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“An understanding of the natural world is a source of not only great curiosity,
but great fulfilment.”

–Sir David Attenborough



Abstract
Plastic pollution is ubiquitous across marine environments, yet detection of
anthropogenic debris in the global oceans is in its infancy. Here, we exploit
high-resolution multispectral satellite imagery over the North Pacific Ocean
and information from GPS-tracked floating plastic conglomerates to explore
the potential for detecting marine plastic debris via spaceborne remote sensing
platforms. Through an innovative method of estimating material abundance
in mixed pixels, combined with an inverse spectral unmixing calculation, a
spectral signature of aggregated plastic litter was derived from an 8-band
WorldView-2 image. By leveraging the spectral characteristics of marine plastic
debris in a real environment, plastic detectability was demonstrated and eval-
uated utilising a Spectral Angle Mapper (SAM) classification, Mixture Tuned
Matched Filtering (MTMF), the Reed-Xiaoli Detector (RXD) algorithm, and
spectral indices in a three-variable feature space. Results indicate that floating
aggregations are detectable on sub-pixel scales, but as reliable ground truth
information was restricted to a single confirmed target, detections were only
validated by means of their respective spectral responses. Effects of atmospheric
correction algorithms were evaluated using ACOLITE, ACOMP, and FLAASH,
in which derived unbiased percentage differences ranged from 1% to 81%
following a pairwise comparison. Building first steps towards an integrated
marine monitoring system, the strengths and limitations of current remote
sensing technology are identified and adopted to make suggestions for future
improvements.
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1
Introduction
Millions of tonnes of plastic litter enter our oceans each year (Biermann et al.,
2020). Once there, the vast majority is expected to remain in the environment
in some form over geological timescales – severely affecting marine ecosystems,
the economy, and human health. The cumulative increase of marine plastic
debris over the last six decades (Kikaki et al., 2020) is a worrying trend, and
targeting conglomerates and individual pieces of plastic for clean-up has proven
difficult in the large global oceans. Scientists have primarily relied on vessel-
based observations for detection, but this technique is both costly and inefficient.
In the wake of recent technological advancements, a new field of research has
emerged in which the potential of satellite imagery for marine plastic detection
is being explored. If successful, spaceborne remote sensing can bridge gaps
between the currently sparse in situ observations (Maximenko et al., 2019) and
provide global coverage with unmatched revisit frequency. Further research
is needed before satellite technology can be fully exploited, but an increasing
global concern for marine plastic littering along with several promising studies
are paving the way for further advancements in the field.

1.1 Background and Motivation

With limited existing research on open water litter analysis, a number of
studies have taken first steps towards marine plastic debris detection. Some
have approached the detection problem through the use of modelling (Politikos

1



2 chapter 1 introduction

et al., 2017; Liubartseva et al., 2018; Prevenios et al., 2018; Meyerjürgens et al.,
2019; Mansui et al., 2020; Sebille et al., 2020) or remote sensing (Topouzelis
et al., 2019; Biermann et al., 2019; Topouzelis et al., 2020), while others have
used information based on sighting reports from shipborne observers (Suaria
and Aliani, 2014). Maximenko et al. presented the need for an integrated
marine debris observing system in 2019, suggesting detection requirements
and identifying current limitations. Owing to the vastness of the global oceans,
remote sensing is a key tool for the detection of marine plastic litter because of
the superior spatial and temporal coverage. An initial assessment of spaceborne
observation requirements was given by Martínez-Vicente et al. (2019), while
Dubucq et al. (2020) reviewed recent improvements and remaining challenges
for remote sensing detection of plastic waste. Although current remote sensing
techniques are immature, several studies have explored plastics’ detectability
through aerial hyperspectral imaging (Garaba et al., 2018; Goddijn-Murphy et
al., 2018), unmanned aerial vehicles (UAVs) or stable cameras (Moy et al., 2018;
Fallati et al., 2019; Papachristopoulou et al., 2020), and with the direct use of
satellite imagery (Aoyama, 2016; Biermann et al., 2019; Topouzelis et al., 2019;
Topouzelis et al., 2020). Research has also demonstrated the potential of index-
based detection algorithms (Biermann et al., 2020) as a valuable monitoring
tool.

Using remote sensing, the detection problem can be approached in either a
direct or an indirect manner. Some studies have gone the route of the latter, by
finding correlations between plastic aggregation and sea surface parameters.
For example, in Pichel et al. (2007), plastic debris densities were found to be
significantly correlated with sea surface temperature (SST) and chlorophyll-A
concentration and its gradient. Resulting from this discovery, satellite remote
sensing data was used to derive SST and estimate chlorophyll aggregations
to guide an aerial search for possible plastic accumulation zones. In another
study, by considering spatio-temporal distributions of floating objects, Thiel
et al. (2011) showed that higher abundances of anthropogenic debris typically
were found in areas prone to developing coastal fronts and eddies during calm
weather conditions.

More direct methods of measuring marine debris have been undertaken by
several researchers in later years. For example, during the Plastic Litter Projects
in 2018 and 2019 (Topouzelis et al., 2019; Topouzelis et al., 2020), large ar-
tificial floating plastic targets were deployed in coastal waters to examine
detection abilities with the Sentinel-2 imager. As the targets were not large
enough to cover a full pixel of the imagery (the highest spatial resolution for
Sentinel-2 bands is 10 m), spectral image analysis took the form of an unmixing
problem. The team of researchers was able to extract a signature for the PET
(polyethylene terephthalate) targets, representing the spectral behaviour of
marine plastics in a semi-natural environment. In another study, candidate pix-
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els containing possible marine debris were extracted based on differing spectra
from those of surrounding waters and wave crests (Aoyama, 2016), which were
subsequently used in a spectral angle mapper (SAM) classification. In Bier-
mann et al. (2020), the separability of plastics from other ocean targets was
demonstrated using spectral indices and a supervised learning classifier.

Despite rapid advancements in marine debris detection algorithms, there are
several gaps in existing research that must be addressed for a better under-
standing of marine plastic behaviour. Access to standardised in situ data is
essential for automation of image analysis and to further develop knowledge
of debris accumulation, plastics abundance, and aggregation hot spots (Bier-
mann et al., 2019; Kornei, 2019), yet no such reference datasets exist to date.
Extensive research is also needed to determine detection- and classification
schemes’ capabilities in imagery of different sensor characteristics.

This project is first and foremost an exploration study, with the aim of con-
tributing to the developing field of marine debris research. By considering the
potential and limitations of high-resolution satellite imagery, different methods
are assessed to help determine how we can best utilise remote sensing in the
battle against marine plastic.

1.2 Impacts of Marine Plastic Littering

Plastics are the most common form of marine litter, estimated to contribute
from 60% to 80% of the total amount of marine debris (Martínez-Vicente et al.,
2019). In the Great Pacific Garbage Patch (GPGP) alone, scientists predict that at
least 79 thousand tonnes of ocean plastic is floating at or near the sea surface;
a figure four to sixteen times higher than previously assumed for this area
(Lebreton et al., 2018). Furthermore, there is sufficient evidence that the GPGP
– the world’s largest plastics accumulator – is constantly growing (Kikaki et al.,
2020). The increasing amount of plastic in the ocean poses a serious threat not
only to flora and fauna but also to human well-being. Fish and shellfish stocks
are decreasing due to plastic contamination, and, coupled with broader factors
such as climate change and overfishing, many species of fish are critically
endangered (Beaumont et al., 2019). Approximately 46% of the plastic mass
floating in the GPGP consists of derelict fishing gear, and an estimated 30% of
the decline in some fish populations is assumed to be a direct consequence of
such discarded equipment (Lebreton et al., 2018; Maximenko et al., 2019). In
a study from 2015, plastics were found in more than 25% of individual fish and
in >50% of the species collected from fish markets in Indonesia and the USA
(Rochman et al., 2015), potentially introducing health risks to humans when
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entering the food chain1.

Figure 1.1: A sea turtle entangled in an abandoned fishing net. Image courtesy of
NOAA.

Because of plastics’ ability to withstand prolonged exposure to radiation and
wave action, it can remain at the sea surface for long periods of time (decades
or longer) and travel distances over 3000 kilometres from where it first origi-
nated (Beaumont et al., 2019). Plastic debris has been found in animals from
different biomes all over the world, and its movement across large regions
significantly increases the risk of transferring harmful bacteria and diseases
between biomes.

Larger fauna, such as marine mammals and seabirds, are frequently exposed
to harmful and even fatal entanglement and ingestion of plastics. For example,
leatherback sea turtles often mistake plastic bags for jellyfish, their main food
source, while albatrosses unwittingly feed their chicks with plastic resin pellets,
believing they are fish eggs (Micalizio, 2019). Furthermore, seals, turtles, fish,
and other fauna get entangled in abandoned fishing nets (Figure 1.1) with fatal
consequences induced by starvation or drowning (a phenomenon referred to
as ’ghost fishing’).

Marine litter can also disrupt the food webs of ecosystems in the garbage
patch. If accumulated into large patches at or near the sea surface, plastics
may obstruct vital solar photons from reaching phytoplankton and algae below.
Being among the most common types of autotrophs2, these organisms are
considered the bases of aquatic food cycles (Micalizio, 2019). A disturbance in
their communities can therefore change the entire food web of the ecosystem.
Animals with algae and phytoplankton as their main food source (e.g., fish and
crustaceans) will decline in population, which in turn will lead to decreasing
populations of apex predators (e.g., sharks and whales) as well as animals of
all other trophic levels. Eventually, seafood becomes less accessible for humans,

1. Further research is necessary to thoroughly map risks to human health.
2. Autotrophs, or producers, are organisms that can produce their own nutrients using
materials from inorganic sources, such as carbon and sunlight.
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and some marine species may go extinct.

The vortex of the oceans makes the increasing issue of marine littering a bor-
derless problem (Corbari et al., 2020). Although plastic pollution is considered
a global issue, its occurrence in areas beyond national jurisdiction (e.g., the
Great Pacific Garbage Patch) introduces the problematic matter of responsibil-
ity (Vince and Hardesty, 2017). According to a study conducted by The Ocean
Cleanup and Deloitte, the annual costs related to marine plastic were estimated
to be between 6 and 19 billion USD, calculated from loss of tourism revenue,
impacts on fisheries and aquaculture, and governmental cleanup expeditions.
These costs do not, however, include expenses related to human health and the
negative impacts on marine ecosystems. In addition, most cleanup missions
are not government-regulated, but rather conducted by nonprofit organisations
whose funding comes from donations and private sponsors. The true annual
cost of marine plastic pollution is thus unknown, but assumed to be much
higher than initial estimates.

The key to solving the ongoing pollution crisis over time is believed to be pre-
vention (NOAA, 2021). By stopping the problem at the source, cost-prohibitive
cleanup initiatives can eventually become obsolete. Indeed, the world is not
there yet, and cleanup vessels have yet many voyages to embark upon – of
which satellite imagery may play a key role for efficient guidance and targeting
in the future.

1.3 Objectives

The idea for this project was proposed by Kongsberg Satellite Services (KSAT)
and is a further analysis of the satellite imagery acquired during their research
and development study in the Great Pacific Garbage Patch in May–July 2020.
The images were collected over areas of known plastic accumulation, and whilst
no direct in situ measurements were taken, Global Positioning System (GPS)
information related to four plastic conglomerates was available (an example of
such a plastic aggregation is shown in Figure 1.2a). Positive tracker detections
were confirmed in some of the images, which have been used as a baseline for
understanding of the plastic features and their detectability.

The primary objective was to look for common features in the satellite im-
agery that could be used to detect marine plastic debris, and, if such evidence
was found, explore whether the method could be adopted for use on other
images. Although both synthetic aperture radar (SAR) and optical scenes were
available for the study, early investigation of the SAR products yielded no im-
mediate features of interest. Considering that, as well as time constraints, the
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(a) (b)

Figure 1.2: Plastic debris collected in the Great Pacific Garbage Patch during a clean-up
expedition in June 2020. Images are courtesy of Ocean Voyages Institute.

scope of the study was limited to the optical imagery with associated GPS
tracker information, serving as a starting point for extracting marine plastic
characteristics.

Exploration of the datasets required application of potential algorithms in
a systematic manner. Through a rigorous literature review and interactive
examination of the available imagery, it was decided to address the detection
problem using a spectral approach. With the help of image analysis software
and scientific coding environments, specific objectives included:

• Digitise GPS trackers into vectors and use linear interpolation to estimate
their relative position at image acquisition time.

• Image pre-processing with suitable atmospheric correction algorithms,
georeferencing, pan-sharpening, and cloud masking.

• Endmember extraction of plastic targets located by GPS information.

• Spectral analysis of extracted features and comparison to other ocean
surface elements.

• Spectral unmixing for classification.

• Test effects of band ratios and spectral indices to enhance class distinction.

Ultimately, the aim of the study was to explore whether plastic detection was
possible with the available data and with the strictly limited ground truth
information. To the author’s knowledge, no previous research has addressed
the marine plastic detection problem using high-resolution commercial satellite

https://www.oceanvoyagesinstitute.org/
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products in a real (i.e., no artificial, deployed targets) open ocean environment.
Understanding marine plastic behaviour in remote areas, where it aggregates
naturally, can contribute in making necessary steps towards fully automated
detection schemes in the future.

1.4 Structure of Thesis

The thesis is divided into six chapters, including the introduction. Subsequent
chapters and their main contents are organised as follows:

Chapter 2 reviews the concepts of remote sensing fundamentals and builds
a theoretical basis of image analysis techniques needed to evaluate the main
objective. Several algorithms are described in-depth to provide a full under-
standing of their functionality.

Chapter 3 introduces the datasets that were made available for the purpose of
this study, in addition to giving a brief overview of the study area and how the
Great Pacific Garbage Patch is formed.

Chapter 4 addresses the methodology of how the work of the thesis was
conducted. It presents the application of pre-processing steps, feature extraction
algorithms, and detection schemes, as well as the reasoning behind choices for
further processing and analysis.

Chapter 5 presents the results obtained from exploring the datasets. The
findings and their consistency with other literature are systematically discussed
with respect to the main objectives.

Chapter 6 concludes the work presented in this thesis and makes suggestions
to future work based on the findings and challenges encountered throughout
the project.

All figures and illustrations presented in this thesis are either i) a product of own
work; ii) republished with permission from the owner; or iii) licensed under a
Creative Commons Attribution Licence granting noncommercial redistribution
of published material. The source is clearly cited under each figure where the
work of others has been borrowed.





2
Theory
2.1 Passive Remote Sensing

Remote sensing refers to the concept of obtaining information from the Earth’s
surface without being in physical contact with it. For passive remote sensing
systems, this involves measuring energy that is naturally available in the form
of either reflected or emitted solar energy. Most passive imaging satellites
measure electromagnetic (EM) radiation within the range of reflected energy1
and are thus only operative during the time of day when the Earth is illumi-
nated by the sun. Despite this limitation, the abundance of different passive
satellite instruments offers extreme versatility in terms of observation and
detection capabilities. To fully understand the functionality of such systems,
some fundamental knowledge of remote sensing and its physical concepts is
necessary.

2.1.1 Electromagnetic Spectrum

Electromagnetic radiation is the means by which information is transferred
from an object to a sensor. As illustrated in Figure 2.1, it consists of an electric
and a magnetic force field of equal magnitude (i.e., energy) propagating per-
pendicularly as sinusoidal waves, where its properties are determined by the
wavelength, or frequency, of the wave. Being inversely related, the wavelength

1. Roughly between 0.4 and 3 µm.

9
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can be expressed by the frequency and vice versa:

_ =
2

a
(2.1)

where _ denotes the wavelength [m], 2 is the speed of light in vacuum [m/s],
and a is the frequency [Hz].

Figure 2.1: Electromagnetic radiation consists of an electric (E) and magnetic (M)
field, oriented perpendicularly and propagating as waves at the speed of
light2 (CCRS, 2019).

The range of frequencies of EM radiation are referred to as the electromagnetic
spectrum. Divided into a number of spectral regions (as seen in Figure 2.2),
the total range extends from the longest radio waves to the shortest known
cosmic rays. Each region of frequencies has distinct differences in wave-matter
interaction; hence, remote sensing technologies utilise different parts of the
spectrum depending on the application. For example, radar systems possess
the ability to operate regardless of cloud cover due to the penetration capability
of longer wavelengths, whereas shorter wavelengths (e.g., visible and infrared)
will be reflected.

Electromagnetic energy is transported in units of photons – the smallest discrete
quanta of electromagnetic radiation. In quantum mechanics, these elementary
particles account for phenomena that occur when high-energy waves (i.e., short
wavelengths) interact with matter, which can only be described by particle
theory (Elachi and Zyl, 2006). As such, EM radiation is subject to a wave-
particle duality that can be presented in a quantised form as bursts of radiation
with photon energy, �, given by Planck’s equation:

� = ℎa (2.2)

where ℎ is Planck’s constant3 and a is wave frequency. As the frequency
is directly proportional to the energy of the wave, remote sensing systems
operating in longer wavelength regions of the spectrum must utilise wider
bands to obtain a high-energy signal.

2. 2 = 299, 792, 458 m/s.
3. ℎ = 6.626 × 10−34 Js.
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Figure 2.2: The electromagnetic spectrum. (Modified from Elachi and Zyl, 2006).

2.1.2 Basic Principles of Passive Imaging Systems

When an object is illuminated by an external source of EM radiation, three forms
of wave-matter interaction are possible: absorption, reflection, and transmission
(Lillesand et al., 2004). The type of interaction between the object and the
incoming wave is determined by the wave frequency (thus, its energy) and
the energy level structure of the material. Following the law of conservation of
energy, the incident radiation can be decomposed as

�� (_) = �� (_) + �' (_) + �) (_) (2.3)

where �� is the incident wave energy of wavelength _ and��,�' , and�) denote
the absorbed, reflected, and transmitted energies, respectively. If a photon’s
energy (Eq. 2.2) perfectly matches or is higher than the energy levels of the
medium, the energy will get absorbed by its electrons. Conversely, for lower-
energy waves that do not correspond to any of the medium’s energy steps, the
light can either heat the object, or, depending on the geometry and dielectric
properties of the matter, reflect⁴ off its surface (Elachi and Zyl, 2006).

In passive imaging systems, the source of electromagnetic radiation is the Sun,
and the signal received by the sensor is reflected light from the surface. With
an effective surface temperature of almost 5800 degrees Kelvin, the Sun is
considered an ideal source (called a blackbody) in thermal equilibrium, with
an emission spectrum described by Planck’s radiation law:

( (_,) ) = 2cℎ22

_5
1

42ℎ/_:) − 1
(2.4)

4. Reflection of light typically occurs as a mix of the specular direction (mirror-like reflection)
and uniform scattering in all directions.
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where ( represents the spectral radiance, ℎ is Planck’s constant, : is the
Boltzmann constant⁵, 2 is the speed of light, _ is the wavelength, and ) is
the absolute temperature in degrees Kelvin (Elachi and Zyl, 2006). Although
the atmosphere is opaque to certain wavelength regions (e.g., gamma rays,
X-rays, ultraviolet, and much of the infrared spectrum), objects on the Earth’s
surface are illuminated by light across large portions of the spectrum, from
which it absorbs and reflects the different incident wavelengths based on its
inherent energy levels. This principle is exploited in optical remote sensing,
where reflected waves from the visible, near-infrared (NIR), and short-wave
infrared (SWIR) are recorded in bands of varying wavelength ranges and used
to form images with a spectral depth equal to the number of bands. This way, the
reflectance properties of a certain material can reveal a characteristic spectral
response, as illustrated in Figure 2.3, which can be used for identification,
classification, or other image analysis.

Figure 2.3: Recording the reflectance at different ranges of wavelengths (bands) re-
veals characteristic spectral shapes of each surface material. (Figure mod-
ified from Bhatt and Joshi, 2016).

5. : = 1.381 × 10−23
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2.1.3 Remote Sensing Resolutions

There are four primary types of resolution related to satellite imagery: spectral,
spatial, radiometric, and temporal. The spectral resolution is related to the
number of bands in an imaging sensor, as illustrated in Figure 2.3, as well as
to the bandwidth of these channels. The sampling rate and electromagnetic
range over which a single band records surface-reflected radiance determine
the spectral information content that can be derived from the scene, where a
high spectral resolution is recognised by a narrow bandwidth andmany spectral
bands. For remote sensing instruments, hyperspectral sensors represent those of
very high spectral resolution, capable of providing a nearly continuous spectrum
for each image pixel using bandwidths of about 5–10 nm (Martínez-Vicente
et al., 2019).

Fine spectral resolution is limited in space, and usually, there is a trade-off
between spectral and spatial resolution. When an imaging sensor records
electromagnetic energy at very narrow spectral ranges, it must compensate for
the low-magnitude signal by recording over a larger surface area. The spatial
resolution refers to this ground extent that corresponds to each pixel in the
image and is a measure of the smallest object size that can be resolved by
the sensor (Liang et al., 2012). In the field of marine debris detection, a very
high spatial resolution is generally required to identify the material’s low size
distributions. However, commercial imagery is limited to resolutions of 25–50
cm (while only military satellite technology can achieve higher resolutions),
restricting their utility to metre-sized objects in spatial analyses (Maximenko
et al., 2019). The effects of spatial resolution are visualised in Figure 2.4.

Radiometric resolution, or dynamic range, describes the sensitivity of the imag-
ing sensor to detect slight differences in electromagnetic energy, specifically,
radiant flux⁶. Measured in bits⁷, the radiometric properties determine the
maximum number of integers in which pixel values of a single-band image are
encoded. Evidently, more nuances and subtle changes in energy can be derived
from an image of fine radiometric resolution, albeit with an increasing demand
for storage capacity.

Finally, the temporal resolution refers to the frequency at which a sensor can
record subsequent imagery of a particular area. The revisit frequency is affected
by several different satellite characteristics, including its swath width, latitude,
sensor agility⁸, and type of orbit. In optical systems, persistent cloud cover can

6. Emitted or reflected radiant energy per unit time.
7. A number to the exponential power of 2.
8. A sensor’s ability of observing the same area outside its ground trace between different

satellite passes.
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Figure 2.4: RGB composite showing the island of Tromsø, Norway, with spatial resolu-
tions of (a) 10 m (native resolution), (b) 50 m, (c), 100 m, and (d) 200 m.
The image is a Sentinel-2B product gathered from the Copernicus Open
Access Hub (provided by the European Space Agency).

substantially extend revisit times, increasing the importance of sensor agility -
particularly in tropical regions.

