Datagram Protocol 8
2.2.3 Transmission Control Protocol 9

2.3 CAP theorem . 11
2.4 Consistency . 12
2.5 Conflict-Free Replicated Data Types 13

2.5.1 State-based . 13
2.5.2 Operation-based . 14
2.5.3 Variations of CRDTs 14

2.6 Automerge . 15
2.6.1 Documents . 16
2.6.2 Frontend-backend protocol 18

2.7 Tools and Frameworks . 19
2.7.1 JavaScript . 19
2.7.2 React . 19
2.7.3 React Native . 20
2.7.4 Next.js . 20
2.7.5 Expo . 22

vii

viii contents

3 Design 25
3.1 Overall view . 25
3.2 Server . 27

3.2.1 Alternatives . 27
3.3 Web application . 28

3.3.1 Alternatives . 29
3.4 Mobile application . 30

3.4.1 Alternatives . 31

4 Implementation 35
4.1 Server . 35
4.2 Web browser . 37
4.3 Mobile application . 38
4.4 Common components . 39

4.4.1 Add a new document 39
4.4.2 Add a question . 40
4.4.3 Add a new answer 41

5 Evaluation 43
5.1 Testing . 43

5.1.1 Test devices . 43
5.1.2 Test methods . 44

5.2 Discussion . 45
5.2.1 Experience . 47

5.3 Future Work . 47

6 Conclusion 49

Bibliography 51

List of Figures
2.1 Server-to-server times between AWS datacenters around the

world. Data from Basilis et al.[2] and figure form Kleppmann
et al. [1]. 7

2.2 Overview of HTTP. 7
2.3 Overview of a UDP segment. 9
2.4 Overview of a TCP segment. 10
2.5 Example of how CRDT solves concurrent modification of the

same element. Figure from Meiklejohn et al. [17]. 13
2.6 State-based CRDT example. 14
2.7 Operation-based CRDT example. 15
2.8 Example where changes are not merged with other replicas

where these changes results in the same state as before the
changes where executed. 18

2.9 A workflow example of a system using Automerge. 18
2.10 Overview architecture for corss-platform application devel-

oped in React Native. 20
2.11 Home screen of Expo mobile app (a), with possibility to make

a user (b). 23

3.1 The overall view the system. 26
3.2 Peer-to-peer system. 28
3.3 Home page in web browser 29
3.4 Representation of a document set in JSON. 30
3.5 The home screen (a), and the pop-up window to add a new

document (b). 32
3.6 Screen to display content of a document (a), and the pop-up

window to add a new question (b). 32
3.7 Home screen with documents added to the list (fix this) (a),

and a question displayed in a document (b). 33

ix

List of Listings
2.1 Package corruption example. 9

4.1 Server to fetch and route all web pages in the system. 36
4.2 Server start with imports of libraries and start a socket to

handle communication. 36
4.3 Deleting a document. 37
4.4 Adding a new document. 39
4.5 Add a question to a document. 40
4.6 Add a new answer to a question. 41

xi

1
Introduction
Local-first software is a set of principles for software that enables both collab-
oration and ownership for users [1]. Local-first ideals include the ability to
work offline and collaborate across multiple devices while also improving the
security, privacy, long-term preservation, and user control of data. Local-first is
an "old fashioned" approach of developing a program, often used in programs
that require no communication with other programs or systems. In modern
time, Local-first has seen more use since offline is not necessarily a wrong state
or a system failure in some distributed systems.

Consistency (C) - referring to multiple nodes or sites having the same state of
a data set. Availability (A) - refers to data being available at all time. Partition-
tolerance (P) - refers to the system being functional and working when the
system is distributed over the network, but parts of the system are isolated from
each other. One of the challenges, as stated in the CAP theorem [6], is that we
can not guarantee strong consistency, instant data update when a site is offline
without sacrificing one of the three properties. In combination with Conflict-
free Replicated Data Types, the CAP theorem will provide availability, partition
tolerance and eventual consistency due to CRDT’s abilities when working with
replicated data over multiple devices. Consistency will be categorised as strong
eventual consistency, referring to devices that will eventually reach the same
state when the time taken between updates is of some extend.

CRDTs, or Conflict-free Replicated Data Types, emerged to address the CAP
challenges [7]. With CRDT, a site updates its local replica without coordination

1

2 chapter 1 introduction

with other sites. The states of replicas converge when they have applied the
same set of updates. There are many versions and approaches to CRDT, and
any of these versions can be combined. State-based and Operation-based are
based on how to deploy changes done to a local replica to remote replicas,
and versions like add-last-win, last-remove-wins and many more are based on
which modification done to the same element win when merged.

1.1 Goals

The main goal of this thesis is to develop a distributed application using
Automerge [15] as the core functionality for collaborations. Sub-goals are to
experiment, test and decide the additional technology to achieve the main goal.
Which type of communication method to use? Which type of devices is used
to collaborate through?

The main focus of the application is for users to be able to collaborate with each
other, and at the same time, be able to modify local replicas without connection
to a network.

1.2 Method

The research method for this thesis is exploratory and experimental, to help
find and test technologies to achieve the goal of the thesis.

1.3 Outline

Structure of this master thesis is as the followings.

Chapter 2 - Theoretical background Presents theoretical background about
Local-first, communication technologies like Hypertext Transfer Protocol, User
Datagram Protocol, and Transmission Control Protocol, CAP-theorem, Consis-
tency, Conflict-free Replicated Data Types, and Automerge. This is followed
by a presentation of tools and frameworks containing React and React Na-
tive library in JavaScript, as well as JavaScript itself. Next.js and Expo is also
presented.

Chapter 3 - Design Presents an overall view of the system, and closer descrip-
tion of design of the server,web application andmobile application. Alternatives

1.3 outline 3

for each design are presented in this section as well.

Chapter 4 - Implementation A section with more detailed explanation of
each part of the application, the core functionality of the application and some
features.

Chapter 5 - Evaluation Testing methods and testing devices are described in
this chapter alongside a discussion of test results and future work.

Chapter 6 - Conclusion A summary and a conclusion of this thesis.

2
Technical Background
This chapter gives a theoretical overview of concepts relevant to developing
our Local-first application. Section 2.1 describes Local-first. Section 2.2 will de-
scribe Hypertext Transfer Protocol (HTTP), User Datagram Protocol (UDP) and
Transmission Control Protocol (TCP) as concepts concerning communication
protocols, how they work and what these protocols provide in a distributed ap-
plication. The following sections are 2.3 CAP theorem, 2.4 consistency in more
detail, and 2.5 Conflict-free Replicated Data Types. Section 2.6 describes the
cornerstone used in this prototype, Automerge. The last section 2.7 describes
other tools and frameworks used to develop this prototype; the JavaScript
language, JavaScript libraries React and React Native, the React framework
Next.js, and Expo.

2.1 Local-first

In newer time, storing elements in the cloud has been themore attractive option.
Storing in the cloud does not only make the creator save disk space on the local
device, but all data uploaded to the cloud is accessible from everywhere in the
world with an internet connection. However, what if the user needs access to
documents or other files where the internet is not accessible? To answer the
question, storing elements the "old fashion"-way, locally.

Ownership of notes, documents, drawing, code, or other forms for storable

5

6 chapter 2 technical background

elements has always been important to the creators of these elements. The
first way of storing elements was local, meaning all writes and reads to these
elements was done locally, and all other elements on the same local device have
access to this element. As mentioned, applications used where the internet is
not always available needs a way to store and access elements.

Local-first is undisputed in cases where a user is not sharing any data with
anyone and not depending on a connection to get the work done. A Local-
first application runs locally on each users device, meaning changes can be
done locally without depending on a connection. This achieves complete
control for the owner and allows backups, manipulation of files or long-term
archiving.

Collaboration depends on the functionality of both Local-first and cloud-based
software. Ownership from Local-first combined with cloud as a possible option
for backup or storing personal user data. In traditional cloud-based software,
instances of a document stored in the cloud are considered the primary copy.
All other copies, downloaded or streamed, on local devices are secondary.
Local-first application is the polar opposite, where the local copy is primary,
and potential backup copies are secondary. The existence of multiple primary
copies is possible.

A Local-first approach is not suited for all kinds of application. Application
dependent on live updates, communication with other devices in real-time, or
latency-sensitive applications are examples of application not suited. Figure
2.1 is a representation of latency around the world. In a Local-first application,
latency is not only milliseconds or seconds delay, but also days, weeks or even
months. An important factor is that offline is not necessarily considered a
wrong state [1].

Another example is store applications. These applications use strong consistency
meaning a modification is viewed immediately by all parts of the applications.
In stores where money is used to buy items, the transaction has to be atomic,
meaning the transaction is fully completed or non of the operations concerning
the transaction is completed, resulting in no room for states to be eventually
consistent.

2.2 Communication

In a distributed system communication is key to get information and modifica-
tion across the system. This section describes three different technologies to
be associated with the network; Hypertext Transfer Protocol, User Datagram

2.2 communication 7

Figure 2.1: Server-to-server times between AWS datacenters around the world. Data
from Basilis et al.[2] and figure form Kleppmann et al. [1].

Protocol, and Transmission Control Protocol.

2.2.1 Hypertext Transfer Protocol

Hypertext Transfer Protocol allows fetching resources like HTML, videos, ads or
other resources to complete the web page and is the base of data exchanged on
the Web. The protocol is a server-client protocol, meaning requests are sent by
the recipient (clients), for example, a web browser and the server responds to
these requests. A document shown in the web browser consists of a collection
of elements from different fetched sub-documents, elements like text, videos,
and layout. Figure 2.2 illustrates the workflow of a web document fetching
necessary elements from different servers to complete the document.

Figure 2.2: Overview of HTTP.

Since the protocol is a client-server protocol, the client and the server is com-
municating with single messages, request from clients and response from the

8 chapter 2 technical background

server. The most common form of a client is a web browser, and they are always
the ones initiating the request. The web browser is requesting an HTML doc-
ument containing representations of the web page. This HTML file is parsed,
then other requests are sent to fetch corresponding scripts, layout, videos or
images. The complete page is a hypertext document and can display links to
other pages, resulting in fetching another web page based on the link. On the
other hand, the server has stored data in different formats and responds to the
client requests with the requested HTML document [20].

2.2.2 User Datagram Protocol

User Datagram Protocol (UDP) is a data transport protocol working on top of
the Internet Protocol (IP), and in comparison to other protocols, are a simple
protocol and are faster over the IP. Since UDP is a fast working protocol,
this often results in usage in application with time-sensitive requirements.
Such application can be video-streaming applications or online multiplayer
games.

User Datagram Protocol is lightweight, meaning mechanism like detecting
corrupt data in packages is provided, but detection of out of order packages or
missing packages is not.

Each packet sent over IP contains an 8-byte header and variable-length data.
Data in a User Datagram Protocol segment is the source and destination port
number, segment length and a checksum. A device connected to a network
can receive messages on different ports. The difference in port can help to
distinguish different types of traffic over the network. Next is the segment
length describing the length of the segment and are represented as 16 bits, a
16 character segment of 1´s or 0´s [21].

The checksum is used both by the sender and receiver to check for corrupt
data. The sender, based on the data in the segment, computes a checksum
and store the sum in the checksum field. On the receiving end, the receiver
does the exact computation on the data as the sender and compare it with
the senders’ checksum stored in the checksum field. If the two checksums are
compared equal, there is no corrupt data. If not, some data has become corrupt
in the process of sending packages over the network. Listing 2.1 illustrates how
checksum works when the sender sends ’Hola’, and some data packages get
corrupted along the way to the receiver resulting in ’Mola’ instead [21].

2.2 communication 9

Figure 2.3: Overview of a UDP segment.

Hola
01001000 01101111 01101100 01100001
=> 0100100001101111

+0110110001100001
=1011010011010000

Mola
01001101 01101111 01101100 01100001
=> 0100110101101111

+0110110001100001
=1011100111010000

Differences in checksum
1011010011010000
1011100111010000

Listing 2.1: Package corruption example.

2.2.3 Transmission Control Protocol

Transmission Control Protocol is, same as User Datagram Protocol, a transport
protocol, and solves many of the problems UDP does not provide a solution

10 chapter 2 technical background

to. These mechanisms handle package loss, corrupt data packages, and out
of order packages. Each package sent over the IP contains a header and data,
where the header can vary from 20 to 60 bytes. The reason is the options field
in the TCP segment [22].

In contrast to User Datagram Protocol, Transmission Control Protocol estab-
lishes a connection to the receiving device before sending packages. The
protocol is a three-way handshake, where the sending device sends a package
with a synchronisation (SYN) bit set to 1. The receiver set its own SYN bit to
1 and responds with an acknowledged back to the initiator. The initiator then
sends its acknowledgement back to the receiver to ensure both parts know
about each other.

Figure 2.4: Overview of a TCP segment.

Sending packaged requires the receiver to acknowledge the package and notify
the sender that the package was received. The sender sends a sequence number
alongside the package. The sequence number and acknowledgement number
helps both the sender and the receiver keep track of which packages were
successfully transmitted and which packages to be sent again. If the receiver
receives a higher sequence number than acknowledge number, a package is out
of order. The receiver notifies the sender that a package is missing. Reasons for
out of order can be differences in time on different routes through the internet,
or a package is just lost and never received at all. Either way, the receiver has

2.3 cap theorem 11

to assemble the correct sequence from all packages received.

2.3 CAP theorem

Below is a sort description of consistency, availability and partition-tolerance
in a distributed system.

Consistency Where strong consistency is guaranteed, there is a total order of
operations at all sites. Although these operations are done in a distributed
fashion, it appears like it is done on a single device. In a system with
shared memory, it is required that all operations are handled one by one
and not in parallel to avoid conflicts [4]. In a Local-first approached dis-
tributed system, consistency is weakened. Previously stated consistency
is all about copies being updated and documents having the same state.
For example, when the time is taken between every time connection to
a network happens. If an application is based on finding peers on a local
network, users must meet to get the update in a Local-first versus an
application based around the cloud.

Availability In a distributed system, each node receiving a request results in
a response. This means all nodes that is non-failing can send a valid
response (not an error) and be received within a defined timeout. A
weakness with this is how long does this algorithm run before terminating,
and potential resulting in unbounded computations [4].

Partition tolerance In a partitioned system, messages sent by one part of the
system are not received in the other parts of the system (communication
failure). Partition tolerance means that the system tolerates messages to
be lost during transport from one part to another part of the partitioned
system, resulting in a system working even if it is partitioned. Communi-
cation failure can occur in a distributed system, and most systems must
assume this failure will occur at some point [4][5].

CAP theorem states it is only possible to achieve only two of the three properties
above in a distributed system. The theorem describes that it is impossible to
develop a system that both response to every receiving request and return
the expected result every time, meaning the system is either consistent and
available (CA), consistent and partition tolerant (CP), or available and partition
tolerant (AP).

CA means the system will output the expected results every time, and a request
is always responded to. However, there is no room for the system to be parti-

12 chapter 2 technical background

tioned and hinder messages to be sent between the nodes and assure each node
has the same state. Consistency and partition tolerance tolerate the system to
be partitioned, and every response given is the correct one, but the time taken
to get a response from the system may take time due to fixing communication
failures. AP provides functionality when a communication failure occurs. Each
node can respond to a request, but the node may not be up to date and respond
with various results since the system can be partitioned.

2.4 Consistency

Computers in a distributed system executing data replication algorithms must
eventually contain an identical copy of a shared state. As all other systems
developed, the correctness of the overall system is essential, and a distributed
system may handle challenges that other systems are free of, like communi-
cating over the network. Replication algorithms come with different strength
of consistency guaranteed, performance and scalability. These algorithms can
be divided into strong consistency, eventual consistency, and strong eventual
consistency [14].

Strong consistency A distributed system with strong consistency will opti-
mally behave like a single node. Often, a system with strong consistency
will have a node responsible for handling the total order of operations
and preventing conflicts. Strong consistency may be difficult to achieve
in a bigger system since a system of greater scale may want to have more
than one leader and have these leaders have control over sub-parts of
the system, resulting in more communication has to go through these
leaders and can cause bottlenecks.