2.2 Linear Interpolation

Linear interpolation is a technique for estimating new data points within the
range of a discrete set of known points. In the simplest case, two known
coordinates, (G0, ~0) and (G1, ~1), are used to estimate the position of a third
point, (G,~), located on a straight line joining the two known data points
(Bayen and Siauw, 2015). For a value G contained within the interval (G0, G1),
the position of ~ can be found from the slope equation,

~ − ~0

G − G0
=
~1 − ~0

G1 − G0
, (2.5)

derived from Figure 2.5. Rearranging Equation (2.5) gives the formula for linear
interpolation:

~ = ~0 + (G − G0)
~1 − ~0

G1 − G0
=
~0(G1 − G) + ~1(G − G0)

G1 − G0
, (2.6)

where ~ is the unknown value at G .
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Figure 2.5: Given two known data points, (G0, ~0) and (G1, ~1), the position of ~ at a
value of G can be estimated from linear interpolation.

This method can be adopted to pinpoint the estimated position of a GPS-tracker
where two or more tracker positions have been recorded. For coordinates given
in decimal degrees, the location of a point between consecutive tracker positions
at a certain time C can be calculated by the equations

latest = latstart + C
Δlat
ΔC

(2.7)

lonest = lonstart + C
Δlon
ΔC

(2.8)

where latstart and lonstart are the latitude and longitude coordinates at C = 0
respectively, Δlat and Δlon are the differences in latitude and longitude deci-
mal degrees between consecutive tracker information, ΔC is the time elapsed
between the two GPS-tracker recordings, and C is time in seconds between
starting position and the point that is to be estimated. Using Equations (2.7)
and (2.8), an approximate position of the GPS-tracked plastic conglomerates
can be estimated.

Interestingly, the temporal linear interpolation described by Equation 2.6 and
Figure 2.5 depict the exact same mathematics as the linear mixture model, in
which C represents the mixing parameter. These concepts are further explained
in Section 2.6.

2.3 Image Pre-processing

Image pre-processing operations are intended to correct for sensor- andplatform-
specific radiometric and geometric distortions of the recorded data (CCRS,
2019). Basic radiometric and geometric corrections (e.g., for sensor noise and
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viewing geometry) are usually performed by the image provider; however,
depending on the product level of the imagery and the image application, fur-
ther rectification steps may be applied. Additionally, to facilitate comparison
between data, it may be desirable to calibrate the imagery to known units of
(absolute) radiation or reflectance.

2.3.1 Atmospheric Correction

Atmospheric correction (AC) is the process of removing atmospheric effects on
the reflectance values in satellite imagery (illustrated in Figure 2.6). Ideally,
the derived bottom-of-atmosphere (BOA) reflectance spectra should match the
same spectral response as if retrieved by a sensor at ground level. However, since
atmospheric effects in optical remote sensing are both significant and complex,
differences in BOA reflectance can vary substantially between AC algorithms
(Topouzelis et al., 2020). Radiative transfer through the atmosphere is heavily
influenced by absorption and scattering⁹ processes caused by gas molecules
and aerosols, and because these effects are variable, removal is necessary to
allow for intercomparison across imagery of different sensors.

Figure 2.6: Before (left) and after (right) atmospheric correction of a Landsat-8 image
of Venice, Italy, by the NASA-developed LEDAPS correction scheme. Image
courtesy of Mapbox (2013).

9. Based on the wavelength of incident radiant energy and the size of the scattering parti-
cle, three types of scattering processes are recognised: Rayleigh (diameter << _), Mie
(diameter ∼ _), and nonselective (diameter >> _).

https://blog.mapbox.com/before-and-after-atmospheric-correction-97f55cb2b5d1
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Atmospheric correction of high-resolution multispectral (MS) imagery is chal-
lenging, particularly in vast open ocean scenes (Vanhellemont and Ruddick,
2018). It is estimated that about 90% of the total signal measured by the sensor
originates from atmospheric effects, while the water-leaving radiance only con-
tributes <10% (Huang et al., 2019). Generally, it is beneficial for any detection
task to remove the major effects of the atmosphere and extract the minor water
signal in its purity, but uncertainties introduced in the various atmospheric cor-
rection schemes should be addressed to determine their reliability. Additionally,
not all AC models provide spectral and aerosol information in the remote parts
of the world oceans (e.g., the North Pacific Ocean). In this study, three AC algo-
rithms have been explored for the purpose of retrieving at-surface reflectance
values; FLAASH, ACOLITE, and ACOMP; which are further introduced in the
sequel.

FLAASH

Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) is
a MODTRAN51⁰-based atmospheric correction algorithm suitable for most
hyperspectral and multispectral sensors with bands in the visible, NIR, and
SWIR regions of the electromagnetic spectrum (Harris Geospatial Solutions,
2020). The input file to the algorithm must be in floating-point at-sensor
radiance units of µW/cm2 · nm · sr, which can be computed from the equation

!_ = (Gain · @pixel,band + Offset) · scale factor (2.9)

where gain- and offset values are calibration coefficients provided within the
image metadata, @pixel,band is the pixel digital number of a certain band, and
!_ is the top-of-atmosphere (TOA) radiance. The scale factor must be found
so that !_ is in units of µW/cm2 · nm · sr. After applying Equation (2.9) to the
image DN data, FLAASH starts by using a standard equation for the radiance at
a sensor pixel, !, to apply the solar wavelength range and Lambertian surface
model11 (ITT Visual Information Solutions, 2009). The equation is given as

! =

(
�d

1 − d4(

)
+

(
�d4

1 − d4(

)
+ !0 (2.10)

10. MODTRAN (MODerate resolution atmospheric TRANsmission) is a computer code for
modelling of atmospheric propagation of electromagnetic radiation in the spectral range
of 0.2-100 µm.

11. A Lambertian surface or material appears uniformly bright regardless of an observer’s
angle of view.
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where:
! is the radiance at a sensor pixel

d is the pixel surface reflectance

d4 is the mean surface reflectance for the pixel and a surrounding region

!0 is the radiance backscattered by the atmosphere

S is the spherical albedo of the atmosphere

A and B are coefficients related to atmospheric and geometric conditions,
independent of surface characteristics

All variables are dependant on the waveband, and Equation (2.10) must ac-
cordingly be applied onto each spectral channel in the image. The distinction
between the first and second term is that the latter corresponds to radiance
coming from the surface and being scattered by the atmosphere into the sensor,
while the first represents surface reflected radiance that travels directly into
the sensor. The different values of d and d4 are employed to account for spatial
mixing of radiance in nearby pixels, which is caused by atmospheric scattering
(ITT Visual Information Solutions, 2009).

The values for �, �, ( , and !0 strongly depend on the scene’s water vapour
column amount, which is generally not known and varies across a scene.
The water vapour cannot be accurately retrieved without a dedicated water
band (∼1130 nm and <15 nm spectral resolution), which are only found in
hyperspectral instruments. Thus, for FLAASH processing of MS imagery, the
water vapour column amount is estimated using MODTRAN5 that operates
the viewing and solar angles and the average surface elevation of the sensor
through the assumption of an atmospheric model, aerosol type, and visible
range (Jawak et al., 2019). The unknown parameters are then calculated using
a MODTRAN radiation transfer code, which yields a unique solution for each
image.

Finally, with the modelled water vapour, Equation (2.10) can be solved for the
surface reflectance for each pixel in all of the sensor’s spectral bands. As part
of the solution, a spatially averaged radiance image !4 is computed from the
equation

!4 ≈
(
(� + �)d4
1 − d4(

+ !0
)
, (2.11)

also referred to as the radiative transfer equation, from which the spatially
averaged surface reflectance d4 can be estimated (ITT Visual Information
Solutions, 2009).

Although FLAASH includes a method for aerosol retrieval, this was not used for
the purpose of this study, as the available image data do not contain appropriate
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aerosol bands.

ACOLITE

ACOLITE is a generic atmospheric correction processor developed for aquatic
applications of satellite imagery12. The Dark Spectrum Fitting (DSF) algo-
rithm, first presented in Vanhellemont and Ruddick (2018), was selected for
this study based on its previously demonstrated success in marine environments
(Topouzelis et al., 2019; Biermann et al., 2020). Although it generally performs
best for optically complex waters (e.g., coastal and inland turbid waters), rea-
sonable success is also achieved over open ocean (Vanhellemont, 2020). The
algorithm is scene-based, requiring no previously defined ’black-pixel band’13
such as NIR or SWIR. Instead, using the DSF method, the darkest pixels are
dynamically selected based on various dark targets in the scene (Biermann
et al., 2020). In-depth derivation of the scheme is beyond the scope of this study,
and a detailed description is given in Vanhellemont and Ruddick (2018).

ACOMP

ACOMP (Atmospheric COMPensation) is an image processing algorithm de-
veloped by Maxar Technologies for atmospherically correcting WorldView and
GeoEye imagery1⁴. The correction scheme is not publicly available, which
means that ACOMP imagery must be purchased directly from Maxar (or one
of their certified resellers). Although the processing is strictly limited to only
a few types of satellite sensors1⁵, the algorithm is rigorously tested and offers
robustness even across the vast Pacific Ocean, according to Maxar. By pro-
viding an accurate estimate of the haze, aerosol, and water vapour amount,
their scattering effects can be mitigated from the scene. The resulting satellite
imagery can be used for intercomparison and analysis over diverse atmospheric
conditions and across multiple sensor types (Maxar Technologies, 2020).

While all AC products offer values of surface reflectance without the oceanic
and atmospheric components, the scaling of pixel values can vary and therefore

12. Originally developed for Landsat (5/7/8) and Sentinel-2 (A/B) imagery but is now hosting
support for many other multispectral sensors as well.

13. The ’black-pixel’ assumption is utilised in several other maritime AC schemes, in which a
NIR or SWIR band’s pixel values are considered to be zero because of the strong absorption
of the water itself.

14. The WorldView and GeoEye series of satellites are owned by Maxar Technologies.
15. WorldView-1/-2/-3, GeoEye-1.
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challenge a comparison with other images. For most ACOMP products1⁶, the
imagery is delivered with an 11-bit radiometric resolution - giving a possible
range of pixel values from 0 to 2047. Hence, to convert the image to units of
fractional reflectance (from 0 to 1.0), one must divide each pixel in each band
by 2048.

2.3.2 Pan-sharpening

Pan-sharpening is a useful technique for improving visual image interpretation.
By utilising a multiband raster and a higher-resolution panchromatic band (of
the same scene), a pan-sharpened image can be created as a fusion of the two.
The radiometrically transformed image combines the spatial information of
the pan-band with the spectral information of the multiband data. While many
different pan-sharpening techniques are available, the Gram-Schmidt spectral
sharpening method was chosen for this study because of its (generally) high
spectral accuracy (Harris Geospatial Solutions, 2020). However, spectral values
will always be altered in the pan-sharpening process, and hence, the imagery
should only be used in spatial analyses.

The Gram-Schmidt technique, patented in Laben and Brower (2000), is based
on a general algorithm for vector orthogonalisation in which each band of an
image corresponds to a high-dimensional vector (the number of image pixels
equals the number of vector dimensions). In the ENVI software, the algorithm
is performed in four discrete steps. First, a panchromatic band is simulated
from the lower-resolution multispectral bands by computing their weighted
average. Next, the simulated pan-band and the original spectral bands are
decorrelated through the Gram-Schmidt orthogonalisation method, treating
each band as a multidimensional vector and using the simulated low-resolution
panchromatic band as the first band (i.e., nontransformed). The high-resolution
panchromatic band is then inserted as replacement of the first Gram-Schmidt
band (simulated pan-band), and finally, the inverse Gram-Schmidt transform
is applied to form the pan-sharpened multiband image.

2.3.3 Orthorectification

Orthorectification is the process of removing the effects of relief (terrain) and
image perspective (tilt) displacements to create a planimetrically correct image.
The orthorectification process usually requires a geometric model, a digital
elevation model (DEM), and ground control points (GCPs), but if the Rational

16. The exception being WorldView-3 multispectral imagery ordered along with eight-band
SWIR. In this case, pixels are scaled with a 1/10000 ratio.
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Polynomial Coefficient (RPC) model is used, the latter can be omitted (Cheng
and Chuck, 2010). This makes RPC orthorectification one of the most popular
methods when working with high-resolution imagery, particularly in aquatic
scenes where GCPs are unobtainable.

RPCs are a type of sensor model in which the physical relationship between
image coordinates (8, 9) and ground coordinates (G,~, I) are mapped using a
mathematical transform. The sensor models are unique to each sensor, and
the accuracy of the orthorectification depends on the accuracy of the given
sensor model, as well as the quality of the image. Using a third-order rational
polynomial of the form

(8, 9) = 5 (G,~, I), (2.12)

the two-dimensional image points are related to the corresponding longitude
(G), latitude (~), and elevation (I) on the ground (Harris Geospatial Solutions,
2020). Many commercial high-resolution products include pre-computed RPCs
within the imagery metadata (e.g., WorldView-2/-3) that allows georeferencing
to a standard spatial reference via the RPC method. For optimal accuracy of the
transformation, a high-resolution DEM should be used for the orthorectification
process with a spatial extent matching that of the input raster.

2.4 Image Analysis

To take advantage of the vast opportunities enabled by remote sensing, mean-
ingful information must be extracted from the data through interpretation and
analysis. In this study, various techniques exploiting the spectral characteristics
of plastic targets have been evaluated.

2.4.1 Noise Level Estimation

Image noise can be explained as random variation of brightness or colour
information in image pixels (Jeon et al., 2012). Generally, these defects arise
from electronic noise generated by the sensor and its circuitry or by shot noise
(Poisson noise). Any noise resulting from image acquisition is an undesirable
artefact that adds spurious information to the imagery. Typically, noise level
information is provided by the noise standard deviation, and in optical satellite
sensing, the noise level for each band can be computed as the pixels’ mean
value divided by their standard deviation, i.e., the signal-to-noise ratio (SNR):

SNR =
`8 9

f8 9
(2.13)
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where 8 and 9 represent the rows and columns of the image, respectively, `8 9 is
the pixel mean, and f8 9 is the standard deviation. The SNR is often reported
using the logarithmic decibel (dB) scale, which can be expressed through

SNR3� = 20log10(SNR) (2.14)

Because the mean and standard deviation represent measures of amplitude (as
opposed to units of power), the factor is 20 instead of the conventional factor
of 10. The SNR of remote sensing imagery should be investigated to evaluate
its impact on the optimal functioning of the image processing pipeline (Jeon
et al., 2012), as the image information content is reduced in line with signal
noise corruption.

2.4.2 Classification

Classification of images involves applying a set of rules to extract information
classes from a multiband raster image. By identifying similar characteristics
in different pixels, the total data space can be divided into several subsets
separated by decision boundaries1⁷. The pixels that fall within the volume
created by such boundaries are then classified as belonging to one specific class
(Elachi and Zyl, 2006). An abundance of classification criteria exist, ranging
from simple Euclidean distance measures to complex neural network schemes,
and performance of a certain algorithm depends heavily on the nature of the
input data.

In general, we separate between two major approaches for image classification:
supervised and unsupervised. Both techniques, as well as two type-specific
algorithms, are explained in the following sections.

Supervised Classification

Supervised classification involves the mapping and classification of image
pixels by comparison to training feature vectors selected by the image analyst.
These regions of interest represent homogeneous samples of different surface
cover types and can be envisioned as vectors defining the centroids of the
decision volumes that are separated by the decision boundaries (Elachi and
Zyl, 2006).

In this study, the Spectral Angle Mapper (SAM) algorithm (Kruse et al., 1993) has
been tested for its mapping capabilities of marine plastic. This physically-based

17. A region of a multidimensional space that separates input data from other classes.
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spectral classification method uses an n-dimensional angle U to match image
pixels to reference spectra, where n corresponds to the number of available
spectral bands. To determine spectral similarity between a reference spectrum
r and an image pixel spectrum t, the following equation is employed:

U = cos−1
©«

=∑
8=1
C8A8(

=∑
8=1
C2
8

)1/2 (
=∑
8=1
A2
8

)1/2

ª®®®®¬
(2.15)

Smaller angles represent closer resemblance to the reference spectrum, and
pixels are assigned to the class exhibiting the smallest spectral angle U (Wey-
ermann et al., 2009). As illustrated by the simple example in Figure 2.7, each
pixel can be regarded as a vector in an n-dimensional feature space with a
given length and direction. SAM calculations (Eq. (2.15)) only consider the
vector’s direction, however, meaning that its length does not impact the spectral
angle result. Consequently, SAM is relatively insensitive to variations in total
illumination intensity across the scene, albeit only for linear, multiplicative
differences between spectra.

Figure 2.7: Two-dimensional illustration on the concept of Spectral Angle Mapper
classification.

Pre-determined angle thresholds can be set to ensure a certain level of spectral
similarity in assigned class pixels. Theoretically, any arbitrary pixel can be
classified to a given class if its allowed spectral angle is chosen large enough
(Weyermann et al., 2009). The threshold should therefore be defined so that the
reference spectrum is allowed inherent class variation, neglecting differences
induced by viewing geometry or other anisotropy, while still excluding other
classes with similar spectral characteristics.
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Unsupervised Classification

Unsupervised classification is the process of clustering pixels in an image based
on statistics only, without the need for defining training areas. The pixels are
classified solely based on the numerical information in each of the image’s
spectral bands (i.e., feature space) and grouped together based on similarity in
spectral response. Thus, no extensive prior knowledge of the scene is required,
but classes must be manually identified after the classification process (HSU,
2014).

Figure 2.8: Result of an unsupervised classification using two spectral bands and ten
classes/clusters. Illustration courtesy of Humboldt State University.

ENVI has two built-in methods for unsupervised classification: K-Means clus-
tering and the Iterative Self-Organizing Data Analysis Technique (ISODATA).
Although the two methods are very similar, the latter has been used for this
project. Both K-means and ISODATA are hard clustering algorithms, meaning
that each data point (i.e., pixel in image classification) belongs exclusively to a
single class or cluster. The assumption is thus that the membership coefficients
D8 9 are either one or zero: 1 for the class � 9 of which it belongs to and zero for
all other classes, �: , where : ≠ 9 (Koutroumbas and Theodoridis, 2009). That
is,

D8 9 ∈ 0, 1, 9 = 1, ...,< (2.16)
and

<∑
9=1

D8 9 = 1 (2.17)

The aim is now to minimise the cost function1⁸, given as

� (\\\,* ) =
#∑
8=1

<∑
9=1

D8 93 (GGG8,\\\ 9 ) (2.18)

18. A function of an optimisation problem that measures the performance of a classification
model for given data.
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where N is the number of data points,m is the number of clusters, and 3 (GGG8,\\\ 9 )
is a minimum distance measure between a data vector GGG8 , representing a
single pixel, and the unknown parameter vector \\\ 9 . This cost function can be
minimised by assigning each GGG8 to its closest cluster, i.e., the shortest distance
as determined by 3 (GGG8,\\\ 9 ). For the ISODATA and K-Means algorithm, this
distance measure is the squared Euclidean distance. Thus, Equation (2.18)
becomes

� (\\\,* ) =
#∑
8=1

<∑
9=1

D8 9 ‖GGG8 − \\\ 9 ‖2 (2.19)

The parameter representative \\\ 9 (0) is arbitrarily chosen for the first iteration.
Thereafter, the updating of vectors \\\ 9 follow the equation

#∑
8=1

D8 9
m3 (GGG8,\\\ 9 )
m\\\ 9

= 0, 9 = 1, ...,< (2.20)

As a consequence of the choice of distance measure in Equation (2.19), Equation
(2.20) yields that \\\ 9 is the mean vector of the jth class (Koutroumbas and
Theodoridis, 2009). A number of m classes must be requested by the user,
and pixels are iteratively classified to the closest cluster relative to the current
class mean, \\\ 9 . ISODATA unsupervised classification differs from K-Means
by not having a fixed number of classes, meaning that classes can be split,
merged, and deleted throughout the iteration process based on input threshold
parameters (Harris Geospatial Solutions, 2020). Unless a standard deviation or
distance threshold is specified, all pixels will be classified to the nearest cluster.
The algorithm recovers classes with as low variability in pixels as possible
and converges to a minimum of the cost function when either the number of
pixels in each class changes by less than a predetermined change threshold
or the maximum number of iterations is reached (Harris Geospatial Solutions,
2020).

2.4.3 Spectral Indices

A spectral index is a mathematical expression that is applied per pixel on
two or more spectral bands of an image. Numerous such indices exist, each
designed to enhance certain properties of a scene’s surface, with many being
functionally equivalent. The basic idea is to utilise the spectral response of a
target material by identifying channels or wavelength ranges that have unique
reflectance and absorption1⁹ features relative to surrounding materials. For
plastics, a spectral peak is shown in the near-infrared (Kornei, 2019), with other
significant spectral features in the shortwave infrared (Martínez-Vicente et al.,

19. Wavelengths that show very low reflectance in a material.
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2019). The ocean, however, is a dark target that strongly absorbs wavelengths
in the NIR and SWIR spectra (Maximenko et al., 2019; Biermann et al., 2020),
and, compared to plastics and other floating materials, exhibit overall lower
reflectance in these wavelength ranges. Accordingly, an index that makes use of
NIR and SWIR bands could be appropriate for marine plastic detection.

Many spectral indices require the input bands to be in units of scaled surface
reflectance (0 to 1.0) as the equations contain numerical constants that are
typically determined using reflectance data. However, for expressions without
such constants, it is possible to apply the index onto pixel values of top-of-
atmosphere reflectance or even radiance. This way, possible errors arising from
the atmospheric correction process can be mitigated (Garaba et al., 2018). The
results of such an approach should be evaluated independently, however, and
not be directly compared to that of BOA reflectance data. For a rigorously tested
index, predetermined numerical ranges associated with certain surface cover
types may change depending on the input data, and an individual assessment
of results will be needed.