Eventual consistency A distributed system with eventual consistency guaran-
tees, if no new modifications, that all connected devices will eventually
have the same shared state. Even with a weaker consistency model, even-
tual consistency is able to provide better performance and scalability in
both peer-to-peer and decentralised systems. This model allows changes
to happen concurrently, but nodes in the system must communicate with
each other since conflicting changes may happen.

Strong eventual consistency A distributed system with strong eventual con-
sistency compromise between strong consistency and eventual consis-
tency. Nodes that receive the same updates will achieve the identical view
of the shared state even when the nodes receive the updates in different
orders. Nodes in a system with strong eventual consistency solve merge
conflicts by themselves and does not depend on communicating with

2.5 conflict-free replicated data types 13

other nodes. This makes this consistency model suitable for a system
without any central server or a leader deciding the operation order.

2.5 Conflict-Free Replicated Data Types

In a distributed system, the system needs to share data through communication
of some sort and must provide a way to have the same state of elements shared
on each device connected. Conflict-free Replicated Data Types (CRDT) is
designed to support temporary divergence to each replica,making the data type
a distributed type. Convergence is guaranteed to happen when all updates are
received at each replica, resulting in the same shared state on all replicas.

CRDT solves these problems by capturing information about the updates and
provides an algorithm to handle merge conflicts.

Figure 2.5: Example of how CRDT solves concurrent modification of the same element.
Figure from Meiklejohn et al. [17].

Figure 2.5 shows a simple example of how CRDT solve the problem when
two replicas do updates concurrently. In this example, a simple variable is
incremented and a max-operation determent in which sequence the updates
should be done [17].

2.5.1 State-based

State-basedCRDT achieves convergence between CRDT replicas acrossmultiple
devices by distributing the entire state of an updated state from a local replica
to the other replicas of the same document. The received state is then merged
with the local state of the receiving device. A CRDT of type state-base is a
triple (S, M, Q). The state S is a join-semilattice, which is a partially ordered set
containing a join. The Q is a set of query functions returning results without

14 chapter 2 technical background

changing the state. The M is a set of mutators, which performs the updates.
Figure 2.6 shows an example of how the system handle updates, and in this
case user 1 is adding a key-value pair of key2: value2 to its local replica. When
the replica is updated the whole state of the replica is sent/synced with the
remote replicas. The receiving user merges the already existing content of the
replica with the state revised.

Figure 2.6: State-based CRDT example.

2.5.2 Operation-based

The same goals as in state-based CRDT are strived to achieved in operation-
based CRDT. The main difference is that only the operation performed is sent
to the other replicas located on other devices when a document is updated.
On the receiving end, the device performs the same operation as the replica
the operation originated from. In figure 2.7, user 1 adds a key-value pair of
key2: value2 to its local replica. In contrast to state-based CRDT, only the the
add-operation is sent to the remote replicas. In this case the receiving user
does this operation to its replica.

2.5.3 Variations of CRDTs

There are many variation of CRDTs, and the list below presents some of the
more common ones.

Last-Writer-Win Last-Writer-Win prioritize the last write the be done to a
replica. Each write is marked with a time-stamp and the write with the
latest time-stamp is the winner, independent on which order the updates
are received.

2.6 automerge 15

Figure 2.7: Operation-based CRDT example.

Add-wins Add-wins states that if a replica receives multiple modifications
concurrent and the add-operation is then prioritized.

Remove-wins As in add-win, remove-win are prioritizing the remove-operation
received.

Semantic Resolution This solution stores all updates done to each replica,
and is up to the developer of the application to decide which update to
be the victorious of an potential merge conflict.

2.6 Automerge

Data-centric

Data-centric refers to architectures where data is primary and are compati-
ble with multiple applications. This means the application is built around a
data model and makes all components dependent on this model (reads and
writes). On the opposite, a data-driven approach is when the application handle
different types of data models [18].

Model objects

Model objects in JavaScript are referred to as data-centric classes and are
commonly used in almost all applications. These models can be both immutable,
which means a new object has to be created when doing changes, or mutable,
meaning the initial object can be changed [19].

16 chapter 2 technical background

Automerge

Automerge [15][16] is a library of operation-based JSON CRDTs used to build
applications with collaboration purposes in JavaScript. The approach of build-
ing an application in JavaScript is to handle states of the application in model
objects as in standard JavaScript. The library supports merging and syncing
automatically and is well fitted in a Local-first application. In cases where
multiple different devices, mobile- or web-application, are collaborating, each
device has a local copy of the application and can do local changes to their copy.
To be able to sync these local copies to have the same state is very important.
Automerge is handling this situation by finding the changes done to a copy and
sending a signified object to all connected devices to apply the same changes
to their local copy.

Network Since Automerge is a data structure library, the chose of commu-
nication is completely up to the developer. Client-server, peer-to-peer,
Bluetooth, and even USB driver sent in the mail. Automerge is also com-
patible with different web platforms like Chrome, Firefox, and Safari.

Immutable state An immutable object in Automerge is a snapshot of the
application state at one point in time. Whenever the user make a change
locally, and send or receive changes, a new state reflects the change. This
makes Automerge compatible with functional reactive programming
styles like React and Redux.

Automatic merging To allow concurrent changes to happen, Automerge is a
Conflict-Free Replicated Data Type (CRDT), with all its functionality.

2.6.1 Documents

Document

A document reflects the state of a single Automerge instance, and are deter-
mined by a set of all changes done to it. When two documents have seen the
same set of changes, even in different orders, Automerge ensures the two doc-
uments are in the same state. This implies that a document is strong eventual
consistent.

Operation

An operation is a description of a single modification, and is more fine-grained
than a change is. An operation changes to a single property of an object, like

2.6 automerge 17

inserting or deleting elements in lists.

Change

A change is defined as a collection of all operations grouped together and
applied atomically. Atomically meaning all changes are applied or non of them
are.

Documents are a big part of how Automerge works. After a new Automerge
instance is created, the first thing to do is to create a document. It is possible
to have multiple documents on the same local device and the documents only
exists in memory of the device creating it and requires no networking to handle
reads and writes access. To change the document, the user can either do it
locally or remote; both take the old state as the first argument and returns a
new state reflecting the changes.

Locally change This is the change done by the user via a user interface. Locally
Automerge.change() is called, and this function groups operations that
should be applied to an atomic unit.

Remote change This is when a user on another device is doing changes to their
local document and the changes are sent via the network. The changes
are applied to the users local document with Automerge.applyChanges(),
which return a new state reflecting the changes.

Automerge has the functionality to save documents to disk. All changes done
to the document are encoded to a string and stored. To load the document
from the disk, Automerge decodes the string and applies all changes to a blank
document. All documents stores a log containing modifications done, this log
is stored when a document is saved on the device and helps to reconstruct
the document when loaded into the application. Each document instance
is tagged with a UUID (Universally unique identifier), and each change is
numbered sequentially starting at one. This change is tagged with the UUID
and numbers, making them unique and distinctive from changes done by other
devices or other documents on the same device. This makes merging and
applying changes with/on other documents possible.

Changes in an Automerge instance may sometimes depend on earlier changes.
If an item contained in a document is created then removed by user X, but
none of these changes is received by user Y, no change will be done to user
Y’s local document. Figure 2.8 illustrate an example where user X adds 1 to
a variable a and then subtract 1 from the same variable before changes are
merged with the replica user Y has, therefor user Y does not need to merge this

18 chapter 2 technical background

changes with its replica since both changes results in the same state as before
the changes occur. In cases where a change will be applied to a document but
are dependent on other changes not applied yet, the first change is buffered
and applied in a later stage when the second change is registered.

Figure 2.8: Example where changes are not merged with other replicas where these
changes results in the same state as before the changes where executed.

2.6.2 Frontend-backend protocol

Automerge is split into two parts: a frontend and a backend. By being able to
separate the parts, each part can be run on different threads. Frontend running
on the same thread as the user application, while the backend can be run at a
thread in the background.

Without the separation, the frontend communicates with the backend by calling
functions directly. When separated, the backend can compute expensive tasks
in the background and send the results to the frontend, and this is directly
done when receiving changes from a remote device. On the other hand, user
interaction is first applied to the frontend before sending it to the backend.
Automerge does not handle inter-thread communication.

Figure 2.9: A workflow example of a system using Automerge.