Normalised Difference Vegetation Index (NDVI)

The Normalised Difference Vegetation Index (NDVI), introduced by Rouse et al.
in 1973, is a traditional method for mapping of vegetation in multispectral
imagery. NDVI is defined as:

NDVI =
'NIR − 'RED
'NIR + 'RED

(2.21)

where'NIR and'RED are the reflectance2⁰ in the near-infrared and red channels,
respectively. The index is based on the fact that all forms of vegetation show
an increase in reflectance spectra at around 700 nm (the "red edge") and into
the NIR spectral range (Hu, 2009). The difference between reflectance values
in the NIR and red bands serves as a measure of both vegetation density and
photosynthetic capacity, where a high NDVI value indicates healthy and/or
dense vegetation. For water, which is a strong absorber of NIR wavelengths,
NDVI values are typically low to negative.

Figure 2.9 illustrates how the spectral signature of marine plastic debris exhibit
an increased reflectance in the NIR region, similar to that of vegetation. How-
ever, the floating algae tends to have a significantly higher peak at NIR (Kikaki
et al., 2020), making its NDVI values distinguishable from plastic. This was

20. While units of reflectance are most commonly used, the principle of NDVI will also work
with radiance imagery.

21. A genus of brown macroalgae (seaweed; Phaeophyceae).
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Figure 2.9: Spectral signatures of plastic debris (red), dense Sargassum21(green), and
seawater (blue), derived from ACOLITE corrected Landsat-8 and Sentinel-2
imagery. Republished with permission from Kikaki et al., 2020.

demonstrated in Biermann et al. (2020), where marine plastics were shown to
occupy distinct NDVI ranges that do not overlap with seawater, seaweed, sea
foam, pumice, and floating wood.

2.4.4 Anomaly Detection

Anomaly detection is the process of identifying samples that do not conform
to the expected pattern of the data. In the case of high-resolution satellite
imagery, it refers to the problem of detecting image pixels with spectra that
significantly differ from a common background spectrum. The most widely
employed algorithm for this purpose, which has also been applied in this study,
is the Reed-Xiaoli Detector (RXD) developed by Reed and Yu (1990). Grouped
with other covariance-based anomaly detectors, the RXD algorithm can extract
small targets that are spectrally distinct from other image pixels of a given
region, but the anomalous feature(s) must be sufficiently compact relative to
the background for the method to function properly.

The RXD algorithm works in the following way: First, we consider an image X =

[x1x2...x# ] consisting of # pixels, whose column vectors x8 = [G81G82...G8<])
represent the 8th pixel value of spectral band<. Estimated spectral behaviour of
background pixels can then be expressed by their mean vector ˆ̀̀̀ and covariance



28 chapter 2 theory

matrix Σ̂ΣΣ, given as

ˆ̀̀̀ =
1
#

#∑
8=1

x8 and Σ̂ΣΣ =
1
#

#∑
8=1

x8x)8 (2.22)

where x8 = (x8− ˆ̀̀̀). The mean and covariance estimates are computed from the
full image (or a pre-determined subset) under the assumption that the vectors
x8 are measurements of the same random process (Verdoja and Grangetto,
2020). For this to hold, the anomalous features must therefore be small enough
to have negligible effects on the estimates.

The squared Mahalanobis distance is employed to compute the generalised
likelihood of a pixel x being an anomalywith respect to the estimated covariance
matrix. The likelihood is calculated as

X'-� (x) = x)8 Σ̂ΣΣ
−1
x8 (2.23)

Usually, the results from Equation (2.23) are evaluated by a decision threshold
[ that automatically discards or confirms suspected anomaly targets. This can
be done by choosing [ adaptively as a percentage of the full dynamic range of
X'-� , specifically:

[ = C · ? max
8=1,...,#

(X'-� (x8)) (2.24)

where C ∈ [0, 1] and ? is the number of spectral channels (same as < if a
dimensionality reduction of the data is not performed). Thus, a pixel is regarded
anomalous if X'-� (x) ≥ [ (Verdoja and Grangetto, 2020).

2.5 Endmember Extraction

The detection of plastics in satellite imagery is often limited by the spatial reso-
lution of the sensor. Even for metre-sized floating patches of plastic, the ground
sampling distance (GSD) of most optical instruments is not high enough for
plastics to fully cover a single pixel. Furthermore, floating plastics are likely to
be wet with seawater and partially submerged, preventing a pure plastic spec-
trum to be directly derived from the image. To this date, no reference library
spectra of marine plastic debris in a natural environment exist (Topouzelis
et al., 2020), and, consequently, spectral information of plastics must be derived
from the scene using appropriate endmember extraction methods. In this study,
two such techniques have been explored: the Pixel Purity Index and an Inverse
Spectral Unmixing calculation. The former is an automated algorithm designed
to extract the most spectrally pure pixel signatures in a scene, while the latter
requires prior knowledge about material abundance in a nonuniform pixel.
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Regardless, the aim of the two approaches is the same: to locate and extract a
pure plastic spectrum in an image that can be used to detect other potential
plastic pixels via spectral unmixing and classification algorithms.

2.5.1 Endmembers

In most classification schemes, it is assumed that each pixel in an image belongs
to one feature vector class only. But this is rarely the case for satellite imagery.
Depending on the image spatial resolution, a single pixel can cover multiple
different surface types that each have a different spectral response. Such pixels
are referred to asmixed pixels, and their spectral signatures, as measured by the
sensor, are made up of the weighted sum of all contributing surface element
spectra, referred to as endmembers (Elachi and Zyl, 2006). The spectral response
of an endmember represents a purely homogeneous pixel, covering only one
type of surface component. In subpixel classification schemes, the measured
spectrum of a mixed pixel, (total(_), is fundamentally assumed to follow the
linear mixture model equation:

(total(_) =
#∑
8=1

08(48 (_) + = (2.25)

where 08 is the relative fraction of the measured spectrum contributed by the
endmember spectrum (48 (_), and = represents additive noise. Assuming that
all endmember spectra in an image are known, and that all fractions must be
positive, Equation (2.25) is constrained by

#∑
8=1

08 = 1; 08 ≥ 0 (2.26)

In the ideal case, when Equation (2.26) holds and all coefficients in the linear
combination sum up to 1, 08 is interpretable as cover fraction or abundance
of a certain endmember. This is illustrated in Figure 2.10, showing a simple
mixture model that has the geometrical shape of a triangle whose vertices are
the endmembers. Cover fractions can then be determined by the position of
spectral components in the two-dimensional data cloud and be considered
relative coordinates in a new reference system defined by the endmembers
(Plaza et al., 2002).

2.5.2 Pixel Purity Index

The Pixel Purity Index (PPI) is a tool originally developed for the ENVI software,
which can be used to locate the purest pixels in a multi- or hyperspectral image.
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Figure 2.10: Scatterplot of two-dimensional spectral data points demonstrating the
physical interpretation of a mixture model based on endmembers. Figure
from Plaza et al. (2002).

The algorithm is based on the geometry of convex sets22, where each pixel is
considered a vector in n-dimensional feature space23. PPI starts by generating
random unit vectors, or "skewers", constrained to pass through the centre –
the mean value – of the n-dimensional data cloud. A random vector is then
selected, onto which each pixel in the image is projected (as illustrated in
Figure 2.11). The values of the projection are loaded into a histogram, where
the most extreme pixels in the direction of the skewers fall into the tails of the
histogram distribution and are considered spectrally pure. The threshold value
of these histogram tails can be modified by the user but is typically two to three
times the noise level in the data2⁴ (Harris Geospatial Solutions, 2020).

The PPI algorithm will iterate through a set number of iterations. Throughout
the process, ENVI keeps track of how many times each pixel is marked as
spectrally extreme for a single skewer – incrementing its value in the output PPI
image by one for each time. When the algorithm reaches maximum iterations, it
outputs a rule image of each pixel’s PPI score. The resulting image can then be
used to identify pixels with a high PPI value that are likely to be endmembers
in the input scene.

To facilitate extraction of the endmembers, ENVI has a tool called n-D Visualiser
to locate, identify, and cluster the most extreme spectral responses in an n-
dimensional data cloud (Harris Geospatial Solutions, 2020). Using both the PPI

22. A convex set is a set of elements from a vector space such that all the points on the straight
line between any two points of the set are also contained within the set.

23. = is the number of spectral channels in the image.
24. The noise level will be equal to one if using Minimum Noise Fraction (MNF) transformed

data.
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Figure 2.11: Simple example illustrating the performance of the PPI algorithm in a
two-dimensional feature space. Figure from González et al. (2010).

image and the original scene as input, the n-D Visualiser allows for interactively
rotating data in n-D space and manually or automatically selecting the purest
pixels based on vertices in the data cloud. The resulting endmember signatures
can be identified as belonging to a certain class through either visual inspection
or comparison to reference library spectra, after which they can be used in
classification schemes or spectral mixture analyses.

2.5.3 Inverse Spectral Unmixing

The inverse spectral unmixing approach involves a modification of Equation
(2.25) describing a linear mixed model. It is not a typical method for endmem-
ber extraction, as it is, in its forward sense, used to decompose the spectral
signature of a mixed pixel into a set of predetermined endmembers and corre-
sponding abundances (Topouzelis et al., 2020). However, if the fractions of each
endmember comprising the mixed pixel are known, a target’s spectral response
can be derived from inverse spectral unmixing provided it is the only unknown
variable. That is, all other endmember spectra are known explicitly.

In the simplest case, a mixed pixel is composed of two different surface com-
ponents. The mixed pixel can then be expressed as

(<8G (_) = 01(1(_) + 02(2(_) (2.27)

where 01 and 02 are the fractional coverage of the pixel’s endmember spectra (1
and (2 for wavelength _, respectively. The inverse spectral unmixing approach
assumes that both abundances, as well as (<8G and one of the two endmember
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signatures, are known. An estimation of the target’s pure spectral response
would then follow the equation:

(1(_) =
(<8G (_) − 02(2(_)

01
(2.28)

where (1 is the unknown endmember spectrum calculated from the other
known variables. Equation (2.28) is deterministic in the sense that it does not
account for random noise in the channels, and hence, the result comes with
an immeasurable level of uncertainty. Nevertheless, the technique is useful for
extracting spectral responses of smaller targets without the need for a pure
pixel.

2.6 Spectral Unmixing – Mixture Tuned Matched
Filtering

Mixture Tuned Matched Filtering (MTMF), first described in Boardman (1998),
is an advanced spectral unmixing algorithm designed to detect specific mate-
rials within mixed image pixels. Unlike linear spectral unmixing, MTMF does
not require all materials or endmember spectra within a scene to be known;
one target spectrum is sufficient. This makes the MTMF appropriate to use
on multispectral imagery where not all endmember spectra can be resolved2⁵,
despite the algorithm being originally developed for hyperspectral data.

The algorithm, illustrated in Figure 2.12, is designed to leverage mixing between
a target of interest and the background in order to solve the problem of
"selectivity" common to simplermethods (Boardman and Kruse, 2011). Through
a partial unmixing calculation, the abundance of a user-defined endmember
can be found by maximising the response of the endmember of interest and
minimising the response of the composite unknown background (Mehr et al.,
2013). MTMF is very effective for detecting small subpixel targets differing
subtly from the background, and it also calculates an infeasibility image for
each endmember allowing false positives to be rejected. The process of applying
MTMF to an image can be divided into three main steps: i) Pre-processing
and data conditioning, ii) Matched Filtering for abundance estimation, and
iii) Mixture Tuning for false positive identification and rejection (Boardman
and Kruse, 2011). All three steps are presented in detail in the following
sections.

25. The number of spectral bands in a sensor determines the upper limit for the number of
endmembers that can be derived from an image.



2.6 spectral unmix ing – mixture tuned matched filtering 33

Figure 2.12: Concept of Mixture Tuned Matched Filtering showing identification and
quantification of a known target spectrum against a diverse background.
High MF scores indicate a large fraction of target spectrum within the
pixel, where 1.0 equals a perfect match between the user-supplied end-
member and pixel spectrum (i.e., 100% abundance). The infeasibility
scores constrain the spectral profile in the context of mixing of the back-
ground and target signature. Consequently, the best spectral matches are
identified by a high MF score and a low infeasibility score. Figure is made
by F. A. Kruse (Kruse et al., 2015).

i) Pre-processing and Data Conditioning (MNF Transform)

The first step of MTMF is to apply a Minimum Noise Fraction (MNF) transform
to the data. This process is twofold, comprising noise whitening2⁶ and data
decorrelation, with the aim of segregating noise in multi- or hyperspectral im-
agery. To whiten the noise, the noise covariance matrix and its decomposition
into a corresponding eigenvalue vector and eigenvector matrix must be esti-
mated. This can be done in different ways, but for scenes without appropriate
auxiliary data2⁷, the estimation must be done via the shift difference method
(Boardman and Kruse, 2011). As described in Boardman and Kruse (2011), the
shift difference leverages the fact that neighbouring pixels typically have a
strong spatial correlation, while a much lower correlation is seen for noise. As
a result, the difference between neighbouring pixels will primarily depict the
noise.

Since the method derives noise statistics directly from the dataset, the input is
the image itself. This is represented by a A ×2 ×1 matrix, J, whose dimensions
are the rows, columns, and bands, respectively. The method proceeds to create

26. Noise whitening is the process of rescaling the noise in the data.
27. Other methods can be utilised if the scene has a dark current image or if noise statistics

are known a priori.
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a new matrix, T , by calculating the differences between adjacent pixels for
each band. T will then be a "noise-only" dataset of dimensions A −1×2 −1×1,
where every band correspond to the average row- and column shift difference
of the same band in J, i.e.:

T8 9: =
1
2

(
J8 9: − J (8−1) 9:

)
+ 1

2
(
J8 9: − J8 ( 9−1):

)
(2.29)

where i, j, and k represent row, column, and band indices, respectively (Board-
man and Kruse, 2011). To calculate the covariance noise matrix, �̂n, T is
considered two-dimensional with dimensions (A − 1) (2 − 1) × 1. �̂n is then
estimated from the sample covariance, given as

�̂8 9 = 1.5
(∑ (T:8 − =̄8) (#: 9 − =̄ 9 )

? − 1

)
(2.30)

where ? is the total number of pixels in the shift difference result [(A−1) (2−1)],
and =̄8 and =̄ 9 denote the mean value of band 8 and 9 of the noise image T ,
respectively. The factor of 1.5 is added to account for the squaring of the terms
in Equation (2.29)2⁸.

The next step in data pre-processing is decomposing �̂n into eigenvalues and
eigenvectors. This is done by first reducing the covariance matrix to tridiagonal
form2⁹ using Householder reflections3⁰, and then applying a diagonalisation
via QL factorisation31. Next, the eigenvalues and corresponding eigenvectors
are sorted in descending order. The final results of the decomposition are the
noise eigenvalue vector �n and the noise eigenvector matrix Kn (Boardman
and Kruse, 2011).

Following this, the original image is mean corrected by subtracting the average
spectrum Ȳ from the data. Then, to decorrelate the noise, the mean-corrected
image is projected onto Kn. Finally, each resulting band is normalised by
dividing it by the square root of the corresponding noise eigenvalue, producing
a noise-whitened image of zero mean. This transformation is referred to as
Principal Component Analysis (PCA) whitening, conducted using the PCA
whitening matrix:

] = Kn�
− 1

2
n (2.31)

28. From Eq. (2.29), we have that T8 9: = 1
2 (J8 9: − J (8−1) 9: ) + 1

2 (J8 9: − J8 ( 9−1): ) =

J8 9: − 0.5J (8−1) 9: − 0.5J8 ( 9−1): . Since the estimation of the noise covariance matrix
involves squaring T , the result must be divided by 12 + 0.52 + 0.52 = 1.5 (Boardman and
Kruse, 2011).

29. A tridiagonal matrix has nonzero elements on the main diagonal and the first diagonals
directly above and below this only.

30. A transformation that reflects a matrix about some plane or hyperplane.
31. A decomposition of the matrix J into a product J = WR, where W is an orthogonal matrix

and R is the lower triangular matrix.
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The noise-whitened and mean-corrected data, Jmcnw, is thus given by

Jmcnw =])Jmc (2.32)

where Jmc is the mean-corrected image and �n and Kn are the eigenvalue and
eigenvector components of the noise covariance matrix �̂=, respectively.

The final step of the MNF transform involves a standard PCA rotation of Jmcnw,
which projects the data onto its own covariance eigenvectors. This is done using
the same procedure as described previously: the covariance matrix �̂mcnw of
Jmcnw is computed so that the associated eigenvalues and eigenvectors32 can
subsequently be retrieved. The final MNF output is then given by

Jmnf = K)mcnwJmcnw (2.33)

where Kmcnw is the eigenvector matrix of the covariance matrix �̂mcnw, esti-
mated from Jmcnw.

The MNF transformed image has several useful properties. Firstly, it contains
uncorrelated unit variance white noise, which is essential for proceeding with
the mixture tuning part of the MTMF algorithm. Additionally, the data has a
zero mean and uncorrelated variables, which is useful for speeding up and
simplifying the rest of the MTMF process (Boardman and Kruse, 2011).

ii) Matched Filtering

After pre-processing and data conditioning, the MNF image Jmnf can be used
as input to the MTMF algorithm. The method consists of two discrete steps; the
first part is Matched Filtering (MF). This process can be described as a filtering
of image pixels for goodmatches to the user-supplied target spectrum,while the
remaining background spectra are suppressed (Mundt et al., 2007). The target
spectrummust match the units of the input image for the algorithm to work and
therefore needs to be transformed to MNF space using the method described
in i). A Matched Filter vector is then created by projecting the transformed
spectrum onto the inverse covariance matrix of the MNF data and normalising
it to the magnitude of the target spectrum. This way, the MF vector is of unit
length and corresponds to target abundance ranging from 0.0 to 1.0 (or 0 to
100%). Its mathematical expression is given as

w =
�̂

−1
Jmnf

smnf

s)mnf�̂
−1
Jmnf

smnf

(2.34)

32. The eigenvectors will always be orthogonal with non-negative eigenvalues due to the
nature of the PCA algorithm
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where �̂

−1
Jmnf

is the estimated covariance matrix33 of the MNF transformed
image and smnf is the 1 × 1 vector of the target spectrum in MNF space. MF
scores are computed for each pixel through a projection of the MNF image
onto the MF vectorw from Equation (2.34). The output image is an 8 × 9 target
abundance rule image (Mundt et al., 2007), defined as

Jmf = Jmnfw (2.35)

Its pixel values represent the magnitude of the output MF scores, where any
positive value indicates the fractional abundance of the target component,
and 1.0 equals a perfect match. MF scores that are zero or negative represent
background pixels in which no target component is detected.

Figure 2.13: Diagram illustrating the classical Matched Filtering method. Modified
figure from Boardman and Kruse (2011).

For systems with low spectral contrast3⁴, MF values greater than one may
occur; typically as the result of spectral confusion. This irregularity can be
interpreted as an artefact of variability within the target or as unique mixtures
of background components that falsely identify as the target spectrum (Mundt
et al., 2007). In the classical Matched Filtering approach (as illustrated in Figure
2.13), there are no means of rejecting false positives; MF scores provide purely
a measure of calculated (and thus assumed) target abundance.

iii) Mixture Tuning

The final step of the MTMF algorithm, and the segregating power from classical
Matched Filtering, is Mixture Tuning (MT). This step allows for an assessment

33. The covariance matrix of the MNF data will be approximately the same as the background
covariance if the target is sparsely distributed.

34. Spectral contrast refers to the level difference between peaks and valleys in the spectrum.
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of feasibility, or likelihood of correct matches, for each MF classified pixel. As a
high MF score may be received for anomalies that both do and do not resemble
the target spectral signature (see Fig. 2.13), infeasibility values can help detect
and reject the false positives.

According to the linear mixture model, a purely homogeneous target pixel
cannot exhibit any form of mixing with background spectra. Therefore, all
variations must be caused by noise in the data. Background pixels, however, can
comprise any mixing combination of endmembers and thus contain variance
from both the background as well as variance explained by noise. This leads to
the following two infeasibility constraints: 1) abundances of each endmember
for a given pixel must all be nonnegative, and 2) all abundances must sum
up to one. As implied by these constraints, the spectral scatterplot of mixed
pixels will occupy an =-dimensional simplex3⁵ whose vertices are the = + 1
endmembers present in the image (Boardman and Kruse, 2011). Pixels that
represent a pure target spectrum will lie directly at the end of the target vector
and have zero mixing freedom, acting as one of the vertices of the mixing
simplex (as illustrated in Figure 2.14, point c). For pixels containing 0% of
the target material, maximum mixing freedom between all other endmembers
exists – provided they are feasible mixtures. Pixels that fall outside the =-
simplex will be rejected as infeasible mixtures between target and background
(Fig. 2.14; point d and e).

The proximity of each pixel to its idealised location on the target vector de-
scribes the conceptual measure of infeasibility (Mundt et al., 2007). During the
MTMF process, a pixel’s expected feasible mixing range is calculated from a
range of distributions (characterised by their means and standard deviations)
as a function of the pixel’s MF abundance score. Each MF value is associated
with a distribution, ranging from zero abundance in one end (background
distribution3⁶) to 100% abundance in the other end (target distribution3⁷).
These distributions are illustrated by the feasibility contours in Figure 2.12,
which will get smaller as the pixel approaches the target spectrum. Evidently,
the mixing distribution of a pure target is noise only - and here, the noise
whitening properties of the MNF transform is advantageous. Since no mix-
ing freedom is allowed in a pure target, all such pixels must be within a few
standard deviations of the target spectrum (Boardman and Kruse, 2011). For
intermediate distributions, falling anywhere between the two extrema, a lin-
ear interpolation of the background- and noise distributions determine their
statistics of the respective intermediate MF abundance values.

35. An =-simplex is an =-dimensional object which is the convex closure of its = + 1 vertices.
36. Characterised by the mean background spectrum and its standard deviations.
37. Characterised by the target spectrum and unit standard deviations.
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Figure 2.14: Two-dimensional projection (2-simplex) of theMTMF space withMatched
Filtering scores and infeasibility scores on the vertical and horizontal axes,
respectively. The dashed lines indicate the infeasibility threshold, and
the white area represents pixels’ mixing freedom. (a) Large MF value
near zero infeasibility; (b) smaller MF value and marginally feasible; (c)
perfect match between pixel and target spectrum and entirely feasible;
(d) very large MF score but highly infeasible (false positive); (e) low MF
score and very infeasible. Figure from Routh et al. (2018).

The Mixture Tuning is performed by calculating infeasibility values (MT scores)
for each pixel. This is done using a simple distance measure, where the infea-
sibility number correspond to the geometric distance from the pixel spectrum
to the mean spectrum of the appropriate distribution (associated with the
pixel’s MF score). Numerically, the MT score refers to the number of standard
deviations (of the mixing distribution) between the distribution mean and the
pixel. As seen from the noise sigma contours in Figure 2.12, the infeasibility
scores vary in DN scale depending on the associated MF value.

In further detail, the calculation of infeasibility for each pixel involves three
distinct steps: 1) determination of the pixel’s target vector component (mean
of the distribution corresponding to the MF score of a pixel), 2) interpolation
of the variance eigenvalues derived from the target vector component, and
3) computation of the standardised separation between a pixel and its ideal
target vector component via a projection onto scaled eigenvectors (Mundt et al.,
2007). For the first step, each pixel’s target vector component can be calculated
as

c8 = 3mf,8 × smnf (2.36)

where 3mf,8 is the MF score of the ith pixel and smnf is the target spectrum in
MNF space. Note that Equation (2.36) will only be useful for MNF transformed
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data (assuming a zero-mean background), such that the distribution mean
ranges from the background spectrum (zero vector) to smnf as the MF pixel
values range from zero to unity (Boardman and Kruse, 2011).

The second step of the MT calculation involves eigenvalue interpolation for the
appropriate distribution. This is done to establish variance thresholds based
on a pixel’s level of mixing freedom, such that pixels with a small target vector
component (i.e., high mixing freedom) are allowed a higher degree of variance
and vice versa (Mundt et al., 2007). The eigenvalue interpolation is given by

e8 =
(√

emnf − 3mf,8 ×
(√

emnf − e=
) )2 (2.37)

where e8 denotes the vector of interpolated eigenvalues, emnf is the vector
of MNF values, and e= = diag(�=); the vector whose elements are the MNF
noise eigenvalues (a vector of ones). The variance thresholds, or infeasibility
thresholds, derived from this calculation, make up the facets of the linear
mixing simplex (as shown in Figure 2.14).

The final step in the infeasibility assessment is a calculation of the geometric
distance from the pixel to the target vector, normalised to the infeasibility
threshold magnitude corresponding to the pixel’s MF score. Mathematically,
this is given as

3mt,8 =
‖s8 − c8 ‖
‖e8 ‖

(2.38)

where 3mt,8 is the infeasibility score for the 8th pixel, s8 is the MNF spectrum
for pixel 8, and c8 and e8 are given by Eqs. (2.36) and (2.37), respectively.

The Mixture Tuning part of MTMF will assign an infeasibility value to all pixels
in the scene, and their scores can be directly interpreted as a measure of mixing
feasibility (Mundt et al., 2007). Low scores are typically associated with feasible
mixtures, while high scores (i.e., many standard deviations of separation from
the mixing simplex) indicate infeasible mixtures and can be used to reject false
positives (Boardman and Kruse, 2011). However, whether a mixture is feasible
also depends on the mixing freedom of which the pixel possesses.

Finally, it should be noted that the performance of the MTMF algorithm largely
depends on the quality of the user-supplied endmember and the linear proper-
ties of the involved spectral mixing. For the MTMF to yield improved results
from classical MF, the target spectrum should have a sufficiently low spectral
variability, and must therefore be carefully selected for an accurate subpixel
detection assessment.
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Study Area and Datasets
3.1 Great Pacific Garbage Patch

The Great Pacific Garbage Patch (GPGP) is the largest accumulation of marine
plastic in the world. Located between Hawaii and California, it covers an
estimated surface area of 1.6 million km2 in the North Pacific Ocean (The
Ocean Cleanup, 2021) – a figure more than four times the size of Norway.
The GPGP is formed by the North Pacific Gyre, a large-scale rotating ocean
current that draws floating debris into its stable centre and subsequently forms
’patches’ of marine litter. The gyre actually comprises two such patches: the
Western Garbage Patch, located southeast of Japan, and the Eastern Garbage
Patch, more commonly known as the Great Pacific Garbage Patch (Figure 3.1).
These regions of swirling debris are linked by the North Pacific Subtropical
Convergence zone, where warm water from the South Pacific converges with
cooler water from the Arctic. This way, marine debris can be transported over
large distances from one patch to another.

Conventional plastics are not biodegradable; they simply break into smaller
pieces over time, caused by the effects of the sun, oceanic waves, and marine
life (Micalizio, 2019). The amount of marine debris can therefore accumulate
to form areas comprising millions of tonnes of plastic. However, because the
accumulation zones are so large, the plastics appear as highly dispersed rather
than a floating ’island’ of debris - contradicting many people’s envision of the
patch. Much of the debris, particularly in later stages of degradation, is also
suspended in the upper layers of the water column, and much of it sinks to the
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ocean floor. Debris size varies greatly, ranging from large derelict fishing nets
to tiny pieces of microplastic (<5 mm). Combined, these factors make plastic
detection by satellite imagery challenging, albeit not impossible.

Figure 3.1: The garbage patch is formed in the gyre of the North Pacific Subtropical
Convergence Zone. Image credit: NOAA.

The extent of the study area is illustrated in Figure 3.2 andwas based on research
conducted by The Ocean Cleanup Foundation. By simulating concentration
levels of floating debris in the North Pacific, the team of scientists demonstrated
significant seasonal and interannual variations of the GPGP’s shape and location
due to changes in sea surface winds and currents (Lebreton et al., 2018). On the
basis of these findings, the study area for this project was selected to include
both the conventional extent of the area as well as its seasonal and interannual
variability, encompassing the entire patch regardless of the year.
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Figure 3.2: Extent of the study area in the North Pacific Ocean with approximate posi-
tions of the satellite imagery marked. Note that seasonal and interannual
variations of the GPGP extent are included in this figure (i.e., the actual
garbage patch is considered smaller). Figure made in QGIS 3.18.2.

3.2 Satellite Data

Initially, 31 images from 9 different commercial satellites were made available
by KSAT for this project, consisting of 24 optical and 7 synthetic aperture radar
(SAR) products. The optical imagery comprised very high spatial resolution
scenes (0.3–6 m) from the following satellites: KOMPSAT-3, KOMPSAT-3A,
SPOT-6, SPOT-7, WorldView-2 (WV2), and WorldView-3 (WV3). The SAR prod-
ucts, on the other hand, were from Radarsat-2, SAOCOM-1A, and TerraSAR-X
with spatial resolutions ranging from 3 to 100 metres.

Although the purpose of this study was to explore the images for marine
plastic litter, low availability of ground truth information for the given datasets
was a severely limiting factor. Without in situ data for confirmation or a
sufficiently high spatial resolution to visually distinguish plastics from other
sea surface features, any conclusions drawn from such images would have been
purely based on assumptions. For this reason, supported by the limited time
frame of the project, the focus was gradually shifted to be on the images with
confirmed GPS tracker information alone. These datasets, consisting of three
SPOT and five WorldView images, are presented in the following sections, and
only results involving this imagery are considered and discussed throughout
the thesis.
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3.2.1 SPOT-6/7

The SPOT series of missions has been supplying high resolution optical imagery
since 1986. SPOT-6 (launched in 2012) and SPOT-7 (launched in 2014) are the
two latest and only operational satellites in the series as of May 2021, and
they are owned by Airbus Defence and Space - a division of the European
multinational aerospace corporation Airbus. SPOT-6 and -7 carry the same
multispectral instrument1 with a panchromatic band, four multispectral bands
in VNIR (visible and near-infrared), and a swath width of 60 km (refer to Table
3.1 for details of spectral bands). The two satellites make up a constellation
that can provide a revisit frequency of 1 day in cloud-free conditions.

Table 3.1: Wavelengths of the SPOT-6 and SPOT-7 spectral bands. Spatial resolution
is at nadir.

SPOT-6/-7

Band Central Wavelength Bandwidth Spatial Resolution
(nm) (nm) (m)

Panchromatic 598 289 1.5
Blue 485 66

6Green 560 61
Red 660 70
NIR 825 121

KSAT holds the licence to the SPOT imagery that was collected for the purpose
of the study. This includes three SPOT-6 and five SPOT-7 scenes, of which three
had associated ground truth information2. These three images – two SPOT-6
and one SPOT-7 scene – are presented in Table 3.2.

Table 3.2: Details of the SPOT datasets.

Satellite Date and Image Product Type Spatial
Time (UTC) Resolution

SPOT-6 20200706, 20:21:53 Pan + 4 band VNIR 1.5/6 m
SPOT-6 20200727, 20:09:58 Pan + 4 band VNIR 1.5/6 m
SPOT-7 20200705, 20:30:27 Pan + 4 band VNIR 1.5/6 m

According to the SPOT Imagery User Guide3, all SPOT products are corrected
for radiometric and sensor distortions as a minimum. Optional further pro-
cessing can thereafter be applied by request of the customer. For the imagery
presented in Table 3.2, the geometric processing level is ’Standard Ortho’, which

1. New Astrosat Optical Modular Instrument (NAOMI).
2. GPS tracked plastic conglomerates.
3. SPOT product guide available from: https://www.intelligence-airbusds.com/

en/8718-user-guides

https://www.intelligence-airbusds.com/en/8718-user-guides
https://www.intelligence-airbusds.com/en/8718-user-guides
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means that the products are georeferenced and corrected from acquisition and
terrain off-nadir effects (Airbus Defence and Space, 2021). The radiometric
processing level for the SPOT-7 and the SPOT-6 acquired on 05/07/20 and
06/07/20, respectively, is ’Reflectance’, while the SPOT-6 image from 27/07/20
is a ’Basic’ product. The latter means that the image pixels consist of digital
numbers from the sensor acquisition, i.e., native values after equalisation that
are not physically meaningful without calibration. However, all Basic products
are corrected for radiometric and sensor distortions (e.g., striping artefacts
produced by nonuniformity of detectors), referred to as relative radiometric
correction. ’Reflectance’ processing, on the other hand, means that the pixels
have been calibrated to at-sensor reflectance and represent actual physical
values (absolute radiometric correction). For SPOT Reflectance products, the
pixel values are scaled by a factor of 10,000.

Figure 3.3: A SPOT-6 scene preview. The image, acquired on 27/07/20, is a Level 1L
product displayed in RGB colour. ©Airbus DS/Spot Image 2020.

3.2.2 WorldView-2/3

TheWorldView series consists of commercial Earth observation satellites owned
by Maxar Technologies (previously known as DigitalGlobe Inc.) – a space
technology company based in the United States. The first three satellites in
the series are currently operational and supply high resolution imagery from a
sun-synchronous orbit. WorldView-1, launched in 2007, carries a panchromatic-
only instrument which produces 50 cm resolution grayscale imagery, while
WorldView-2 (launched in 2009) and WorldView-3 (launched in 2014) carries
a camera with 8 spectral bands in VNIR. Additionally, WorldView-3 has 8
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bands in the SWIR spectral range and 12 CAVIS⁴ bands. Specifications for the
WorldView-2 and WorldView-3 satellites are given in Table 3.3 and Table 3.4,
respectively.

The WorldView imagery available for this study was kindly provided by the
National Oceanic and Atmospheric Administration (NOAA) and shared with
their permission by KSAT. There are five images in total, of which three are
8-band VNIR images from WorldView-2 and two are 8-band images from
WorldView-3 - one in VNIR and one in SWIR. Panchromatic bands are available
for all four VNIR images. TheWorldView-3 scenes are overlapping and acquired
two seconds apart, while the WorldView-2 images are located in different parts
of the North Pacific and acquired on different dates. Table 3.5 lists further
details of the imagery, and Figure 3.4 displays the entire WorldView-2 image
(∼270 km2) from 19/05/20.

Table 3.3: Wavelengths of the WorldView-2 spectral bands. Spatial resolution is at
nadir.

WorldView-2

Band Central Wavelength Bandwidth Spatial Resolution
(nm) (nm) (m)

Panchromatic 632 337 0.46
Coastal Blue 427 52

1.8

Blue 478 61
Green 546 70
Yellow 608 39
Red 659 60
Red Edge 724 40
NIR 1 833 118
NIR 2 908 92

All five images are product Level 1B, or ’Basic Imagery Products’, which means
that minimal processing has been applied to the imagery. According to the
DigitalGlobe Core Imagery Products Guide⁵, Basic Products are designed for
users with advanced image processing capabilities. Applied processing includes
radiometric- and sensor corrections but not geometric projection to a plane
using a map projection or datum. The correction for sensor distortions blends
the pixels from all detectors into the synthetic array to make a single image,
and because the look angle of the satellite gradually changes during the image
acquisition process, the resulting GSD will vary across the entire scene. A

4. CAVIS (Clouds, Aerosols, Vapours, Ice, & Snow) bands are intended for atmospheric
monitoring and correction.

5. DigitalGlobe product guide available at: http://lps16.esa.int/posterfiles/
paper1213/[RD12]_digitalglobe-core-imagery-products-guide.pdf

http://lps16.esa.int/posterfiles/paper1213/[RD12]_digitalglobe-core-imagery-products-guide.pdf
http://lps16.esa.int/posterfiles/paper1213/[RD12]_digitalglobe-core-imagery-products-guide.pdf
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Table 3.4: Wavelengths of the WorldView-3 spectral bands (excluding CAVIS bands).
Spatial resolution is at nadir.

WorldView-3

Band Central Wavelength Bandwidth Spatial Resolution
(nm) (nm) (m)

Panchromatic 625 350 0.31
Coastal Blue 425 50

1.24

Blue 480 60
Green 545 70
Yellow 605 40
Red 660 60
Red Edge 725 40
NIR 1 833 125
NIR 2 950 180
SWIR 1 1210 30

3.7

SWIR 2 1570 40
SWIR 3 1660 40
SWIR 4 1730 40
SWIR 5 2165 40
SWIR 6 2205 40
SWIR 7 2260 50
SWIR 8 2330 70

Table 3.5: Details of the WorldView datasets.

Satellite Date and Image Product Type Spatial
Time (UTC) Resolution

WorldView-2 20200518, 20:41:26 Pan + 8 band VNIR 0.7/2.7 m
WorldView-2 20200519, 20:01:54 Pan + 8 band VNIR 0.5/1.9 m
WorldView-2 20200611, 20:57:09 Pan + 8 band VNIR 1.1/4.2 m
WorldView-3 20200701, 20:56:59 Pan + 8 band VNIR 0.3/1.3 m
WorldView-3 20200701, 20:57:01 8 band SWIR 3.8 m

geometric calibration file containing Rational Polynomial Coefficients (RPCs)
is supplied with the product to allow for orthorectification of the data, i.e.,
removing distortions that occur during imaging, for the purpose of creating a
planimetrically correct image (Harris Geospatial Solutions, 2020).

In addition to the five images listed in Table 3.5, an atmospherically corrected
subset of the 20200519 WorldView-2 scene was supplemented by NOAA. The im-
age is an Ortho-Ready Standard (Level OR2A) product processed with ACOMP
atmospheric correction.
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Figure 3.4: RGB composite of a full WorldView-2 scene (Level 1B/Basic product),
acquired on 19/05/20. WorldView-2 ©2020 DigitalGlobe, Inc., a Maxar
company.

3.3 GPS Satellite Trackers

The only ground truth data related to the satellite imagery were GPS trackers
attached to conglomerates of floating plastic debris (illustrated in Figure 3.5).
The North Pacific Ocean comprises many such trackers, operated by Ocean Voy-
ages Institute, of which four were overlapping with the image data. Although
providing valuable ground truth information, it should be noted that the mark-
ers have a chance of becoming detached from the plastic and thus being much
less useful. At times they can also submerge while still producing a signal that
can be recorded. However, since the imagery associated with the GPS trackers
is of very high spatial resolution, a visual inspection can in many cases confirm
an anomaly in proximity of the tracker. Table 3.6 presents the recorded signal
information associated with the available satellite imagery⁶.

Tracker A had a positive tracker detection in the WorldView-2 image acquired
on 20200518. The recorded signals closest to image acquisition time were at
19:29 UTC (1 hour and 12 minutes before image caption) and at 00:00 (3 hours
and 19 minutes after image caption).

Tracker B was confirmed in the WorldView-2 image from 20200519. The signal
was recorded at 20:00, 1 minute and 54 seconds before image acquisition, and
is the closest to image caption time out of all tracker detections.

6. In the original version of this document, explicit location information and native satellite
tracker IDs were listed in the table. For confidentiality purposes, location information has
been removed and GPS tracker names have been changed.
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Figure 3.5: Floating ghost net in the Great Pacific Garbage Patch with a GPS tracker
attached. Image credit: Ocean Voyages Institute.

Table 3.6: Confirmed positions and corresponding times of four GPS-tracked plastic
conglomerates in the North Pacific Ocean (note that locations have been
redacted owing to confidentiality).

Tracker ID Date Time Latitude Longitude
(UTC) (N) (W)

Tracker A
18/05/20 18:00 – –
18/05/20 19:29 – –
19/05/20 00:00 – –

Tracker B 19/05/20 20:00 – –

Tracker C
11/06/20 12:00 – –
12/06/20 00:00 – –
27/07/20 20:00 – –

Tracker D

01/07/20 12:00 – –
02/07/20 00:00 – –
05/07/20 00:00 – –
05/07/20 04:00 – –
05/07/20 08:00 – –
05/07/20 12:00 – –
05/07/20 16:00 – –
05/07/20 20:00 – –
06/07/20 00:00 – –
06/07/20 04:00 – –
06/07/20 08:00 – –
06/07/20 12:00 – –
06/07/20 16:00 – –
06/07/20 20:00 – –

https://www.oceanvoyagesinstitute.org/


50 chapter 3 study area and datasets

Tracker C was confirmed at 20:00 in the SPOT-6 scene from 20200727. The
signalwas recorded 9minutes and 58 seconds before image acquisition. Further-
more, Tracker C was also confirmed in the WorldView-2 image from 20200611
at 12:00 (8 hours and 57 minutes before image) and at 00:00 (3 hours and 3
minutes after image).

Tracker D had a total of 14 signal recordings related to the satellite imagery.
The first two detections were confirmed in the WorldView-3 images from
20200701 at 12:00 (8 hours and 57 minutes before image) and at 00:00 (3
hours and 3 minutes after image). The remaining detections corresponded to
two SPOT images – one SPOT-7 scene from 20200705, in which the closest
marker position was recorded 30 minutes and 27 seconds before image caption,
and one SPOT-6 scene from 20200706 with a positive tracker confirmation 21
minutes and 53 seconds before the image.

3.4 Supplementary Data

In addition to the satellite imagery andGPS tracker information, supplementary
datasets were available from the University of Hawaii. This includes cloud cov-
erage, wind speed and direction, and projected accumulation data. All datasets
are freely available and can be accessed online⁷ from the Asia-Pacific Data-
Research Center (APDRC). Additionally, global surface current data from the
OSCAR (Ocean Surface Current Analyses Real-time) product can be accessed
via NASA⁸ with a 5-day resolution. For daily current velocity estimates, Coper-
nicus Marine Service offers global ocean physics analysis data from CMEMS
(http://marine.copernicus.eu/).

7. Available at: http://apdrc.soest.hawaii.edu/data/data.php
8. Available at: http://podaac-tools.jpl.nasa.gov/soto/

http://marine.copernicus.eu/
http://apdrc.soest.hawaii.edu/data/data.php
http://podaac-tools.jpl.nasa.gov/soto/


4
Method
Given the exploratory nature of this study, the aim was to evaluate the poten-
tial of different methods for marine plastic detection. A literature review of
published research articles was done at the start of the project period to map
the field’s current advancements and challenges. Following this, a number of
approaches were systematically explored using the provided satellite imagery.
A spectral analysis was emphasised, and priority was given to the images with
GPS tracker information in proximity to image acquisition time.

All processing and image analysis have been conducted in ENVI (ENvironment
for Visualising Images) and ENVI Classic 5.6 – software programs developed
by L3Harris Geospatial for analysing remote sensing imagery. An ENVI licence
was kindly provided by the Geological Remote Sensing Group (GRSG), who
offers one-year software licences to student members. The ENVI Atmospheric
Correction Module, requiring a separate licence, was generously provided free
of charge by Harris Geospatial Solutions for a 60-day period. Moreover, open
source software such as QGIS (v. 3.16.0) and Google Earth Pro have been
used for image visualisation and for creating vector layers of the GPS tracker
positions. Finally, Spyder (written in the Python language) has been used for
implementing some of the algorithms and for plotting graphs.
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4.1 Image Pre-processing

Image pre-processing is the first step in any image analysis workflow, where
the methods depend on the specific application and on the initial product level
of the satellite data. To conduct an unbiased spectral analysis, the integrity
of the spectral response must be retained. Pre-processing steps should there-
fore conserve as much spectral information as possible while also enabling
intercomparison between separate datasets.

The Level 1B WorldView imagery (presented in Table 3.5) was processed
according to Figure 4.1, however; products from each step were individually
conserved throughout the pre-processing workflow. This way, different levels
of processed imagery were easily accessible for applications benefiting from
fewer pre-processing steps than what was provided in the end-product.

Figure 4.1: Image pre-processing workflow for WorldView Level 1B imagery.

4.1.1 Atmospheric Correction

At present, no generic, automated, and well-grounded atmospheric correction
(AC) algorithm exists for water applications of metre-scale resolution imagery
(Vanhellemont and Ruddick, 2018). The correction of broadband optical sensors
without SWIR bands is particularly challenging, as these wavelengths are
commonly used to improve the performance of AC schemes over large water
bodies1. Another challenge is the unavailability of reliable information in
the remote parts of the world oceans, where many correction algorithms
utilise atmospheric parameters derived from spaceborne instruments that do

1. Water is a strong absorber of SWIR wavelengths, which are thus useful in correction
schemes over the ocean.
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not provide coverage in the GPGP area2. Furthermore, there is a chance of
’over-correcting’ the data: the radiance pixel values of deep water scenes are
generally very low,which can cause ACmodels to subtract toomuch of the signal
(hence, ’over-correcting’ the image), resulting in zero to negative reflectance
values.