Figure 2.9 shows the workflow of a system using Automerge. Each user sees

2.7 tools and frameworks 19

and interact with the user interface (UI), and the changes executed by the user
in the UI are done on a Automerge document where the content is represented
as a JSON-object. Content in t is JSON-object are used in representation of
data in the user interface. When changes are completed to one document, the
change is sent to other replicas of the same document over the network. CRDT,
as a part of Automerge, is responsible to merge incoming changes with already
existing data, and handle potential merge conflicts without communicating
with the other replicas to solve this conflicts.

2.7 Tools and Frameworks

2.7.1 JavaScript

JavaScript is a high-level, lightweight programming language. This language
is one of the go-to languages when developing a web application. One of many
things that make JavaScript so popular is the ability to compile changes to
a program or application while the program itself are running. Developing
a web application often concerns small changes, and being able to run the
compile without stopping the program each time a change is done makes
the development process much more manageable. It is a versatile language,
supporting object-oriented, imperative, and declarative programming styles,
and is a prototype-based, single-threaded, multi-paradigm, and dynamic lan-
guage.

JavaScript and Java is not the same language. Both are trademarks, but they
share many similarities like syntax, semantics, and use [3]. All technologies
concerning web or mobile development tested in this thesis are written in
JavaScript, and to know the basic of usage and why JavaScript is used in
libraries to be interacting with the web.

2.7.2 React

React is a JavaScript library created by Facebook. Unlike others, React is not a
framework and focuses on user interfaces (UI) and how to build a UI on the
frontend of the application. One aspect of React is the creation of components,
which can be seen as reusable HTML elements. These components make
building a user interface both quick and efficient. React combines HTML with
JavaScript to create usable web applications [8].

20 chapter 2 technical background

2.7.3 React Native

React Native is a combination of native development and React. Native de-
velopment means React Native provides a core set of components like View,
Text and Image, and are building blocks for user interface. React renders to a
native platform user interface, resulting in the application using the same plat-
form for APIs. By having standard APIs, React can be used in development of
cross-platform application, see figure 2.10, without creating platform-specified
versions of components used [9].

Figure 2.10: Overview architecture for corss-platform application developed in React
Native.

2.7.4 Next.js

When building a web application with complete functionality, there are impor-
tant details a developer has to take into consideration. How to use a webpack
bundle or compilers to visualize the application, optimization of code splitting,
or combining the web application with a server. A solution to these considera-
tions are contained in Next.js.

Next.js is a React Framework. It is used in React applications for its build-in
functionality like page-based routing, pre-rendering of pages both statically
and dynamically, and built-in CSS and Sass support, to name a few [13].

A page in Next.js is a React Component exported from a ’.js’. ’.jsx’, ’.ts’, or
’.tsx’ file (JavaScript or TypeScript). Each file represents a route based on its
file name. In a web application, each of these files represents a new page,
meaning one file is the home/start page of the application and all other files
are pages the user can go to via the homepage by clicking links, buttons or
other interactive components.

2.7 tools and frameworks 21

These pages are, by default, pre-rendered by Next.js. Next.js generates an
HTML for each page in advance. By being a step ahead, pre-rendering can
result in better performance, and the client-side JavaScript of the application
does not need to do the rendering. A minimal amount of JavaScript code is
associated with HTML, and this code is responsible for making the page fully
interactive when the page is loaded in a browser [12].

Static Generation Pages using Static Generation generates an HTML at build
time. This means the HTML is generated once and are used in each
request for the corresponding page. For performance, this HTML can be
cached. In cases where the pages do not fetch any external data, a single
HTML file is generated by Next.js for each file. When a page fetches exter-
nal data when pre-rendered, Next.js provides an asynchronous function
that handles fetching of the external data under pre-rendering. Asyn-
chronous means the program can request something and get a promise
in responds, promising the requested subject will be fetched concurrent
when other things are happening in the program.

Static Generation is default and is recommended to use when possible.
Since each page can be cached, the overall performance of the application
is better with Static Generation.

Server-side Rendering (SSR or Dynamic Rendering) Server-side rendering
is the opposite of static rending. When SSR is used, an HTML is generated
on each request received. Server-side rendering is often used in cases
where the frequently updated date is needed to render.

Server-side Rendering results in slower performance than the Static
Generation and are advised to only use when necessary.

Next.js has built-in CSS support. CSS, Cascading Style Sheet, is a mechanism
to style web pages. This sheet contains a description of fonts, colours, spacing
between objects and more [10]. Each page can have its own style sheet, or a
global style sheet can be imported to each document who wants to use it. A
global style sheet is often used to give a common theme for all pages connected
or want to have the same layout on each page. A combination of both is not
unusual since a global style sheet may only contain details about the site’s
frame and not colour pattern on text or buttons who occur on this page only
[11].

This framework in React allows developers to develop the web application
only using React. Traditionally, a web application is developed with an index
file in JavaScript containing functionality and an HTML file describing the
applications look, but Next.js combines all this in one framework.

22 chapter 2 technical background

2.7.5 Expo

To develop an application with React or React Native, Expo is a well functional
tool to use. It is a framework and a platform with tools to help the developer
to develop, build, and deploy the application, independent of which platform
the application is meant for. Android, iOS, and web uses the same codebase
of JavaScript, or TypeScript [23]. Expo is a versatile platform and fits both
new and experienced developers with options to start with a bare canvas of an
application or an application with more content for the user use as an example
of how to use React or React Native. This platform provides functionality like
a "plain" application with just JavaScript or TypeScript, build Android or iOS
builds, over the air update function, to name a few [24].

Although the many advantages to using Expo, there are some limitations.
Some of the limitations, like not all iOS and Android APIs, are available and
a minimum cap of OS versions. Expo has some requirements towards the
standard of technology of the devices used in development. Services like free
build and the size of the build are limited and may not fit other requirements
for the application like scalability. The last limitation is set towards developing
applications only targeting children under 13 years old due to strict guidelines
for Apple and Google, who owns platforms to download apps [25].

Figure 2.11a and 2.11b show the Expo app. Users of Expo can create a profile to
store projects the user has created or are a part of. The home screen provides
multiple choices; scan a QR-code, select a project stored in profile or open
a recently opened project. When a Expo program is run in a terminal the
QR-code appears in the terminal, or when testing already existing programs
the QR-code can be accessed if the webpage or repository provides it.

2.7 tools and frameworks 23

(a) (b)

Figure 2.11: Home screen of Expo mobile app (a), with possibility to make a user (b).

3
Design
This chapter gives an insight into the design choices for this application. Section
3.1 will describe the overall view of the Local-first application, section 3.2, 3.3,
and 3.4 will go into more detailed choices of each main part; server, web
browser, and mobile.

3.1 Overall view

The overall architecture of the prototype developed in this thesis is displayed
in figure 3.1. It is developed two different but relatively similar codebases; one
for mobile devices and one for computers. The codebase for the mobile does
not differentiate between frontend and backend, meaning all functionality is
run on the same thread, and no internal communication is required. Computer
code is separated, resulting in two internal code bases; one for the server and
one for the web browser. For a user to interact and use the prototype in a
web browser, the user has to run the server —more on how and why later in
this chapter. This architecture allows multiple mobile devices to connect to a
server. The computer hosting the server can have multiple frontend instances
in different web browsers and tabs within the same web browser as long as it
is on the same computer as the hosted server.

Devices connected through the server are able to modify Automerge documents
concurrently. Automerge provides the functionality when modifications are

25

26 chapter 3 design

done, like adding or deleting a document and adding, deleting or modify
content in an Automerge-document. Each device in this prototype has a set
containing all Automerge-documents the device is a part of. Since Automerge
provides strong eventual consistency, it is possible to have replicas exchanging
messages with modifications and each device handling merge conflicts, if any,
on its own.

Each mobile device and web browser instances have the option to create a
document. A newly created document has a title, and the rest are empty. This
empty space in a document can be filled with cards containing a question
and a set of answers. Since the application is Local-first, these changes can be
completed without a network connection, and the users can geographical be
anywhere as long as the device has power.