However, the benefits of using atmospherically corrected imagerymay outweigh
its limitations. Essentially, units of at-surface reflectance is ideal not only to have
a common measure between images but also to highlight spectral features in
the wavebands. Many spectral indices, detection algorithms, and classification
schemes require pixel values of surface reflectance to work properly, and
for methods to be adopted across imagery of different sensors, a common
radiometric scale is necessary for consistency in processing and for allowing
intercomparison.

There are two main steps for atmospheric correction: 1) transformation of
digital number (DN) values to at-sensor spectral radiance (the scaling is im-
portant as different correction algorithms require different scale factors to
produce proper results) and 2) transformation of at-sensor radiance to surface
reflectance (atmospheric correction step; Jawak et al., 2019). All of the images
in this study have been corrected for radiometric and sensor distortions3 by
the provider; however, to represent physically meaningful values of radiance
or reflectance, and to be used for input in AC algorithms, the images must be
converted to absolute radiometry.

Using Eq. (2.9) from Section 2.3.1, the SPOT Basic product and WorldView
images were calibrated to TOA radiance. TOA reflectance images were also
computed using the following equation:

d_ =
c · !_ · 32

�BD=_ · 2>B (\B)
(4.1)

where !_ is the at-sensor radiance calculated from Eq. (2.9), 3 is the Earth-
sun distance in astronomical units for the image acquisition date, �BD=_ is
the band-averaged exoatmospheric solar irradiance, and \B is the solar zenith
angle (Kuester, 2017). All necessary values for calculation of Eq. (4.1) and its
parameters are found within the image metadata. Two of the SPOT images
(20200705 and 20200706), already in units of TOA reflectance, were not further
pre-processed. The radiometric calibration was successful for all scenes except

2. For example, the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument.
3. Radiometric corrections include relative radiometric response between detectors, non-

responsive detector fill, and conversion parameters for absolute radiometry (Maxar Tech-
nologies, 2020).
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the WV3 20200701 SWIR image, which, for unknown reasons⁴, obtained a zero
pixel value for nearly all oceanic pixels.

The next step was then to test the effects of different atmospheric corrections
in the Pacific Ocean. Three methods were explored for this purpose: ACOLITE
(scene-based), FLAASH (model-based), and ACOMP (Maxar product). Finally, a
qualitative assessment to compare AC techniques was conducted by calculating
unbiased percentage differences (UPDs).

ACOMP

The ACOMP algorithm, developed by Maxar Technologies, is a commercial
product provided at request by the customer for an additional charge. For this
reason, only a small subset of the 20200519 WorldView-2 scene was processed,
based on its proximity to a GPS satellite tracker (Tracker B). The spatial extent
and ACOMP result is illustrated in Figure 5.3b.

Figure 4.2: WorldView-2 scene acquired on 19/05/20 (left) showing the spatial subset
of the ACOMP corrected image (right). WorldView-2 ©2020 DigitalGlobe,
Inc., a Maxar company.

4. Possibly due to errors within the image metadata or an error in the ENVI software.
Regardless, shortwave infrared spectral bands can be difficult to correct due to the low
signal response of the ocean.
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ACOLITE

The inherent optical properties of plastic debris can be utilised for detection if
wavelengths in the NIR region are conserved during the atmospheric correction
process (Biermann et al., 2020). This is a trait included in the scene-based
ACOLITE Dark Spectrum Fitting (DSF) algorithm: by dynamically selecting the
darkest pixels based on multiple dark targets in a given scene, no previously
defined ’dark band’ like the NIR is required (Vanhellemont and Ruddick, 2018).
Although ACOLITE was originally developed for coastal waters in Landsat 8
and Sentinel-2 imagery, its current version supports processing of several other
sensors, including SPOT and WorldView. Using the Python script for ACOLITE
DSF (version 20210114.0), outputs for apparent surface reflectance (rhos, dB)
were computed for the WorldView and SPOT Basic imagery⁵ and visualised
in ENVI. ACOLITE was the only successful radiometric pre-processing of the
SWIR WV3 image.

An issue with the coastal blue band (B1) was discovered during ACOLITE
processing of the WorldView data. The channel, which is expected to have a
strong signal in oceanic scenes, showed a significantly lower response compared
to the other visible channels. Quinten Vanhellemont, a developer of ACOLITE,
was contacted and could confirm the presence of the issue and that it had not
yet been addressed as of mid April 2021. For this reason, the coastal blue band
has been excluded from all further processing of ACOLITE correctedWorldView
imagery.

A new generic version of ACOLITE was released on 4 May 2021, offering better
performance for WorldView imagery; however, the time left for this project was
not sufficient to repeat processing.

FLAASH

The FLAASH algorithm uses the MODTRAN radiative transfer model code and
has been extensively tested for its capability to retrieve surface reflectance
(Jawak et al., 2019). Its input file must be an at-surface radiance image in
units of µW/(cm2·sr·nm), which was computed using Equation (2.9) with a
scale factor of 0.1. The application of the FLAASH model was then performed
in ENVI v5.6 as an automated two-step calculation. The first step was the
retrieval of atmospheric parameters (Eq. (2.10)) through an aerosol description
(including initial visibility or aerosol optical depth) and assumption of a certain
model atmosphere. The ’Maritime’ aerosol model was selected for all images,

5. For ACOLITE, the input should be the uncalibrated data (relative radiometric correction
data) as the algorithm itself will do the necessary conversions for absolute radiometry.
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which is most representative for oceanic scenes. As no water vapour informa-
tion was available, the atmospheric model was selected based on the surface
air temperature (which tends to correlate with water vapour), whose values
were retrieved from the APDRC⁶ for each scene. From this, the ’Mid-Latitude
Summer’ atmospheric model was found to be suitable for all images. Aerosol
retrieval was set to ’None’ as neither of the datasets contained appropriate
aerosol bands.

In the second and final step, the atmospheric and aerosol/haze models were
used for the solution of the radiative transfer equation (Eq. (2.11)) to obtain
surface reflectance data. Figure 4.3 illustrates the difference between an at-
sensor radiance image and a BOA corrected FLAASH image using WorldView-2
data.

The aerosol optical depth (initial visibility) was initially left at its default value
of 40 km; however, this resulted in zero to negative reflectance values in the
NIR bands for nearly all water pixels. After consulting with Dr. Adler-Golden (a
developer of FLAASH) and testing with several different initial visibility values,
the final parameter was set to 250 km – close to the maximum of ∼300 km –
to avoid over-correction in the NIR bands, which are already dark over water.
While such a high value improved the amount of negative pixel values, it did
not fully solve the problem. This is not unexpected, however, as AC models are
less robust over open ocean due to the water content in the atmosphere. In
addition, ’forcing’ the model to yield valid remote sensing reflectances through
an over-estimation of optical depth introduces other uncertainties to the data
(e.g., for spectral signatures and expected response of endmembers), albeit
more reliable results than that of negative (and invalid) pixel values.

With these limitations inmind, theWorldView andSPOT imagerywas processed
according to the method described. For consistency, all images of the same
sensor were processed with equal parameters. Finally, since the output from
FLAASH is scaled to integers by default with pixels ranging from 0 to 10,000,
the image pixel values were divided by 10,000 to obtain floating-point values
(0 to 1.0) of apparent surface reflectance.

Unbiased Percentage Differences

As no reference spectra dataset of marine plastic debris exists, the atmospher-
ically corrected end-products were compared by deriving the unbiased per-
centage differences at different wavebands, as done previously (Garaba and
Zielinski, 2013; Topouzelis et al., 2019). To determine the UPD between two

6. http://apdrc.soest.hawaii.edu/data/data.php

http://apdrc.soest.hawaii.edu/data/data.php
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Figure 4.3: Comparison of at-sensor radiance (a) and FLAASH atmospheric correction
(b) of a cropped WorldView-2 scene.WorldView-2©2020 DigitalGlobe, Inc.,
a Maxar company.

approaches A and B, the following equation was employed:

k�� (_) =
��'� (_) − '� (_)��

0.5
(
'� (_) + '� (_)

) × 100% (4.2)

where ' is the normalised reflectance of a given material class at wavelength
_. Equation (4.2) was applied to compare the AC methodologies pairwise
using spectra of a known plastic target. Subsequently, the spectral average UPD
was calculated summing and weighting Eq. (4.2) for # spectral channels; i.e.
(Garaba and Zielinski, 2013),
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1
#
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4.1.2 RPC Orthorectification

To leverage the WorldView Level 1B imagery for GIS (geographic information
system) applications (e.g., accurate distance measures), reduce geometric dis-
tortions, and provide a common map scale between datasets, the imagery must
be projected onto a plane through an orthorectification process. Although it is
recommended to use a rigorous orthorectification solution to achieve more ac-
curate results for DigitalGlobe (Maxar) Basic data (Harris Geospatial Solutions,
2020), the Rigorous Orthorectification tool in ENVI requires a separate licence
that was not available for this study. Instead, ENVI’s RPC Orthorectification
tool was used, which works well for oceanic scenes where geometric accuracy
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will be limited regardless. The inputs to the workflow were the RPC sensor
model provided with the image metadata and the Global Multi-resolution
Terrain Elevation Data 2010 (GMTED2010) – a digital elevation model (DEM)
provided within the ENVI software and used for geoid height correction of
the data. No ground control points (GCPs) were applied (this is rarely used
for ocean satellite imagery), and the image resampling technique was set to
Cubic Convolution⁷ as previous research (Rizeei and Pradhan, 2019) indicates
better radiometric performance and lower vertical and horizontal uncertainties
for this resampling technique as compared to ENVI’s other resampling options
(Nearest Neighbour and Bilinear Interpolation).

By definition, the orthorectification process modifies the shape of the origi-
nal image, and resulting pixels may be rearranged or reoriented. Therefore,
orthorectification should be performed as one of the last steps of an image
pre-processing workflow (i.e., after radiometric calibration and atmospheric
correction). However, due to the exploratory nature of this study⁸, not only
the surface reflectance WorldView data were processed, but also the TOA re-
flectance and TOA radiance data. The Level 1B imagery and ACOMP subset
image (OR2A) were both orthorectified to their respective UTM (Universal
Transverse Mercator) zones in the WGS-84 datum.

4.1.3 Pan-sharpening

Pan-sharpening is a technique for combining the spectral information of a multi-
band sensor with the spatial information of a panchromatic band. While useful
for a spatial analysis and improved visual observations, the process introduces
uncertainties in the data that can corrupt detection and classification schemes
relying on accurate spectral information. For this reason, pan-sharpened im-
agery should only be used for visual analyses.

In this study, all images associated with a GPS tracker were pan-sharpened
using ENVI’s SPEAR pan-sharpening tool. The Gram-Schmidt method was
chosen for processing, as it uses the spectral response function of a given
sensor to estimate what the panchromatic data looks like and is therefore
generally more accurate than other pan-sharpening algorithms implemented
into ENVI (Harris Geospatial Solutions, 2020). The processing was applied to
both atmospherically corrected and at-sensor radiance data.

7. CC uses a weighted average of 16 pixels to approximate the sinc function using cubic
polynomials to resample the image. It is generally considered more accurate than simpler
resampling methods but more computationally intensive.

8. The uncertainties related to the AC imagery might cause a favouring of radiance data in
later applications, in which case nonreflectance orthorectified data would be needed.
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In many cases, it is preferable to perform the pan-sharpening process before
geometric correction to mitigate small alignment errors caused by the accuracy
of the DEMs used in the orthorectification process (Cheng and Chuck, 2010).
However, this should only be performed on products where the panchromatic
and multispectral data are resampled to occupy the exact same geographic
extents, which applies to the ortho-ready SPOT products and ACOMP corrected
WorldView-2 subset (Level OR2A), but not to the WorldView Level 1B (Basic)
imagery. Therefore, the WorldView Basic products were orthorectified prior to
the pan-sharpening process.

Pan-sharpened imagery will have the same spatial resolution as the sensor’s
panchromatic band. Because of its enhanced resolution, it is useful in detecting
waves and sun glint (Vanhellemont and Ruddick, 2018), as well as other floating
features on the water surface. As seen in Figure 4.4, the waves are more evident
and well-defined in the pan-sharpened image than that of the lower resolution
image. However, since any pan-sharpening process will alter the pixels’ native
spectral information, the resulting pan-sharpened imagery was only used for
visually confirming features of interest, in addition to selecting training areas
and validating results of classification (i.e., no spectral analyses were conducted
using pan-sharpened images).

Figure 4.4: Before (a) and after (b) pan-sharpening of the 20200519 WorldView-2
scene with 1.9 m and 0.5 m spatial resolution, respectively. The images
have been calibrated to at-sensor radiance and are zoomed in on Tracker
B attached to a plastic conglomerate (seen as a bright spot in the middle
of the image). WorldView-2 ©2020 DigitalGlobe, Inc., a Maxar company.
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4.1.4 Cloud Masking

Optical remote sensing is largely affected by the presence of water vapour in
the atmosphere. Clouds do not only limit the amount of surface information
that can be extracted from a scene but can also compromise classification
algorithms by altering the spectral signature of ground cover subjected to haze
or cloud shadows (Lisens et al., 2000). Additionally, cloud removal tends to
remove spectral outliers from the image, improving the results of a spectral
analysis. Accurate cloud masking is therefore an essential step before any
information derivation schemes, albeit difficult as it can result in loss of valid
data (e.g., if the cloud is partially transparent; Hu, 2009).

Several cloud detection algorithms have been developed for different types of
sensors and with varying levels of complexity and accuracy. For this project, the
initial objective was to find such suitable algorithms for the relevant sensors⁹.
However, during testing of unsupervised classification in ENVI, it was discovered
that this method did an adequate job at distinguishing clouds, haze, and cloud
shadows from the oceanic background. The method was therefore adopted
to mask out clouds from the satellite imagery using the workflow shown in
Figure 4.5. The illustration uses a WorldView-2 scene as an example, but the
processing steps were the same for all images.

First, the radiometrically corrected radiance imagewas processedwith ISODATA
unsupervised classification in ENVI. Although it was experimented with both
a higher and lower number of requested classes, the best results, while still
maintaining an acceptable computation time, were produced from using 15
classes. The classes exclusively containing cloud or haze pixels were then
manually identified and used to create a temporary mask. To further improve
the accuracy of the cloud mask and facilitate enhanced haze removal, a second
unsupervised classification processing was applied to the image excluding the
masked pixels from the previous classification. Again using 15 classes and
manually selecting those of clouds, a final cloud mask for the entire scene was
constructed. Visual inspection from zooming in on hazy areas in the image
confirmed an acceptable accuracy of the mask and that no further iterations of
the process were needed.

9. SPOT-6/7, WorldView-2/3.
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Figure 4.5: Cloud masking process of a WorldView-2 scene using an unsupervised
classification approach. (a) Stretched radiance image; (b) Result of first
classification with 15 classes; (c) Manually selected classes that contain
clouds or haze, excluding water pixels; (d) Result of second classification
with 15 classes and masked pixels from last step; (e) Manually selected
classes with remaining cloud pixels; (f) Final cloud mask. WorldView-2
©2020 DigitalGlobe, Inc., a Maxar company.
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4.2 Calculating Debris Speed and Trajectory

A recurring problem with the ground truth data was the delay between GPS
signal recording and satellite image acquisition. This delay ranged from a few
minutes and up to several hours, preventing the plastic conglomerates from
being accurately pinpointed in the imagery. Marine debris is, like the ocean
itself, dynamic; and detection of the known debris becomes increasingly difficult
with a larger time gap between GPS signal and image capture. To approximate
the GPS tracker’s position in a scene, two different approaches were attempted:
linear interpolation and plastic velocity estimation. Both methods require a
tracker of >1 signal recordings, but results can be adopted to trackers of a
single known position1⁰.

Table 3.6 shows that three out of four GPS markers11 could be used to estimate
the average travel speed of plastic debris at the sea surface. For each of these
trackers, daily average speeds were calculated using the recorded coordinates
and time intervals between recordings. Direction of travel was determined from
the mean angle between GPS signal points of the given day. In addition to these
observations, data regarding the wind direction and speed were derived from
the Asia-Pacific Data Research Center12 (APDRC) and the Physical Oceanogra-
phy Distributed Active Archive Center13 (PO.DAAC) provided by the University
of Hawaii and NASA, respectively. Sea surface current velocity was estimated
using daily ocean physics analysis data from CMEMS1⁴ (Global ocean 1/12°
physics analysis and forecast daily product), supported by 5-day resolution
data from the OSCAR product. To investigate potential correlations between
surface currents, wind speeds, and plastic debris velocity, a simple regression
analysis was conducted on the derived values using Microsoft Excel.

4.3 Linear Interpolation and Anomaly Detection

To estimate the plastic position through linear interpolation, a Python script
was written using Equation (2.7) and Equation (2.8) from Section 2.2. The
20200706 SPOT-6 scene required linear extrapolation, given that the image
was captured after the last known recording of Tracker D’s position. Linear
extrapolation is given as

~ (G∗) = ~:−1 +
G∗ − G:−1

G: − G:−1
(~: − ~:−1) (4.4)

10. Here: Tracker B
11. Tracker A, Tracker C, and Tracker D.
12. http://apdrc.soest.hawaii.edu/data/data.php
13. https://podaac.jpl.nasa.gov/dataaccess
14. http://marine.copernicus.eu/

http://apdrc.soest.hawaii.edu/data/data.php
https://podaac.jpl.nasa.gov/dataaccess
http://marine.copernicus.eu/
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where G∗ is the point to be extrapolated and (G:−1, ~:−1) and (G: , ~: ) are its
two nearest data points. (If G:−1 < G∗ < G: , Eq. (4.4) becomes equivalent to
linear interpolation).

The estimated tracker positions were then compared to the plastic’s trajectory
derived from estimated debris velocity, surface currents data, and wind speeds
and direction. Finally, a polygon was constructed based on the estimations,
enclosing an area of high likelihood of plastic debris. In the sequel, an auto-
mated anomaly detection using the RXD algorithm was applied to extract any
spectral features differing from the background (potential plastics). To ensure
that the calculated mean spectrum comprised only negligible contributions
from non-background pixels (anomalies), a larger subset containing roughly
6000 pixels was used for the RXD algorithm. Anomaly percentage thresholds
were selected interactively by previewing and inspecting detection results, and
were finally set to 0.05%. Lastly, the constructed polygons were employed to
extract feasible anomalous pixels, whose spectral signatures were inspected for
validation.

4.4 Data Analysis

In this study, most methods of data analysis have been conducted utilising the
spectral information in the imagery. For remote sensing applications, this refers
to the extraction of qualitative and quantitative information from a given pixel’s
spectral response, derived from its wavelength-dependent reflectance proper-
ties (Biermann et al., 2020). Classes of materials can therefore be grouped
by their spectral features and characteristics (spectral signatures) and in that
way be distinguished from other objects. In a study of this nature, where the
ground truth data is very limited, the spectral information is key to provide a
level of validation to certain areas or pixels of suspected plastic debris.

4.4.1 Ground Truth Data

Of the four GPS trackers available for this study (presented in Table 3.6),
Tracker B was investigated as a potential source for pinpointing plastics due to
its proximity to image acquisition time. The tracker, whose signal was recorded
approximately two minutes before capture of the 20200519 WorldView-2 image,
was located ∼9 metres north of a feature clearly distinct from the background
(Figure 4.6a). This was explored as a possible patch of plastic debris. To
strengthen suspicions, ocean current velocity data was gathered from the
Copernicus Marine Service, revealing surface currents in a southward direction
for the given time and location (Figure 4.6b). Furthermore, spectral signatures
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of the brightest potential plastic pixel were extracted from the atmospherically
corrected images (ACOLITE, ACOMP, and FLAASH) and compared to known
plastic signatures from published literature (Biermann et al., 2020; Topouzelis
et al., 2020; Kikaki et al., 2020). All three reflectance spectra revealed a similar
spectral shape as that of other research, including the spectral peak at NIR
which is typical for plastics.

Figure 4.6: (a) Pan-sharpened WV2 image showing the recorded position of Tracker
B and suspected plastic debris. WorldView-2 ©2020 DigitalGlobe, Inc., a
Maxar company. (b) Sea surface current velocity estimates from 19 May
2020 (gathered from E.U. Copernicus Marine Service Information), where
the red dot indicates the position of the subset in (a). Current direction is
pointing south with a speed of ∼0.07 m/s.

Based on the spectral signatures and currents information, as well as the relative
position of the tracker, the suspected plastic conglomerate in the WV2 image
was considered validated. Figure 4.7 illustrates the plastics’ extent, which
provided the basis of the endmember extraction conducted in the following
section.

4.4.2 Endmember Extraction

To search for unidentified patches of marine plastic debris across an entire
scene, the spectral behaviour of a plastic target must be known. With no known
pixels comprising only plastic materials, the challenge was then to obtain
a spectral signature representing a pure plastic spectrum. The PPI, while an
effective endmember extraction technique for scenes abundant with pure pixels,
cannot be used to derive endmembers from mixed pixels. Instead, an inverse
spectral unmixing approach was attempted, which requires knowledge of each

https://view-cmems.mercator-ocean.fr/GLOBAL_ANALYSIS_FORECAST_PHY_001_024
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Figure 4.7: Marine plastic debris attached to Tracker B in the 20200519 WorldView-2
image. (a) Spatial subset of RGB composite image, approx. 190×190 m; (b)
Zoomed in on plastic debris (1.9 m pixel cell size); (c) Panchromatic band
of same subset as (b), with a 0.5 m spatial resolution; (d) Orthorectified
RGB image with 50% transparency over the orthorectified panchromatic
image. WorldView-2 ©2020 DigitalGlobe, Inc., a Maxar company.

material’s abundance within a given pixel. This approach was inspired by work
done in Topouzelis et al. (2019), in which auxiliary data from unmanned aerial
systems was used for calculating percentage plastic coverage of Sentinel-2
pixels covering an artificial floating target. The high-resolution drone imagery
facilitated the accurate derivation of pixel coverage through object-based image
analysis.