A potential scenario where this prototype can be used is in combination with
lecturing. The teacher or lecturer runs the server/web browser instance, and
students or participants are connected to the server with their mobile devices.
The teacher/lecturer creates an empty document fore the students/partici-
pants to add questions to during the lecturing. The prototype allows both the
teacher/lecturer and follow students/participant to answer the questions asked,
so if a fellow participant knows the correct answer, there may not be necessary
for the lecturer to answer. However, if an answer is incomplete or does not
have the right answer, there are possibilities to add more than one answer.
Automerge, with strong eventual consistency, will in this scenario make all
node see the same order of questions and the same order of answers, making
it identical on each device.

Figure 3.1: The overall view the system.

3.2 server 27

3.2 Server

The server is a dynamic server in a server-client approach. The idea behind
a dynamic server was to enable the possibility to use the system without a
connection and be dependent on other systems to work and be available the
times the userwants to access its documents. In this prototype, the server serves
as amiddleman for communication,meaning all clients,bothmobile devices and
the frontend in a web browser, has to go through the server to communicate
with other clients. A client sends a single message with a description or a
keyword to the server, and the server will then broadcast this message to all
devices connected except the sender of the original message.

To interact and use the forntend in a web browser, the server must be initiated.
The server fetches and routes all Next.js pages to be used in the browser, and
one of these pages serves as the home screen or home page of the prototype.
There is no requirement to have an internet connection to initiate the server,
but none of the communication functionality is available. If a connection possi-
bility is detected, the server will automatically connect, and all functionality is
restored.

The server is developed with a combination of Socket.io, Express and Next.js.
Socket.io is a JavaScript library and is used for networked application andmake
it possible to communicate between the server and the clients. To enable this
communication, Socket.io is divided into a server-side library and a client-side
library that creates bidirectional channels between each with a WebSocket
connection. Express is a framework to help develop backend web applications,
and does the routing and have the responsibility to respond to incoming
requests. Furthermore, Next.js is a framework to develop frontend applications
but does have functionality, as explained in 2.7 under Next.js, for server-side
rendering.

Next.js is the server application, Socket.io is the communication channel, and
Express is how and what to respond to requests from clients.

3.2.1 Alternatives

Server-client is an approach to handle communication between devices, and
to change this method will also change how communication works. Another
alternative is more of a direct approach to communicate, meaning a server is
not necessary. A possible alternative is peer-to-peer. With the use of the internet
or other wireless technologies to handle communication, this alternative is the
closest to achieving the goal of collaboration. Peer-to-peer is a direct-connection
oriented technology, meaning two devices can connect directly to each other

28 chapter 3 design

as illustrated in figure 3.2, and only depend on both devices having access to
the same technology.

Figure 3.2: Peer-to-peer system.

In a small system where networking is minimal, a server seems unnecessary
to initiate each time a connection has to be established. In this case, a direct
oriented connection is the better option since a central component is not needed.
The opposite happens if the system depends on communication with tens of
devices. A device must then route the message itself and find the closest device
it knows to the destination to forwarding the message to. Each device to receive
a message must do this process for the system to work.

3.3 Web application

The web application is the frontend of the prototype run on a computer and is
rendered in a web browser for the user to interact with. There is only one web
page at the moment that serve as the homepage, so there is minimal to route for
the server, but it is possible to add new pages to the prototype without changing
the backend. This end is developed with React and has the client part of the
Socket.io library, Automerge, and Next.js. Socket.io creates a WebSocket to be
able to connect and communicate with the server-side Socket.io. Automerge
is used to handle creating, deleting, merging and changing documents as a
reaction to what the user chooses to interact with on the web page and handles
possible conflicts on its own. Next.js provide additional HTML functionalities
to standard HTML.

The user has a few input fields and buttons to interact with on this web page
and is displayed in figure 3.3. As stated in section 2.6, to create, delete, or
change a document, the corresponding documents name must be known to
handle these operations. Therefore, each row of input/s requires a name. All
documents created locally or remote are displayed in "Documents", a JSON
representation of the documents.

Operations like creating or deleting a document do not require other informa-
tion or input than what to call the new document or the name of the document
to be deleted. The next operation is adding a question to a document. Here

3.3 web application 29

Figure 3.3: Home page in web browser

the first input is the name of which document to add to, and the second input
is the question to be inserted into the Automerge document.

The last operation requires more of the user to complete. Adding an answer to
a document requires the document name, an index number, and the answer.
Note that a question can have more than one answer.

Figure 3.4 represents a document with title "Test 1". In this prototype, the name
of the document is also represented as the documents ID. This document has a
list name "cards", which contain all questions and their answers. The question
"What is CRDT?" has index 0, so the user has to type 0 into the "Number of
question"-field in figure 3.3, to add an answer to this question. This question
has one answer, "Conflict-free Replicated Data Types". If "Test 1" receive a new
question, this question will have index 1.

3.3.1 Alternatives

The homepage can be seen as crowdedwith informationwhenmany documents
are created, with multiple questions and answers added. An alternative may be
filtering out the title of documents and making them clickable, directing them
to a new page containing content from the selected document. To list these
titles in sequential order will make it easier for the user to get an overview of
which documents represented. By pages only containing the content of single
document information will be easier to retrieve and modify.

In a web browser, the user interaction design is the easiest to change and has
to most options. Technology chose to render the page and handle operations is
mainly chosen between using React or an index/HTML combination. React is
more of an object-oriented approach with classes and components which can be
reused, and a web page can be developed in a single document. Index/HTML

30 chapter 3 design

Figure 3.4: Representation of a document set in JSON.

combination has an index file written in JavaScript handling functionality and
computations, and HTML file handling the visual aspect of a webpage.

3.4 Mobile application

The prototype running on a mobile device is developed in React Native, with its
own Socket.io and Automerge. Socket.io provides functional communication
to the server-side Socket.io. Automerge is used to create, delete, merge, and
change documents to react to what the user chooses to interact with in the
mobile application. The mobile application has a simple look, the homescreen
is shown figure 3.5a. With only two buttons for the user to use, there is minimal
interaction on this screen. The button on the top right is to connect to a server,
and when used, the user gets a pop-up window to insert the IP address to the
computer the server is run on. The inserted IP address is displayed under the
prototype’s title to remind the user on which IP the user is connected to. There
is no check for if the inserted IP is valid or the inserted number is formatted as
an IP address and the prototype will try to find a Socket.io instance listening
on the inserted IP.

The other button is located at the bottom of the screen to make it easier to
reach on a touch-screen since adding a new document is used more frequently

3.4 mobile application 31

than connecting to a server. Adding a new document is also achieved inside
a pop-up window, see figure 3.5b. Only the name is acquired to create the
document. Using a pop-up window, the window functions as an alert for the
user that the user itself is about to do an action. The list appears in the middle
of the screen; see figure 3.5a for reference, and is scrollable inside a designated
area of the screen, making the list easy to access. The button to add a document
does not follow the list and disappear down the screen. So even if the user has
multiple documents created or newly load the screen, the user does not need
to scroll down to the bottom of the list to find the button. Figure 3.7a illustrate
this feature.

What the user sees in the second screen depends on which document -item
in the list- chosen, figure 3.6a show a new, unmodified document. The only
thing the user can do is add a question -a card- to the selected document. The
button and list on this screen are identical to the homescreen. Figure 3.6b
shows the pop-up window the user gets when adding a new question. The list
has its area to render in, and the button is at the bottom of the screen. Each
question in the document is displayed as cards with the question as the title of
the card at the top, a list of answers, if any, in the middle, and a button to add
an answer to the question on the card, figure 3.7b shows a card with a question
and two answers. Answers are appended to the list of answers by inserting the
answer in the input field displayed on the card and by pressing the button on
the card.

Since the mobile application has multiple screens the user can interact with
and require access to the network, there are components located in a common
shared file. This file contains the communication functionalities and holds
multiple shared variables to be accessible.

3.4.1 Alternatives

Alternatives for the home screen are to make it even more straightforward
than it already is by making the document list and functionality to add a new
document to its own screen. This makes it more distinct to functionality added
in the future and makes it an option to let users categorise or put documents
in groups shared with different people.

Technology options for developing a mobile application are many. It is more
of a preference for the developer to choose the technology that suits best and
provides the necessary requirements for developing and deploying a mobile
application.

32 chapter 3 design

(a) (b)

Figure 3.5: The home screen (a), and the pop-up window to add a new document
(b).

(a) (b)

Figure 3.6: Screen to display content of a document (a), and the pop-up window to
add a new question (b).

3.4 mobile application 33

(a) (b)

Figure 3.7: Home screen with documents added to the list (fix this) (a), and a question
displayed in a document (b).

4
Implementation
This chapter describes the implementation details of the prototype. The proto-
type is used to demonstrate the functionality of Automerge and how Automerge
fits in a distributed application with a Local-first approach and requirement
of collaboration and offline as a non-failure state. All parts of this project are
developed in JavaScript. Section 4.1 gives a description of the server, 4.2 the
part shown in the web browser, 4.3 the application running on the mobile
device, 4.4 describe common components independent of which device the
prototype is running on.

4.1 Server

The server is the backend part of the web application and consists of two parts.
Part one is a preparation phase, and part two is the functional server running
when the web application is running. The preparation is a sequential section
of importing the necessary libraries; Express, Next.js, and Socket.io. The next
step is to set a boolean to decide if the server is to run in developer mode or
not. Since this is a prototype, the system is run in developer mode for enabling
hot-reload. Then a request handler from Next.js is initiated; this handler is
a default function handling incoming messages and requests for the server.
Part two of the server is the app. The app returns a promise, which allows the
developer to use a then-function to attach a pipe—the then-function initiate
Express, which fetches all routs and returns them to the request handler. Ex-

35

36 chapter 4 implementation

press uses pages, a page is a site in the web application, and when routed, the
application can fetch the correct page when the page is up to show, listing 4.1
is the code to achieve routing.

const server = express()

server.get(’*’, (req, res) => {
return handle(req, res)

})

Listing 4.1: Server to fetch and route all web pages in the system.

Communication is provided by using socket.io; see listing 4.2. Socket.io estab-
lishes channels between the Socket.io server and the clients with a WebSocket
connection and uses HTTP as a backup. WebSocket uses a TCP to establish a
handshake with the client. The server only listens on a specified port, and the
client is responsible for initiating the handshake process. When connected, the
client can get the server to forward messages with a specified keyword or a
short sentence to describe the purpose of the message or what the server must
do.

In the pipe, multiple cases are covered. Listing 4.2 shows a io.on function
which applies all corresponding functions to a socket when connections are
established. Socket.on functions are input-dependent, meaning which func-
tions called are dependent on what the user chooses to do. There are multiple
socket.on instances. Each one of them is triggered by the "\\message or instruc-
tion" input parameter. "\\parameters" is a set of inputs; the title of a document
and changes in string-form if the message concern modifications.

const sio = require(’socket.io’)
const http = require(’http’).Server(server)
const io = sio(http)

io.on(’connection’, (socket) => {
socket.on(’\\message or instruction’, ({\\parameters}) => {

\\operations
})

}

Listing 4.2: Server start with imports of libraries and start a socket to handle
communication.

4.2 web browser 37

4.2 Web browser

The web browser application is developed in React, and the homepage is a
React class component. By being a class, if necessary, the same page can be
replicated and reused.

This class has a constructor that contains states of pre-set variables and keeps
track of states. This constructor also binds functions within the class to be used
inside the class itself. React classes has an included function that can be used
to set variables or start WebSockets. This is a componentDidMount() function
which is called when the class is first run. By initiate and mount a WebSocket
instance of Socket.io, it will provide communication between the server and
the web browser without bothering the user to deal with it. Furthermore, the
class contains functions to add and delete documents, add cards -question
cards- to a document, and the user can add an answer to a question. For more
detail on these operations, see section 4.4.

Like all other web pages, HTML is required for the page to be rendered for the
user to see. On the page, the user has four rows of inputs and buttons. The first
row is inserted name and button to add a document, and the second is a name
and a button to delete the document. The third is the name of the document,
title of the question and button to add the question to the document, and the
last row is the document name, index number of the question, the answer to
be inserted, and the button to add the answer.

A privilege the user of a web browser instance of the application have is to
delete a document from the document set, shown in listing 4.3. Automerge
provides the function for deleting the document, but the document ID has to
be provided. The ID in this system is the name of the document.

let doc = docSet.getDoc(this.state.docname)
if (doc) {

docSet.removeDoc(this.state.docname)
}
this.setState({docarray : Array.from(docSet.docs)})

Listing 4.3: Deleting a document.

38 chapter 4 implementation

4.3 Mobile application

The mobile application is developed in React Native, and consist of one home-
screen and on dynamic screen. Both screens are represented as classes, the
same as the web application is a class, and can be reused if necessary.

The homescreen has a constructor containing states used inside the class. Since
React and React Native is similar a componentDidMount() function exists, but
since the application is an independent application and can be used on its
own, there is not always an available server to connect to. Instead, the class
contains a function to manually connect to a server through a pop-up window
at the homescreen. This function is run when the user insert an IP address as
input and tries to create a connection between the mobile and the server. If
successful, a client instance of Socket.io is established in a shared file and the
mobile user can communicate with the server through WebSockets.

This screen has two render functions, one for rendering components shown
regardless of whether the application are newly installed or been used for a
while, and one for rendering the document-list in themiddle of the screen which
is dependent on user-input. Each document created is displayed as independent
items in the list and are clickable through the native components React Native
provides. The homescreen class only contain functionality to create a new
document and insert it into a shared set containing all Automerge documents,
all other operations is dedicated to happen inside a document.

The second screen is dependent on which item the user select form the home-
screen. This class also contains a constructor with states in, but in contrast
to the homepage, do have a mounted function handling parameter sent to
this class, which in this prototype is only the name of the document selected.
Document name allow the application to fetch the document from the shared
document-set the screen corresponds to, and insert questions and find the
right question to add an answer to, see section 4.4 for more information about
these operations. Two render functions are also used on this screen. The first
renders all static component, and the second function render the cards created
when a user inserts a question. These cards contains a question and a list of
answers. To add an answer the user must use the text-input corresponding to
the question-card.

Both screens interactwith the network and the same set of variables, so variables
and the WebSocket is in a shared file. This makes them accessible for both
screens without creating a loop of imports between the two classes representing
the two screens. This shared file contain the document-set where all created
documents are stored, and the Socket.io instance to handle incoming and sent
messages for the whole mobile application.

4.4 common components 39

4.4 Common components

This subsection describes three common components. The components are
the same for both web and mobile, and are functionality for adding a new
document, adding a new question and to add an answer to a question.

4.4.1 Add a new document

Add a new document to a document set is shown in listing 4.4. Since a
document is immutable, changes can not be done directly to the document,
so the change must be done through a change function from Automerge. The
change function is called with a callback, meaning the state of the document
can be mutated. As shown in the 4.4, a new document is changed, to begin with,
but the change function takes a document as an input and returns a document.
In this prototype the change-function provided by Automerge creates a new
document instead of taking an existing one. When a document is created, a
change happens right away by changing the empty document to contain a title,
representing the document’s ID and an empty array to store cards.

A DocSet is a set containing all created documents, and for a document to be
contained in the set, the document has to be set. This set function takes an
ID and a document as input. The document is mapped with the ID, so when
the user is making changes to a document, the ID (documents name) must be
known before changing it. For the changes to mitigate to the other connected
replicas, the changes as to be detected and sent. Automerge has two ways of
detecting changes. The first one is getChanges function. This function takes
the old document and the document generated from Automerge.change, and
will only detect the differences between the two documents. The other way is
getAllChanges, which detect all changes ever done to the document, from the
creation of the document to the latest change done to it.

The changes are then stringified, from a JSON object to a simple string, to
be sent along with the document’s name. Socket.emit sends the description,
"add doc", and a set with the title and the changes. In a web browser, this
emit function is always called because the server is initiated alongside the web
application. On a mobile device, the user has to connect to the server and
thereby must have a socket created for the device to communicate with the
server. Therefore a simple check is done to see if the socket exists or not.

const initDoc = Automerge.change(Automerge.init(), doc =>
{doc.title = this.state.docname, doc.cards = []})

docSet.setDoc(this.state.docname, initDoc)

40 chapter 4 implementation

this.setState({docarray : Array.from(docSet.docs)})

const changes = Automerge.getAllChanges(initDoc)

this.socket.emit("add doc", ({title: this.state.docname, change:
JSON.stringify(changes)}))

Listing 4.4: Adding a new document.