In this study, no drone imagery was available; however, the panchromatic
band offered significantly higher spatial resolution relative to the multispectral
channels. From the confirmed plastic target in the 20200519 WorldView-2
image (Figure 4.7), plastic coverage of each pixel was estimated by utilising the
sensor’s panchromatic band (0.5 spatial resolution) as a base map with the true
colour (RGB) pixels of 1.9 m cell size overlaid as a grid at 60% transparency.
For improved geometric accuracy, all bands were orthorectified prior to the
segmentation. Then, a quantitative assessment of the plastic target, covered
by six lower-resolution pixels (Figure 4.8, A–F), was conducted using a simple
thresholding technique. The mean response of panchromatic background pixels
was calculated from a random sample of 200 seawater pixels, while a similar
calculation was carried out for the plastic target. Next, using the means and
standard deviations of background and plastics as a basis for determining
thresholds, the panchromatic pixels were either labelled as ’on’ or ’off’ (i.e.,
plastic or non-plastic) – not accounting for seawater influence or partial target
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submersion.

The resulting estimates of percentage plastic coverage are given in Figure 4.8,
where pixel E contains the highest amount of plastics and the least amount of
seawater, followed by A, B, D, F, and C (in decreasing order). It should be noted
that the spatial resolution of the sensor is not high enough to determine type,
density, colour, or absolute extent of the plastic target, and that the calculated
abundances are rough estimates only.

To the author’s knowledge, such a method for calculating abundance fractions
has not been conducted in previously published research. Hence, this work
represents first steps towards developing the technique further. For future
applications utilising a similar approach, it is advised to take the fraction
calculation one step further by introducing a regression analysis or mixture
modelling of the panchromatic pixels’ magnitude (i.e., estimate fraction of
mixture in high-resolution pan-pixels based on pixel intensity relative to the
background). This way, a higher accuracy in plastic abundance estimation may
be achieved.

Figure 4.8: Estimated percentage pixel coverage of a GPS tracked plastic target cap-
tured by the WorldView-2 imager. The RGB composite is shown with 60%
transparency over the panchromatic sensor’s band, with 1.9 m and 0.5
m spatial resolution, respectively. Both images have been orthorectified
to improve geometric accuracy. WorldView-2 ©2020 DigitalGlobe, Inc., a
Maxar company.

The ACOMP image, which was delivered as an Ortho-Ready Standard prod-
uct (OR2A), has a spatial resolution of 2 m instead of 1.9 m. The difference
in resolution arises from the standard processing of OR2A products, where
the panchromatic and multispectral data are resampled to exactly the same
geographic extents (i.e., the GSD is increased for the multispectral bands to
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match the extents of the pan band). Hence, abundance calculations had to be
repeated for this image. The results yielded an estimated plastic fraction of
65% for the strongest plastic pixel – a lower abundance than for the 1B Basic
products, caused by the increased pixel size.

Assuming that the six pixels in Fig. 4.8 only comprise floating plastics and
seawater, the inverse spectral unmixing calculation (Section 2.5.3, Eq. (2.28))
takes the form of

(? (_) =
(<8G (_) − 0, (, (_)

0?
(4.5)

where (? is the unknown pure plastic spectrum, (<8G and (, are the spectral
signatures of the mixed pixel and the water endmember, respectively, and 0,
and 0? are the respective fractional abundances of water and plastics. Using
the PPI and n-D Visualiser in ENVI, the endmember signature of seawater
was derived for both the atmospherically corrected (ACOLITE, ACOMP, and
FLAASH) and top-of-atmosphere reflectance scenes. To verify the accuracy of
the derived water endmembers, their signatures were compared to the average
spectral response of the surrounding waters and also to the library endmember
spectrum for open ocean water from the U.S. Geological Survey1⁵.

Pixel E was used for the unmixing calculation as it had the highest estimated
plastic coverage (78%) and was therefore less likely to be influenced by other
potential endmembers (e.g., algae, sea foam, or timber) unaccounted for in Eq.
(4.5). For the ACOMP image, the brightest pixel corresponding to 65% plastic
was used. The mixed pixel’s reflectance spectrum was then extracted from both
the BOA and TOA images, which allowed the spectral response of the plastic
target to be computed for each channel by inserting all known variables into
Equation (4.5). Finally, the resulting pure plastic spectra were saved to ASCII
files for use in later processing.

Cloud Shadow Influence

A cloud shadow correction of the derived plastic spectra was considered, as
visual inspection of the scene confirmed an area of darker seawater surrounding
the plastic target (Figure 4.9a). Although cloud shadows in optical imagery
generally represent sources of error that should either be removed or corrected
for, an assessment of the need for such corrections was conducted individually
for this scene. Due to the time of image capture (close to solar noon), it
is likely that the shaded region is a partial shadowing from the hazy edge
of the cloud; that is, direct solar photon interaction is reduced, albeit not

15. Available at: https://crustal.usgs.gov/speclab/QueryAll07a.php

https://crustal.usgs.gov/speclab/QueryAll07a.php
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blocked1⁶. Furthermore, since the water endmembers used in the spectral
unmixing calculation are derived from nonshadow pixels, the pure plastic
spectra will already be partially corrected for cloud shadow influence through
the endmember calculation.

To quantify the impacts of the shadowed area, several regions of water in
the ACOMP image were selected to form two classes – one affected and one
unaffected by cloud shadowing. The mean spectra of the classes, illustrated in
Figure 4.9b, were then used to compute the average brightness difference for
each channel. At the maximum, the nonshadowed class exhibited a brightness
increase of ∼15% (in the coastal blue and blue bands) relative to the darker
water. The percentage of increased brightness was reduced for the longer
wavelengths, ranging between 2.4% and 5.4% for the yellow, red, and NIR
bands. It was not possible to test if the same multiplicative effects would have
been seen in plastics, due to the extremely limited training data. However, as
shown in Carder et al. (1993), the average reflectance spectrum shift caused
by cloud shadows is only about 3.5%, with the shape of the signal mostly
preserved.

On account of these arguments, in addition to the uncertainties that were
introducedwith the abundance estimation (Figure 4.8), cloud shadow influence
on the plastic spectral signature was deemed negligible and thus not corrected
for. Yet, it should be noted that longer wavelengths (>608 nm) are nearly
unaffected by the different scattering conditions (direct vs. indirect; as seen in
Fig. 4.9b, indicating that these channels may be preferred for the detection of
plastic targets.

4.4.3 SAM Classification

In conventional image classification, knowledge of all endmembers present in
a scene is required. However, for the purpose of general target detection, super-
vised classification can be applied with the use of a single endmember spectrum.
This technique, when used on atmospherically corrected1⁷ reflectance data,
is relatively insensitive to illumination and albedo effects – an advantageous
attribute for feature detection on a wavy ocean surface.

Using the FLAASH and ACOLITE processed WorldView imagery, the Spectral
Angle Mapper (SAM) classification algorithm was applied with the derived

16. A completely shadowed region will only be illuminated by scattered skylight photons,while
an unshadowed region is irradiated by both direct solar photons and indirect skylight.

17. SAM can also be used on TOA data, but this was found to produce a high number of
misclassifications due to lower spectral separability of endmember spectra.
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Figure 4.9: The plastic target falls within an area affected by cloud shadow, as seen
in (a). The spectral plot in (b) illustrates the average signal increase for
each channel based on the response of selected water pixels for each class
– with and without the influence of cloud shadows. WorldView-2 ©2020
DigitalGlobe, Inc., a Maxar company.

plastic endmember as reference spectrum. Although the PPI was applied to all
individual images in efforts of deriving scene-dependent reference spectra (this
would have been beneficial considering differences in image spatial resolution),
no spectral signatures believed to be plastics could be extracted. For the SAM
classification, at-surface reflectance data was used to ensure that the bands’
(hence, feature vectors’) origin was at zero in order to minimise errors in angle
calculation. A spectral angle threshold was determined through inspection of
rule image1⁸ pixel values of the known plastic target, which showed an angle
of 0.08 radians for the pixel of highest plastic abundance (∼78%). Based on
this, the maximum angle was set to 0.09 radians. For consistency, the FLAASH
imagery was chosen for subsequent evaluation of results, as it also offered one
extra dimension (band) compared to ACOLITE (due to the faulty processing
of the coastal blue band).

4.4.4 Spectral Indices

In methods that involve spectral band manipulations, successful information
extraction from images depends on the accuracy of the derivable spectra (Jawak
et al., 2019). For this reason, atmospheric effects should generally be removed
from the imagery before application of spectral indices. However, uncertainties
related to atmospheric correction algorithms, particularly in the North Pacific

18. A grayscale image that shows intermediate classification results for a given class.
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Ocean, raised the question of which data would be most appropriate for the
plastic detection task.

A training dataset of randomly selected pixels from the seawater and whitecaps
class, as well as the two brightest plastic pixels from the 20200519 WV2 image
(pixels B and E, Fig. 4.8), was employed to investigate effects of the various
pre-processing methods with respect to the primary spectral index to be tested
– the Normalised Difference Vegetation Index (NDVI). By creating box and
whisker plots of the training samples’ respective NDVI values (Fig. 5.9), inherent
class variability and material separability could be visualised for each of the
different pre-processing techniques: TOA reflectance, ACOLITE, and FLAASH.
Based on these plots, the FLAASH image was ruled out for spectral index
applications due to insufficient response (zero reflectance) in the NIR bands
for a majority of the seawater training pixels. The plastic class was observed
to be marginally more distinguishable from whitecaps in the ACOLITE image,
but overall highest distinction between all classes (seawater, whitecaps, and
plastics) was seen in the TOA reflectance scene. Moreover, the plastic pixels’
NDVI scores (Table 4.1) were most similar to what has been found in other
research (e.g., Themistocleous et al. (2020)) when derived from TOA pixel
values. The at-sensor reflectance imagery was therefore selected for subsequent
application of spectral indices, which, additionally, would mitigate effects from
AC processing.

Table 4.1: NDVI values of two plastic pixels, derived from differently pre-processed
versions of the 20200519 WV2 scene. The maximum NDVI value corresponds
to the brightest plastic pixel (i.e., highest fraction of plastic) in all cases.
(*ACOMP processing was only available for a small subset and can thus not
be adopted for analysis of other WorldView imagery).

Radiometric Plastic Min. Plastic Max.
Processing Value Value
TOA Reflectance -0.1338 -0.0606
ACOLITE 0.0493 0.0799
FLAASH -0.0215 0.0402
ACOMP* 0.1042 0.1217

Using NDVI values alone, the two plastic training pixels were clearly separable
from surrounding waters and whitecaps in the training dataset (Figure 4.10).
However, employing the NDVI values in Table 4.1 as upper and lower limits
for further plastics detection resulted in a large number of false positives (i.e.,
whitecaps misclassified as plastic debris). On the basis of this observation, the
dimensionality of the feature space was augmented to facilitate greater differ-
entiation between classes. A number of different spectral indices were explored,
including the ReversedWorldViewWater Index (RWV-WI; Dominici et al., 2019),
the Plastic Index (PI; Themistocleous et al., 2020), a Reversed Normalised Dif-
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ference Water Index (RNDWI), and the WorldView Non-Homogeneous Feature
Difference Index (WV-NHFD; Harris Geospatial Solutions, 2020) – all of which
are described in Table 4.2. Using the training dataset, each index was evaluated
individually, in which the following observations were made:

• The RWV-WI conveyed low variability in the water class, as expected, but
poor distinction between plastics and whitecaps.

• The PI yielded the same results as the NDVI in terms of class separation, as
both indices utilise the same bands (however, this observation contradicts
findings in Themistocleous et al. (2020), where the PI demonstrated
superior detection capabilities of plastic debris relative to the NDVI).

• The RNDWI largely separated the classes but with a slight overlap of
plastics and whitecaps.

• The WV-NHFD resulted in highest values for whitecaps as well as no
distinct clustering of classes.

Based on this, the RNDWI was chosen to extend the detection task to a two-
variable feature space (NDVI and RNDWI); however, whitecaps still prevented
thresholds from being set without inducing the detection of numerous false
positives. On account of this, a new spectral indexwas developed for the purpose
of this study, specifically targeted at enhancing bright features on the water
surface. The index, denoted the WorldView Whitecaps Index (WV-WCI), is
based on spectral characteristics of the training data and endmembers derived
from the PPI, where whitecaps and/or spume generally were found to exhibit
an absorption feature around 608 nm (yellow band) and increased reflectance
at 659 nm (red band) – effects that were unique to this class. Leveraging these
spectral differences, the index was defined as

WV-WCI =
'RED

'RED + 'YELLOW
(4.6)

where 'RED and 'YELLOW represent the reflectance in the red and yellow bands
of the WorldView-2/-3 imager, respectively.

The remaining WorldView top-of-atmosphere imagery was then processed with
three spectral indices: NDVI, RNDWI, and WV-WCI. Mapped in a three-variable
feature space, plastic pixels showed sufficient clustering and class separability
to define spectral index thresholds for detection of other potential plastics.
Using the values of the known plastic pixels as a baseline, upper and lower
index limits were determined through iterative thresholding and systematic
inspection of the detected pixels’ spectral responses (within the 20200519 WV2
image). The final ranges were set to [−0.09,−0.05] for NDVI, [−0.30,−0.23]
for RNDWI, and [0.46, 0.48] for WV-WCI, and only pixels conforming to all
three ranges were classified as plastic debris.



72 chapter 4 method

Figure 4.10: Assigning specific colours to discrete NDVI ranges allows for visual iden-
tification of spectral classes. Here, the plastic target can be seen in red
and orange.

Table 4.2: Spectral indices tested on the WorldView imagery for detection of plastic
debris.

NDVI = (NIR1 – Red)/(NIR1 + Red) (1)

RNDWI = (NIR1 – Green)/(NIR1 + Green) (2)

RWV-WI = (NIR2 – Coastal)/(NIR2 + Coastal) (3)

PI = NIR1/(NIR1 + Red) (4)

WV-NHFD = (Red Edge – Coastal)/(Red Edge + Coastal) (5)

WV-WCI = Red/(Yellow + Red) (6)

4.4.5 MTMF

Mixture Tuned Matched Filtering is a partial linear spectral unmixing approach
for identifying pixels that are likely to contain some fraction of a target material.
MTMF is implemented as a fully automated algorithm in ENVI, requiring only
two parameters for input: 1) an imagewith uncorrelated noise and unit variance
and 2) the spectral signature of a target endmember matching the space of the
input image. These conditions can be met by applying an MNF transform to
the imagery and endmember spectra.

The different pre-processing methods called for a decision of which imagery
to use. For intercomparison across scenes, images should be on a common
radiometric scale, which is only achievable through atmospheric correction
when dealing with different sensor types. However, since the WorldView-2
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and WorldView-3 satellites carry the same spectral instrument (WorldView-110
camera), the plastic endmember derived from the 20200519 WV2 image can
also be used in units of radiance or TOA reflectance for input to other individual
WV2 or WV3 scenes. The SPOT imagery, on the other hand, was not processed
with MTMF. With only four spectral bands, these images are poor candidates
for detection algorithms relying on accurate spectral information.

Image SNR (signal-to-noise ratio) was also investigated before and after at-
mospheric correction by utilising a sample of 600 randomly selected open
ocean pixels. Since marine plastics concentrations generally produce a weak
signal (Topouzelis et al., 2020), a high SNR is required to detect materials on
subpixel scales (Martínez-Vicente et al., 2019). The detection capabilities of
the WorldView sensor were assessed based on each band’s SNR. As seen in
Figure 4.11, estimates of image signal-to-noise ratio revealed an overall higher
SNR value for non-atmospherically corrected imagery, potentially benefiting
detection. However, as the TOA signal comprises both the true surface signal
and signal from atmospheric contributions, the SNR estimates fail to show
the correct significance for TOA data – particularly in the shorter wavelength
channels where atmospheric scattering is more severe. In addition to this,
Figure 4.11 shows that SNRs are similar for all radiometric pre-processing meth-
ods in the red edge and near-infrared regions (724-908 nm). Nevertheless,
to attenuate possible errors arising from the atmospheric correction schemes,
at-sensor (TOA) reflection data was employed for the MNF transform and
MTMF algorithm.

Figure 4.11: SNR calculated from a random sample of open ocean pixels for the
different pre-processed 20200519WV2 imagery, illustrated in (a) standard
scale and (b) logarithmic decibel scale. The latter also indicates the mean
SNR of all channels plotted as dashed lines in matching colour to their
respective correction algorithm.
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To project the data to MNF space, image noise statistics were estimated using
the shift difference method. ENVI assumes that each pixel contains both signal
and noise, and that each neighbouring pixel contains the same signal but with
different noise (Harris Geospatial Solutions, 2020). Themethod therefore works
best when noise statistics are gathered from homogeneous regions rather than
from the entire scene. Consequently, the shift difference region was constrained
using a 2000 × 1800 pixel subset from the 20200519 WV2 image, encompassing
the single confirmed plastic event. A cloud mask was applied to the image to
mitigate noise estimates from clouds and haze, removing roughly 43% of the
pixels from the subset area. The resulting subset covered∼7.5 square kilometres
of uniform1⁹ ocean cells, which was then used for the shift difference statistics
extraction.

Although a dimensionality reduction of the MNF data can improve results by
removing ineffectual noise bands, this is generally not encouraged for multi-
spectral imagery. Such a process can potentially eliminate usable information
for a sensor of already few spectral bands and cause ambiguous results. For
this reason, all 8 MNF bands resulting from the 8-band WorldView imagery
were used for the subsequent MTMF algorithm.

In MTMF post-processing, the feasibility of matched filtering scores is evalu-
ated against the corresponding infeasibility values. Using a two-dimensional
scatterplot for visuals (an artificial example is given in Figure 4.12), the the-
oretical infeasibility threshold can be identified as a conical shape in which
the properly classified pixels are contained (Figure 4.12, region a). However,
previous research (Mundt et al., 2007; Mitchell and Glenn, 2009) indicates that
the true positives rather fall within region b (Fig. 4.12), delineating an almost
inverse relationship from what is theoretically expected.

Based on the MTMF results of the only known plastic target (presented in
Section 5.6, Table 5.3; Figure 5.12), thresholds for minimum and maximum
MF and infeasibility values were determined. Initially, the minimum matched
filtering score and the maximum infeasibility threshold were set to 0.3 and 6.0,
respectively, to facilitate detection of potential plastic pixels with mixed spectra.
However, this resulted in the misdetection of several cloud outlines and hazy
pixels. Because the removal of these artefacts can be difficult, especially in
automated cloud masking algorithms, the MF threshold was adjusted to 0.49
to avoid such false positives. This way, the detected pixels would also have
a higher chance of exhibiting spectral responses resembling that of plastics,
given that no other ground truth was available for validation. In accordance

19. Notably, the spatial subset is not purely spectrally uniform and contains oceanic surface
features such as waves and spume, in addition to the known plastic target. However,
residual instrument noise (e.g., data striping) can be mitigated this way.
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Figure 4.12: An example scatterplot of artificially generatedMF scores and infeasibility
values, where a denotes the theoretically expected region of correctly
classified pixels. However, previous research suggests that the true target
pixels instead fall within the shaded region,b, delineating a nearly inverse
relationship to the theoretical region. Figure from (Routh et al., 2018).

with the MF threshold shift, efforts were made to investigate the effects of
an increased maximum infeasibility value on the detected pixels’ spectral
signatures. Through iterative masking (based on various MT thresholds) and
systematic inspection of resulting MTMF scatterplots and the detected pixels’
spectral responses, the final infeasibility threshold was set to 8.5 – a margin
below the closest hazy pixel detection with an infeasibility of 9.

Constrained by the MF and MT thresholds, the feasible region (blue shaded
area in Figure 4.13) contained five pixels from the 20200519 WV2 image
that were classified as containing plastic (these are illustrated and further
discussed in Chapter 5). The detected pixels’ spectral signatures revealed
similar spectral characteristics to that of the plastic endmember. Thus, the
determined thresholds were used for subsequent MTMF post-processing of the
remaining imagery. Finally, using the pan-sharpened image, a training dataset
comprising different ocean surface material classes was created to assess the
separability of ocean surface features in terms of MTMF scores.

For the sake of exploration, MTMF was also applied to the atmospherically
corrected data. Not unexpectedly, this method resulted in the detection of many
false positives2⁰ (>0.49 MF score) with low infeasibility values, indicating that
AC algorithms are immature for such detection tasks in large-scale open ocean
imagery.

20. Based on validation from spectral response and visuals of pan-sharpened imagery.
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Figure 4.13: Scatterplot of MF scores versus infeasibility values from randomly se-
lected pixels across the MTMF processed image. The pixels that fall
within the shaded blue area are classified to contain plastic.



5
Results and Discussion
5.1 Movement of Floating Plastic Debris

In situ data for the satellite imagery included four GPS trackers attached to
floating plastic debris. Three out of the four trackers were used to estimate the
trajectory and speed of floating plastic patches, where the daily average debris
speed was calculated for five individual days. As seen in Table 5.1, plastics’
travelling speed ranged from 0.044 to 0.215 m/s with an overall average of
0.148 m/s or 12.8 km/day. Compared to the results from other research, where
plastics’ average travel speed was found to be 6 km/day (Kikaki et al., 2020),
these findings present a speed that is approximately twice as high. However,
since the study of Kikaki et al. was conducted in the Caribbean Sea over the
course of five years, differences may arise from dissimilar spatial and temporal
conditions.

During the debris tracking events, ocean surface currents appeared to have
velocities ranging from 0.08 to 0.28 m/s and easterly winds were recorded
with speeds of 4.9 to 8.3 m/s. In all five cases, the travelling plastics’ speed was
found to be lower than that of the currents’, indicating that the debris’ weight
and partial submersion slows its pace. Moreover, the movement direction of
the current seemed to be consistent with the direction of the debris. Using a
simple regression analysis, the estimated speed of plastic debris was found to
be highly correlated with currents’ velocity ('2 = 0.91, ? < 0.02, = = 5), yet
no correlation was seen between debris and wind speeds ('2 = 0.06, ? > 0.05,
= = 5). These findings are in agreement with what was found in Kikaki et

77
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Table 5.1: Estimated speed and direction of GPS tracked plastic debris with multi-
ple recorded signals. The estimated debris speed is the tracker’s average
speed at the given date. Ocean currents and wind conditions are also pre-
sented, collected from the OSCAR and CMEMS databases and the Advanced
Scatterometer (ASCAT MetOp-A), respectively.