4.4.2 Add a question

The next common functionality is adding a question to a document, see listing
4.5. Each document has an array to store cards. These cards are JSON objects
with an ID, the question, and an array to hold answers. Since questions can be
of the general type, multiple answers can be submitted to the same question.
The ID is a UUID and are used as IDs for listing and allowing the same question
to occur multiple times without conflicting with each other. To get the right
document to change, the document’s name must be provided to the function.
A check is done to see if the document the user wants to modify exists, and if
it exists changes and networking are completed. Since each document has a
card array, the new JSON object is added to this array.

In contrast to adding a new document a change only takes an already existing
document as an input and returning a new document with the updates. The up-
date and getAllChanges is done in the same fashion as adding a new document.

let id = uuid.v4()
let doc1 = docSet.getDoc(this.state.docname)
if (doc1) {

const doc2 = Automerge.change(doc1, doc => {
doc.cards.push({id: id, Question: this.state.question, Answers:

[]})
})
docSet.setDoc(this.state.docname, doc2)
this.setState({docarray : Array.from(docSet.docs)})
const changes = Automerge.getAllChanges(doc2)

this.socket.emit("add question", ({title: this.state.docname,
change: JSON.stringify(changes)}))

}

Listing 4.5: Add a question to a document.

4.4 common components 41

4.4.3 Add a new answer

The last is adding a new answer to a question and are shown in listing 4.6.
Each card has a designated array for answers under the question. Finding the
correct document and to give a UUID to the answer is identical to the way
adding a question is added. The ID is used for allowing the same answer to
be added without conflicting with each other and are used as an ID for list
elements.

let id = uuid.v4()
let doc1 = docSet.getDoc(this.state.docname)
if (doc1) {

let doc2 = Automerge.change(doc1, doc => {
doc.cards[this.state.questionNumber][’Answers’].push({id: id,

a: this.state.answer})
})
docSet.setDoc(this.state.docname, doc2)
this.setState({docarray : Array.from(docSet.docs)})
const changes = Automerge.getAllChanges(doc2)

this.socket.emit("add question", ({title: this.state.docname,
change: JSON.stringify(changes)}))

}

Listing 4.6: Add a new answer to a question.

5
Evaluation
This chapter will discuss testing, both locally and over the network. Design and
implementation chooses is discussed in Discussion 5.2,with personal experience
in 5.2.1 and ideas of future work in section 5.3.

5.1 Testing

Testing is an essential factor in understanding how the prototype works prac-
tically and the tests targets underlying technology to achieve a set of goals.
Multiple technologies like Perge, Hypermerge and Hypercore, as well as cur-
rent state of the prototype with WebSocket from Socket.io, server functionality
from Express, and HTTP for listening clients in a server-client approach.

5.1.1 Test devices

All tests, both locally and over the network, was tested on the same two devices.
Perge, andHypermerge andHypercore was tested on the computer. The current
prototypes technologies; Next.js, Express, and Socket.io was tested on both
devices. The devices used in testing was one computer and one mobile; they
have the following specifications.

Desktop:

43

44 chapter 5 evaluation

• HP EliteDesk

• Intel duo quad-core i7-4770 CPU

• 15.6 GiB System memory

• Ubuntu 18.04.5 LTS

Mobile:

• Samsung Galaxy S8

• SM-G950F

• Android-version 9

5.1.2 Test methods

Two types of testing were directed to test the functionality and flexibility of
the system. All testing is done manually, meaning all tests were done in person,
testing operations were done one by one, and the connection is connected by
manually inserting the IP address.

Offline testing

Testing done on all technologies was first tested locally to make sure the
basic functionality of adding a new document, adding content to a document,
modifying the already existing document, and the possibility to extend the
already existing project.

Online testing

Over the network, all functionalities tested offline was tested with concurrent
modification. This part of testing focuses more on handling communication
and finding pros and cons with the network technology used. Online testing
did also test how Automerge handled concurrent changes, and are tested with
scenario described in 3.1 in mind.

5.2 discussion 45

5.2 Discussion

Communication methods can vary since Automerge is agnostic to the network,
and multiple approaches are viable. Three different technologies were tested
to decide which technology fit the current idea and goal for this thesis. The
three technologies tested was Perge, with connection over PeerJS, Hypermerge
and Hypercore with peer-to-peer connection, and the current implementation
with a dynamic server-client approach.

Perge is a library for developing a distributed system where each instance is
located in a web browser and uses peer-to-peer communication. This approach
is useful for developing a system only located in the web browser, and Perge
provides a way to make a user and to store information about connected
users. An example developed by the creators of Perge illustrates peer-to-peer
technology and Automerge working together to achieve collaboration; however,
this example isminimal and supports only local nodes communicatingwith each
other. Changes done by local nodes is handled by Automerge and are outputting
the expected results. The idea of having a local user that can store information
about other nodes was the preferred way of handling communication and user
info in the early stages of developing the prototype. However, Perge does not
provide cross-platform communication.

Hypermerge in combination with Hypercore and Automerge is demonstrated
in PushPin and Pixelpusher. Hypermerge is a Node.js library to develop col-
laborative applications with peer-to-peer communications, and Hypercore is
distributed append-only log for logging modifications done to documents. Push-
Pin is developed in React, demonstrating that Automerge and React work for
online and offline web usage. Another already existing project with Automerge,
Hypermerge and React is Pixelpusher, and uses modern web technology but
is software installed locally. Pixelpusher is software to create pixel art, and
multiple users can work on the same art through a peer-to-peer connection.
This technology was to prefer at the start of this project, but a mobile device
needs to have all necessary libraries installed to the full extent when installed.
Some libraries are dependent on other libraries, and some of these libraries
do not exist anymore, making the installation fail due to trying to install non-
existent libraries. So these two examples do prove that Automerge-functions
are suitable for cooping with the network but not suitable for mobile devices.
This combination can be used on web applications or programs developed in
React for usage on the computer, but this combination is not viable in React
Native and mobile applications.

Due to experiments with different already existing combinations of technolo-
gies with Automerge, the current solution was to use a new combination of
technologies to develop a Local-first application with Automerge used for col-

46 chapter 5 evaluation

laboration over the network. Part of the solution was to develop server-client
communication. This opened the doors to use Socket.io and Next.js, which
could provide functionality to both the server and the clients, and resulting
in similar, but separated codebases, to interact with each other. Some of the
components are identical in both codebases as shown in section 4.4. A server-
client approach uses HTTP and TCP to handle communication. HTTP used
for fetching the necessary resources to complete the webpage rendered in a
web browser and to have the possibility to develop the web pages further to
have more content. Since this kind of application depends on messages to
be delivered completely, having a transport protocol that allows the message
packages to be lost or delivered out of order and to provide a solution to
these possible problems are important. TCP, by establishing a connection to
the receiving node, have the possibility to send lost packages again and have
control over the sequence the packages should be assembled in. UDP does not
provide what TCP does and therefore not used in this prototype to handle
communication.

The current state of the prototypewas tested sequentially. Startingwith creating
a document, adding a question, and adding an answer to a question locally
first and evolving to testing with multiple devices over the network. With the
prototype distributed on different types of devices,doing tests locally is essential
to get each part to work correctly before testing it over the network.

Making the computer do the server-work and creating a server instance when
needed instead of depending on an external server to handle communication
was key to both performances and to achieve the essentials of a Local-first
application. The servers only function is the receive and distributes messages.
Since the server is the backend and the web interface is the frontend of the
computer application, the server has to send messages to the web, although
it is on the same device. Whenever the server gets a message, this message is
forwarded to all connected devices in the form of a broadcast.

The tests were completed with the scenario in 3.1 in mind. Automerge preform
as expected when it comes to displaying added content in identical order on
both test devices. When two changes are done concurrent, Automerge will
arbitrarily take one of the changes and place it before the other change, and
applies to both adding questions and adding answers to the same question
simultaneously. This is important to achieve because of how users of the
prototype in web browser depend on which index the question is located on.
By having the questions in the same order, answers are added to the right
question on all devices.

5.3 future work 47

5.2.1 Experience

My personal experience with researching and finding different technologies
to complete a functional prototype has been educational and opened an un-
derstanding of more in-depth research, not only to get a result but also to
understand independent work, planning, and methods of working. This has
been four and a half month to plan, and to have to manage this time to complete
a project of a greater scale has been educational.

There have been different learning curves depending on the technologies found
and researched. To learn JavaScript without experience of using it before was
a challenge, so for using already existing communication libraries without
any previous experience with programming related to the network. On the
other hand, React, React Native, and Automerge have been easier to learn and
understand because these libraries are very good documented and to get a
general understanding of how these libraries work do not require additional
knowledge of other libraries.

5.3 Future Work

Potential future work for the prototype is user account opportunity and to be
able to create different rooms or groups. In the current state of the prototype,
each part of the system does not have any possibility to make an account.
The prototype, by default, does only have security on the connection channel
between devices. An account or user interface will make it possible to verify
the users and have control over which users they are connected to.

Furthermore, with an account, making groups is a possibility. The current
system is designed for users to only work on the same theme of work, for
example, a document per lecture in the same course. To categorise courses
in different groups with different people represented in each group and for
people to be represented in multiple groups without syncing documents the
user does not want or are part of.

Scalability and usability are yet to be explored and are essential factors to
consider when evolving the system running on the prototype. Since the pro-
totype is tested on two devices, there are no concrete results that imply that
the system works on tens of devices simultaneously. Usability is also yet to be
explored; what can this prototype be used for? Who does this type of system
fit? Which profession do this kind of application potentially be used by?

There is also space for exploring different technologies and finding one or

48 chapter 5 evaluation

multiple that suits the system better. Does this prototype work in a more
significant setting? Furthermore, will the current technologies be maintained
in the future?

6
Conclusion
In this thesis, I have explored different technologies to develop a Local-first ap-
plication that can run on different types of devices for collaboration. Different
technologies are required to get devices to communicate and collaborate over
the internet, resulting in testing libraries and other prototypes like Perge with
PeerJs, and Hypermerge, a peer-to-peer library in combination with Hyper-
core, a library for a distributed append-only log. Peer-to-peer and client-server
communication has been explored and tested, where UDP, TCP, or HTTP func-
tionality where taken into consideration. Various techniques and implements
have been tested to understand better what technologies provide the necessary
features to complete the goals. The result is a Local-first prototype developed
in React and React Native with Next.js, Socket.io, Express, and Automerge
for collaboration purposes and have a server-client approach to communica-
tion.

49

Bibliography
[1] Kleppmann, M., Wiggins, A., van Hardenberg, P., and Mc-

Granaghan, M. Local-first Software: You Own Your Data, in spite of the
Cloud. In Proceedings of the 2019 ACM SIGPLAN In-ternational Symposium
on New Ideas, New Paradigms, and Reflec-tions on Programming and Software
(Onward! ’19), 2019.

[2] Basilis, P. , Davidson, A., Fekete, A., Ghodsi, A., Heller-
stein, J. , and Stoica, I. Highly Available Transactions: Virtues and
Limitations (Extended Version). In 40th International Conference on Very
Large Data Bases, September 1st - 5th 2014, Hangzhou, China.Proceedings of
the VLDB Endowment,Vol. 7, No. 3, 2014

[3] MDN Web Docs What is JavaScript? https://developer.mozilla.org/en-
US/docs/Web/JavaScript/About_JavaScript. 2021

[4] Gilbert, S. , and Lynch, N. Brewer’s conjecture and the feasibility of
consistent, available, partition-tolerant web services. In SIGACT News, vol.
33, no. 2, pp. 51–59, 2002. 2002

[5] Kleppmann, M. A Critique of the CAP Theorem In arXiv preprint
arXiv:1509.05393. 2015

[6] Brewer, E. A. CAP twelve years later: how the "rules" have changed.
In IEEE Computer, 45(2), pp. 23–29, 2012

[7] Shapiro, M., Nuno M. Preguicca, Baquero, C., and Za-
wirski, M. Conflict-Free Replicated Data Types. In 13th International
Symposium on Stabilization, Safety, and Security of Distributed Systems, pp.
386–400. SSS 2011

[8] Rascia, T. React Tutorial: An Overview and Walkthrough.
https://www.taniarascia.com/getting-started-with-react/. 20.08.2018

[9] Facebook Open Source React Native. https://reactnative.dev/. 2021

51

52 bibl iography

[10] W3C What is CSS? https://www.w3.org/Style/CSS/. 2021

[11] Vercel Built-In CSS Support https://nextjs.org/docs/basic-features/built-
in-css-support. 2021

[12] Vercel Pages https://nextjs.org/docs/basic-features/built-in-css-support.
2021

[13] Vercel Create a Next.js App https://nextjs.org/learn/basics/create-
nextjs-app. 2021

[14] Gomes, V. B. F. , Kleppmann, M., Mulligan, D. P. , and Beres-
ford, A. R. Verifying Strong Eventual Consistency in Distributed Systems.
In Proc. ACM Program. Lang., Vol 1, No. OOPSLA, Article 109. 2017

[15] Kleppmann, M., et al. Automerge.
https://github.com/automerge/automerge. 2020

[16] Kleppmann, M., et al. Automerge internals.
https://github.com/automerge/automerge/blob/main/INTERNALS.md.
2020

[17] Meiklejohn, C., and Van Roy, P. Lasp: A Language for Distributed,
Coordination-Free Programming. In PPDP ’15: Proceedings of the 17th Inter-
national Symposium on Principles and Practice of Declarative Programming.
2015

[18] McComb, D. The Data-Centric Revolution: Data-Cantric vs. Data-
Driven. https://tdan.com/the-data-centric-revolution-data-centric-vs-data-
driven/20288. 2016

[19] Java Practices 3.011 Model Objects
http://www.javapractices.com/topic/TopicAction.do?Id=187. 2018

[20] MDN An overview of HTTP https://developer.mozilla.org/en-
US/docs/Web/HTTP/Overview. 2021

[21] Fox, P. User Datagram Protocol (UDP)
https://www.khanacademy.org/computing/computers-and-
internet/xcae6f4a7ff015e7d:the-internet/xcae6f4a7ff015e7d:transporting-
packets/a/user-datagram-protocol-udp. 2021

[22] Fox, P. Transmission Control Protocol (TCP)
https://www.khanacademy.org/computing/computers-and-

bibl iography 53

internet/xcae6f4a7ff015e7d:the-internet/xcae6f4a7ff015e7d:transporting-
packets/a/transmission-control-protocol–tcp. 2021

[23] Expo Introduction to Expo. https://docs.expo.io/. 2021

[24] Expo Workflows. https://docs.expo.io/introduction/managed-vs-bare/.
2021

[25] Expo Limitations. https://docs.expo.io/introduction/why-not-expo/. 2021

	Abstract
	Acknowledgements
	List of Figures
	List of Listings
	1 Introduction
	1.1 Goals
	1.2 Method
	1.3 Outline

	2 Technical Background
	2.1 Local-first
	2.2 Communication
	2.2.1 Hypertext Transfer Protocol
	2.2.2 User Datagram Protocol
	2.2.3 Transmission Control Protocol

	2.3 CAP theorem
	2.4 Consistency
	2.5 Conflict-Free Replicated Data Types
	2.5.1 State-based
	2.5.2 Operation-based
	2.5.3 Variations of CRDTs

	2.6 Automerge
	2.6.1 Documents
	2.6.2 Frontend-backend protocol

	2.7 Tools and Frameworks
	2.7.1 JavaScript
	2.7.2 React
	2.7.3 React Native
	2.7.4 Next.js
	2.7.5 Expo

	3 Design
	3.1 Overall view
	3.2 Server
	3.2.1 Alternatives

	3.3 Web application
	3.3.1 Alternatives

	3.4 Mobile application
	3.4.1 Alternatives

	4 Implementation
	4.1 Server
	4.2 Web browser
	4.3 Mobile application
	4.4 Common components
	4.4.1 Add a new document
	4.4.2 Add a question
	4.4.3 Add a new answer

	5 Evaluation
	5.1 Testing
	5.1.1 Test devices
	5.1.2 Test methods

	5.2 Discussion
	5.2.1 Experience

	5.3 Future Work

	6 Conclusion
	Bibliography