Tracker
ID Date Debris

Direction

Debris
Speed
m/s

Currents
Direction

Currents
Speed
m/s

Wind
Direction

Wind
Speed
m/s

Tracker A 18/05/20 S 0.044 S 0.08 WSW 4.9
Tracker C 11/06/20 NNE 0.086 NNE 0.19 SW 7.4

Tracker D
01/07/20 NNW 0.215 NNW 0.27 W 5.1
05/07/20 WNW 0.185 NW 0.25 W 6.3
06/07/20 WNW 0.211 NW 0.28 W 8.1

al. However, due to the inconsistency between GPS tracker observations, any
attempt at establishing a relationship between debris trajectory, ocean currents,
and surface winds would have been subject to a high degree of uncertainty,
and was thus deemed futile.

5.2 Spectral Behaviour of Marine Plastic Debris

The plastic conglomerate attached to Tracker B was used as a baseline for un-
derstanding the spectral behaviour of floating plastics. With fractional coverage
of roughly six pixels, the target’s abundance within each pixel was estimated
using a higher-resolution panchromatic band. Next, spectral signatures of all
six pixels were extracted to examine the influence of various seawater coverage
on plastic detectability. The results, which are presented in Figure 5.1, showed
a clear spectral distinction of the highest percentage plastic cover of 78% for the
TOA reflectance, ACOLITE, and FLAASH imagery (ACOMP was not included
due to slightly larger cell sizes and thus different fractions of plastic coverage).
Spectral signal shapes were not consistent with various fractions of plastic,
suggesting that individual pieces of debris were composed of different mate-
rial colours and/or chemical compositions. Moreover, sea foam or sun glint
may have altered spectral responses in pixels with lower plastic abundance.
Consequently, plastic debris can be challenging to identify, particularly for cell
abundances below ∼50%. Nevertheless, mixed plastic pixels were found to be
distinguishable from seawater in all cases.

The six plastic pixels were plotted in a two-dimensional scatter plot to visualise
their relative distribution using the green and NIR1 band as plot axes. Theoret-
ically, mixed pixel cells comprising various fractions of any two endmembers
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Figure 5.1: Percentage pixel coverage of the plastic target captured by theWorldView-2
imager and matching pixel spectra from three different radiometric correc-
tions: (a) Top-of-atmosphere reflectance, (b) ACOLITE, and (c) FLAASH.

will occur between the two extremes, as the spectrally purest pixels always form
the corners of the data cloud. As seen in Figure 5.2, the mixed pixels exhibited
a nearly linear relationship, where the strongest plastic pixel (E, 78%) formed
one vertex of the data, homogeneous seawater pixels formed a second, and
all other instances fell in between. However, since a pixel’s fractional coverage
directly corresponds to its position between the two endmember spectra, the
plot revealed potential errors in the plastic abundance estimation. In theory,
pixel A, which was estimated to 53% plastic coverage, should plot as the closest
data point to pixel E, but was instead positioned at the lower end of the data
cloud. Similarly, pixel F, estimated to comprise 17% plastics, was located di-
rectly between pixel E and the water endmembers - indicating either a mixture
of a third endmember or a substantially fuller plastic coverage. Compared to
their respective spectral signatures in Figure 5.1, pixels A–F appear in consis-
tent order from strongest signal intensity to lowest (i.e., the same order as
demonstrated in Fig. 5.2). Thus, it is highly likely that the fraction calculation
was erroneous to some degree, but the propagation of error was mitigated by
only considering one of the samples in subsequent processing.

Endmember extraction was conducted using a combination of twomethods: the
Pixel Purity Index (PPI) for derivation of open ocean endmembers and inverse
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Figure 5.2: Scatter plot image bands as plot axes, showing the nearly linear distribu-
tion of mixed plastic pixels with calculated abundance estimations. Pure
seawater pixels are seen in blue. The pixels were extracted from the TOA
reflectance image and plotted with respect to the green and NIR1 bands.

spectral unmixing for calculation of pure plastic spectra. Due to the limited
availability of ground truth data, endmember extraction of plastic targets was
only attempted on the 20200519 WorldView-2 image, using pixel E only on
account of its superior plastic abundance. As seen in Figure 5.3, derived plastic
endmember spectra show a similar spectral response to that of the mixed pixel,
with differentiation mostly in the intensity and not in the shape of the signal.
Inaccuracy in cell abundance estimations is thus of less significance for the
result, as the spectral shape largely remains intact given an increase of 22
percentage points.

Results from this study demonstrate that floating plastic debris has a significant
reflectance feature in the NIR, not only for pure spectra but also for mixed
pixels of various proportions (Fig. 5.1). These findings are consistent with
previous research (e.g., Biermann et al., 2020). A slight spectral peak is also
seen in the green band, indicating that the dominant colour of the floating
materials is indeed green. Clear seawater characteristically absorbs in the NIR
channels and exhibits strongest reflectance in the visible region - particularly in
the blue bands - as expected. Furthermore, the water class shows low inherent
variability in reflectance properties (Fig. 5.3).

The level of uncertainty related to the plastic spectral signature is possibly
attributed to numerous different factors. With only a few pixels of ground
truth, all of which were mixed with different fractions of seawater, the stan-
dard deviation of plastic targets could not be estimated to a satisfactory degree
of accuracy (such calculations are typically challenging for small targets with
a scarce spatial distribution). Moreover, the inverse spectral unmixing process
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is a deterministic equation, meaning that additive noise1 has been excluded
in the derivation of plastic endmember spectra. In addition, the plastic cover-
age estimation did not account for potential partial submersion of the target,
which would likely have an impact on the spectral response. The relationship
between degree of submersion and reflectance properties of plastics cannot
be thoroughly investigated in a study of this nature, yet evidence is seen that
seawater presence in mixed pixels will lower the magnitude of reflectance
while mostly retaining the spectral shape. Also, the shape and intensity of
the signal are largely affected by atmospheric correction algorithms, which is
further addressed in the following section.

(a) Top-Of-Atmosphere (b) ACOMP

(c) ACOLITE (d) FLAASH

Figure 5.3: Results of the inverse spectral unmixing approach in which plastic end-
members were derived for four different radiometric corrections. The
dashed blue line represents standard deviation of the water class (stan-
dard deviations for plastics could not be derived due to limited ground
truth pixels).

1. Additive noise effects in remote sensing imagery are typically independent of the data
and can generally be represented as a Gaussian distributed, zero-mean process.
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5.2.1 Effects of Atmospheric Correction

Top-of-atmosphere reflectance of the plastic endmember was higher than
bottom-of-atmosphere products in the coastal blue and blue channels as ex-
pected. However, the TOA plastic spectrum had the second lowest reflectance
in the NIR, after FLAASH. From the spectral plot in Figure 5.4a, it is evident
that the different AC algorithms have significant impacts on the resulting spec-
tral signatures and thus also on detection schemes. The ACOMP product had
notably higher reflectance compared to both the ACOLITE and FLAASH data,
particularly in the NIR, which was also the band exhibiting overall strongest
signal. FLAASH and ACOLITE produced plastic spectra that were more sim-
ilar in shape, though the FLAASH data was slightly lower in magnitude. In
contrast, water endmember spectra (Fig. 5.4b) were highest in intensity for
ACOLITE, followed by ACOMP and FLAASH, respectively. FLAASH obtained
zero to negative reflectance values from the red edge to the near-infrared
(negative values were corrected to zero for the plot), while ACOLITE showed
an irregular increase in signal intensity around 908 nm. The latter indicates
either an error in processing or in endmember selection, as this is a nontypical
behaviour for oceanic spectra – a target generally recognised as dark in the
NIR and SWIR regions. Compared to a USGS2 spectral library signature of
open ocean, all three seawater spectra were of lower magnitude – an effect
which may be owing to different illumination conditions.

(a) (b)

Figure 5.4: Spectral plots of (a) plastic and (b) water endmembers using three differ-
ent atmospheric corrections.

Unbiased percentage differences at different wavebands (Table 5.2) varied from
1% to 81% with pairwise comparison of AC algorithms. These differences were
highest in the NIR band centred around 833 nm, where the ACOMP to FLAASH

2. https://www.usgs.gov/labs/spec-lab/capabilities/spectral-library

https://www.usgs.gov/labs/spec-lab/capabilities/spectral-library
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comparison peaked at 81%, compared to FLAASH/ACOLITE at 21%. Lowest
percentage differences were seen in the blue band (478 nm), spanning 1–23%
(not considering the coastal blue band, which was excluded from the ACOLITE
imagery). The spectral average UPD ranged from 15–50% and was, by a large
margin, lowest in the FLAASH/ACOLITE comparison.

Table 5.2: Unbiased percentage differences between ACOMP, ACOLITE, and FLAASH
bottom-of-atmosphere corrected spectra of the confirmed plastic target.
UPD could not be computed for the coastal blue band in comparisons
involving ACOLITE, due to the removal of this band during processing.

Wavelength ACOMP / ACOMP / FLAASH /
(nm) FLAASH ACOLITE ACOLITE

(%) (%) (%)
427 10 – –
478 22 23 1
546 52 41 12
608 58 45 14
659 65 53 13
724 52 37 15
833 81 62 21
908 59 32 28

UPD Average 50 42 15

Although the comparison between FLAASH and ACOLITE shows the lowest
unbiased percentage difference, this does not mean they obtained the most ac-
curate results. But as no reference data is available, the ’best’ algorithm cannot
be determined. Additionally, low availability of ACOMP data prevented further
assessment of this particular AC processing. However, all three atmospheric
correction algorithms (ACOMP, FLAASH, ACOLITE) evaluated at the confirmed
plastic target suggest that floating plastic debris can indeed be detected and is
also spectrally distinct from seawater. Future studies should further assess how
atmospheric correction algorithms affect plastic spectral responses in terms
of shape and intensity, but results seen here suggest that removing environ-
mental perturbations from the signal enhances characteristic reflectance and
absorption features rather than masking them.

5.2.2 Class Spectral Separability

Distinguishing plastics from seawater is essential for detection, but water is
not the only material class influencing remote sensing of marine plastic debris.
Whitecaps, spume, algae, coloured dissolved organic matter, and timber, all
of which have individual spectral characteristics, can affect and potentially
compromise the detection of plastics. Accuracy in derived endmember spectra,
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as well as sufficiently high spectral resolution, is therefore of utmost importance
to account for the influence of other sea surface targets. Although in situ
measurements of these materials were not available for this study, future
missions should gather such information for a detailed assessment of class
separability.

Despite limited ground truth data on other ocean bright targets, plastics were
investigated for their discrimination from whitecaps/wave crests – a common
source of false positives present in most open ocean imagery. Using spectral
signatures derived from the PPI and n-D Visualizer, an endmember signature
for whitecaps was identified3 and compared to the derived plastic endmember
spectra (Figure 5.5). Although whitecaps were found to have a significantly
different spectral shape than that of plastics, they also, similar to plastics,
exhibited a spectral peak in the NIR. However, spectral response of whitecaps
were of overall lower intensity and showed additional strong absorption around
608 and 724 nm (yellow and red edge bands, respectively). Results seen here
suggest that plastics can indeed be distinguished from whitecaps, although
further analysis including target variability is advised for future research.

Class separability of plastics, seawater, and whitecaps was also evaluated using
two-dimensional scatter plots (Figure 5.6). With spectral bands as plot axes,
a rigorous inspection of all band combinations was carried out to determine
the two best channels for enhancing class distinction. These were found to be
the blue (478 nm) and NIR 1 (833 nm) bands, which was an unexpected result
given the apparent proximity of spectral response for whitecaps and plastics in
the blue band (Fig. 5.5). However, it should be noted that whitecaps exhibited
large inherent variability (as observed from the scatter plots) – a factor that is
unaccounted for in endmember spectra.

Plastics did not show signs of clustering, but as only two pixels were evaluated
(pixels B and E (Fig. 4.8), with an estimated plastic abundance of 48% and
78%, respectively), no hard conclusions can be drawn. However, Figure 5.6
demonstrates that plastics are distinguishable from the water and whitecaps
classes even when mixed with fractions of seawater. Excluding the ACOMP
subset (this image was evaluated on a separate training dataset due to a larger
cell size), no major differences were observed between the BOA and TOA
imagery in terms of class separability.

3. Identification of spectral signatures was conducted using supervised classification.
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(a) Top-Of-Atmosphere (b) ACOMP

(c) ACOLITE (d) FLAASH

Figure 5.5: Endmember spectral signatures of seawater, whitecaps, and floating plas-
tics, derived from the WorldView-2 20200519 image using four different
radiometric corrections.

5.3 Linear Interpolation and Anomaly Detection

Linear interpolation and subsequent RX anomaly detection were conducted on
both the SPOT andWorldView imagery with associated GPS trackers (excluding
the 20200519 WV2 image in which the plastic target was visually identified).
The linear interpolation alone provided no immediate detections (i.e., likely
plastic patches could not be pinpointed), which was an expected result given
the dynamic nature of ocean currents and winds. At most, the closest GPS
tracker recording was made 3 hours and 3 minutes post-image capture (WV2
20200611 andWV3 20200701 images), while the shortest delay spanned roughly
10 minutes (SPOT-6 20200727)⁴. Anomalies were detected in all three SPOT
scenes (as illustrated in Figure 5.7), while for the WorldView images, only one
of three contained positive anomaly detections (Figure 5.8). Despite interactive
inspection of spectral signatures from all visually distinct pixels surrounding

4. See Section 3.3 for details on GPS trackers.
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(a) Top-Of-Atmosphere (b) ACOMP

(c) ACOLITE (d) FLAASH

Figure 5.6: Two-dimensional scatter plots demonstrating class separability of seawater,
whitecaps, and floating plastics, using the Blue and NIR1 bands of different
pre-processing schemes as plot axes. The two plastic samples represent
pixels B and E from the plastic abundance calculation, while the seawater
and whitecap regions were manually identified in the multispectral im-
agery (the pan-sharpened image was used to aid visual interpretation but
not for extraction of pixel values).

the estimated tracker positions, no evidence of additional plastic pixels was
observed.

Of the three SPOT scenes in Figure 5.7, the anomalous pixels in the SPOT-7
20200705 image (Fig. 5.7b) were the only detections exhibiting plastic-like
spectral characteristics. A sharp peak is seen in the NIR channel for both
signatures⁵,which is typical formarine plastic debris but also for photosynthetic
plant material (e.g., seaweeds and algae). The image spatial resolution of 6
m indicates that the two neighbouring outliers encompassed a total area of
72 square metres, and with no records of the GPS-tracked plastics’ physical

5. Since atmospheric components were not removed from the spectra, their BOA equivalents
would typically have been lower in overall intensity.
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dimensions (these can also vary over time), this study cannot confirm nor
reject the anomalies as potential plastics based on the target’s spatial extent.
Its proximity to the estimated tracker position, as well as drift direction parallel
to sea surface currents, strengthens the plastic hypothesis, albeit not to a
degree of validation. Without in situ data, a minimum requirement for viable
detections of small targets would be a sensor with higher spectral and/or spatial
resolution, in addition to a robust atmospheric correction algorithm. However,
the SPOT instruments could prove useful in detection tasks of larger plastic
aggregations provided a sensor-specific plastic endmember was available for
verification.

Three anomalies were detected in theWV2 20200611 image (Fig. 5.8b),whereas
no spectral outliers were found in the remaining two WorldView scenes. The
latter is possibly attributed to heavy cloud cover near the estimated positions
(5.8a; 5.8c), obstructing the view of the plastic patches. For the WV3 image,
specifically, another reason for the null result could be a strong presence of
whitecaps/wave crests, compromising the anomaly detection by overestimating
the sample mean vector (i.e., spectrally distinct targets are interpreted as
background due to target overabundance). As for the three anomalous pixels
in Fig. 5.8b, spectral signatures were of overall lower intensity, particularly
in the near-infrared, compared to the derived plastic endmember. A slight
increase in the NIR1 channel was observed for two of the anomalies, as well
as similar spectral shapes to that of known mixed pixels (Fig. 5.1). Given the
image spatial resolution of 4.2 metres, detected anomalies – if plastics – are
likely to be mixed with various fractions of seawater.

The detected anomalies exhibiting similar spectral characteristics to that of
known plastic spectra could potentially be used in the identification of other
mixed pixels (e.g., using SAM classification). However, due to time constraints,
it was not possible to explore such a method further in this study.
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Figure 5.7: Anomaly detection using the SPOT imagery, specifically (a) SPOT-6,
20200727; (b) SPOT-7, 20200705; (c) SPOT-6, 20200706. The red markers
indicate the estimated tracker positions through linear interpolation/ex-
trapolation, while the green markers represent the closest recorded GPS
position. Spectral signatures associated with the anomalous pixels are il-
lustrated to the right, in which one, two, and two anomalies were detected
in image a, b, and c, respectively. ©Airbus DS/Spot Image 2020.
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Figure 5.8: Anomaly detection using the WorldView imagery, specifically (a) WV2,
20200518; (b) WV2, 20200611; (c) WV3, 20200701. Anomalous pixels were
only detected in image (b). WorldView-2/3 ©2020 DigitalGlobe, Inc., a
Maxar company.
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5.4 SAM Classification

In total, the Spectral Angle Mapper classified 237 pixels as plastic across the four
multispectral WorldView images (see Table 5.5 for details). Pixels identified
per image ranged from 2 to 138, with fewest detections in the 20200518 WV2
image and most in the 20200701 WV3 scene. Although most potential plastics
were identified in the image of highest spatial resolution (1.3 m), the number
of detections was not correlated to pixel cell size. Of the six pixels covering
the known plastic target in the 20200519 image (Fig. 4.8), one was classified
as plastic (pixel E).

Despite the high number of classified pixels, inspection of their respective
spectral signatures indicated that the majority actually were whitecaps and/or
sun glint rather than potential plastics. Two reasons for this can be identified:
i) overestimation of the spectral angle threshold and ii) the pixels’ mixture
model. Since most floating plastic aggregations are relatively small targets,
the majority of pixels containing plastic will be mixed. Thus, for the SAM
classification to be successful, the spectral angle threshold must be determined
such that it classifies even partial plastic pixels as plastic, but also such that
other sea surface features are not falsely interpreted as the target material.
Despite rigorous inspection of classification results with associated rule images,
no evidence that such a threshold exists for the given data was found.

The SAM was able to detect the mixed pixel of 78% plastic abundance with the
specified threshold of 0.09 radians, yet none of the other known plastic pixels
were classified. This observation is likely attributed to the fact that the input
endmember was derived from that exact pixel, and it also indicates that plastic
targets must cover a large portion of a given pixel (>50–70%) to be within
the classification threshold limit. With low availability of input endmember
spectra, in addition to inadequate image spatial resolutions, SAM classification
did not yield useful results for the available datasets and is likely more suitable
in the detection of larger targets.

5.5 Spectral Indices

Using the Normalised Difference Vegetation Index (NDVI) alone, mixed plastic
pixels (B and E, Fig. 5.12) were distinguishable from seawater and whitecaps in
the training dataset (Figure 5.9). However, as the entire plastics class was based
on only two samples, both of which were mixed with seawater, the inherent
variability may not depict a true representation of the plastics class as a whole.
It should also be noted that the NDVI values related to the TOA reflectance data
cannot be directly adopted for use with imagery of other sensors (as different
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atmospheric conditions are not addressed and corrected for). Despite this,
pixels’ NDVI scores of different atmospheric corrections (Table 4.1) were not in
absolute agreement, suggesting that AC algorithms in this part of the ocean are
underdeveloped for establishing strict spectral index thresholds. Consistency
in radiometric pre-processing is therefore considered crucial for detection tasks
across multiple sensor products, and although TOA data was selected for the
spectral index analysis in this study, intercomparison campaigns with other AC
products (e.g., ACOLITE) are needed to further assess the viability of various
pre-processing methods.

(a) (b)

Figure 5.9: Boxplots of classified materials on the sea surface using the NDVI. Cal-
culated on the TOA reflectance image (a), we see that clear seawater,
whitecaps, and plastics occupy distinct NDVI ranges. When using the ACO-
LITE image (b), the seawater and whitecaps classes largely overlap, while
the plastics appear distinguishable.

Although the NDVI method can be useful in delineating plastics from water,
it should be noted that its values are sensitive to variable environmental and
observing conditions (e.g., aerosols and solar/viewing geometry; Hu, 2009).
Such conditions can not only affect the visual contrast between plastic targets
and water pixels, but also change their absolute NDVI values. Thus, a manual
colour stretching of individual scenes is often required to account for these
effects (Hu and He, 2008), making it difficult to implement a robust NDVI
detection scheme in larger regions (such as the Pacific Ocean). Extensive testing
and high-quality in situ data is necessary to explore this method further.

Using a three-variable feature space (Fig. 5.10 c–d), plastic pixels were detected
by leveraging NDVI values against two other band ratios: the Reversed Nor-
malised Difference Water Index (RNDWI) and the WorldView Whitecaps Index
(WV-WCI) – the latter of which was specifically developed for this study. Detec-
tions were constrained by threshold ranges in each of the three band ratios, and
only the pixels contained within all three ranges were classified as potential
plastics. This resulted in the detection of three pixels for the 20200518 WV2
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image, 18 pixels for the 20200519 WV2 image, and 29 pixels for the 20200701
WV3 image (Table 5.5). No pixels were detected in the 20200611 WV2 scene,
which may be attributed to its lower spatial resolution (4.2 m) relative to the
other imagery, causing possible mixed plastic pixels to be below detectable
limits.

The detected pixels’ mean spectral signatures were extracted individually for
each scene and compared to the derived plastic endmember spectra. As seen
in Figure 5.11, spectral shapes were most similar to the plastic endmember
signature in the 20200519 and 20200701 images, albeit with a lower intensity.
The mean spectral response of the three pixels detected in the 20200518 scene,
however, was larger in magnitude relative to the endmember spectra. More-
over, their response exhibited an increased reflectance in the visible channels,
particularly in the blue and red – a spectral behaviour that was typically seen
for whitecaps in the WorldView imagery, but could also be a result of differently
coloured plastic materials. Notably, all mean spectra for detected plastics had
characteristic reflectance peaks in the NIR.

In the different spectral indices that were tested (Table 4.2), seawater was distin-
guishable from plastics in all cases. The detection problem is therefore mainly
restricted to separating marine litter from other bright targets on the ocean
surface. When evaluated on a training dataset, the NDVI alone demonstrates
distinct ranges for seawater, whitecaps, and plastics, but for classification of the
scene in its entirety, additional spectral indices were required to discriminate
between plastic targets and other surface features. Indeed, the accuracy of
the training data could affect the initial results seen in Figure 5.9 and Figure
5.10, and although it was not attempted here, a larger dataset of high-quality
training samples should be employed to further capture class variability across
the whole image. Furthermore, it may be beneficial to quantify each index’
capability of detecting marine plastic litter (e.g., by using an objective sensitiv-
ity analysis as done in Themistocleous et al. (2020)) for improved validation
of their performance. Nevertheless, results obtained here suggest promising
detection abilities using the three-variable spectral index method, based on the
spectral information of identified targets (Fig. 5.11).
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(a) TOA, 2-D (b) ACOLITE, 2-D

(c) TOA, 3-D (d) ACOLITE, 3-D

Figure 5.10: Two- and three-dimensional scatter plots illustrating class separability
using spectral indices (20200519 WV2 image). Evaluated on a training
dataset of 545 water pixels, 127 whitecaps pixels, and only two (mixed)
plastic samples, the ACOLITE image demonstrates slightly higher distinc-
tion for plastics, yet lower overall separability between all three classes.
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(a) TOA, 20200519 WV2 (b) ACOLITE, 20200519 WV2 (c) FLAASH, 20200519 WV2

(d) TOA, 20200518 WV2 (e) ACOLITE, 20200518 WV2 (f) FLAASH, 20200518 WV2

(g) TOA, 20200701 WV3 (h) ACOLITE, 20200701 WV3 (i) FLAASH, 20200701 WV3

Figure 5.11: Mean spectral signatures (black) of detected plastic pixels in three World-
View images. The derived plastic endmember spectra (red) have been
plotted for comparison.
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5.6 Spectral Unmixing – MTMF

The endmember derived from the reversed spectral unmixing process was used
for MTMF classification of all four multispectral WorldView scenes. In order
to compare MTMF performance with estimated abundance fractions, results
were first evaluated for the known plastic target, from which the endmember
signature was extracted. The results for the six pixels covering the GPS tracked
plastic cluster are presented in Table 5.3.

Figure 5.12: Pixels used for plastic abundance
estimation of known target.

Pixel
Name

Estimated
Plastic

Coverage

MF
Score

Infeasibility
Value

A 53 % 0.39 3.9
B 48 % 0.50 5.3
C 2 % 0.17 4.1
D 25 % 0.34 5.4
E 78 % 0.78 0.2
F 17 % 0.39 3.2

Table 5.3: Percentage calculation of the plastic cov-
erage in each WV2 pixel with associated
matched filtering and infeasibility scores.

Pixel E (Figure 5.12), used for the endmember derivation, obtained an MF
score of 0.78 (equivalent of 78% plastic coverage) as expected. However, the
remaining pixels’ abundance were either over- or underestimated according
to their respective MF scores. This observation is possibly attributed to two
main factors: degree of wetness and degree of dispersion in the plastic target.
As this cannot be estimated from the imagery without in situ data, the plastic
coverage estimation does not account for partial submersion or debris density.
Such properties can affect the spectral characteristics of plastic, e.g. produce a
weaker signal in the NIR channels than what is expected or induce a uniformly
lower reflectance for all bands. As seen in Table 5.3, the cell containing the
second highest abundance calculation (pixel A, 53%) produces a lower MF
score than its adjacent pixel B, estimated at 48% plastic coverage. This could
be due to a higher degree of dispersion or a partial submersion of the plastic
in pixel A, but it could also be a result purely arising from inaccuracy in the
abundance estimation.

The results in Table 5.4 were also used as a baseline for determining classi-
fication thresholds. Maximum infeasibility score was set to 8.5 as a result of
iterative testing, in accordance with previous work (Mundt et al., 2007; Routh
et al., 2018) that demonstrates an increased threshold for high-coverage tar-
gets. To prevent cloud outlines and hazy pixels from being falsely classified as
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plastics, it was necessary to set the minimum MF score to 0.49. Theoretically,
such a high value results in the mapping of high percent cover plastics but also
increases the risk of not detecting true positives (e.g., pixels A, C, D, and F are
excluded from detection). Depending on the image spatial resolution, smaller
plastic patches can go undetected. As no ground truth data was available for
validation of classification, it was decided, for the purpose of this study, to
only target high coverage pixels that could be partially validated through their
spectral signatures. However, for projects involving the directional guidance
of a vessel for cleanup, this study suggests decreasing the matched filtering
threshold and to interactively inspect detections.

In total, eight pixels across the four multispectral WorldView images were
classified as containing plastic. As seen in Table 5.4, the 20200519 WV2 scene
had 5 such detections; two of which originated from the training target (Figure
5.13 2; Figure 5.14b). The three other pixel detections located two additional
(potential) plastic clusters, as illustrated in Figure 5.13 1 and 3, and in Figure
5.14 a and c. Spectral signatures of the detected pixels were compared to
the endmember input (Figure 5.15), revealing spectral characteristics similar
to that of marine plastic debris. However, the MF scores were not consistent
with target brightness, indicating that the abundance of plastic may have
been overestimated in some pixels. For example, the pixel associated with the
second highest MF score (0.65) also had the lowest reflectance signal in the
NIR1 channel, which is an untypical behaviour for plastic debris.

Table 5.4: Number of pixels detected with >49% plastic abundance from the MTMF
classification of the WorldView data.

Image and Sensor Spatial
Resolution

Detected
Plastic Pixels

20200518, WV2 2.7 m 0
20200519, WV2 1.9 m 5
20200611, WV2 4.2 m 0
20200701, WV3 1.3 m 3

In the 20200701 WV3 image, three pixels were detected within the constraints
of the MTMF classification. All three pixels were conformed to the same patch,
as illustrated in Figure 5.16. No detections were found in proximity of Tracker
D, whose position had been estimated through linear interpolation, despite
efforts of adjusting MTMF thresholds. Spectral signatures of the three detec-
tions (Figure 5.17) were extracted from the ACOLITE processed multispectral
and SWIR imagery, as ACOLITE proved to be the only algorithm to produce
valid reflectance values in oceanic SWIR pixels. Two of these spectral pro-
files conveyed reflectance peaks at NIR (832 nm), while the third had a lower
reflectance in this band (albeit higher than that of water pixels).
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Figure 5.13: Relative location of the five detected pixels within the feasible region
of MTMF classification. WorldView-2 ©2020 DigitalGlobe, Inc., a Maxar
company.

Figure 5.14: Detected pixels from MTMF classification of the 20200519 WorldView-2
image, indicating potential clusters of plastic debris (circled in yellow).
(b) represents the known plastic patch from Tracker B, while (a) and
(c) are located in different parts of the image without associated ground
truth. WorldView-2 ©2020 DigitalGlobe, Inc., a Maxar company.

The SWIR spectra exhibited similar spectral characteristics for all detections
(Figure 5.17). According to published literature, plastics are expected to have
a spectral peak around 1600 nm (Topouzelis et al., 2019) and spectral absorp-
tion features around 931, 1215, 1417, 1732, and 2310 nm (Garaba et al., 2018;
Maximenko et al., 2019; Martínez-Vicente et al., 2019; Dubucq et al., 2020).
Although hyperspectral imagery is necessary for an accurate assessment, some
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Figure 5.15: Spectral signatures of five detected plastic pixels in the 20200519 WV2
scene, based on MF and infeasibility thresholds of >0.49 and <8.5, re-
spectively. The profiles are derived from the FLAASH corrected image.

evidence of such features were found from the 8-band SWIR image. The most
evident absorption feature is seen at around 2200 nm, likely due to a higher
spectral resolution around this band. Both the 1210 nm and 1730 nm bands
show potential absorption characteristics, and the 1570 nm band could possibly
represent a spectral crest. However, these suspicions cannot be confirmed due
to coarseness in spectral resolution, and a minimum of three narrowwavebands
(the absorption band itself, as well as one band to the left and one to the right
of the crest of the absorption feature) are needed for accurate quantification
and validation based on band depth.

Evaluated from a training class dataset on the 20200519 WV2 image, water
(representing background) obtained matched filtering scores centred around
zero⁶ and with a standard deviation of 0.05. Infeasibility values were low
for all instances, and the most extreme outlier had an MF score of 0.14 with
corresponding MT value of 4.9. Whitecaps and spume appeared to have MF
scores ranging from negative to 0.37, where higher scores (>0.2) generally
were associated with infeasibility values of 12 or larger. Class values for water
were found to be consistent across the WorldView imagery (evaluated from
separate training datasets), but generally lower MF values were seen in the
WV2 20200518 and 20200611 images for the whitecaps/spume class. For hazy
pixels and cloud outlines falling outside the cloudmask,MF scores ranged from
0.02 to 0.51 with corresponding infeasibility scores floored at 1 and ceilinged
at 19. All pixels in this class were outside the determined MTMF thresholds for

6. The majority of water pixels were on the negative side.
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Figure 5.16: Detected pixels from MTMF classification of the 20200519 WorldView-
3 image, where all three detections correspond to the same potential
cluster of plastics (circled in yellow). The estimated position (through
linear interpolation) of Tracker D is marked in yellow, but MTMF yielded
no classified plastic pixels in proximity of this area. WorldView-3 ©2020
DigitalGlobe, Inc., a Maxar company.

all four scenes.

No plastic detections were made in either of the 20200518 and 20200611
WorldView-2 images. These results could be attributed to the scenes’ lower
spatial resolution (2.7 m and 4.2 m, respectively) affecting detection of small
plastic targets. Because of this, MF and MT thresholds were adjusted in favour
of facilitating detections of lower fractional coverage (<0.49), but no viable
plastic pixels were found. Another factor impacting results could be owing
to the images’ heavy cloud cover, significantly decreasing the area in which
plastics can be detected.

For the purpose of general exploration, the atmospherically corrected imagery
was also processed with MTMF to assess differences in detection capabilities
from that of TOA data. This resulted in an increased number of detected plastic
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Figure 5.17: Spectral signatures of three detected plastic pixels in the 20200701 WV3
scene, based onMF and infeasibility thresholds of >0.49 and<8.5, respec-
tively. The profiles are derived from the ACOLITE corrected image and
split into separate multispectral and SWIR plots for better visualisation
of spectral features.

pixels, although a majority were assumed to be false positives after inspection
of associated spectral signatures. Additionally, the separability of plastic targets
from other ocean surface features was significantly decreased⁷, indicating that
more robust AC schemes may be required for future research.

Uncertainties related to the MTMF method are introduced at various stages of
its application. Indeed, without access to high-quality in situ data, it is possible
that detected pixels are in fact other floating natural materials. From previous
research (e.g., Biermann et al., 2020), driftwood/timber, seaweeds/algae, and

7. Similar MF and infeasibility scores for multiple classes obscured distinction between
plastics and whitecaps/haze.
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sea foam/spume have all been demonstrated to exhibit similar spectral charac-
teristics as to that of plastics. Furthermore, the georeferencing step in image
pre-processing performs a spatial resampling of pixels which can alter their
values and affect MNF transformations (hence also MTMF results, although
only minor effects are expected). The MTMF algorithm is also sensitive to
illumination variations, which can cause both over- and underestimation of
target abundance in a pixel. Detection probability is decreased with increasing
cell sizes (i.e., lower spatial resolutions), as seen for the 20200518 and 20200611
WV2 imagery, suggesting that several true positives may go undetected. More-
over, because the MTMF processing is conducted with only one endmember,
detected pixels are likely to be limited to a single material class of plastics (e.g.,
PET). Different types of plastic could therefore stay unclassified (undetected)
without their endmember signature as input.

The MTMF algorithm does not rely on the endmember spectra in their original
space, but rather on the target spectral signatures that exist solely in the MNF
space (Routh et al., 2018). Therefore, accuracy of the abundance estimations
may be improved by orthorectifying the imagery after MTMF classification, as
the effects of spatial resampling are minimised. Such an approach should be
evaluated for its effects in future research. Furthermore, as hazy areas within
the shift difference region may affect the estimated noise statistics in the MNF
transform, cloud mask accuracy is of high importance – particularly in imagery
with strong presence of cloud cover, preventing the shift difference region from
being selected in cloud-free areas.

5.7 Comparison of Detection Methods

In this study, three analytical methods have been explored for their ability to
detect floating plastic litter on the ocean surface: the Spectral Angle Mapper
(SAM), Mixture Tuned Matched Filtering (MTMF), and spectral indices in a
three-dimensional feature space. The results, obtained from four individual
WorldView scenes, are presented and compared in Table 5.5. Essentially, only
two pixels were identified as plastics by all three methods – one of which was
associated with the known plastic target (Fig. 5.12, pixel E), while the second
corresponded to the patch illustrated in Figure 5.14a.

The SAM classification appeared to be the least viable algorithm in terms of
true positives. In the 20200611 image, the SAM marked 89 pixels as plastic,
whereas neither of the other two methods found any such candidates. This
could indicate that thresholds should be determined adaptively based on each
individual scene’s spatial resolution and dynamic range, but also that the SAM
algorithm may be generally unsuitable for detection of small plastic targets
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Table 5.5: Results and comparison of three detection and mapping algorithms: 3D–SI
(spectral indices in three-dimensional feature space: NDVI, WV-WCI, and
RNDWI), MTMF (spectral unmixing), and SAM (supervised classification),
applied to WorldView imagery.

Pixels Classified as Plastic in WorldView Images

Image 3D-SI SAM MTMF
Overlap Overlap Overlap

Overlap All3D-SI+ 3D-SI+ SAM+
SAM MTMF MTMF

20200518 3 2 0 2 0 0 0
20200519 18 8 5 2 2 3 2
20200611 0 89 0 0 0 0 0
20200701 29 138 3 1 0 1 0

(due to poor separation between mixed target spectra and those of other ocean
surface elements, e.g., whitecaps).

Despite its limitations, the Spectral Angle Mapper holds an advantage over the
other two techniques. By comparing the angle between known and unknown
spectra, the algorithm utilises only the direction and not the length of the
spectral vector, making it insensitive to the gain factor caused by topographic
illumination variations (Shrestha et al., 2002). In comparison, these effects rep-
resent a limiting factor in spectral unmixing methods, particularly in imagery
affected by heavy cloud cover and cloud shadows, as the selection of endmem-
bers can be biased by the varying illumination conditions. Nevertheless, cloud
shadow influence has been shown to be negligible in the longer wavelength
bands (Fig. 4.9), which is also the region where the spectral separation be-
tween plastics and seawater is greatest. Compared to the SAM, MTMF and the
spectral indices tested here demonstrate higher robustness in the detection of
mixed plastic pixels.

As no reference dataset or hot spot maps for plastic concentrations exist (specif-
ically over the area encompassing the GPGP), it remains uncertain whether the
amount of pixel detections can be considered a reasonable number. However,
given the large spatial extent over which the imagery spans, as well as recent
reports of floating plastic mass in the North Pacific Ocean⁸, the WorldView
scenes could be expected to contain substantially larger amounts of plastic
litter than what was found, particularly forMTMF. It is likely, yet unconfirmable,
that several true plastic pixels fall outside of the determined thresholds (i.e.,
false negatives). An increased number of ground truth training samples are
therefore needed to properly assess the performance of the methods.

8. Estimates of 6,350–236,000 tonnes (Maximenko et al., 2019).
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Lastly, it should be noted that inconsistency in pre-processing (i.e., top-of-
atmosphere data was used for MTMF and the spectral indices, while bottom-
of-atmosphere (FLAASH) data⁹ was used for the SAM classification) implies
that the various results should not be directly compared. Thus, Table 5.5 only
serves as a summary of the obtained results across the WorldView imagery –
not a rigorous assessment of algorithm performance.

9. Using TOA data for the SAM algorithm was found to produce no useful results as plastics
could not be distinguished from whitecaps.





6
Conclusion
The exploratory nature of this study casts a wide net, and the qualitative data
it collects cannot form the basis of sweeping generalisations. The methodolog-
ical framework presented here represents first steps towards the detection of
marine plastic debris, in which high-resolution satellite imagery is exploited
for its spectral and spatial properties. Several parameters influence detection,
including atmospheric correction algorithms, whitecaps, clouds, cloud shadows,
image signal-to-noise ratio, surface reflected sun glint, debris density, floating
non-anthropogenic materials (e.g., algae), and waves. At present, remote sens-
ing technology and data analysis techniques are underdeveloped for accurate
detection schemes to be established. However, evidence seen here indicates
that marine plastic litter can be detected from space if accumulated into suffi-
ciently large patches and, furthermore, is distinguishable from seawater and
whitecaps for adequately abundant target fractions in a given pixel.

Literature has previously reported that floating plastics are seen from space
as bright objects (Topouzelis et al., 2019). This is in agreement with the
findings of this study, where a high pixel percentage coverage generally was
associated with a high intensity signal. Furthermore, the observed spectral
characteristics of plastic targets conformed to conventional spectra for marine
debris found in previous research (e.g., Biermann et al. (2020); Kikaki et al.
(2020)), with a sharp reflectance peak in the NIR region (831 nm central
wavelength for the WorldView sensor). Atmospheric correction algorithms
were demonstrated to enhance this reflectance feature, albeit with notable
differences in magnitude and shape of the signal depending on the chosen AC

105
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method. These differences were most evident in the ACOMP plastic spectrum,
whereas ACOLITE and FLAASH produced more similar spectral responses.
To determine the most appropriate algorithm for marine debris detection
applications, future studies must evaluate the suitability of AC methodologies
through rigorous intercomparison with the vastness of the Pacific Ocean in
mind.

Detection capabilities of satellite instruments were also explored using top-of-
atmosphere data. Although imagery (particularly those of different sensors)
must be on a common radiometric scale for determining absolute thresholds in
detection algorithms, TOA data represents a possible, yet temporary solution
to the atmospheric correction problem. However, the effects of using at-sensor
imagery should be investigated further.

Of the numerous GPS tracker recordings that were made for the sake of plastics
detection (Table 3.6), only one of the markers (Tracker B) proved to be a reliable
source for pinpointing floating plastics to a high degree of certainty. The lack
of ground truth information was a severely limiting factor, particularly when
determining class thresholds for the various detection algorithms. Still, the
methods evaluated with the available data showed promising results in terms
of possible plastic pixels, although with fewer feasible detections than expected.
Nevertheless, spectral signatures for detected pixels were, in many cases, similar
to those of known targets.

6.1 Suggestions for Future Work

A base requirement in all detection schemes is the availability of target end-
member spectra, whose quality depend on the accuracy of atmospheric correc-
tion algorithms. Through intercomparison between different sensors and AC
methodologies, accompanied by further research on spectral behaviour of vari-
ous marine plastic types (in a real, aquatic environment), a reference dataset
comprising high-quality spectral signatures of marine debris can be produced.
Access to generalised training data is crucial for automation in large-scale
detection systems, and for the derivation of accurate and continuous spectra,
hyperspectral imagery (e.g., PRISMA and the upcoming PACE1 mission) should
be employed. Combining the high spatial resolution of broadband sensors with
the fine spectral resolution of hyperspectral instruments presents an opportu-
nity to gather extensive spectral information on smaller plastic targets and is a
natural next step in marine litter research.

1. A NASA Earth observation spacecraft scheduled for launch in 2022. More info can be found
at: https://pace.oceansciences.org.

https://pace.oceansciences.org
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Reliable ground truth data is of utmost importance for further advancement in
detection algorithms. New machine learning techniques, in which models are
trained for debris detection with minimal requirement of human interference,
should be explored; yet such tasks demand abundant high-quality in situ data.
A cost-effective tool for collecting ground truth information could be the deploy-
ment of unmanned aerial vehicles (UAVs) from clean-up vessels in the area of
interest to capture high-resolution imagery of plastic targets. This would allow
for a more accurate derivation of plastic endmembers via spectral unmixing
methods but would also require intricate logistics (e.g., timing with satellite
overpasses). Another and perhaps more viable option could be to have an in-
creased number of GPS trackers attached to very large plastic conglomerates to
facilitate full-pixel coverage for a high-resolution sensor (e.g., WorldView-2/-3).
Furthermore, a higher frequency of logged positions of existing GPS trackers,
especially in proximity of image capture time, would significantly increase
chances of detection (provided cloud-free observing conditions).

The use of high-resolution SAR systems should also be subject to research,
given their ability to observe the surface regardless of solar illumination and
cloud cover. If used together with frequent GPS tracker information, SAR tech-
nology has the potential to provide comprehensive descriptions of floating
plastic dynamics, such as its profile above sea level, drift velocities relative
to surrounding waters, and dampening effects on surrounding waves (Maxi-
menko et al., 2019). To fully understand marine plastic behaviour, and to
advance towards automated detection algorithms, such characteristics are of
high importance.

A recurrent problem with plastic debris detection is the environmental pertur-
bations from other ocean bright targets (breaking waves, spume, whitecaps,
sun glint). Therefore, to attenuate the proportion of false positives, this study
suggests a multitemporal approach in which subsequent images of the same
area are acquired with delays of a few minutes. In this time, wave patterns will
have reformed from those of the initial image and can be identified as such,
while plastic patches will likely not have moved far from their original position.
Combined with abundant GPS tracker information, this technique could enable
accurate distinction of plastics from dynamic ocean surface features.

Signal-to-noise ratios represent another key parameter in spectral target de-
tection algorithms. Since marine plastic aggregations produce a weak signal
(Topouzelis et al., 2020), future campaigns should work towards a complete
assessment of different sensors’ detection capabilities. Based on band-specific
SNRs, one can estimate the minimum concentrations that can be accurately
detected, as well as determine appropriate bands for spectral indices or band
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boosting2. This evaluation is also necessary to determine an optimal SNR for
future satellite missions aimed at marine litter detection.

Lastly, in the advent of supervisedmachine learning algorithms, cross-validation
should be introduced as an evaluation tool to assess the performance of various
detection methodologies and classification models. Requiring high-quality
in situ data, this approach is advised after a generic ground truth reference
dataset has been established, but it could also be used following an extensive
field campaign. In future research, cross-validation could serve as a critical
component in computing model accuracies and should be preferred over user-
directed, interactive accuracy analysis as this study has been limited to.

2. Fusion of two or more bands for enhancing spectral characteristics of a target material.
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